bAHTMENT

AERET SE B COURER SEEMEE B

E DEPARTMENT

UNIVERSITY OF WATERLOO COMPUTER SCIENCE DEPARTMENT

A Survey of
Systolic Systems

for
Solving the

Algebraic Path Problem

Faron Moller

CS-85-22

August, 1985




A Survey of Systolic Systems for Solving the Algebraic Path

Problem

Faron Moller

Department of Computer Science
University of Waterloo

M.Math Essay

ABSTRACT

This essay describes various methods for solving instances of the
Algebraic Path Problem on systolic arrays of processors. Systolic arrays
form the basis of the type of parallel processing developed by Kung and
Leiserson (([KUN78]). The Algebraic Path Problem is a general problem
which under different interpretations yields the problems of computing
the inverse of a matrix of elements taken from a field, determining the
shortest paths between vertices in a weighted directed graph, and com-
puting the reflexive and transitive closure of a binary relation, among
many other important problems. This paper starts out by giving an over-
view of systolic architecture and algorithms, and a description of the
Algebraic Path Problem. Several systolic solutions to (instances of) the
Algebraic Path Problem are then described, followed by a discussion
comparing the described methods.
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1. Introduction

Often in abstract algebra, you can develop theories and propose some abstract
problem in a very general setting, solve the problem, and have it be the solution to
several important concrete instances of the general problem. That is, in the setting of
abstract algebra, you can manipulate a set with some operations defined on it, and
solve some problem defined in very general terms within the algebraic structure; under
different interpretations of the structure, often seemingly unrelated problems are solved
with the same solution. This is precisely the case with the Algebraic Path Problem.
This problem is a problem defined over a general semiring, but under different interpre-
tations of the semiring, the problem can be interpreted to represent (among other
things) the problems of matrix inversion over a field, the shortest distances in a
weighted graph, the reflexive and transitive closure of a binary relation, the maximum
capacity paths in a network, the Kleene star closure of a language, and the analysis of
global data flow. It will be seen that the general solution to the Algebraic Path Problem
can be expressed as a generalized version of the Gauss-Jordan Elimination Algorithm

common in numerical analysis.
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The purpose of this paper is twofold. Firstly, it attempts to outline the development
of the Algebraic Path Problem and the work which has been done to solve it. Secondly
and more importantly, the paper describes attempts to solve the problem with systolic
algorithms. To achieve these two goals, the paper starts out by defining systolic net-
works and algorithms, followed by a description of the Algebraic Path Problem. Several
systolic solutions to instances of the Algebraic Path Problem are then described, fol-
lowed by a comparison of these methods.

A systolic algorithm is an algorithm which is performed on a specialized parallel
network of processors. All of the solutions to instances of the Algebraic Path Problem
described in this paper are related in that they are all systolic algorithms which use a
version of the Gauss-Jordan Elimination Algorithm to solve the problem in question.
Other parallelizations of algorithms for solving instances of the Algebraic Path Problem
have been developed (eg, [LEV72], [KAN78], [SAM78]), but none of these will be dis-
cussed in this paper. '



2. Systolic Networks and Algorithms

Systolic algorithms were introduced by Kung and Leiserson ((KUN78]), and since
that time there has been much effort spent on designing efficient algorithms to be exe-
cuted on various systolic systems. Systolic algorithms have been found to be appropri-
ate for such problems as various matrix computations (eg., see [KUN78], [KUN79],
[KUN80], [MEAS80], [KUNS82], [KRAS83], and [ULLS84]), dynamic programming
([GUI79]), and priority queues (eg, [KUN79], [LEI79], [KUN80]). The purpose of
this section of the paper is to give a brief description of what is meant by a systolic algo-
rithm, and to give a few examples which will be of importance in the following sections
of the paper.

2.1. Definition of Systolic Algorithms

In general, a parallel algorithm is a collection of independent task modules which
are executed simultaneously and which communicate with each other during the execu-
tion of the algorithm. A systolic system is a regular network of processors running in
parallel which circulate data in a simple regular fashion. The word ‘‘systole’’ is a phy-
siological term referring to the rhythmically recurrent contractions of the heart and
arteries which pulse blood through the body. Each processor in a systolic system pumps
multiple streams of data through itself, so that the regular beating of these parallel pro-
cessors maintains a constant flow of data throughout the entire network. As the data
pass through a processor, they are involved in some constant-time computation which
may update their values in the process. A systolic algorithm is an algorithm which runs
on a systolic system.

2.2, Communication Geometries

The geometry of the communication paths in a systolic system is simple and regu-
lar, to allow for a low-cost and high-performance chip implementation, and to allow for
easy development and verification of algorithms to be executed on the system. The pro-
cessors are all laid out in a patterned fashion, and the only connections which exist
between processors in the network simply link neighbouring processors.



—4—

The most common arrangements of processors in a systolic system are the three
mesh-connected systolic arrays described as follows:

Linear
The one-dimensional linear array (Fig. 2-1(a)) is the simplest geometry for con-
necting processors. However, it has proven to be a very useful network all the
same. It has been used for systolic algorithms for such problems as odd-even tran-

sposition sort, finite impulse response (FIR) filtering, recurrence evaluation
([KUNB8Q0}) and priority queues ([LEI79]).

g

(a) Linearly-connected  (b) Orthogonally-connected  (c) Hexagonally-connected

Fig. 2-1: Mesh-connected systolic arrays.

Orthogonal

The two-dimensional orthogonal array (Fig. 2-1(b)) is the most well-known
geometry for connecting processors, being one of the very first communication
geometries studied. It was the geometry of the cellular automata studied by von
Neumann in the early 1950’s (([KUNS80]). It has been used for systolic algorithms
for such problems as relaxation methods for solving partial differential equations
([KUNBS80]), dynamic programming and transitive closure ({[GUI79]), and various
other graph problems ([LEV72]).

Hexagonal
The two-dimensional hexagonal array (Fig. 2-1(c)) seems to be the most appropri-
ate geometry for performing matrix operations. It is derived by adding diagonal

connections in only one direction to the orthogonal array, and in fact is equivalent
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in computational power to the orthogonal array, to within a constant factor
(JCULS84]). However, the matrix algorithms run more smoothly on the hexagonal
array, as they do not have to simulate the diagonal motion. It has been used for
systolic algorithms for such problems as matrix multiplication, LU decomposition,
and discrete Fourier transforms ([KUNS80]).

Other systolic networks have been studied and found to be useful for certain appli-
cations. For example, systolic trees have been used for searching algorithms and prior-
ity queves ([LEI79]), parallel function evaluation and recurrence evaluation
([KUNB80]), and shuffle-exchange networks have been used for the fast Fourier
transform and bitonic sort ([KUNS80]). However, in this paper we will only be

interested in the three mesh-connected systolic arrays described above.
2.3. Examples of Systolic Algorithms

The following examples give the flavour of how a systolic algorithm operates. The
particular examples given are both important in the following development of methods
for solving the Algebraic Path Problem, as they both utilize processors which perform
the so-called inner product step computation: ¢ <«—c + aXb. The first example, which
performs a matrix-vector multiplication, uses a linear array of inner product step proces-
sors (Fig. 2-2(a)), and the second example, which performs a matrix-matrix multiplica-
tion, uses a hexagonal array of inner product step processors (Fig. 2-2(b)). They both
appeared in [KUN78] and are two of the first systolic algorithms developed.

2.3.1. Matrix-Vector Multiplication

To compute the matrix-vector product y =Ax , where A is an nXn matrix A =(a,-j),

and x and y are n-tuples, the following recurrence can be used:



a ¢'=c+axb
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Fig. 2-2: Inner product step processors.

yl(O) = 0,
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Thus the only computations that are done using this recurrence are inner product calcu-
lations.

If A is a band matrix with band width w, then the matrix-vector multiplication
can be performed using the above recurrence on a linear systolic array of w inner pro-
duct step processors (for a full matrix-vector multiplication problem, 2n—1 processors
would be needed using this method). The example band matrix-vector multiplication
problem in Fig. 2-3 has a band width of w=4, and can be performed on the linear
array depicted in Fig. 2-4. The aigorithm operates by pumping the data synchronously
through the array as outlined in Fig. 2-4, with the four bands of the A matrix being fed
in from the top, the x vector being pumped in from the left end, and the y vector being
fed through from the right end. Initially, the y;’s are set to O (in general, the problem
actually being solved is y «—Ax+y), and in passing through the array, each y; accumu-

lates all of its terms a; ; _ax;_3, @ ;_1Xi—1, @ ;% and g; ; 1%41

It is clear that after w steps in the computation, the y;’s start emerging from the
left end of the array, and that 2(n—1) steps later the last component y, of y leaves the
array. Thus the array takes 2(n—1)+w steps to do the band matrix-vector
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Fig. 2-3: Band matrix-vector multiplication.
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Fig. 24: Systolic system for computing the band matrix-
vector multiplication in Fig. 2-3.

multiplication with band width w. However, from the way in which the data are stag-
gered, only half of the processors are actually active at any given step in the computa-
tion. Hence the performance of the array can be improved either by coalescing adja-

. w .
cent processors, thereby using an array of > processors, or by computing two equal-

sized matrix-vector products at the same time. To do this, each of the values a;'s x; A
and y;’ of the second system would be fed into the array immediately after the
corresponding values g;;, x;, and y; of the first system. In this way, all processors
would be active at each step of the computation. Also, immediately after the last com-

ponents of the first two systems have entered the array, the components of yet another
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two systems could enter the array, to compute two more matrix-vector products. Con-
tinuing in this way, the array would finish processing two matrix-vector products every
2n steps.

