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Using Colour as a Tool in Discrete Data Analysis

COLIN WARE!
and
JOHN C. BEATTY?

Abstract

The advent of cheap high quality raster computer graphics opens up
new possibilities for the display of numerical data. One of the advantages
of computer graphics is that it enables an unprecedented degree of control
over colour. Since colour vision is three dimensional this provides us with
three additional perceptual dimensions, which may be used in addition to
the two spatial dimensions available on a flat display to present multidi-
mensional data. An experimental plotting package was constructed to
explore the possibilities of using colour to examine discrete multidimen-
sional data. The general insights gained in using this package are
presented. Also, psychophysical research is presented which probes the
usefulness of colour in enabling human observers to perceive clusters of
points in a multidimensional space. Comparing the resolution of clusters
in colour and in space, the results show that colour is an effective exten-
sion of space for conveying information about data dimensions. However,
the perceptual space defined by colour and space is not homogeneous and
resolution is poor in a few specific directions. For this reason, the use of
multiple views 1s advocated whenever colour is used as a tool in explora-
tory data analysis. An especially attractive aspect of colour is that it can
be used to convey information to subjects without any special training.

1 This work was carried out as part of the requirements for a masters degree in the Deptartment
of Computer Science at the University of Waterloo. Colin Ware is currently an Assistant Professor in
the School of Computer Science at the University of New Brunswick, Box 4400, Fredericton, New
Brunswick, Canada, E3B 5A3.

2 John C. Beatty is an Associate Professor in the Department of Computer Science at the Univer-
sity of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
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1 INTRODUCTION

The use of colour has long been popular with geographers, who use
colour in maps to identify features of a terrain such as crops or rock
types. Typically in these applications colour is given only a nominal func-
tion; it labels regions, which can then be identified by an external key.
Another common mapping application uses a colour scale to encode a sin-
gle continuous data dimension, such as height above sea level. And
recently the use of colour dimensions to encode various kinds of informa-
tion ranging from stress patterns in metal to the the distribution of
energy in the universe has become popular. In a notable recent applica-
tion of colour coding the 1975 US census chose to introduce a colour sys-
tem encoding two data dimensions in chromatic codes [Meyer1981]. How-
ever, the colour coding scheme used by the census has been strongly criti-
cised both on conceptual grounds [Trumbol981] and by an experimental
study which showed that subjects made an unacceptable number of errors

when attempting to read data from graphs using the census scheme
[Wainer1980).

Yet colour should be capable of conveying this information, and
more. Research into human colour vision shows that the visual system
contains three more or less independent chromatic “channels” through
which we obtain all our information about the visual environment [Hur-
vich1981]. This raises the possibility that three data dimensions might be
encoded in chromatic dimensions, in addition to the two spatial dimen-
sions conventionally used [Sibert1980]. The most common examples of the
use of colour to encode three physical variables (in addition to two vari-
ables encoded on the X and Y axes) is the pseudo-colouring of Landsat
images of the earth’s surface. These take data sampled at visible and
non-visible wavelengths and map them into a colour space to make all the

information visible. However, there has been very little attention given to
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the possibility of using colour to assist the visualisation of features in
discrete data, as opposed to continuous maps.

The problem of interest here is the discovery of structures in multidi-
mensional scatter plots. In this paper we shall argue both on conceptual

and empirical grounds that colour can be a valuable tool for exploring this
kind of data.

Probably the chief reason for the neglect of colour is that using
colour in a controlled way has only recently become technologically feasi-
ble. Since print media are hard to manipulate and pigments mix in highly
non-linear ways, they make the presentation of precisely defined scales of
colours difficult in the extreme. All this has changed with the advent of
cheap high quality computer graphics. In images displayed on a colour
monitor it is possible to produce complex patterns in which each com-
pbnent is specified precisely, if necessary in terms of internationally stan-
dardised colour coordinates [Cowan1983]. Moreover, it becomes possible

to investigate different colour mapping schemes with considerable free-
dom.

