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ABSTRACT

The equivalence problem for deterministic two-way transducers
was a longstanding problem finally shown decidable by E.M.
Gurari. We show a generalization of this result, namely that it is
decidable whether two single-valued two-way transducers are
equivalent on an NPDTOL language. We obtain this result by
showing that it is even decidable whether a two-way transducer is
single-valued on an NPDTOL language. Our solution is based on
the compactness property of the systems of equations over a finitely
generated free monoid shown recently by J. Lawrence and M.
Albert. This was a longstanding open problem known as the
Ehrenfeucht Conjecture. Our approach also shows that for one-way
transducers their single-valuedness on a given HDTOL language
can be tested, and thus the equivalence of two single-valued one-
way transducers on an HDTOL language is decidable, too.

Our results imply the decidability of the HDOL and HDTOL
sequence equivalence problems, also longstanding open problems
solved recently by K. Ruohonen and the authors, respectively.

Key words: equivalence problem, two-way transducer, single-
valued transducer, unambiguous transducer, Ehrenfeucht Conjec-
ture, DTOL language.

Abbreviated title: Single-valued two-way transducers.
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1. Introduction

The equivalence problem for deterministic two-way transducers was a long-
standing open problem that was finally shown decidable in [8]. Our main result
is a generalization of this problem. It is generalized in two directions, single-
valued rather than deterministic two-way transducers are considered and their
comparison is restricted to NPDTOL languages. Especially the latter extension is
substantial since even a much simpler problem, namely that of testing
equivalence of morphisms on PDOL languages, which is only a special case of
the HDOL sequence equivalence problem, was open until recently [15], [5].
Also the decidability of the HDTOL sequence equivalence problem, shown

recently in [5], follows as a special case of our results.

We demonstrate the decidability of the equivalence problem by showing that
it is even decidable whether a given two-way transducer is single-valued on an
NPDTOL language. Our proof uses some properties of NPDTOL languages and
most importantly a recent deep algebraic result, the validity of the Ehrenfeucht
Conjecture [1], a problem which originated in formal language theory [6] and
[11].

Let L be an arbitrary language over £. We say that a finite subset F of
L is a test set (with respect to morphisms) for L - if whenever two morphisms
agree on F they agree on L as well. The Ehrer-1feucht Conjecture states that
each language possesses a test set. In [4] it was shown that the Ehrenfeucht Con-
jecture can be equivalently stated in algebraic terms as follows. Every infinite
system of equations, with a finite number of unknowns, over a free monoid has
an equivalent finite subsystem. The validity of the Ehrenfeucht Conjecture, in
the latter form, was established in [1]. We will use this algebraic form to demon-
strate the validity of a generalization of the former version, namely that each
language possesses a finite test set with respect to two-way single-valued transduc-

ers with a bounded number of states (Theorem 4).



Single-Valued Two-Way Transducers 3

Then we show that a finite test set exists effectively if L is an NPDTOL
language [14]. This step relies on the authors’ earlier result that the equivalence
problem for systems of equations, with a finite number of unknowns, over a free
monoid is decidable, which, in turn, is based on the deep result of Makanin [12]

that the solvability of such systems is decidable.

Clearly, the effective existence of a test set for NPDTOL languages, with
respect to single-valued two-way transducers with a bounded number of states,
implies that it is decidable whether single-valued two-way transducers agree on
an NPDTOL language. Since the domain of every two-way transducer is a regu-
lar set and since the family of regular sets is included in the family of NPDTOL
languages we have as a corollary the result in the title of this paper.

Now, a natural question is whether the property of single-valuedness (on an
NPDTOL language) itself is effectively testable. The answer is affirmative and
to demonstrate it we use a minor modification of the arguments outlined above
for the solution of the equivalence problem. Actually, it is easy to see that the
decidability of the single-valuedness (on an NPDTOL language) implies the deci-
dability of the equivalence of single-valued transducers (on an NPDTOL
language). Hence, in the following we prove the decidability of the former.
However, here in the introduction we outlined the direct proof of the decidability

of the equivalence problem because it seemed more understandable.

