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ABSTRACT

The main contribution of the paper is a negative result about probabilistic algo-
rithms: The probabilistic distributed algorithms to find the maximum label in every
asynchronous unidirectional ring configuration are not more efficient than deterministic
(non-probabilistic) algorithms.

1. Introduction.

In [3] we proved an exact lower bound for a certain class of distributed algorithms
in unidirectional rings of processes. The purpose of the present paper is to prove the
same bound for probabilistic distributed algorithms.

A unidirectional ring consists of processes connected by communication channels
to form a circular configuration in which each process can send messages to its immedi-
ate neighbor in one direction; the direction is the same for all processes. The processes
can communicate only by sending and receiving messages. Every message transmitted
to a channel is eventually delivered, but the transmission delays are variable and not a
priori bounded; thus the system is asynchronous.

Every process in the ring has a unique integer label, of which only the process
itself is initially aware; the processes know neither the range of all labels in the ring
nor the ring size. This paper deals with the distributed algorithms that find the max-
imum label. The algorithms are probabzlistic. This means that the processes can test
values of random variables (of known distribution). To prevent implicit communica-
tion between processes, it is assumed that the random variables used by different
processes are independent.

The performance measure used to evaluate algorithms is the average expected
number of messages transmitted when all processes begin execution simultaneously.
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The main result of the paper is Theorem 5.3, in which a lower bound from (3] is
extended to probabilistic algorithms. Theorem 6.3, which contains a matching upper
bound, shows that the lower bound in Theorem 5.3 is exact.

2. Technical assumptions.

As in [3], it is assumed that (i) the communication channels are first-in first-out
(FIFO) queues, (ii) the distributed algorithms under consideration are message-driven,
and (iii) the execution in each process is sequential and is fully determined by the
received messages and by the values of the random variables tested by the process.
These assumptions are important in the proof of Lemma 2.1 below. However, the main
results of this paper do not depend on the assumptions (i), (ii) and (iii).

The assumption that messages in each channel are delivered in the same order as
sent (i.e. the channels are FIFO queues) does not change the number of messages
necessary or sufficient to find the maximum label. Indeed, one can include a sequence

number in each message and simulate the in-order delivery within the receiving pro-
cess.

Processes send and receive messages. The execution of a process is message-
driven if the process concludes all its activity arising from a received message before
receiving the next message. In more concrete terms, a distributed algorithm is
message-driven if processes receive messages by means of the blocking-recetve opera-
tion ([4], p. 481), and have no other way of examining their incoming channels. Block-
ing receive means "if the next message has not arrived yet, suspend execution and wait
until a message arrives". A process executing a message-driven algorithm can examine
its incoming channel only by executing the blocking-receive operation (there is no "Is
there a message waiting?" operation); the process can check whether the next message
has arrived only if it commits itself to wait until the message arrives. It will be proved

in section 4 that this restriction (assumption (ii)) does not limit the generality of
Theorem 5.3.

If the processes in a (unidirectional) ring are labeled sy, sq,..., s, , with the com-
munication channels leading from s, to s;, from s; to sq, ..., and from s,_; to s,,
then the ring is said to be labeled by the sequence (s; sy ... s,); the ring is also said to
be labeled by the set {s1, Sgyeuey Sp} -

The trace of a message is defined as in [3]: If the message sender has the label s,
and has previously received no message then the trace of the message is the sequence
(s;). If the last message previously received by the sender has trace (s; sq ... 55_1),
k>2, and the sender has the label s;, then the trace is (s; 85 ... s;). The trace is an
upper bound on the information about process labels carried by the message: The mes-
sage whose trace is s contains no information about the labels outside of the segment

labeled by s.
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2.1. Lemma. For a given algorithm executing in a given unidirectional ring, if all
processes start their execution simultaneously then the probability of sending a given
message does not depend on transmission delays. Moreover, if ¢ is a prefix of s and if
the same algorithm is executed in the ring labeled by ¢ and in the ring labeled by s, in
both cases with all processes starting their execution simultaneously, then the probabil-
ity of sending a message with trace ¢t in one ring is the same as in the other.