2.3.2. Matrix-Matrix Multiplication

To compute the matrix-matrix multiplication C =AB, where A =(g;;), B =(b;),

and C =(c;;) are three nXn matrices, the following recurrence can be used:

¢f9=0

Ci,(k)= Cil(k_l)‘*' ay by,

C,-j= C,‘}n).

Again the only calculations performed are inner product calculations.

If A and B are band matrices of band widths w; and w, repectively, then the
matrix-matrix multiplication can be performed using the above recurrence on a hexago-
nal systolic array of wjw, inner product processors (for a full matrix-matrix problem,
(2n—1)? processors would be needed using this method). The example band matrix-
matrix multiplication problem in Fig. 2-5 has matrices of band widths wy=w;=4, and
can be performed on the hexagonal array depicted in Fig. 2-6.

a1 an by by by o €11 €21 €13 €14

az axn an by by by by €21 €2 €23 €u

a3 a3 633 8 by byy by bss €31 €32 €33 €34
agp . by = fea ca

Fig. 2-5: Band matrix multiplication.
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Fig. 2-6: Systolic system for computing the band matrix
multiplication in Fig. 2-5.

Again, the algorithm operates by pumping the data synchronously through the array as
outlined in Fig. 2-6, with the four bands of the A matrix being pumped in from the top
left, the four bands of the B matrix being fed in from the the top right, and the seven
bands of the solution matrix C being fed through the array from below. Initially, the.
c;j’s are set to 0 (again in general, the problem actually being solved is C «—AB+C )s
and in passing through the array, each c;; accumulates all of its terms.
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The first element of the solution matrix C which enters the array is cy; and the
last element of C to exit the array is c,,. After min(wq,w,) steps in the computation,
the cy; element leaves the array of processors, and 3(n—1) steps later, the c,, element
' leaves the array. Thus the array takes 3(n—1)+min(w;,w;) steps to do the band
matrix-matrix multiplication with band widths w; and w,. However, once again from
the way that the data are staggered, only one third of the processors are actually active
at any given step in the computation. To improve processor utilization, three equal-
sized matrix-matrix products can be computed at the same time by feeding in each of
the values a;;’, b;;', and c;;' of the second system into the array immediately after the
corresponding values g;;, b;;, and c;; of the first system, and each of the values a;;",
b;"”, and c;;" of the third system into the array immediately after the corresponding
values of the second system. In this way, all of the processors would be active at each
step of the computation. Also the components of three new systems can be fed into the
array immediately after the last components of the first three systems have entered the
array. Continuing in this way, the array would finish processing three matrix-matrix
products every 3n steps.
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3. The Algebraic Path Problem

The Roy-Warshall Algorithm for computing the transitive closure of a Boolean
matrix ([ROYS59], [WARG62]), Floyd’s Algorithm for computing the shortest distances
between nodes in a directed weighted graph ([FLO62]), Kleene’s proof that every regu-
lar language can be defined by a regular expression ({[KLE56]), and the Gauss-Jordan
Algorithm for inverting real matrices are all specific instances of a single general algo-
rithm. These above problems are only a few special instances of what is called the

Algebraic Path Problem.
3.1. Historical Development

The first person to start describing the relationship amongst the above problems
was Carré [CAR71]. He linked the problem of solving systems of linear equations with
path problems in graph theory by defining the problem in a general setting using a
semiring as his underlying algebraic structure for the problem. He formulated the prob-
lems in a unified manner, and arrived at a common solution description for them which
he could present as either a sum of measures of paths or as a solution to a system of
linear equations. [AHO74] and [BAC75] first established the relationship between the
Algebraic Path Problem and problems in regular algebra and language theory. They
proposed axiom systems within which the problem could be easily mapped onto these
two realms. However, they each assumed that addition in their algebraic structure was
idempotent (ie., a+a = a), so they could not arrive at a completely general solution to
the problem which in particular could engulf the problem of solving systems of linear
equations over the real numbers, as this structure does not have an idempotent addi-
tion. The first person to derive a suitably weak algebraic structure within which he
could describe the Algebraic Path Problem in its fullest generality was Lehmann
([LEH77]).

In the remainder of this section of the paper, three approaches to the Algebraic
Path Problem shall be explored. The first is the axiomatic approach taken by Lehmann
([LEH77]) which, as was noted above, generalizes all previous attempts. The second
approach is due to Tarjan ([TAR75], [TAR81], and [TARS81B]), and gives a
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description which paraliels the development of regular expressions and focuses on the
relationship of the Algebraic Path Problem to Language Theory. The final appreach
described is due to Rote ([ROT83]) and focuses on the problems of determining shor-
test distances in a weighted graph and performing matrix inversion (ie, solving systems
of linear equations). A general solution will then be given which is taken from
[ROTS83] and appears in a slightly different form in [LEH77].

3.2. Lehmann’s Approach

Lehmann considers algebras of the form <S,+,X%,*,0,1> where S is a set, + and
X are binary operations called addition and multiplication respectively, * is a unary
operation called closure, and 0,1€S are constants. A closed semiring is defined to be
an algebra of the above type which satisfies the following axioms:

(@) a+(b+c) = (a+b)+c addition is associative,
(b) a+b =b+a addition is commutative,
(c) a+0=a 0 is a unit for addition,
(d) ax(bXc) = (axb)Xc multiplication is associative,
(e) axXl=1Xa =a 1 is a unit for multiplication,
) aXxX(b4c) = (axb)+(aXc)
(@a+b)Xc = (aXc)+(bXc) multiplication distributes over addition,

(8) a' =1+(aXa") = 1+(a" Xa).

This treatment differs from earlier similar treatments (eg, [AHO74], [BAC75)) in that
it does not assume the idempotency of addition, 0 is not assumed to be a multiplicative
annihilator (ie., a X0 = 0Xa = 0 is not assumed), countable sums are not assumed to
exist, and the closure is defined differently, although equivalently.

A pariial closed semiring is defined to be an algebra of the above type where clo-
sure is only a partial function, and in which axioms (a) through (f) still always hold
and axiom (g) holds whenever the closure is defined. It is then shown that any partial
closed semiring S can be extended to a closed semiring S U{u } where u €S is defined
to satisfy the following properties: u+a =a+u = u, aXu =uXa =u, u" = u, and



~13—

a® =u if a® was not previously defined. The new closed semiring is called the

completion of S.

The operations of addition, multiplication, and closure are then extended to nXn
matrices of elements from a closed semiring. If A =[a;;]; je[1:n] and B =[b;;}; je(1:n)
are two such matrices, then

A+B = [a;;+bij];i jep1n),  2and

AXB =[ 3 awbyli jern)
ke [1:n]
The closure of a matrix is defined inductively on the size n of the nXn matrix. If A is
a 1X1 matrix, say A = [a], then A® =[a]" =[a"]. If A is an nXn matrix where

n>1, say
B C
A=1IpE

where for some 0<k<n, B is a kXk matrix, C is a kX(n—k) matrix, D is an
(n—k )Xk matrix, and E is an (n—k }X(n —k ) matrix, then

A

*

. B*+B"CA'DB" B'CA"
= |a"DB” A

where A = E+DB"C.

Lehmann shows that the above is a valid inductive definition, in particular that the
definition of A* is independent of the decomposition of the matrix A, and that with the
two matrices of constants

0, = [cijli jeqn]  With ;=0 for i,j€[l:n], and

) 1, if i=j,
In = [6;)i jena)  with by = 0, otherwise,
the set of nXn matrices over a closed semiring only fails to be a closed semiring itself

when the underlying semiring is the completion of a proper partial closed semiring,
whence axiom (e) fails to hold (je., it is not necessarily the case that
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AXIl, =I,XA = A). In particular, the closure operation as defined on matrices over
closed semirings satisfies the iterative equation of axiom (g):

A =1 +AXxA"

The problem of finding the closure of a matrix over a closed semiring is the general
Algebraic Path Problem.

The following are a few of the examples given by Lehmann which show the many
useful instances of the Algebraic Path Problem:

@

(ii)

(iii)

(iv)

<{0,1},u,N,T,0,1> where T(0) = T(1) = 1.