A two-way transducer is called unambiguous if it is single-valued and its
underlying acceptor is unambiguous. The unambiguous two-way transducers are
properly between the deterministic and the single-valued ones. We show that it
is decidable whether a two-way transducer is unambiguous. Our test for unambi-

guity is much simpler than that for single-valuedness.

The decidability of the equivalence and single-valuedness problems for one-
way transducers (on the whole domain) was shown in [16] and later indepen-
dently in [2]. A generalization of these results, namely the decidability of the

equivalence or single-valuedness for one-way transducer on a context-free
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language was shown in [3]. The same problems for HDTOL languages, or even
DOL languages, were open, however their decidabilities follow from our results.
Indeed, if instead of two-way transducers one-way transducers are considered,
then our above decidability results hold also for the family of HDTOL languages,
and not only for the family of NPDTOL languages. For example, it is decidable
whether a given one-way transducer is single-valued on a given HDTOL
language (Theorem 11).

We note that the equivalence problem for the nondeterministic transducers is
undecidable, this holds even if only e-free one-way transducers (gsm’s) with one-
letter input (or output) alphabet are considered [10]. We also note that the
single-valuedness problem for push-down transducers is undecidable. This prob-

lem can be easily reduced to the problem of deciding the emptiness of the inter-

section of two context-free languages.

2. Preliminaries

A two-way (sequential) transducer (twt) is a 5-tuple M = (K,X,A,H,sq)
where K, ¥, and A are finite nonempty sets of states, inputs and outputs,
respectively, so in K is the initial state and H 1is a finite subset of

KX E2x A*x Kx {-1,0,1}.

Our definition differs from the usual one (cf. [7]) in the sense that our read-
ing head sees simultaneously two symbols of the input tape. This modification is
introduced to facilitate the proof of Lemma 3 but does not effect the decidability
results since for a twr in the usual form it is easy to construct an equivalent one
in our form, and vice versa (ignoring the short words). As in [7] we do not have
final states or endmarkers, however, as far as our problems are concerned the
model with final states and/or endmarkers is clearly equivalent. We also assume,

without loss of generality, that the initial state sy is not entered in any
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computation. Informally a sz functions as follows. It starts by reading the left-
most two tape symbols while in state sy, and a transducer terminates when the
twt moves right from the rightmost tape symbol to the blank tape where no

further moves are defined, i.e. where the reading head sees a blank on the right.

We will describe a configuration of a twe by a string xapby where x,y € £*,
a,b €¥, and p €K, indicating that the finite control is in state p and the
reading head above symbols a and b (to avoid defining H on “blanks” we
assume that the input word is at least of length two). When (p,ab,w,q,k) €H
then M in state p may read ab, write w, transit to state ¢ and move k
squares right on the input tape. Thus M may go from configuration xapby into
configuration xqaby , xagby or xabqy for k = —1, 0, 1, respectively.

The input-output relation realized by a wt M is called two-way transduc-
tion and is denoted by 7(M). Two twt’s are equivalent if they define the same
transduction. A twt M is single-valued if (x,y) er(M) and (x,z) er(M)
implies y = z.

A DTOL system (resp. PDTOL system) is a tuple S = (S,hy, ..., h,,w)
where ¥ is a finite alphabet, #; : ¥* —X* is a morphism (resp. e-free mor-
phism) for i =1,...,n and w €X*. The language generated by § is
denoted by L(S) and defined as the closure of {w} under morphisms
hy, ...,h,. An HDTOL (resp. NPDTOL) language is a morphic image of a
DTOL language (resp. a morphic image of a PDTOL language under an e-free
morphism). For properties of these and related languages see [14]. As a general

reference to the theory of formal languages we give [9].

The following deep algebraic result has been recently proved in [1].

Theorem 1.  For each infinite system of equations, with a finite number of unk-
ncwns, over a finitely generated free monoid there exists (noneffectively) an

equivalent finite subsystem.
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This settles the famous Ehrenfeucht Conjecture that was originally formu-
lated in the language form below. The algebraic form was proposed and shown
equivalent to the language form in [4].

Let L be any language over a finite alphabet £ and F a finite subset of
L. We say that F is a test set for L (with respect to morphisms) if for any pair
of morphisms (g,k2), g(x) =h(x) holds for all x in L if and only if
g(x) = h(x) holds for all x in F. The language form of the Ehrenfeucht
Conjecture is the following. 7

Theorem 1'.  Every language over a finite alphabet possesses a test set.