Proof depends on the assumptions formulated at the beginning of this section.
Let all processes begin execution simultaneously. Every process receives messages from
a single source and, by the assumption (i), the order of received messages does not
depend on transmission delays. Moreover, in view of the assumption (ii), the absolute
values of transmission delays cannot be observed by the processes, and hence have no
effect on the execution sequence in each process and on the content of the transmitted
messages. By the assumption (iii), the only non-determinism is introduced to the exe-
cution by the random variables tested by the processes. Hence (for fixed values of the
random variables tested by the processes that correspond to the labels in ¢) the execu-
tion that leads to the transmission of the message with trace ¢ in one ring takes place
in the other ring as well.

O

3. The performance measure.

Let I be a set of n labels, and consider a (probabilistic) distributed algorithm A.
The average expected number of messages transmitted by A in the rings labeled by I,
denoted avey(I), is defined as follows. For every permutation s of I, let v4(s) be the
number of messages transmitted when all processes in the ring labeled by s begin exe-
cution simultaneously and execute according to the algorithm A. Since the algorithm
A is probabilistic, v4(s) is a random quantity; let 7,(s) be its expected value. By
Lemma 2.1, U4(s) does not depend on transmission delays. Define ave,(I) to be the
average of U,(s) over all permutations s of I.

Let p be a real number in the closed interval [0,1]. A p-algorithm is a probabilis-
tic distributed algorithm that finds, with probability at least p, the maximum label in
every unidirectional ring. More precisely, in any unidirectional ring of any size, with

probability at least p at least one process in the ring eventually knows what the value
of the maximum label is.

For the results in this paper, the questions of effective computability are
irrelevant. The term algorithm (or p-algorithm) does not imply any effective pro-
cedure. A probabilistic algorithm executed by a process is simply a strategy to make
the decision, based on the received messages and on the values of the random variables
tested by the process, whether a message is to be transmitted at a given time and what
its content is to be. The decision need not be effectively computable. This usage does
not limit the validity of the forthcoming results; in fact, it can only make the lower



bounds more general.

4. The assumption that algorithms are message-driven.

The purpose of this section is to show that, although the proof of the lower bound
in section 5 assumes that algorithms are message-driven, the bound itself holds true

without the assumption. The rest of the paper may be read independently of this sec-
tion.

A process is said to be in an ambiguous state when it can both receive a message
if one has arrived and continue computation if no message has arrived. For example, a
process is in an ambiguous state when it executes the conditional receive operation
(which means "receive the next message if there is one, otherwise continue execution").
According to the definition in section 2, a distributed algorithm is message-driven if
and only if none of its processes is ever in an ambiguous state.

The execution of a distributed algorithm that is not message-driven may depend
on transmission delays. In that case the definitions in section 3 are extended as fol-
lows: A distributed algorithm A is a p-algorithm if it works correctly (i.e. with proba-
bility at least p at least one process in the ring eventually knows the value of the max-
imum label) for any choice of delays. Since there is no canonical probability distribu-
tion on the delays, the quantity v 4(s) is taken to mean the number of messages for the
worst choice of delays. More precisely, v4(s) is the least upper bound, over all possi-
ble combinations of transmission delays, of the number of messages transmitted when
all processes begin execution simultaneously. The quantities D4(s) and avey(I) are
defined as in section 3, in terms of v4(s).

Consider a fixed process executing a p-algorithm. In the next lemma and in the
proof of 4.2, pr_active(t) is the probability that if the process receives no message at
or after the time ¢, it will eventually (at a time t'>¢) either compute the value of the
maximum label (and stop) or send a message. Denote exp_msg(t) the expected number
of messages that the process will send at or after the time ¢ if the process receives no
message at or after .