1.1. Properties of Colour Monitors

The most widely used colour output device employed for computer
graphics is the colour monitor. These contain colour cathode ray tubes
(CRT) of the kind found in a colour television sets, though they are
capable of a much sharper image. The image displayed on the screen of a
CRT is made up of a mosaic of glowing phosphor dots. There are only
three kinds of phosphor in a given tube; these glow red, green and blue
respectively, producing light as a function of the intensity of the beam of
electrons which strike the back side of the face of the tube. All of the
other colours which appear on the screen are produced as blends of the
light from these three phosphor types. (See [Beattyl1983] for further
description of the capabilities of this kind of device).
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1.2. Properties of Human Colour Vision Relevant to Data

Display?

It is worth considering what we may expect from human colour
vision in the light of results from the century old study of the subject by
vision scientists.

The most important fact for the present discussion is that colour
space 1is three-dimensional, a property arising from the presence of cone
receptors in the retina having three different sensitivity functions. What
this means in practice is that any colour can be matched by a mixture of
three coloured lights; and this fact underlies the three dimensional nature
of all colour spaces. This includes the red, yellow and blue primaries used
by the artist, the red, green and blue primaries of the television monitor,
the Munsell hue, chroma and value colour order system, etc. Because of
this three dimensionality we can portray three distinct data dimensions
through the medium of colour since any change in any of the data dimen-

sions (mapped onto a colour axis) will result in a perceptually different
colour.

Nevertheless the fact that colour i1s three dimensional does not neces-
sarily mean that it provides the equivalent of three additional spatial
dimensions in which to display information. Before deciding how colour
may be useful in displaying information we must first consider some
aspects of human colour perception. A convenient framework for discus-
sion about what colour can and cannot be expected to give us is the classi-
cal taxonomy of measurement scales into nominal, ordinal, interval and
ratio [Stevens1946] .

3 There are a number of quite technical terms used in this discussion. The reader may wish to
consult a general textbook such as {Boynton1979] for clarification.
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Nominal: (The labelling function). Colour is useful in perception pri-
marily to help us determine the location and surface properties of objects
in our environment. For example we can discriminate an orange from the
leaves surrounding it in a tree primarily by its colour. Perhaps because of
this function, colour is extremely effective in isolating visual objects in an
immediate and compelling way. Empirical support for this comes from
experiments by cognitive psychologists [Kahneman1981] which show that
colour has the advantage of being analyzed “preattentively” by the
human visual system. That is, colour information is extracted in parallel,
not serially as when reading text. This can be understood by considering
an experiment in which an observer is required to locate the word “red”
in a body of text. To do so he must sequentially read the text. Con-
versely, when he wishes to locate a red spot in a field of variously
coloured spots he can move his eye immediately to that point. A relevant
study showed that of a number of experimental variables, including shape,
size and colour, colour was the most effective at capturing visual attention
[Williams1966]. Because of this “preattentive” visual analysis, colour can

be extremely effective in labelling information of different types.4

Using colour to label different classes of points on a graph is one
nominal application of colour. Another is the labelling of regions on maps.
A third might be highlighting different types of information in different
colours in a data base information retrieval system. A fourth nominal
application of colour is in systems of indicator lights. For these nominal
applications the user should be warned that he can only effectively use a
small number of colours - somewhere between 5 and 15, depending on the
application. The problem is that if colours are not very distinct then
simultaneous contrast effects [Cleavland1983] can cause confusion between
them. Also, a map or graph which uses too many different colours will
likely suffer from visual clutter.

4 For a discussion of the general function of colour perception and a discussion on the relation
between colour and attention see Chapter 5 in [Cowan1984] .
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Ordinal: (The display of ordered information). The visual system is
more effective in extracting relationships between adjacent coloured areas
in the visual field than in determining absolute values. The two
phenomena of adaptation and simultaneous contrast are relevant here.
Adaptation is a gain change in the receptors of the eye that enables
humans to function visually in environments which differ by as many as 7
orders of magnitude in the average level of illumination. Receptors
respond to global level changes in the ambient illumination by adjusting
their sensitivity range to be most effective in that particular environment.
This gain change is gradual, which is why it takes us a while to adjust to
bright light after coming out of a darkened room. Simultaneous contrast
refers to the fact that the eye does a local differencing operation at the
edges of objects, extracting the relative colour change between adjacent
areas and sending this information to the brain, while absolute colour
information is lost [Ware1983,Cowan1984].