3. Single-Valuedness Test Sets

In this section we establish our main result (Theorem 3) which implies that it
is decidable whether a mt is single-valued on an NPDTOL language. Some
applications of this result are shown in Section 4. Our proof goes via several lem-
mas and theorems some of which, we believe, are of interest on their own.

We start by fixing our specific terminology. Let T,(X,A) (resp.
SVT, (£,4)) denote the family of (resp. single-valued) mt’s with input alphabet
¥, output alphabet A and at most n states. A transducer schema over 1 is a

twt with the following properties:

(i) if (p,ab,u,gq,k)eH and (p,ab,v,q.,k)cH,then u =v and u €Q.

(i) if (pr,a1bi,u.q1,k1) €H and (p2,azbyv qzks) €H - with
(pl’albl’qukl) # (p29a2b2’QZ>k2), then u # v.
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Clearly, for a fixed alphabet ¥ and fixed number of states, there exists only
a finite number of distinct transducer schemata (up to the renaming of outputs),
so under these assumptions 2 can be fixed. For our purposes it is illustrative to

call 2 the set of unknowns.

Let S,(2,Q)={M €T,(2,02)|M is a transducer schema}. For a mapping
i:0Q—A* and § in S,(Z,0), we denote by i(S) the mt obtained from §
by replacing in H each output (unknown) ¢ by i(c). We say that i(S) is an
interpretation of S via i. Let I(S) be the set of all the interpretations of S

and I(S,(Z,0)) = 1(S). Clearly, 1(S,(2,02)) ¢ T,(£,A). The inclu-
565,(2.0)

sion is proper because of condition (i) in the definition of a transducer schema.
However, I(S,(Z,Q2)) contains SVT,(Z,A), assuming that we identify the trans-
ducers which differ from each other only because of useless transition rules. Con-
sequently, S, (Z,Q2) serves as a “finite base” for the family SVT,(X,A) in the
sense that each st in this family is obtained from a transducer schema in
S, (X,Q) via an interpretation. Observe, however, that transducer schemata are
not necessarily single-valued and hence SVT,(£,A) ¢ 1(S,(Z,2)).

Finally, we define the notion of the single-valuedness test set for a language
L with respect to a class ¢ of mt’s. We say that a finite subset F of L is a

single-valuedness test set for L with respect to 0 if any mwt in 6 is single-valued

on L if and only if it is single-valued on F.

The terminology and notation introduced above is used throughout the

paper. Now, we are ready for our first auxiliary result.

Lemma 1. For any language L C ©* and for a transducer schema S there

exists a single-valuedness test set F for L with respect to 1(S).

Proof: Consider a word w in L N dom(S). Let comp(w) denote the set of

all computations of w in §. We say that a computation # contains a loop if it
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contains a subcomputation from a configuration into itself. Let the set of loop-
free computations of w be denoted by compy(w). Furthermore, let comp,(w)
denote the set of all subcomputations of computations of w which are loops but
do not contain any loops as proper subcomputations. Clearly, both compy (w)
and comp;(w) are finite. The output of a computation « in § is, of course, a

unique word in 2*, let us denote it by output (u).

Now, we associate the word w with the following system of equations over
the free monoid A* with Q as the set of unknowns:
output (u) = output (u'), forallu,u’e compy(w)
output(v) = ¢, for all v € comp;(w)
Clearly, this system is finite and let us denote it by E,,. It is straightforward to
see that E, characterizes these transducers in / (S) which are single-valued on

w. That is to say, each solution of E,, defines such a mz (or a class of mwt’s),

and vice versa.
Similarly, the (possibly infinite) system

EL = EW
wEeL N dom(S)

of equations characterizes these swt’s which are single-valued on L. But, by
Theorem 1, E; has a finite equivalent subsystem. Hence, there exists a finite

subset F of L N dom(8) such that Ep = | J E, is equivalent to E;. It fol-
weF

lows that any sz in 7(S) which is single-valued on F is so also on L, proving

the lemma.

The following result generalizes Lemma 1.