4.1. Lemma. Let t; be a time in the process execution such that
exp_msg(ty) < oo. For every B>0 there exists t; >ty such that if the process receives
no message in the time interval [to,t;] then pr_active(t;) < B.

Proof. For ty<a<b, denote p(a,b) the probability that the process computes the
value of the maximum label (and stops) or sends a message at or after the time a but
before the time b, under the assumption that the process receives no message at or
after the time t;. The process computes the maximum label at most once, and there-
fore



o0
3 p(totito+i41) < 1+exp_msg(ty) < oo .
t=0

Hence there is an integer k>0 such that
o0
pr_active(to+k) < 3 p(tot+i,toti+1) < B
1=k
O

4.2. Proposition. For every p-algorithm A (not necessarily message-driven) and
for every a>0, a<p, there exists a message-driven (p —a)-algorithm B such that

avey(I) > avep(l)
for every finite set I of integers.

Proof. It is sufficient to prove that there is a message-driven (p—a)-algorithm B
such that U4(s) > Upg(s) for every seD.

The algorithm B will be constructed to mimic A, except for ambiguous states in
the execution of A. Whenever a process executing A is in an ambiguous state, the
corresponding process executing B either executes the blocking-receive operation (and
defers any computation until after it has received the next message, if any) or contin-

ues computation (and defers receiving any message), but not both. The choice is made
as follows.

Assume that a process whose label is s; executes the algorithm A. Let z be the
absolute value of s;. Let the process be in an ambiguous state at a time ¢, and let y
be the number of messages received by the process before the time ¢. If
exp_msg(t)=oo then the process executing B stops simulating A and initiates the exe-
cution of any maximum-finding algorithm for which the average expected number of
messages is finite (for example the algorithm of Chang and Roberts [1], which is a 1-
algorithm in the terminology of the present paper). Since exp_msg(t)=oco for the algo-
rithm A, transmission delays in the execution of A can be chosen so that

Uys(s) > Upg(s). Hence in the rest of the proof it will be assumed that
exp_msg(t)<oo.

If pr_active(t)>« 22+9+3 then the algorithm B specifies that the process should
continue its computation and not attempt to receive any messages. If
pr_active(t)<a/2*t¥*3 then the process executes the blocking-receive operation and
defers any remaining computation until after the next message has been received.

From Lemma 4.1 it follows that transmission delays can be arranged so that a
process executing A receives a message (in an ambiguous state) only if the correspond-
ing process executing B receives a message (using the blocking-receive operation). In

the rest of this proof it is assumed that the transmission delays are chosen in that
manner.
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In a ring of processes labeled by a sequence s, let E be this random event: An
ambiguous state in a process executing the algorithm A has been replaced by a
blocking-receive operation (in the process executing B) and the process executing A
sends a message or computes the value of the maximum label before the next message

arrives. From the definition of the algorithm B it follows that the probability of E is
smaller than

o o0
E 22+y+3 < 2« E 2n+y+3 = a
$:,Y n=0 0

where, in the first sum, 2z is the absolute value of the label s;.

If E does not occur then A and B send exactly the same messages, and a process
in the execution of A establishes the maximum label if and only if the same process in
the execution of B does. Hence B is a (p—a)-algorithm. Moreover, if E does occur
then obviously B does not send more messages than A. It follows that v4(s) > vpg(s)
and therefore U4(s) > Upg(s).

O

4.3. Corollary. Let I be a finite set of integers. If b(p) is a continuous function
of p, 0<p<1, such that

b(p) < avep(I)
for every p €[0,1] and for every message-driven p-algorithm B, then
b(p) < avey(I)

for every p €[0,1] and for every (not necessarily message-driyen) p-algorithm A.

a

5. From algorithms to functions on sequences: A lower bound.
Let Z be the set of integers. Define

D = {(sy 8g ... 8) | k>1, 8; €Z for 1<i<k, and s;#s; for i3 }.

When s = (s; 8y ... 8) is a sequence of integers, denote by len(s) the length of s, and
by C(s) the set of cyclic permutations of s.