The closure A* of a matrix A over this boolean semiring yields the reflexive
and transitive closure of the relation represented by A .

<RU{+oco0},min,+,Z,+ 0q0> where Z(a) = 0.

The closure A* of a matrix A over this semiring yields the minimum-cost
matrix for the directed weighted graph represented by A .

<RU{+ o0o},max,min,00,0,+ 00> where oda) = +oo.

The closure A* of a matrix A over this semiring yields the maximum capa-
city matrix for the network represented by A .

<RU{u},+,X,s,0,1> where s{a) = —1-1—0 for a +# lu, and

s()=s(u)=u.

The closure A* of a matrix A over this semiring satisfies A* = (/—A )y Lif
A" does not contain the element u. Hence, the closure yields matrix inver-
sion.
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From this point, Lehmann proceeds to describe two algorithms for computing the
closure of a matrix over an arbitrary semiring. The first algorithm is a generalization of
the Gauss-Jordan Elimination algorithm, and is given in section 3.5; the second algo-
rithm is a generalization of Gauss’s algorithm, which is more advantageous over the
Gauss-Jordan algorithm when 0 can be assumed to be a multiplicative annihilator, and
the input matrix contains a large number of 0’s. Lehmann also gives a description of a
restricted semiring for which a generalization of Dijkstra’s algorithm ([DIJ59]) can be
employed to compute the closure of a matrix, which is a much more efficient algorithm
for certain instances of the Algebraic Path Problem.

3.3. Tarjan’s Approach

In [TARS81], Tarjan deals with the problem of solving path problems on directed
graphs by firstly generating a collection of regular expressions representing sets of paths
in the graph. He then describes mappings which take the problem from the realm of
regular expressions into the domains for solving problems of shortest paths, systems of
linear equations, and global flow analysis. In this sense, he shows that the problem of
generating path expressions is the most general instance of the Algebraic Path Problem.

Let £ be a finite alphabet with XN{)\,J,(,)} = . A regular expression over ¥ is
an expression (ie., a string of symbols) constructed from the following rules:

(i) X and {J are regular expressions.
(il) For each a€ ¥, a is a regular expression.
(iii) If R; and R, are regular expressions, then so are (RjUR;), (R1R,;), and
Ry B
Every regular expression R defines a set o(R) of strings over X as follows:
@) o) = k0@ = O
(ii) o(a) = {a} for each ac X.
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(iii) o(R1UR2) = o(RDUG(R); o(R1Rp) = o(R1)o(Ry); oR™) = (o(R))".

A regular expression R is simple if R=(’ or R does not contain { as a subexpression.

If G = (V,E) is a directed graph where V is the set of vertices of G, and E is the
set of edges of G, then any path in G can be viewed as a string over E. A path expres-
sion P of type (u,v) is a simple regular expression over E such that every string in
o(P) is a path from vertex u to vertex v.

Tarjan’s approach to the Algebraic Path Problem is to define a mapping from regu-
lar expressions into each of the specific problem domains in which he is interested. By
doing this, he shows that he can solve the concrete problems expressible as instances of
the Algebraic Path Problem simply by generating path expressions. As an example, his
approach to shortest path problems is as follows: given a weighted directed graph
G = (V,E) with weight (cost) function ¢ :E —R, a shortest path from vertex u to ver-

k
tex v is a path p = <ey,ej, - - - ,,> from u to v such that ¥ ¢ (e;) is minimized over
i=1
all paths from u to v. He defines two mappings, cost and shortest path, as follows:
(i) cost(N) =0;
shortest path(\) = X.

cost () = +o0;
shortest path () = none.

(ii) cost(e) =c(e) fore€E;
shortest path(e) = e for e€E.

(iii) cost (P jUP ;) = min(cost (P 1),cost(P4));
shortest path (P {UP ) = [cost (P )<cost(P4) —shortest path (P 1),
cost (P 1)>cost (P ;) —shortest path (P 3)].

cost (P +P 3) = cost(P 1)+cost (P2);
shortest path (P .P ) = shortest path (P {).shortest path (P ).
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cost(P") = [cost (P )<0 ——oc0,
cost (P)>0 —0];
shortest path (P") = [cost (P )<0 —snone ,
cost (P)>0 —)\].

If P(u,v) is a path expression representing all paths from « to v, then
- if cost (P (u,v))=+o00, then there is no path from u to v;

- if cost(P (u,v))=—o0, then there are paths of arbitrarily small cost from « to
v (ie., there exists a cycle of negative cost in some path from u to v);

- if cost (P (u,v))ER, then shortest path (P (u,v)) is a shortest path from u to
v, and has cost cost (P (u,v)).

3.4. Rote’s Approach

In his approach to the Algebraic Path Problem, Rote ([ROT83]) combines the
axiomatic approach taken by Lehmann with the language theoretical approach of Tar-
jan. Like Lehmann, he describes the problem in terms of a general semiring structure,
but he does not assume the existence of the closure operation. He then defines the
Algebraic Path Problem in terms of a weighted graph with weights taken from the
semiring.

Rote defines a semiring as a structure <H,+,X> with zero 0 and unity 1 which
satisfies Lehmann’s axioms (a) through (f) but not the closure axiom, but assumes that
0 is a multiplicative annihilator. Thus he makes <H,+> a commutative semigroup
with identity element 0, <H,X> a semigroup with identity element 1, multiplication
(X) distribute over addition (+), and zero absorptive with respect to multiplication.
Given a weighted graph G =(V ,E) with weight function w:E —H), he defines M;; to be
the set of all (distinct) paths from vertex i to vertex j in G, and extends the weight
function w to be defined on paths in the graph G as follows: given a path
P=<€,iy€irip * °  €iy_p,i > Where ¢ ; is an edge from vertex i to vertex j, the
weight of the path is defined as
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w(p) = wle, i )Xw(e, i )X - Xwle,_, i)

Then the Algebraic Path Problem is the problem of finding the matrix D =(d;;), where
the entries of the matrix are defined as follows:
dij = Z W(p).
PEM;
Note that you can assume that the graph is complete, as you can adjoin missing
arcs with associated weight 0. The weight of any path containing an arc of weight 0

will itself be 0, due to the assumption of the 0 annihilation axiom, so it will not contri-
bute to the sum defining the elements of the matrix D =(dy;).

As an alternate formulation, you can let A =(a;;), where

a,'j =

w(e j), if g ;EE;
0, otherwise.

Then

A? = AxA = (a,-J(z)), where a,-}z) = 3 agpXa.

1<k<n
A3 = (a,)(?’)), where a,~}3) = E a,-leaklkZXakﬁ.
1<ky, k<0
And in general,
A" = (a,-]("')), where a,-}"') = Y wp).
PGMijs
p contains

exactly m arcs

Thus, if D =(d;;) is the matrix of elements given by the Algebraic Path Problem, then

D =A% = S A™ =1 +A +AXA)+ AXAXA) + -+ .
m>0

Using these two equivalent formulations of the Algebraic Path Problem, Rote is
able to show clearly how the general problem represents the problems of shortest paths,

reflexive and transitive closure, and matrix inversion. These problems are realized as
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@

(ii)
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Consider the semiring

<RU{#400},min,+ > with zero co and unity 0.
This is the set of extended reals under the operations of minimization and
addition. From the first formulation of the Algebraic Path Problem, the solu-
tion D =(d;;) is given by

d-- == = i s
ij >, wp) ,,’2}5;2(“(”))
where for a path p=<eq,6q, * * - >,

wp)=w(e)+wled+ - - - +wle)-

Hence the Algebraic Path Problem corresponds to the problem of computing
the minimum distance (cost) matrix of a weighted directed graph.

Consider the semiring

<{0,1},U,N> with zero 0 and unity 1.
This is the Boolean semiring under the operations of max (U) and min (N).
Again from the original formulation, the solution D =(d;;) is given by

dj = ¥ wp) = U @),

PEM;
where for a path p=<e¢y,6, * -+ >,
wp) = wedNw(edN - - - Nwle)

1, if there exists the path p from i to j,
0, otherwise.

Hence in this case, the Algebraic Path Problem corresponds to the problem of
computing the reflexive and transitive closure of the binary relation
represented by the given directed graph.



—20 —

(iii) Consider the semiring
<R,+,X> with zero 0 and unity 1.
This is simply the set of real numbers R under the usual operations of addi-
tion and multiplication. This time, from the second formulation of the prob-
lem, the solution D =(d;;) is given by

D = I+A+A%4A% - -+ = (I-A)7), ifD exists.

Hence here the Algebraic Path Problem corresponds to the problem of com-
puting the inverse of a real-valued matrix. '

Rote points out that the most general instance of the Algebraic Path Problem is
the problem of constructing the sets M;; of paths in the graph from each vertex i to
each vertex j, as was noted by Tarjan. This instance is realized by the first formulation

of the problem using the following semiring, where M= U M;;:
1<i j<n

<M,U,> with zero (J§ and unity {}}.