Theorem 2. Given a language L C £* and a natural number n, there exists
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(noneffectively) a finite subset F of L which is single-valuedness test set for L

with respect to T,(X,A).

Proof: By Lemma 1, for each transducer schema S there exists a finite subset
F(S) of L which tests the single-valuedness for mt’s in I(S). Since there

exists only a finite number of different transducer schemata it follows that the set

F'= |J F() is a single-valuedness test set for transducers in
S€s,(2,9)
I1(5,(2,0)).

let T be a mt in T,(2,A)-1(S,(2,2)). Then T is of the form
(K ,2,AHUH,,50) where (K,Z,AHy,sq) isin I(S,(X,Q)) and H, is a finite

union of sets of transitions of the form

{(p)ab’wquyk) I]=1 ’’’’’ t} (1)

where a,b €X, pg €K, ke€{-1,0,1}, w; €A* and ¢ >2. Identifying
those T’s which have the same domain and, as well as, the sets in (1) with the
vectors (p,ab,q,k) we have only a finite number of possibilities for 7. For
each such possibility we choose, for each set of rules in (1), a word (if such
exists) from L N dom(T) such that these rules can be used in a computation on
this word. Let a finite set of words thus obtained be F”. Then it is straightfor-
ward to see that F can be chosentobe F'uU F".

In order to prove that Theorem 2 holds effectively in certain special cases we

need a few more lemmas.

Lemma 2. For two finite languages L, and L,, with Ly C L, C X*, and for an
integer n, it is decidable whether or not L, is a single-valuedness test set for L,

with respect to T, (X,4).
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Proof: We first show that the lemma holds with respect to 1(S,(Z,2)). To
prove this it is clearly enough to prove that the lemma holds with respect to all

interpretations of a fixed transducer schema.

Let S be a fixed transducer schema in S,(Z,2). As in the proof of
Lemma 1 we associate the languages Ly and L, with systems of equations Ej
and E; such that E; characterizes those transducers in J (S) which are single-
valued on L;. It was shown in [4] (using a deep decidability result of [12]) that
the equivalence of two finite systems of equations over a free monoid is decid-
able. Hence, we can decide whether L, is a single-valuedness test set for L,
with respect to 7(S).

In order to finish the proof we recall the considerations at the end of the
proof of Theorem 2. It follows from these and from the first part of this proof
that the problem of Lemma 2 is reduced to the problem of deciding whether or
not a given transition rule of a given rwr can be used in any computation on a

given word. Of course, this problem is decidable, and hence the lemma follows.

Our next lemma resembles the known fact that an inverse morphism does
not increase the complexity of a regular language (measured as the number of

states of an automaton needed to recognize the language).

Lemma 3. Let h :T* —X* be an e-free morphism and T a twt in T,(Z,A).

There exists a twt Ty, in T,(T',A) satisfying the following conditions:
(i) dom(Ty) = h~'(dom(T)),

(i) T,(w) CT(h(w)) for each word w in T*, and
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(iii) T, is single-valued on L CT* ifand only if T is single-valued on h(L).

In particular, if T is single-valued so is T, and in this case Ty(w) = T(h(w))

forall w in T*,

Proof: Clearly, the last sentence of the lemma follows from the previous ones.

In order to define 7, we need some notation and preliminary considera-
tions. For letters ¢ and b in T and for a state ¢ in the state set Q of T we

say that a computation u of T is (a,q,b)-minimal if
(a) it starts from the configuration - - - h(a)gh(b) - - -,

(b) it ends in a configuration either of the form - - - h(a)h(b)q’- - - or of the
form ---g'h(a)h(b) - - - forsome ¢’ in K, and

(c) no configuration with the exception of the last one is of the form (b).

Clearly, for a triple (a,g,b) the set of (a,q,b)-minimal computations might be
infinite. In order to keep it finite we define the notions of loop-free and single-
loop computations: computation u above is loop-free (resp. single-loop)

(a,q ,b)-minimal if in addition to (a)-(c) it satisfies:

(d) no configuration is repeated (resp. repeated but once) in the computation.

Recalling that the initial state sq is never entered in any computation of 7 we
can modify, in an obvious way, the notions of loop-free and single-loop computa-
tions for computations starting from a configuration of the form a’sg8 - - - , with

a’'in £, 8 in £ and a'B = h(a) for some a in T, and ending in a confi-

guration of the form A4(a)q’'- - - forsome ¢’ in Q.