The implication of adaptation and simultaneous contrast from the
point of view of displaying ordered numerical data is that they should
make it easy for the eye to detect the relative values of adjacent data
objects (i.e. ordinal information) in the sense of whether a particular
group of points is redder than another or darker than a third. Thus
colour should be effective in displaying ordinal information so long as the
points to be judged relative to one another are in close physical proximity.
However, points which are far apart are likely to have different colours in
their immediate surroundings. Because of this, the effects of local con-

trast may distort the ordinal relationship of the points.

An additional problem in the display of ordinal information using
colour is obtaining a colour scale which is perceptually ordered. For exam-
ple a grey scale from black to white is perceptually ordered, but a scale
based on the physical spectum is not - people do not intuitively know that
green lies between red and blue. A full analysis of what constitutes a per-
ceptually ordered sequence of colours is an ongoing research area. Some
further discussion can be found in [Trumbo1981]. We return to this issue
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in the description of the colour spaces implemented in the plotting pack-
age.

Interval: (The preservation of distance information). There is a con-
siderable body of psychophysical data [Wyszeckil982| which is intended to
provide “uniform colour spaces”, i.e. a mapping from the physical descrip-
tion of the stimulus into a space in which equal distances correspond to
equal perceptual distances. Given such a space it should be possible to
make statements like “red ‘A’ is as different from pink ‘B’ as yellow ‘C’ is
from brown ‘D’.” Considered out of context the availlability of uniform
colour spaces makes it seem possible to portray interval information.
Unfortunately, the uniform colour spaces are all derived from experiments
with colours viewed in isolation in very simple patterns. When these
colours are surrounded by other colours the effect is to badly distort the
colour space. In so far as they enhance differences the processes of adap-
tation and contrast will tend to distort the perceived size of distances
between data values. Thus, for the most part, colour will be bad at
presenting interval information for the same reasons that it is good at

portraying ordinal information.

Ratio: (The preservation of ratio information). Given that colour
will be poor at representing interval data we can anticipate that it will be
hopeless at conveying ratios to the eye. This is because of the inability of

the eye to perceive absolute light or colour values.

Although the above observations suggest that colour will be poor at
conveying interval and ratio information, this need not overly concern us.
In general, graphs are useful for displaying trends and structures in data,
not in displaying actual values, which are often better presented in the
form of a table. An important distinction to be made here 1s between the
ability of a graph to display data values and its effectiveness in displaying
data structures. We can anticipate that colour will be useful in showing

data structures such as correlations or the presence of discrete clusters,
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because of the enhancement of colour differences by the visual system.
The brain is continually looking for meaningful patterns in the distribu-
tion of light on the retina, and it can undoubtedly synthesize colour infor-
mation and spatial information in the detection of objects. Thus for clus-
ter analysis, colour should help us decide how many clusters there are in a
data set, since points having a common colour and some measure of physi-
cal proximity should readily form visual objects. However, it may not be

at all easy to discern where in the multidimensional space the individual
points and clusters lie.

1.3. Using Colour in Exploratory Data Analysis

There is no statistical package which can take raw data and analyze
it a priori. The statistician must have ideas about the kinds of structures
present in the data before applying even the most general analytical pro-
cedures. Possible the most powerful tool for this initial exploratory data
analysis is the graph. If the data appears to consist of an elongated struc-
ture he can apply a trend analysis or a curve fitting procedure. If it
appears to be partitioned into discrete groups of points he can apply a
clustering algorithm. However, since a conventional graph only displays
two dimensions of data, special techniques are required to deal with data

of more than two dimensions.