Let p be a real number, 0<p <1. Consider the following two properties of func-
tions e:D —[0,1].

P1. Prefixz property. If ¢t is a nonempty prefix of s then e(t)>e(s).
P2(p). Cyclic sum property. If s€D then

> {et) |tec(s)} > p .
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Note that if a function e assumes only the values 0 and p then e has the proper-

ties P1 and P2(p) if and only if the set { s €D |e(s)=p } is exhaustive in the sense
of [3].

For seD and a function e:D— [0,1], define
N(s,e) =Y {e(t) |t is a prefix of some reC(s) }.
In the sequel, H, is the nth harmonic number ([2], p. 73).

5.1. Proposition. If ¢:D —>[0,1] has the properties P1 and P2(p) and I is a set
of n integers then

by N(Sae) >nlnpH,,
8
where the sum is over all permutations s of I.

Proof is a generalization of the proof of 3.2 in [3]. Write

n
3 N(s,e) =3 32 30 {e(t) |t is a prefix of some reC(s), and len(t)=k } .
s k=1 s
For a fixed k, 1<k <n, and a fixed permutation s of I, there are n prefixes ¢t of
cyclic permutations of s such that len(t)=k. Hence for all permutations s there are
n!n instances of such prefixes t. In view of the cyclic sum property, one can form

n!n/k groups of these prefixes so that the sum of e(¢) over ¢ in each group is at least
p. It follows that

nln

k

p=nlnpH, .

>) Nise) = 3]

k=1
O

Let A be a p-algorithm. Say that "with probability ¢ the algorithm A sends a
message with trace s" if the statement is true when all processes start execution simul-
taneously in the ring labeled by s. By virtue of Lemma 2.1, the statement is then also
true (when all processes start execution simultaneously) in any ring labeled by a
sequence of which s is a prefix.

5.2. Proposition. Let A be a p-algorithm, 0<p <1, and for each sequence s of
labels define e4(s) to be the probability that A sends a message with trace s. Then
the function ey : D — [0,1] has the properties P1 and P2(p).

Proof. Let ¢t and s be two nonempty sequences of integers such that ¢ is a prefix
of s. From the definition of trace it follows that if A sends a message with trace s
then A also sends a message with trace t. Hence e (t)>e4(s) .
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Let s=(s; 8 ... 8;) be any sequence in D. Consider executions of A in the ring
labeled by s. No process can establish the maximum label in the ring without receiv-
ing a message whose trace has length at least k; since A is a p-algorithm, the probabil-
ity of sending at least one message whose trace has length at least k is at least p.
However, if a message whose trace has length at least &k is sent then also a message
whose trace has length ezactly k is sent (the latter is the prefix of length k of the
former). Consequently

Y ealt)=p .

teC(s)
O

5.3. Theorem. If A is a p-algorithm and I is a finite set of n integers then

Proof. From the definition of U 4(s), N(s,e) and ey it follows that, for any per-
mutation s of I,

Ua(s) > N(s,ey) .

Proposition 5.1 yields

__ 1« - 1
aves(I) = — 3 Uals) 2 — 30 Nlssea) 2 npHy
tos o8

6. From functions on sequences to algorithms: An upper bound.
Consider the following property of functions e :D —[0,1].

P3(p). Cyclic product property. If seD then

TT{1—e(t) |tec(s)} < 1—»p.

Again, if e assumes only the values 0 and p then e has the properties P1 and
P3(p) if and only if the set { seD |e(s)=p } is exhaustive in the sense of [3]. How-
ever, the function e:D—>[0,1] defined by e(s) = 1/len(s) satisfies P2(p) but not
P3(p) for p=1.

6.1. Theorem. If ¢:D—[0,1] has the properties P1 and P3(p) then there is a
p-algorithm A such that for every finite set I of n integers we have
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_ 1
@eu(l) = —= 5 Nisye),
S8
where the sum is over all permutations s of I.