Using the above notation we now construct the transitions H, of the trans-
ducer T,. For each loop-free or single-loop (a,q,b)-minimal computation end-
ing in the configuration of the form - --h(a)h(b)g'--- (resp.

--+q'm(a)h(b)---) H, contains a transition (q,ab,w,q',1) (resp.
(q.,ab,w,q',—1)) where w is the output produced by T in the considered
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computation. For the state sy the transitions are defined analogously using
above modifications. The set of states of 7}, is the set of these states encoun-
tered when the above procedure is carried over all loop-free and single-loop
(a ,q ,b)-minimal computations. Moreover, the initial and final states of 7}, are

those of T (belonging to the state set of 7).

Clearly, T}, is a well defined transducer in 7,(T,A). It is also a straightfor-

ward consequence of the construction that 7}, satisfies the requirements (i)-(iii).

As an application of Lemma 3 we derive the following

Lemmad. Let h :T* —X* be an e-free morphism and F a single-valuedness
test set for a language L C L* with respect to T,(T',A). Then h(F) is a single-
valuedness test set for h(L) with respect to T,(X,A).

Proof: It follows readily from Lemma 3. Indeed, if Lemma 4 would not hold
then there exists a transducer 7 in 7,(X,A) such that it is single-valued on
h(F) but not on h(L). Then the transducer T, of Lemma 3 is in T,(T,A)

and is single-valued on F but not on L, a contradiction.

Now, finally we are ready for an effective subcase of Theorem 2.

Lemma 5. Given a PDTOL language L C ©* and a natural number n, there

effectively exists a single-valuedness test set Ffor L with respect to T,(,A).

Proof: Let L be generated by a PDTOL system (,hy, . . ., h,,w). Define,
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for each i >0,
Ly={w}
Lijy=L Uh(L)U - U h(L).
Clearly, each L; is finite so that we can, by Lemma 2 and Theorem 2, find
effectively an integer iy such that L;, is a single-valuedness test set for Li 1
Now, an obvious modification of the argument originally presented in the proof
of Theorem 3.2 in [4], cf. also the proof of Theorem 4 in [5], shows that L isa

single-valuedness test set for L with respect to 7,(X,A), too. In this concluding

argument a crucial role is played by Lemma 3 and its consequence Lemma 4.

Now we are ready for our main result which is not only interesting on its

own, but has, as we shall see in the next section, several important consequences.

Theorem 3. Given an NPDTOL language L C X* and a natural number n,

there effectively exists a single-valuedness test set F for L with respect to

T,(Z,4).

Proof: Assume tﬁat L = h(L") for a PDOL language L' and an e-free mor-
phism A :T* —X*. Let F' be, according to lemma 5, a single-valuedness test
set for L' with respect to 7,(I",A). Then, by Lemma 4, we can choose
F =h(F').
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4. Applications of The Main Result

In this section we apply our main result as well as Theorem 2 to other prob-
lems. Our first applications deal with test sets for testing equivalence of single-
valued swt’s. Let L C £* be a language and ¢ a family of transducers on
£*. We say that a finite subset F of L is a test set for L with respect to 0 if
for any two transducers in 6 -they are equivalent on L if and only if they are
equivalent on F. Recalling that SVT,(X,A) denotes the family of single-valued
twt’s, with input alphabet X, output alphabet A and at most n states, we have:

Theorem 4. For each language L C £* and a natural number n, there exists
(noneffectively) a test set F with respect to SVT,(Z,A).

Proof: Consider two single-valued mt’s T; and T, with at most n states.
let T, U T, be a transducer satisfying (T, U To)(w) = T1(w) U To(w) for
all w. Clearly, such a st exists and can be chosen to contain no more than 2»
states. It is also obvious that T; and T, are equivalent on L if and only if the

following two conditions are satisfied:
(l) L N dom (Tl) =L N dom (Tz),

(ii) T U T, issingle-valued on L.