There have been a number of techniques devised to enhance the
bandwidth of graphs for displaying multidimensional data. Of these the
most common is the generalised draftsman’s plot, which shows all pairwise
combinations of variables in an array of separate two dimensional graphs.
Unfortunately, although this method does display all the information, in
order to perceive multidimensional structures the viewer must somehow
integrate the content of many graphs - and this is difficult. Other graphi-
cal techniques for dealing with multi-dimensional data have been reviewed
by [Gentleman1983] and [Chambers1983]. However, excepting for its use
in pseudo-colouring satellite images, colour has been neglected in this
application.
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Figure 1: Scale drawing showing the components of the display. See text for size
and colorimetric parameters.



2 AN EXPERIMENTAL PLOTTING PACKAGE

To investigate the utility of using colour as an aid in discerning
structures in a multidimensional space we developed a display package to

informally examine a number of data sets.

The plotting package was designed to read in data files and then
allow the user to manipulate them in a number of ways. The basic
display is given as a diagram in Figure 1. It consisted of a square display
window into which the data was mapped, surrounded by a white band
designed to provide a visual reference field for the viewer. The output
device used was always a colour monitor. The following list describes

some of the features and comments on their usefulness.

Scaling: The data were always scaled to fill the display space on all display
dimensions. That is, the maximum and minimum values were found
for each data dimension and these values were used to scale the data
so that it fitted just within the X and Y display window and similarly
filled the colour space being used.

Variable point size: The size of the data points was placed under user con-
trol. The size of the data points is especially important since the
colour carries so much information. As a rule of thumb when there
are many data points the points should bhe small and when there are
few they should be large.

Variable background colour: By default the background colour was a neu-
tral grey midway between black and the surround white. However,
the user was able to change the background if desired. Since the
background provided the reference relative to which the data points
were judged, this could be used to selectively enhance or weaken
features of the data. For example, if the data were divided into two
clusters this would be more apparent if the background colour were

placed roughly midway between the characteristic colour of the

11
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clusters.

Permutation vector: A permutation vector was provided to control which
data points were mapped to which display dimensions. Since colour
and space are not isomorphic visual dimensions, changing this map-
ping emphasises different features of the data.

Generalised draftsman’s plot: A facility was provided for combining colour
display with the generalised draftsman’s plot. This is a plot in which
all pairwise combinations of variables are plotted in a matrix of small
graphs. This plot was enhanced by mapping the left over variables
to data point colours, in the way described above, for each graph in
the matrix. By giving multiple views of the data space, features

which are obscured in one view are revealed in another.

Colour spaces: The user was provided with a choice of three colour spaces
through which the data could be mapped. These are illustrated in
Figure 2 and described below.

2.1. Colour Spaces Implemented in the Package

HSV

H, S and V, refer to Hue, Saturation, and Value, respectively. Hue
refers to whether a colour is red, green, yellow or blue, etc. Loosely, hue
relates to the position on the spectrum held by a given colour. Saturation
refers to how far from neutral a colour is; a pale pink has low saturation,
an intense red has high saturation. Value refers to how dark or light a
colour i1s. The mapping from HSV into the RGB monitor coordinates was
developed from Alvy Ray Smith [Smith1978|. This mapping is monitor
dependent and only makes a very rough approximation to the psychophy-
sically determined Hue, Saturation and Value quantities. However, it does
effectively use the colour space obtainable from a colour monitor. Figure
3 shows equal saturation contours in the space which is obtainable from a

colour monitor. It also shows equal saturation contours derived using
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Figure 2. The axes of the three colour spaces through which data can be passed
to form the colour of data points. Top: RGB. Middle: HSV. Bottom: Opponent
Colour. For the HSV space the arrangement of colours on a plane defined by
HUE and SATURATION axes, is shown. For the Opponent Colour space the