This is the semiring consisting of the set of all paths between vertices in the directed
graph, with its addition (+) and multiplication (X) operations defined to be the opera-
tions of (disjoint) union (U) and path concatenation (). Hence given P,P,EM,

(i) P1+P, = PjUP,; that is, the union of the sets Py and P, of paths; and

(ii) P{XP, = P.P,; that is, the set of all paths which are concatenations p1.p,
of paths p1EP and p,€P,.

The solution D =(d;;) is given by

dj = Y wp) = U wp)= Up =M,
PEM; 4 if

since, for a path p=<ej,6, * * - &>,

w@) = wlewley)e * + - wwl(€g) = €106 * = o = p.
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3.5. General Solution

The general solution to the Algebraic Path Problem, that is, to the problem of con-
structing the sets M;; of all (distinct) paths from each vertex i to each vertex j of a
directed graph, can be computed using a generalized version of the Gauss-Jordan Elim-
ination Algorithm, such as is given in Fig. 3-1. The algorithm operates in the follow-
ing manner. First, let:

Mij(") = the set of all paths from vertex i to vertex j which contain only inter-
mediate vertices x with 1<x<k, for each k=0,1,2, - - - ,n. By conven-
tion, let \e M) for all i, but \e M, D).
Then
M(O) _ {€,'j}, if E,-jéE ,
g = |}, otherwise;
and
M," = M ij(")'
The values of M,-J(") for k=0,1,2, - - - ,n can be viewed as successive approximations to

the values of M;; = M,-}"). The algorithm then simply computes the sets M,-J(") using the

following recursive formula:

() M =MD + MPXMEFED, for 1<k <n, ki, k#j.

A path in M,-J(") either avoids vertex k, or it uniquely decomposes into two

segments, the first going from vertex i to vertex k, and the second going

from vertex k to vertex j with no occurrence of vertex k intermediate to the

latter segment.

(ii) Mi](i) = M;,(i)XMiJ(i'l), for i #j.

A path in M{") must pass through vertex i (recall that A€ M), and then

continue on to vertex j without passing through vertex i again.



PROGRAM: Gauss-Jordan Elimination Algorithm

{‘ij}» if f,'_jGE,

INPLUT: M = {

3, otherwise : where E is the edgeset of a directed graph.

QUTPUT: M;; = M{™; the set of all distinct paths from each vertex i to each vertex j.

PHASE 1:
fori:=1ton do
for j:=1ton do
"~ begin
for k:=1 to min(i ,j)-1 do
Mi_sk) = M}b_l) + M,-?) x Mksk—l);
i -] then M0 = (MF-D)';
if i>j then M) := M x MY
end;
PHASE 2:
fori:=1ton do
for j:==1ton do
begin
if i<j then M) := M) x M-V,
for k:=min(i ,j)+1 to max(i,j)-1 do
M® = MED 4+ MO x MED;
if i<j then MY == MU x MY
end;
PHASE 3:
fori:=1ton do
for j:=1ton do
begin
if i>j then M) := M x MY,
for k:=max(i,j)+110n do
M = MFED &+ M x ME-D
end.

Fig. 3-1: Generalized Gauss-Jordan Algorithm for solv-
ing the Algebraic Path Problem.
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(i) M) = MY DM, for j#i.

A path in M,-JU) must reach vertex j for a first time, and then follow some
loop at vertex j (recall that \é M jy)).

(iv) M) = A f-D)".

A path in M,{ ) uniquely decomposes into a unique number of partial paths
from M,.'("-l) (recall that \& Mi‘(i —1)).

The algorithm in Fig. 3-1 computes the values of the Mil(")’s using the above
recurrences in three phases. The first phase calculates the values of M,-J(-") for i >j and
MY for i <j; the second phase calculates the values of M,P) for i <j and M,{"~D for
i>j; and the third phase calculates the values of M,-,(")=M,~j. Notice that the order of
the processing is arbitrary, as long as all (i',j") with i'<i, j'<j are processed before
(i,j) within any of the three phases. This fact makes the algorithm particularly suited
for parallel processing.

There are only four types of (update) assignment statements in the algorithm,
corresponding to the four parts of the recursive formula given above. These are as fol-
lows:

(i) ¢ :=c +aXb; (inner product step)

(ii) ¢ :=cXb; (right multiplication)
(iii) ¢ =bXc; (left multiplication)
Gv) c¢:=c". (closure)

To solve the concrete problems enveloped by the Algebraic Path Problem, simply substi- -
tute the operations in the algorithm with the corresponding operations for the respective
semirings for these problems, and replace the input initialization of M,-J(O) by

(0) W(Ei’j), if Ei,jeE’
My™ = 0, otherwise.
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The last assignment type mentioned above used by the algorithm is the closure
operation, and is where the different approaches to the Algebraic Path Problem differ
the greatest. According to Lehmann, the operation ¢~ would be performed by solving
the iterative equation x=1 + ¢ Xx; Rote on the other hand defines the operation as
c" =14¢c +(cXc)+ (cXeXe)+ - --. In fact, these two definitions concur, and
it is easy to see that the infinite sum, if it exists, is a solution to Lehmann’s iterative
equation. The problem with the infinite sum is that there is no guarantee that it will
exist in general, and no general method for computing it. On the other hand, the itera-
tive equation also has the problem that there is no general method of computing its
solution, or even determining if a solution exists. [MAHS84] deals with the problem of
countable sums in semirings and the solution to the iterative equation.

In the three problem instances which Rote investigated, the closure operation is in
fact easy to calculate. For the semiring <RU{3oc },min,+> used to compute the
minimum distance matrix of a directed graph, the closure operation on an element is
given by

o
]

l14+c+(cXe)+(cXeXe)+ -+

0, ife>0,
min(0,c,2c¢,3c,- ) =

—oco, if ¢<0.

For the semiring <{0,1},U,N> used to compute the reflexive and transitive closure of a

binary relation, the closure operation on an element is given by

*
4

14c+(cXe)+ (cXeXe)+ -+

1lUcU(nc)U(enecne)y -+ = 1.

For the semiring <R,+,X> used to calculate the inverse of a real-valued matrix, the
closure operation on an element is given by the solution to the iterative equation
x = 14cx, which gives

c = (for c#1).

1—c
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There are problems with using the general solution given above on any specific
instance of the Algebraic Path Problem. For instance, it was already noted above that
there are superior methods for some special instances of the problem (ie., Dijkstra’s
method in [DIJ59] for certain shortest path problems). Also, in the case of matrix
inversion, the inverse of a matrix may exist which will not be found using the above
algorithm. This is because the algorithm is a Gauss-Jordan Elimination algorithm
which does not employ pivoting, so the algorithm may fail. In such a case, either the
solution will have an undefined element in it (in the case of Lehmann’s approach), or
the computation may attempt to divide by zero (in Rote’s Approach).

[ZIM81] treats the Algebraic Path Problem in detail, and shows how it can be util-
ized to solve the problem instances described above in this section,as well as several oth-
ers which are defined in terms of different semirings, such as problems of path reliabil-

ity and path capacity in a network, cut-set enumeration, schedule algebra, and k-
shortest paths.
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4. Kung Solution to LU Decomposition and Triangular Systems

The first solution described for some instance of the Algebraic Path Problem solves
the problem of matrix inversion. The algorithm given in Fig. 3-1 has a natural interpre-
tation in the realm of the problem of matrix inversion. The first phase of the algorithm
computes the LU decomposition of the input matrix A, where L is a unit lower triangu-
lar matrix and U is an upper triangular matrix (Fig. 4-1(a)), with the exception that
the diagonal elements of U are already inverted after phase 1 to be ¢;f)=(c,{~D)~!
instead of c,-,(‘ -1, The second phase of the algorithm inverts the two triangular
matrices L and U (Fig. 4-1(b)). Finally, the third phase of the algorithm multiplies the
two matrices U~ and L™! to get the solution A ~'=U~1L-1 to the inversion problem
(Fig. 4-1(c)).

In Section 2.3.2, a systolic system was described for computing the product of two
matrices. In this section, two systolic systems will be described, one for solving the prob-
lem of factoring a matrix A into its LU decomposition, and the second for inverting tri-
angular matrices. These three systems together will solve the problem of matrix inver-
sion using a variant of the algorithm of Fig. 3-1, and can in fact be generalized to solve
the general instance of the Algebraic Path Problem.

4.1. LU Decomposition

The following algorithm first appeared in [KUN78] and then later in [MEAGSO],
and solves the problem of factoring a matrix A into lower and upper triangular
matrices L and U on a hexagonally-connected systolic network of processors. Given
an nXn matrix A =(a;;), the triangular matrices L =(l;;) and U =(u;;) are computed

using the following recurrence:
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(@) A = LU from phase 1
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4 1 O e o ol
P P of
L7 a . . . ad U=
5D 6§D .. oD O ol

() L and U™? Jfrom phase 2

e efp) e

D e e efp)

e e el

U—-ll_—l - - A_l
o) ) e ol

(c) A~'=U~'L"! from phase 3

Fig. 4-1: The three phases of the Gauss-Jordan Elimina-
tion Algorithm of Fig. 3-1 for Matrix Inversion.