To test (i) for T, and T, it is enough to include in F one word (if such
exists) from (L N (dom (T1)—dom (T3))) U (L N (dom(T,) —dom(T))). Let us
call this word w(dom(T,),dom(T,)). Since the set of languages
{dom(T) | T €SVT,(Z,A)} is finite, the set of words thus obtained when T,
and T, ranges over SVT,(Z,A) can be chosen finite, too. Let the set of words
thus obtained be F'. Thus the theorem follows if we choose F = F'U F",

where F" is a single-valuedness test set for L with respect T,,(2,A).
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We also have the following effective subcase of Theorem 4.

Theorem 5. For an NPDTOL language L and a natural number n, there effec-

tively exists a test set F with respect to SVT,(X,A).

Proof: The result follows directly from Theorem 3 and the proof of Theorem 4
providing we can show that the words w (dom (T',),dom (T)) in this proof can be
found effectively. To show this let 7y, and T, be (single-valued) two-way trans-
ducers. Then dom(T{) and dom(T,) are regular languages, and hence by the
closure properties of HDTOL (or equivalently EDTOL) languages, cf. [14],
(L 1 (dom(T1) —dom (T))) U (L N (dom (T;) —dom(T))) is an EDTOL
language. It can be effectively found and since the emptiness for EDTOL
language is decidable we can actually find effectively the word

w (dom (Ty),dom (T,)). Hence, the proof is complete.

Theorems 3 and 5 have the following two interesting corollaries.

Theorem 6. Given an NPDTOL language L and a two-way transducer T, it is
decidable whether or not T is single-valued on L .

Theorem 7.  Given an NPDTOL language L and single-valued two-way transduc-

ers Ty and T, it is decidable whether or not T, and T, are equivalent on L.
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Next we apply our results to more classical problems of formal languages.
We first generalize a decidability result of Schiitzenberger [16], cf. also [2],
which says that it is decidable whether or not a given one-way transducer is
single-valued.

Theorem 8. It is decidable whether or not a given two-way transducer T is

single-valued.

Proof: Follows immediately from Theorem 6. Indeed, since dom (T) is regu-
lar, we can, as is straightforward to see, cf. also [13], find effectively an

NPDTOL language L such that L = dom (T).

Similarly to above we deduce from Theorem 7 a proper strengthening of the

main result in [8].

Theorem 9.  The equivalence problem for single-valued two-way transducers is

decidable.

Note that, if we replace the condition (i) in the proof of Theorem 4 by the
condition (i) L Nndom(T,) CL N dom(T,), then we can easily modify
Theorems 7 and 9 to test the inclusion of two swz’s instead of their equivalence.

Therefore, we also proved the following.

Theorem 10.  The inclusion problem for single-valued two-way transducers is

decidable.
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We conclude this section with the following remarks. Even the special cases
of Theorems 6 and 7, where the transducers are one-way transducers, are new
results. Moreover, for one-way transducers we can state these results in a

stronger form as follows.

Theorem 11.  Given an HDTOL language L and a one-way transducer T, it is

decidable whether or not T is single-valued on L .

Proof: In the case of one-way transducer Lemma 3 holds for all morphisms,
and not only for e-free ones. This is essentially the known result that if a
language L is recognized by a finite automaton with n states then A~(L),
where h is an arbitrary morphism, is recognized by a finite automaton with no
more than n states. After this observation the proof of Theorem 11 is a straight-
forward modification of that of Theorem 6.

Similarly we have

Theorem 12. Given an HDTOL language L and single-valued one-way transducers

Ty and T, it is decidable whether or not Ty and T, are equivalent on L .

Note that Theorem 12 is a proper generalization of both the HDOL and the
HDTOL sequence equivalence problems, which were for a long time open until
shown decidable in [15] and [5], respectively. It also solves, as a special case, the
(open) problem of deciding whether or not two deterministic one-way transducers

are equivalent on a given HDTOL language.
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5. Test for Unambiguity

Our algorithm for testing the single-valuedness of a st is complicated. If
instead of the single-valuedness the stricter requirement of unambiguity is con-
sidered, then the situation is much easier: not only the algorithm but also the

proof of its existence is simpler as we now show.