arrangement of colours on a plane defined by RED-GREEN and YELLOW-
BLUE axes, is shown.
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Smith’s mapping. The HSV display space suffers from extreme perceptual
non-uniformities in the following sense, when the variable which is mapped
to Value is near zero, structures present in the variables mapped to Hue
and Saturation are not observable. Put simply, when a colour is close to
black it 1s hard to tell how red or green 1t 1s. Also, when Saturation is low
Hue is not discriminable. The HSV colour space does come close to creat-
ing valid ordinal scales, at least for two of its dimensions. The lightness
dimension can be used to create a scale, running from black through inter-
mediate greys to white. Or saturation can be used to create a scale from
white through intermediate pink values to red. However, the Hue dimen-
sion of the HSV system is arguably not a psychologically valid colour ord-
ering. This is evident when we sample it coarsely. For example, if we
select the primary colours, red, green, yellow, and blue, it is not obvious
perceptually how these should be ordered. However short sections of the
colour space, e.g. from red, through orange may be perceived as continua.

Thus a sequence of shades of orange is ordered.

RGB

The RGB colour space is one in which data dimensions are mapped
directly to the amount of light generated by the red, green and blue phos-
phors of the colour monitor. In creating create the RGB colour space it 1s
usually desirable to correct for nonlinearities in the relationship between
voltages sent to the electron guns in the monitor and the luminance out-
put function of the phosphors. This function can be measured and the
non-linearity corrected by the use of an appropriately scaled colour look-

up table (this type of calibration is called gamma correction and is
described in [Cowan1983)).

One advantage of the RGB colour space is that if the monitor is cali-
brated it is relatively simple to convert all colour values displayed on the
monitor to CIE tristimulus values - an internationally standardised way of
specifying colour. A second advantage of the RGB space for present pur-

poses is that it effectively uses the entire gamut of the display device,
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unlike perceptually defined colour spaces, which may have arbitrarily
shaped boundaries and are likely to be a poor fit with the colour space of
the display device. This point is elaborated in Figure 3. A disadvantage
of the RGB colour space is that it does not result in a perceptually
ordered sequence of colour if a value on a single axis is varied. For exam-
ple, consider the following scale created from the RGB space. The Red
and Blue values are fixed at 50% and Green is varied from zero to 100%.
The result will be a continuum from purple through grey to a pale green.
People do not perceive the purple to grey section of this continuum as a
variation in greenness and thus will not correctly read data encoded as
change in a single data variable.

Opponent Colour.

This was an attempt to adapt the Opponent colour space of Hurvich
and Jameson [Hurvich1981] to the use of information display. The map-
pings created were not intended to be psychophysically precise, but were
intended to approximately create red-green and yellow-blue opponent
colour axes from the colour gamut obtainable from the monitor. Consid-
erable problems were encountered fitting a meaningful scheme into the
RGB cube, which is the colour gamut of a monitor. Visual non-
uniformities resulted which were even more severe than those arising from
the use of the HSV space. There is, unfortunately, a bad mismatch
between the axes of the opponent space and the gamut of colours obtain-
able from a monitor. This problem is illustrated in Figure 4, which shows

one attempt to adapt the opponent colour space to the constraints of a

monitor.?

5 The space implemented in the package is very close to one independently arrived at by Naiman
[Naiman1985], although it differs from his in that the package implementation mapped values in the
range 0.0 - 1.0 in the three opponent axes to the range 0.0 - 1.0 in the RGB axes. The C code for
implementing the Opponent colour space is reproduced in Appendix 1.
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B

Figure 3. In the upper graph the triangular region represents the range or gamut
of colours obtainable using an RGB monitor plotted in CIE chromaticity coordi-
nates. At the corners are the colours of the three phosphors and inside the trian-
gle are colours produced by mixtures of the phosphors. Neutral colours are in
the central region of the triangle. The roughly elliptical contours represent
psychophysically  determined equal saturation contours, taken from
[Wyszeckil982] p. 512. Saturation is the “‘vividness” of a colour. Thus, grey has
zero saturation, a muddy red has low saturation and a brilllant red has high
saturation. To construct a psychophysically valid colour space with the same
range of saturation available irrespective of hue, the gamut of usable colours
would have to be restricted to those colours which lie within one of the untrun-
cated equal saturation contours. Only part of the available colour space would
therefore be usable.