Ci,(O) = a;;
c,-J(") = cij("‘l)+c,~£")ck§" D for 1<k <min(i ,j);

(y_ 1 .
= - 5
ii C,-,('_l)

) =D fori>.

This is precisely the computation performed in phase 1 of the algorithm described in
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Fig. 3-1, as applied to matrix inversion. The matrices L =(J;;) and U =(u;;) are derived
from the above recurrence by the following (see Fig. 4-1(a)):
0, if i <j,
lij = 1, if l=_] >
—c,-}"), if i>j;
0, ifi>j,
U= e, i)

The systolic network described in Fig. 4-2 and Fig. 4-3 computes the LU decompo-
sition of a 4X4 matrix. The original matrix A =(a,-j)=(c,-1(°)) is fed into the system from
below, and the resulting matrix output at the top of the processor array is given by the
following:

) D .
o) o) f o o)
Cé}) cg) c 2) ... Cg)
cn(ll) Cn(%) Cng) i '. cn(: -

The triangular matrices L =(};;) and U=(x;) are interpreted using the above defini-
tions of /;; and u;; (see Fig. 4-1(a)).

By the way the data enters the array in a staggered fashion, the last element c,,
to exit the array enters exactly 3(n—1) steps after the first element c;; enters the array,
and it exits the array exactly n steps later. Hence this algorithm computes the LU
decomposition of an nXn matrix A in 4n —3 steps.
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matrix.

of a 4x4

Fig. 4-2: Systolic System for computing the Lv decompo-

sition
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c+ab c c
a b o b
b a b*lx e c
¢ ¢ c c

Fig. 4-3: Processor types for the systolic system of Fig. 4-2.

4.2. Triangular Systems of Equations

The problem of inverting a matrix can be reduced to the problem of solving
several systems of linear equations. Given an nXn matrix A, to find the i % column of
the inverse matrix A ™!, you simply need solve the system of equations Ax =¢;, where
e,-=(0,...,0,1,0,...,0)T is the n-tuple consisting of a 1 in the it position and zeroes
everywhere else.

In the previous section, a systolic system was described for factoring a matrix A
into its LU decomposition, A =LU, where L is unit lower triangular and U is upper tri-
angular. In this section, we shall describe a systolic algorithm for solving triangular sys-
tems of linear equations. Using this algorithm, we can compute the inverses L~! and
U-! of the triangular factors of the matrix A, and then use the matrix multiplication
algorithm from section 2.3.2 to compute A 1=y,

The triangular system solver described here appeared with the LU decomposition
algorithm described above in [KUN78] and in [MEAS80], and solves the linear system
of equations Ax=b, where A is an nXn lower triangular matrix, and
b=(by,by, - * * ,b,) is an n-vector. (Clearly any upper triangular system of equations
can be reformulated as a lower triangular system.) The solution x=(x1,x3, * * * %, )Y to

this system can be computed using the following recurrence:
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»©® =o;

yi(k) - yi("‘l)+au¢ X for O<k<i;

b —y, (Y

G

Fig. 4-4 depicts an example of a 4X4 lower triangular system of linear equations.
The linearly-connected systolic array shown in Fig. 4-5 solves this system in the follow-
ing fashion: The coefficients given in the matrix A are pumped into the systolic array
from above, while the elements of the vector b are pumped into the left-end processor
from below as shown.

ayn O X1 by

azy ap X2 by
ay as as x3i |b3
Qg Gg ag3 Ag| |X4 by

Fig 4-4: Example lower triangular system of equations.

There are two types of processors in the array, the first type (the square processors)
being inner product step processors, and the second type (the circular processor at the
left end) being the processor which computes the final values of the solution elements in
the vector x. The function of these two processors are depicted in Fig. 4-5. Each y;
flows  through the array accumulating its inner product  terms
a;1x1+a;ox2+ * + + +a; ;_1x;_1 and then at the special end processor, the value of x; is
Yi

defined by x; «———.
n
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Fig. 45: Systolic System for solving a (4x4 lower) tri-
angular system of linear equations.

4.3. Application to Triangular Matrix Inversion

The above systolic algorithm for solving triangular systems can be extended to an
algorithm to solve several systems of linear equations Ax=b;, where A is still a lower
triangular matrix, by letting the different column vectors b; in turn flow through a ver-
sion of the linear array of processors which the coefficients of the A matrix flow
through. By doing this, you are invariably solving the problem AX =B, where A is an
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nXn lower triangular matrix, B is an nXk matrix, and the solution X is an nXxk
matrix. Hence you are solving X=A"!B. Now simply by letting B=I, the nXn iden-
tity matrix, you are solving the problem X =4 1.

Fig. 4-6 depicts the modified version of the systolic array to solve this extended
problem.

o
®

L)

-

o

1}

-y — o —,
w
f
)

L)
~O—Q‘—u -—
o "
. — Q—.l—g -— e
L
*+— oy, ¢ o
-
LR R K

by o —vbye by 0 —by;
by s —by—> o —wby— o —sb—»
by s by e by s —h e o — o

b“—ot—ob“—o.—cb“—oo-'b“—oo—o--—oo

Fig. 4-6: Modified Systolic System for solving a set of
(4x4 lower) triangular systems of linear equations.
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It simply consists of several versions of the array depicted in Fig. 4-5 stacked on top of
each other, with the column vectors b;=(b;;) (which in our case are the unit vectors ¢;)
entering from the left, the coefficients of the A matrix entering from above, and the
solution vectors coming out from the right side of the array. The actions of the two
types of processors are the same as the actions performed by the corresponding proces-

sors in the array given in Fig. 4-5.

This modified systolic array can find the inverse of an n)n triangular matrix in
4n -3 steps. Thus to compute the inverse of a general nXn matrix A using the LU
decomposition algorithm and the triangular matrix inversion algorithm described in this
section, along with the matrix multiplication algorithm described in section 2.3.2, you
would need 3n—2 steps to compute A =LU, and then 8n—6 steps to compute L~ and
U ‘1, and then 4n steps to compute A-l=py-1-1 (as L and U are band matrices with
band widths wy=w,=n). Therefore the total cost of computing the inverse of an nXn
matrix this way is 15n—8 = 0 (n).
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5. Guibas, Kung, and Thompson Solution to Transitive Closure

The previous section described several early systolic algorithms which could be
used together to solve a particular instance of the Algebraic Path Problem, the problem
of matrix inversion. The algorithms themselves did not directly address the problem of
matrix inversion. However, the solution we arrived at was asymptotically favourable.
Using serial processing, the general solution to the Algebraic Path Problem can be com-
puted using 0(n3) operations (¢f . Fig. 3-1). Using O (n?) processors in parallel, one
can only hope to be able to solve the Algebraic Path Problem in linear time. The
method described in the previous section indeed required only O (n) time using O (n?)
processors.

In this section, the first systolic algorithm designed specifically to solve some
instance of the Algebraic Path Problem will be described. This algorithm, along with
the other algorithms to be described later in this paper, uses O (n?) proceésors, and also
meets our desired complexity result in solving its particular problem in linear time. The
algorithm in this section was developed by Guibas, Kung and Thompson in [GUI?9],
and later appeared in greater detail in [ULL84]. It solves the problem of computing the
transitive and reflexive closure of a binary relation, and can in fact be generalized
somewhat to solve other instances of the Algebraic Path Problem such as computing the
shortest distance matrix of a nonnegative-valued weighted graph, but it cannot for

example solve the more general problem of matrix inversion.

Given a Boolean matrix A =(a;;) which represents the adjacency matrix of a
directed graph, the transitive and reflexive closure of A is the matrix A'=(a,-;), where
a,-; is 1 if and only if there is a path of length zero or more from vertex i to vertex j in
the graph. The problem of computing the transitive and reflexive closure of a directed
graph was seen to be one instance of the Algebraic Path Problem (¢f . Section 3).The
array of processors depicted in Fig. 5-1 represents a systolic solution to the problem of
computing the transitive and reflexive closure of an nXn Boolean matrix A. There are
n? processors orthogonally connected in the network, with the processors along the right
edge and bottom edge also connected to the processors at the left edge and top edge,
respectively, so that the actual topology of the network is that of a torus. For each
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Fig. 5-1: Systolic array for computing the transitive clo-
sure of a 4x4 matrix A=(a;).