We say that a mwr is unambiguous if it is single-valued and its underlying
acceptor is unambiguous. Thus we can restrict our consideration to two-way
acceptors rather than mt’s since the testing of single-valuedness of a mz with
unambiguous underlying acceptor is easy. We recall that a two-way acceptor is

unambiguous if for each word there is at most one successful computation.

Theorem 13. It is decidable whether or not a given two-way acceptor is unambigu-

OUS.

proof: Let A = (K,Z,E,qy) where E C KX 2% Kx{-1,0,1}, be a two-
way acceptor. We will write the transition rules in E in the form

(p ab) —(g,k). We say that two transition rules (p,ab) —(q,k) and

(p,ab) —(r,j) create a fork if (q,k) = (r,j). Clearly, A is ambiguous if and
only if there exists at least one such fork in E which causes the ambiguity, or
more precisely, there exist two distinct computations on input uabv that both
reach the same configuration uapbv and then split along the two distinct

branches of the fork.

There is only a finite number of forks, and they can be easily listed. So the

theorem holds if we can decide whether a given fork causes ambiguity.

Consider the above fork. We construct three modifications of acceptor A.
Let A; = (K;,XU {6,5},E;,qi) for i =1, 2, 3 be two-way acceptors defined
as follows. Acceptor A; simulates A (identifying ¢ with a and b with b) as

long as the reading head is in between 4 and b in state p. Then it moves into
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5. Test for Unambiguity

Our algorithm for testing the single-valuedness of a mt is complicated. If
instead of the single-valuedness the stricter requirement of unambiguity is con-
sidered, then the situation is much easier: not only the algorithm but also the

proof of its existence is simpler as we now show.

We say that a st is unambiguous if it is single-valued and its underlying
acceptor is unambiguous. Thus we can restrict our consideration to two-way
acceptors rather than mwt’s since the testing of single-valuedness of a ¢ with
unambiguous underlying acceptor is easy. We recall that a two-way acceptor is

unambiguous if for each word there is at most one successful computation.

Theorem 13. It is decidable whether or not a given two-way acceptor is unambigu-

ous.

Proof: Let A = (K,Z,E,qq) where E C Kx 22 Kx {-1,0,1}, be a two-
way acceptor. We will write the transition rules in £ in the form

(p,ab) —(q,k). We say that two transition rules (p,ab) —(g,k) and

(p,ab) —(r,j) create a fork if (q.,k) # (r,j). Clearly, A is ambiguous if and
‘only if there exists at least one such fork in E which causes the ambiguity, or
r'more precisely, there exist two distinct computations on input uabv that both
reach the same configuration wapbv and then split along the two distinct

branches of the fork.

There is only a finite number of forks, and they can be easily listed. So the

theorem holds if we can decide whether a given fork causes ambiguity.

Consider the above fork. We construct three modifications of acceptor A.
Let A; = (K;,XU{4,b},E;,q) for i =1, 2,3 be two-way acceptors defined
as follows. Acceptor A; simulates A (identifying @ with ¢ and b with b) as

long as the reading head is in between @ and b in state p. Then it moves into
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a new state that moves the reading head over any word in £* to the right and

out of the tape.

Acceptor A, starts in a new initial state and moves its reading head to the
right until it hits b . Then it simulates the first branch of the fork and continues
as A, interpreting ¢ as a and b as b. Acceptor Aj is like A, except it fol-

lows the second branch of the fork.

Clearly, uébv € L(A,) if and only if there exists a computation of A from
the initial configuration to the configuration wuapbv. Further, udbv €L (A,)
(tesp. udbv €L(Aj)) if and only if there is a computation of A, (resp. Aj)
from the configuration uapbv to an accepting configuration with the first atomic
move following the first (resp. the second) branch of the fork. Therefore, the
considered fork causes ambiguity if and only if L(A{) N L(A2) N L(A3) # .
But each L(4;), i =1, 2, 3, is an effectively given regular language, see [9],
hence the validity of the above inequality can easily be tested.

Theéorem 13 deserves one final comment. Although we were able to use the
decidability of the single-valuedness to solve also the equivalence problem for
single-valued transducers, it seems not to be possible to have the saﬁ)e reduction
for the case of unambiguity. So the simple proof of Theorem 13, does not give a
simple proof of the decidability of the equivalence problem for unambiguous

two-way transducers.
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