The lower graph shows equal saturation contours from Alvy Ray Smith’s
HSYV space plotted in the same way.
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g4

Figure 4. The triangle in these diagrams represents the gamut of a colour moni-
tor plotted in CIE chromaticity coordinates. This diagram shows equal Y-B con-
tours in the upper plot and equal R-G contours in the lower plot
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Again, with respect to providing perceptually ordered information the
Opponent colour space is worse than the HSV space. The dark-light axis
remains, but we now have saturation and value replaced by the two
colour opponent axes. The problem with these opponent axes is that it is
not perceptually obvious that grey lies between red and greén; neither is it
perceptually obvious that grey lies between yellow and blue. Further-
more, the Opponent colour space suffers from the same non-uniformities

when there i1s a low value on the dark-light axis as does the HSV colour
space.

2.2. Perceiving Correlations

Using the package described above we made a number of observa-
tions concerning the perceivability of correlations and clusters artificially
created in multidimensional space. The following facts emerged about
perceiving correlations. These are derived from the comments of a

number of observers.

1) It is easy to perceive a correlation between a variable which is
mapped onto space and a variable which 1s mapped onto a color
dimension. Human sensitivity to this structure is comparable with
sensitivity to perceiving correlations between a variable plotted on

the X-axis and one plotted on the Y-axis.

2) It is very hard to perceive correlations between two variables, both
of which are mapped to colour dimensions. For example, if a vari-
able mapped to Saturation is correlated with a variable mapped to
Value (all other variables being random), dark points will tend to
have low saturation, while light points will tend to have high satura-
tion. The net result will be an increase in the number of highly
saturated colours. A very high degree of correlation was necessary
before this effect could be observed.
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RGB space is good for allowing the existence of a correlation to be

perceived, but it is confusing when the question, “which variables are
correlated?” is asked.

Using HSV space it is usually possible to perceptually determine
which variables were correlated. However, a higher degree of correla-

tion is necessary before its existence can be recognised.

Perceiving Clusters

The following points emerged from informal observations of the per-

ceivability of clusters in a five-dimensional space.

1)

3)

RGB space is good for allowing observers to perceive the number of
clusters which exist in a five-dimensional space, but it is confusing

when the question, ‘Where are those clusters located?’ is asked.

Using HSV space it is usually possible to perceptually determine
where clusters are located, but greater cluster separation is necessary

before clusters can be distinguished.

Opponent colour space is as poor as the HSV space in terms of iden-
tifying the number of clusters present, and lies somewhere between
HSV and RGB in terms of identifying the location of clusters.

Figures 5 and 6 illustrate results of our initial informal investigation
of clusters. In Figure 5 three clusters were created in a five dimen-
sional space and displayed using three existing techniques devised for
looking at multidimensional data, in addition to our new technique
using colour. The three existing techniques are Chernoff faces
[Chernoff1973], Star plot and the generalised draftsman’s plot
[Chambers1983]. For the colour plot the five dimensions are mapped
to displacement along on the X-axis, disaplacement along the Y-axis,
luminance of the red phosphor, luminance of the green phosphor and
luminance of the blue phosphor, respectively. The three cluster
structure is only discernible using the colour plot, where it appears as
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three clouds of points, each having a different colour.

The advantages of colour become more apparent when there are
more data points involved. Stars and faces become impractical and colour
becomes a valuable enhancement of the generalised draftsman’s plot. Fig-
ure 6 shows a generalised draftsman’s plot with and without colour show-
ing 200 data points, far too many for the faces or star plotting techniques.
With the aid of colour is it apparent that there are four clusters present
in the data.
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Figure 5. The same 30 data points plotted in 4 different ways: (a) faces, (b) star plot (c),
generalized draftsman’s plot, (d) colour enhanced plot showing view (5,4) of the generalized
draftsman’s plot. Only in (d) is the three cluster structure perceivable. The three clusters
are: 1) the 6 pale blue and grey points in the upper left quadrant, 2) the 12 green points in
the left central region, 3) the 12 pink points in the lower central region. Notice that two
of the points in cluster 3, a pink point and an orange point, belong spatially to cluster 2.
It is only because of their colour that they can be correctly allocated.