0<i,j<n, a Boolean value A;; is associated with the processor in the i** row and j*
column of the array network. The value of A;; is initially set to zero, and ultimately
will contain the value of a,-;, so that the solution to the transitive and reflexive closure
problem will be given by the values of the A;;’s resident in the processors. Two copies
of the input matrix A are passed through the processor array as shown, one from the
left side of the array and the other from the top side of the array. When a value passes
completely through the array and exits from either the right edge or bottom edge of the
array, it is immediately fed back into the array from either the left edge or the top
edge, respectively. After each element of the two versions of the input matrix have
passed through the array three times, it no longer gets fed back into the array, but



—37—

rather just exits from the computation. When all elements have finished their three
passes through the array, the resident values A;; will represent the solution to the transi-
tive and reflexive closure of the original array.

The computation performed at each processor is defined as follows: At any step of
the computation, the two elements which meet at the processor associated with some
A;; will be ay and a;;’ for some value of k. At this point, the value of A;j is updated
by the assignment A;;+—A;;U(azNay;"). This is motivated by the fact that if there is a
path from vertex i to vertex ¥ and a path from vertex k to vertex j, then there is a
path from vertex i to vertex j. The a;; and a;;' values are generally passed straight
through each processor unchanged. However, the values of the g;;’s and the a;;”s are
also updated periodically throughout the computation. When a;; passes through the
processor associated with A;;, the assignment a;;+—A;; is performed. Similarly, when
a;' passés through the processor associated with A;;, the assignment g;;'«A;; is per-
formed.

[ULL84] explains the algorithm in detail giving a full proof of the correctness of
the algorithm. Basically, it shows that after one pass of the algorithm, the resident pro-
cessor values A;; contain the values 4;; =a,-j("), for k=min(i,j), where ai,(k) denotes the
existence of a path from vertex i to vertex j using no vertex numbered higher than k
interior to the path. After the second pass, the A;;’s contain the values A;; =a,-j("), for
k=max(i,j). Finally, after the third pass, the A4;;’s contain the values Aij=aij(")=a

ij -
These three passes roughly parallel the three phases of the Gauss-Jordan Elimination
Algorithm given in Fig. 3-1, but the computaions are carried out somewhat differently.

This transitive closure algorithm basically works on the following recurrence:

(1] .
aij( ) = aij5

at*V = U@ naM);

* n
aij = a;} )

Here, a,-J(") represents the existence of a path from vertex i to vertex j which does not
have any interior vertices numbered higher than k. Comparing the above recurrence to
the recurrence developed in Section 3.5 to derive the Gauss-Jordan Elimination
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Algorithm for the general Algebraic Path Problem of path enumeration, it is easy to
see that this recurrence could not be utilized for the problem of path enumeration; the
sets M;;, defined in Section 3.5 as the sets of all distinct paths from each vertex i to
each vertex j of a directed graph, could not be computed using the above recurrence,
as the sets constructed would not contain just distinct paths, but would also have within
them multiple copies of the same paths. For this reason, this transitive closure algo-
rithm cannot be generalized to solve the most general instance of the Algebraic Path
Problem, nor can it be generalized even to solve the problem of matrix inversion.

The above transitive closure algorithm can in fact however be modified to solve
the problem of computing shortest distances between vertices in a weighted directed
graph, where the arcs of the graph have nonnegative weights, which as was seen in Sec-
tion 3 is another instance of the Algebraic Path Problem. The input matrix 4 =(g;;) is
given by the weights of the arcs between vertices i and j. If i=j, then a;;=0. If there
is no arc from vertex i to vertex j, then a;;=+o0. The resident processor values Ay
are all initialized to +oco. These values are updated using the assignment
Ajj+—min(A;j,ay +ay;"), motivated by the fact that a path from vertex i to vertex k
appended to a path from vertex k to vertex j may be shorter than the shortest path
from vertex i to vertex j so far discovered. The values of a;; and g;;’ are updated in
exactly the same fashion as in the transitive closure algorithm.

By observation of the systolic array depicted in Fig. 5-1, the last elements of the
input matrix to be entered into the array, the a,, and a,,’ elements, enter the array
after exactly 2(n—1) steps, and they exit the array after the third and final pass
through the array exactly 3n steps later. Thus the algorithm takes 5n—2 steps to com-
pute the solution to the transitive closure problem being solved, and have the solution
resident in the processor array. The solution then needs to be unloaded from the proces-
sor array, which takes another n steps to complete. Hence this algorithm takes in total
6n—2 steps to compute the transitive closure of a binary relation (or the shortest dis-
tance matrix of a directed graph with nonnegative weights on its arcs).
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6. Kramer and van Leeuwen Solution to Matrix Inversion

The next systolic algorithm developed for solving an instance of the Algebraic
Path Problem was the systolic matrix inversion algorithm of Kramer and van Leeuwen
([KRAB83]). This algorithm uses an nXn array of processors connected in an orthogo-
nal pattern to compute the inverse of an nXn matrix using a parallelization of the
Gauss-Jordan Elimination algorithm, and again succeeds in accomplishing the task in
linear time. It improves on the method of inverting matrices in Section 4 though as it
is a uniform solution, and takes only 6n—4 steps to complete,as opposed to the previous
method which takes 152 —8 steps to complete.

Basically, the algorithm simply follows the usual Gauss-Jordan Elimination algo-
rithm for inverting matrices as outlined in [PEA67] as follows: Given an nXn matrix
A=(a;;), to compute A~L first extend A to an nX2n matrix (A I), and perform the
following algorithm.

fori«1ton do
begin 1
multiply row i by a;7;
for j«—1ton do

if j+i then subtract a i times row i from row j

This will transform the matrix (A I) into the matrix (I B) via elementary matrix
transformations, so that the matrix B will in fact be the inverse matrix A~!. [KRAS83]
presents the simple example given in Fig. 6-1; the original matrix A is juxtaposed to the
left of the identity matrix of the same size, and after the algorithm outlined above is
performed, the inverse matrix A ! can be read off of the right block of the matrix.

[KRAS83] notes that the way to look at the above algorithm is as a two-phase pro-
cess, the first phase working in a horizontal direction, and the second phase working in
a vertical direction. For the first phase, you pass the value of aj;! along the first row,
multiplying each element in the row by it, while at the same time passing the values of
a;y along their respective rows to broadcast their values to the elements of their rows.
For the second phase, you pass the values of the top row elements aj; down their
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Fig. 61: Example of the Gauss-Jordan Elimination
Algorithm for matrix inversion.

respective columns to perform the row subtraction step of the algorithm, using the
values of a;; broadcast along row j in the first phase. This works for the first row in
the algorithm (ie., for i=1), but for the rest of the rows, the action is identical, using
the following trick: when you pass the a;; along the rows in the first phase, you can at
the same time exchange their values with the values which they pass, to move the
second column to the first column, the third column to the second column, and so on
through to the (2n)" column to the (272 —1)% column, and then leave the values of ajy
in the (2n)* column. Then in the second phase, you can similarly exchange rows as
you pass the values of a;; down the columns, to move the second row to the first row,
the third row to the second row, and so on through to the (2n)" row to the (2n—1)"
row, and then leave the values of a; in the (2n ) row. This makes the new value of
aq; to be the value which would be a,; in the original matrix, so rather than perform-
ing the function of the above algorithm for i=2, you simply perform it once again for
i=1. Repeatedly employing this exchanging trick, you can simply perform the function
of the algorithm n times with the value i=1, rather than once for each
i=1,2,3, - - - ,n. This provides the regularity needed to perform the algorithm within
the framework of a systolic network. Fig. 6-2 shows the action performed on the
matrix (A I) using this strategy.
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Fig. 6-2: Modified Gauss-Jordan Elimination Algorithm.

It is apparent from Fig. 6-2 that the action of this modified algorithm does not
affect the structure of the right block of the augmented matrix; it remains the identity
matrix, while the actual inverted matrix A~! is computed in the left block over top of
the space where the original matrix A was placed. Hence, we can simply ignore the
right block and work solely with the left block, that is, just with the matrix A itself.

As described, the algorithm makes n passes to the right, interleaved with n passes
downward, which performed naively would require 2n2 steps to complete. However
these passes can actually be pipelined, so that several passes are in progress at any
given time. The downward pass could begin at an element in the matrix immediately
after the rightward pass has gone by, and the next rightward pass can begin at that ele-
ment immediately after that downward pass has gone by. To achieve this pipelining,
the rightward waves and the downward waves must be skewed, so that the rightward
wave in one row passes one step before the same wave passes in the row below it, and
likewise that the downward wave in one column passes one step before the same wave
passes in the next column. Fig. 6-3 depicts several steps of the skewed motion of the
pipelined algorithm, showing the waves of the two-phase cycles of the algorithm (a
rightward wave followed by a downward wave) separated by dashed lines.
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Fig. 6-3: Skewed wavefronts of the pipelined algorithm.