Proof. Let every process execute the following program:

constant integer local_label
variable sequence old_msg, msg

begin
msy = (local_label)
Send(msg) with probability e(msg)

repeat
begin
Receive(old_msg)
if local_label is in old_msg then goto DONE

msg = Concatenate(old_msg, (local_label))

Send(msg) with probability e(msg) / e(old_msg)
end

DONE: claim Max(msg) is the maximum label
end

In this program, the random transmissions ("Send(msg) with probability ¢") are
arranged to be independent for different messages. That is, whenever a random

transmission statement is to be executed, a new independent random variable is tested
to determine whether the message should be sent.

In this algorithm, the content of each message is its trace. By induction in len(s)
one can easily prove that, for each seD, the probability that this algorithm A sends a
message with trace s is e(s). In addition, if FCD and no sequence in F' is a prefix of
another sequence in F' then the events of sending a message with trace s are indepen-
dent for seF. Therefore the probability that no process in the ring labeled by s
reaches the statement label DONE is J] {1—e(t) |[teC(s)}, and by P3(p) the proba-

bility that at least one process reaches DONE is at least p. Thus the algorithm is a
p-algorithm.

Moreover, no message is sent whose trace does not belong to D, and for each seD

at most one message with the trace s is sent. Hence U4(s) = N(s,e), and the theorem
follows.

a
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6.2. Theorem. For every p, 0<p<1, there is a function e,:D — [0,1] that has
the properties P1 and P3(p) and such that, for every finite set I of n integers,

Y} N(s,ep) =nlnpH, ,
8
where the sum is over all permutations s of I.

Proof (cf. [1] and Example 2.3 in [3]). For s=(s; sy ... s,,) define

e{s) =p if s;= max s;;
1<i<n

ep(s) = 0 otherwise .
It is easy to verify that e, has the properties P1 and P3(p).
Let card X denote the cardinality of the set X. For a fixed k, evaluate the sum

card {t=(t, ... t;) | t;= max t; and ¢ is a prefix of some r€C(s
bk 1<i<k
s St>

(where the sum is over all permutations s of I): There are n! /[k!(n—k)!] subsets J of
I such that cardJ=k. For each such J there are (k—1)! permutations ¢t =(¢; ... t;) of
J such that ¢;= max ¢;. For each such ¢ there are (n—k)! n permutations s of I

1<i <k
such that ¢ is a prefix of some reC(s). Therefore the sum is equal to
n! 1
BT (k) (k—1)! (n—k) n nln —

and

S N(s,ep) =3 3 {e,(t) |t is a prefix of some reC(s) }

Il

n
p Y 3 card {¢t=(t; ... ;) | t;= max ¢; and ¢ is a prefix of some reC(s) }
k=1 s 1<i<k

I

n'npH, .
O
8.3. Theorem. For every p, 0<p<1, there is a p-algorithm A such that
avey(I) =npH,

for every finite set I of n integers.

Proof. Combine 6.1 and 6.2.
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6.4. Example. The following is a program description of an algorithm whose

existence is proved in Theorem 6.3. (For p=1, the algorithm becomes that of Chang
and Roberts [1].)

constant integer local_label
variable integer msg

begin
msg = local_label
Send(msg) with probability p

repeat
begin
Receive(msg)
if msg = local_label then goto DONE

if msg > local_label then Send(msg)
end

DONE: claim local_label is the maximum label
end

7. Conclusion.

In this paper, probabilistic distributed algorithms for finding the maximum label
in every asynchronous unidirectional ring configuration are described by functions from
the set D to the interval [0,1]. The description is used to prove (in Theorem 5.3) that
the algorithm in Example 6.4 leads to the smallest possible average expected number of
messages. ‘

The algorithm in Example 6.4, which depends on the parameter p, finds the max-
imum label with probability p. For p=1 the algorithm is deterministic. Thus, in the
construction of algorithms to find the maximum label with probability 1, randomiza-
tion does not decrease the average expected number of messages.
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