The systolic algorithm presented in [KRAB83] executes this pipelined algorithm on
an nXn orthogonal array of processors with each processor having data streams coming
in from and going out to each of its four neighbouring processors. Each processor has
two registers, one to hold an element of the matrix being processed, and the other to
hold values which pass through the processor. Thus, the processor in the i % row and
tke j* column of the array would hold the value of a;; of the matrix in one register,
and the value of a;; in the other when the value of a;; passes through the processor on
the rightward pass of the algorithm, to use it in the row subtraction step of the down-
ward pass of the algorithm. [KRAB83] describes the function of each of the processors,
describing their actions in terms of four states of the computation, corresponding on
whether the processor is communicating with the processor to its left, the processor to
its right, the processor above it, or the processor below it, depending on the position of
the waves with respect to the processor. The action which a processor performs is
exactly what occurs in the pipelined algorithm performed on the matrix being inverted,
as described above, but is complicated to define, as it cycles through four phases, doing
four different computations, and because the processors are not homogeneous; there are
nine different processor types to consider: one for each of the four corners, one for each

of the four edges, and one for the interior processors.

Returning back to Fig. 6-3, you can see that the wave fronts are exactly four steps
apart, and that a wave takes 2(n—1) steps to pass completely through the matrix from
the upper left corner to the lower right corner. The algorithm starts with the first wave
front originating at the upper left corner of the matrix (processor array), and continues

th

until the n* wave has passed completely through the matrix to the lower right corner

of the matrix. After 4n —2 steps, the downward pass of the n'* wave enters the matrix,
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and after 2(n—1) more steps, it has pass completely over the matrix. Hence this systolic
algorithm computes the inverse of an nXn matrix in 6n —4 steps, using n? processors.

This algorithm was the first systolic algorithm directly applied to the problem of
matrix -inversion. The method described in Section 4 merely combined several different
algorithms to achieve the goal of inverting a matrix. [KRAS83] only applied this algo-
rithm to the problem of inverting matrices, but in fact it is a true parallelization of the
Gauss-Jordan Elimination algorithm, and as such can be generalized to solve the other
problems engulfed by the definition of the Algebraic Path Problem.
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7. Rote Solution to the General Algebraic Path Problem

Up until now, we have only considered systolic algorithms which were applied only
to some subproblem of the Algebraic Path Problem, either the problem of matrix inver-
sion or the problem of computing transitive and reflexive closure. [ROT83] is the first
treatment of a systolic algorithm for solving the general Algebraic Path Problem, that
is, for executing the algorithm given in Fig. 3-1 in its most general setting, so that it
could be applied to any problem enveloped by the definition of the Algebraic Path Prob-
lem. The algorithm appearing here is described using the concepts defined in Section
3, ie., the general definitions of the operations of addition (+), multiplication (X), and
closure (*). To interpret them to solve a given subproblem of the Algebraic Path Prob-
lem, it is only necessary to interpret these operations as they are defined for the given
subproblem.

Unlike the algorithms described in the two previous sections which use orthogonal
arrays, {[ROT83] returns to using a hexagonal array of processors to solve the problem.
Fig. 7-1 shows the array used for processing a 4)X4 matrix. To process an n Xn matrix,
you would use an (n+1)X{(n+1) systolic array of hexagonal processors similar to the
array used for matrix multiplication and for LU decomposition. In fact, most of the
processors in the array, the interior (A ) processors, perform the same inner product step
as the processors in the previous matrix algorithms. The operations performed by the
various processor types are described in Fig. 7-1. They all perform simple operations,
either corresponding to one of the four types of assignment statements as described in
the algorithm in Section 3, or simply an identity operation, whereas the processor just
passes its input on unaltered. The type A processor performs the inner product calcula-
tion ¢’= ¢ 4+ aXb, where a, b, and ¢ are the input values for the processor. The
type B; processor either calculates just the identity function, if it is receiving input from
below (that is, if input is entering into the array), or it calculates the function
b'=aXb, where a and b are the input values for the processor, if it is receiving input
from the diagonals. The type B, processor calculates the function ¢’ = ¢ Xb, where b
and ¢ are the input values for the processor. The type C procéssor calculates the clo-
sure operation ¢’ = ¢* where c is the input value to the processor. The type D; proces-
sor simply calculates the identity function, either passing on the value it receives from
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Fig. 7-1: Systolic Array for solving the Algebraic Path Problem.

below, if input is entering the array, or the value it receives from the diagonal.
Finally, the type Dy and type E processors simply calculate the identity function, pass-
ing on the values they receive unaltered.

Initially, the processors are assumed to be cleared to zero. The initial array
C=M® js input in a staggered fashion from below as shown in Fig. 7-1, and each ele-
ment c; follows a set path through the array of processors, changing its value along the
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way according to the algorithm given in Fig. 3-1, and then flows out at the top of the
array as an element of the matrix which defines the solution to the Algebraic Path
Problem.

The path followed by an element c;; of the input matrix is as follows: first the ele-
ment enters the array from below and travels upward until it hits the top of the array.
The elemex;t will then reflect either down and to the right, if it hit the top left edge of
the array, or else down and to the left, if it hit the top right edge of the array. The ele-
ment will continue travelling through the array until it hits a bottom edge, whence it
will reflect and travel straight up the array again. Upon reaching a top edge for a
second time, the element will again reflect down through the array as before, and when
it hits a bottom edge again, it will reflect and travel straight up the array once more.
This time, when it hits the top of the array, it will just pass straight through the proces-
sor and become part of the output solution, rather than reflecting again. The paths of
three typical elements are depicted in Fig. 7-2.

From looking at Fig. 7-2, it is clear that the path followed by an element is exactly
3(n—1) steps longer than if it were to travel straight through the array. Hence the out-
put at the top of the array is of the same shape and organization as the input at the bot-
tom. The first element input into the array, cyy, is output 4n+1 steps after it is input,
and the last element input into the array, c,,, is input exactly 3n steps after the first
element is input, so the algorithm described using this array of processors takes 7n—2
steps to complete, from the time the first element enters the array, until the time the
last element exits the array. Hence any problem which can be formulated as an Alge-
braic Path Problem can be solved using this systolic algorithm in 7n —2 steps.
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Fig. 7-2: Paths taken by three matrix elements.

7.1. Analysis and Improvements

In Section 2.3 of this paper, when we were analyzing examples of systolic algo-
rithms, we saw in the cases of matrix-vector multiplication and matrix-matrix multipli-
cation that we could run several tasks on the same systolic array to achieve a better
average running time for our algorithms. This was done to make better use of the pro-
cessors, as they often are not used all at the same time when processing a single task.
Such improvement can be attained in the present algorithm being considered.

First of all, you can use a form of pipelining similar to that used by the matrix
multiplication system, where you have three nXn matrices being processed simultane-
ously. Since the elements of a matrix are input into the array staggered three steps
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apart, you can enter the elements of a second matrix immediately after the correspond-
ing elements of the first matrix, and follow the second matrix in a similar fashion by a
third matrix. In this way, you can process three matrices at the same time, and have
the processors occupied by some element at every step of the computation.

Once a matrix is started being processed by the array, the processing continues for
7n —2 steps. However, you need not wait until the processing of the first matrix is com-
pletely finished before starting to process another. The first element of a new matrix
can enter the array at the bottom processor immediately after the last element of the
old matrix has left this processor for the last time. Hence, if you are processing three
matrices simultaneously, you can begin processing another three matrices exactly 6n
steps after the first three matrices started being processed. Hence, three matrices are
processed (that is, 3n3 assignments are performed, corresponding to the M,-}") computed
in the algorithm of Fig. 3-1 for each value of i,j,k) for every 6n steps of the computa-
tion by the n? processors in the array which actually do the assignments (A ,B; ,By,C ).
The maximum number of assignments which can be done by the n? processors in 6n
steps is 6n3, so the processors are being used to exactly one half utilization. The other
half of the time, the processors are passing on their inputs unaltered.

To see how we can attain further improvement, note that update assignments are
only performed when the elements are travelling up the array. When an element enters
the array, it may travel up through the first few processors unaltered, but at some point
the processors will start altering the element, and the element will continue being
altered at each processor as it travels in an upward direction, until it again reaches the
first processor which altered its value, at which point its value will have been changed
n times, and so it will be unaltered from that point on. With this in mind, you can see
that a second matrix can be entered into the array exactly 3n steps after the first
matrix was entered. An element of the second matrix will join the corresponding ele-
ment of the first matrix for its first pass up the array. The new element will be passed
unaltered by the processors and the old element will be changed for the first few steps
in the upward pass. However at some point, the old element will reach the processor
which first altered its value and will thus continue up the array unaltered from that
point on. But this is the exact point at which the new element starts having its value
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altered.

Using the above pipelining ideas, we are able to attain 100% utilization of the pro-
cessors in the array, whereas we started off with only very sparse utilization. With
these tricks employed in our systolic system, we can finish processing an nXn matrix
with every n steps. Clearly this is the best possible result you can hope for with n? pro-
cessors, as using the algorithm of Fig. 3-1, n3 update assignments must be performed.

There is a more serious problem with this systolic array, as well as for all of the
other systolic arrays for processing matrices which we have discussed in this paper, than
that of efficient processor use. Presumably, we would like to process matrices of various
sizes, but it appears at the moment that we would need a different array for each dif-
ferent size of matrix that we would like to process. The other methods never discuss
this problem, but [ROT83] outlines some ways of getting around this problem with
respect to the systolic system described in this section.

One solution to this problem is found by noting that by using an array for process-
ing an nXn matrix, you can in fact use that array to process any mXm matrix for
m<rn. Fig. 7-3 gives a skeletal description of the data flow of a matrix being processed
in an oversized array. In viewing this diagram, the following points can be noted. The
cluster at the top of the array corresponds to phase 1 of the algorithm, where the LU
decomposition of the matrix is performed, in the matrix inversion setting of the prob-
lem; the L matrix travels down and to the right and the U matrix travels down and to
the left. This part of the computation is simply the LU decomposition system described
in Section 4.1. The cluster on the sides correspond to phase 2 of the algorithm, where
the L and U triangular matrices are inverted. They correspond precisely to the tri-
angular matrix inversion system described in Section 4.3, although it is now formulated
on a hexagonal array rather than an orthogonal array as before. The cluster at the bot-
tom corresponds to phase 3 of the algorithm, and is simply the matrix multiplication
system described in Section 2.3.2. The U -1 matrix enters the system from the-upper
left and the L ~! matrix enters from the upper right. These two matrices are multiplied
together to give the inverse of the matrix in question, which is then passed up and out
of the system. Hence, the system being described in this section is really not a new
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Fig. 7-3: Outline of the data flow of the elements of a
matrix through an oversized array.

system, but a combination of previous systems, as was described in Section 4.

There are still problems with this solution to processing various sizes of matrices. If
you only have one array of processors, what size should it be? On the one hand, if you
make its size n too small, the array will be useless for processing many matrices, whose
size is m >n. If on the other hand you make its size n very large, then it will be ineffi-
cient for processing matrices of size m <<n, as it is clear that the processing time of a
matrix of size m is proportional to the size of n; in fact it would take exactly
4n +3m —2 steps to compute.

One attempt at solving this problem is by using an array of a reasonable size n,
and then for matrices of size m >n, using techniques of linear algebra to transform the
matrix into a matrix in block diagonal form. In this way you can process the blocks
separately, as depicted in Fig. 7-4.

A better approach to solving this problem is by using the technique of folding
([CHOS83]). You can fold the array along the diagonal as shown in Fig. 7-5, and have
the center (ie, right edge) reflect the values which encounter it.
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Fig. 7-4: Processing the blocks of a large matrix.

Using this type of array, you need not input the matrix at the right, but rather
input it at the extreme left, so that it only uses as much of the array as necessary. A
signal can be propagated up with the first element to mark the right edge of the subar-
ray being used, so that the elements can be reflected at that edge. With this, you get a
(potentially semi-infinite) wedge-shaped array of processors, which eliminates the prob-
lem of trading off the size of the array (ie, the maximum size of matrix which can be
processed) with the efficiency of processing smaller matrices; It is clear that mXm
matrices are again processed in 7m—2 steps. An example of using such an array is

given in Fig. 7-6, where a 33 matrix is being processed.

The skeletal diagram depicted in Fig. 7-7 shows more clearly how different sized
matrices can be processed in the array. This diagram also shows how you can process
varying sized matrices most efficiently. You can still begin processing one matrix before
another has completely finished being processed.
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Fig. 7-5: Folding of the systolic array.
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8. Discussion

Several systolic systems have been described for solving both the general Algebraic
Path Problem, as well as certain subproblems of it. After developing a solution to the
general problem, the systolic algorithms which have been discovered for solving the
problem were outlined in chronological order. The algorithm developed for solving the
general problem consists of n3 assignment statements, and thus would require O (n°)
steps to execute on a sequential machine. All of the systolic systems described for solv-
ing the problem consist of 0 (n?) processors running in parallel, and they all succeed in
solving the problem (or some subproblem) in linear time, which makes them all
equivalent and optimal in that sense. However, some of the algorithms are less desir-
able due to a high constant in the linear number of steps it required, or because of the
complexity of the operations of the individual processors.

The first method described was that of combining the systolic systems of Kung for
computing the LU decomposition of a matrix, inverting triangular matrices, and multi-
plying matrices. This method, although sufficient, is undesirable due to the fact that it
is so disjointed. Using this method, you have to process your matrix through three dif-
ferent arrays of processors to solve the problem. Because of this, it requires 15»—8
steps to process a matrix, which is more than twice the number of steps needed using
any of the later systems.

The next method described was that of Guibas, Kung and Thompson. This was
the first system developed which actually addressed some subproblem of the Algebraic
Path Problem. It uses an orthogonal array of processors, and requires 6n—2 steps to
compute the solution. Unfortunately, the system is restricted to only a subset of sub-
problems of the Algebraic Path Problem. It was developed as a system for computing
the transitive closure of a binary relation, but in fact it could be used for some other
subproblems, such as the problem of determining the shortest paths between vertices of
a weighted directed graph whose edges are weighted with nonnegative values. How-
ever, it cannot solve the Algebraic Path Problem in its fullest generality, and in fact
cannot even solve the problem of matrix inversion. Also, it requires that the leftmost
processors be connected to the rightmost processors, and that the top processors be
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connected to the bottom processors, so that the actual topology of the system is that of
a torus. Furthermore, it requires that three versions of the input matrix exist and pass
through the array, one to remain resident in the processors, one to pass horizontally
through the array, and one to pass vertically through the array.

The next method described was that of Kramer and van Leeuwen. Like the previ-
ous method, it operates on an orthogonal array of processors, and solves its problem in
6n —2 steps. However, although it was only described as a solution to matrix inversion
by Kramer and van Leeuwen, it can in fact be generalized to solve any subproblem of
the Algebraic Path Problem. Also, it does not require the end processors to be con-
nected to form a toroidal topology, nor does it require three copies of the matrix to be
flowing through the matrix. In this sense, it is superior to the previous method. How-
ever, the problem with this system lies in the complexity of the functions which the indi-
vidual processors have to compute. First of all, there are nine different types of proces-
sors which have to be dealt with. Secondly, each of the processors goes through a four-
phase cycle in which it in turn interacts with the processor to its left, the processor to its
right, the processor above it, and the processor below it. Also, there must be some type
of counter incorporated into the system, as the algorithm requires a set action to occur
precisely n times when processing an n Xn matrix.

The final method described was that of Rote. This method returned to the hexag-
onal array of processors which is used for other matrix computations, and because of its
simplicity suggests that hexagonal arrays are the most suited for matrix computations.
The previous method of Kramer and van Leeuwan which uses an orthogonal processor
array actually simulates a third direction of data flow through the array as the wave-
fronts described in the method travel diagonally through the array from the top left to
the bottom right. As was noted in Section 2., a hexagonal array of processors is simply
an orthogonal array with diagonal connections added in one direction, so this diagonal
motion would not have to be simulated on a hexagonal array. Rote actually had in
mind the solution of the general Algebraic Path Problem when he developed his sys-
tem, and indeed his system does solve the general problem. It does involve a somewhat
nontrivial data flow through the array, but all of the processor functions are simply
defined and executed. Most of them perform nothing more than a multiplication or an
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inner product step; all of the others simply perform the identity operation on their argu-
ments, passing their inputs straight through unaltered. The system processes an nXn
matrix in 7n—2 steps, which is actually a little worse than the previous two methods.
However, Rote also presented a unidirectional variation of his system that can solve the
problem in 5n—2 steps, which he proves is optimal when you have only one version of
the input matrix flowing through the processor array. This variation was not included
in this paper as it requires a nonregular data flow with various matrix elements reflect-
ing at different places within the interior of the processor array. Also because of this,
processor functions are no longer fixed for the processors, as for example the closure
operation occurs at various places in the array at various times. Hence the improve-
ment in the number of steps required to solve a problem does not seem to justify the
greater complexity in the data flow and processor actions.

It was decided that the first method, that of combining the systolic arrays for solv-
ing the problems of computing the LU decomposition of a matrix, inverting a triangular
matrix, and multiplying two matrices, was a poor approach to solving the Algebraic
Path Problem. However, the method of Rote seems like the best method. Five years
separated the developments of these systolic systems, during which time the other sys-
tems for solving subproblems of the Algebraic Path Problem were developed. In fact,
Rote’s method is precisely the combination of the three systolic systems developed in
the beginning, as was discovered in Section 7. By looking again at the LU decomposi-
tion processor array depicted in Fig. 4-2, you can see that it is precisely the system
developed five years later by Rote. The data flow was simply stopped prematurely after
the LU decomposition was computed. It took that long for the LU decomposition sys-
tem to be analyzed closely enough to realize that it could in fact be made to execute
the whole Gauss-Jordan Elimination algorithm for matrix inversion, and in fact for the
general Algebraic Path Problem.
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