The pictures of the display reproduced in this and the next figure are taller than they are
wide. This is an artifact of the reproduction process. The display space was square on the
face of the colour monitor.
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Figure 6. The usefulness of colour increases as the number of clusters and the number of
points increase. These plots show 200 points scattered in a 5-dimensional space. The
points are grouped into four clusters. (a) shows a generalised draftsman’s plot. (b) shows
a colour enhanced generalised draftsman’s plot. (c) shows view (2,3) of the generalised
draftsman’s plot. (d) shows view (4,5) of the generalised draftsman’s plot.



3 EXPERIMENTAL STUDIES

In initiating this investigation we were concerned with the general
problems attending the use of colour as a tool in exploratory data
analysis. It would have been useful for this investigation to have a classif-
ication of the kinds of meaningful structures for which the statistician
may wish to look, given discrete data. With aid of such a classification we
could systematically ask the question, “will colour help us in detecting this
structure and how sensitive will it be?” Unfortunately, we do not have
such a taxonomy, and in its absence 1t is impossible to make general state-
ments about how useful colour Is in conveying an arbitrary structure to
the eye. Therefore, for the purpose of this investigation we decided to
arbitrarily pick a particular type of structure, namely, clusters with nor-
mal density functions (forming hyper-ellipsoids in a five-dimensional space)
and experimentally investigate the utility of colour in facilitating the

detection of these structures.

We chose to investigate cluster perception for three reasons. Firstly,
since colour is used perceptually to define visual objects (vis the “preat-
tentive” property mentioned above), groups of points having a similar
colour should stand out perceptually as visual objects. Secondly, in look-
ing for clusters we are generally more interested in how many there are,
not in exactly where they are (this can be discovered later using different
techniques). Thus the problems of reading colour coded data values -
which were anticipated in the earlier discussion of the properties of human
colour vision - are not important here. Thirdly, the distortion produced
by simultaneous contrast will be much reduced in scatter plots, where the
data are discrete, as compared to coloured maps, where the data are con-
tinuous. In scatter plots the data points all share a common background,
which can act as a visual reference. This can be deduced from the empiri-

cal observation that contrast effects are a function of the separation of
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stirnuli.

The series of empirical studies we now describe was intended to
experimentally examine the capacity of human colour vision and spatial
vision to convey information to the brain about clusters in a five-
dimensional space.® The first study was intended as a simulation of the
situation which might be faced by a statistician looking for an unknown
number of clusters in a data set. The second and third studies, which are
more critical, look at the ability of colour to enable subjects to discrim-
inate clusters along various vectors in a five-dimensional perceptual space
defined by X and Y spatial axes and R, G and B colour axes.

3.1. Choosing a Colour Space

It is necessary to say a few words about the particular choice of
colour space used, namely the RGB colour space. The RGB colour space
1s Instrumentally defined rather than perceptually defined. Perceptual
colour spaces are derived from a conceptual model of human colour per-
ception. (See for example, [Meyers1981] ). The HSV and Opponent
colour spaces discussed above fall in the category of perceptual colour
spaces. Unfortunately, as we have seen, perceptual colour spaces are
often severely nonuniform with respect to perceived differences. For
example, most perceptual colour spaces have a “lightness’” or “brightness”
“axis and two chromatic axes. A consequence of this is that when there is a
low value on the lightness axis there can be little resolution on the
chromatic axes. Perhaps the most important point here is that we were
investigating the use of colour as a tool in exploratory data analysis.
Thus it is not possible to make any assumptions about the distribution of
data. If we did know something about the data in advance then it would
be possible to align the colour axis in ways that optimally displayed
specific features. In the absence of such foreknowledge, the best strategy

& The object of study was individuals with normal colour vision. All subjects were screened for
colour anomalies using standard pseudoisochromatic plates [Ichikawal978].
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is to choose a colour space with generally useful properties. Although
RGB is not an optimal colour space, it was chosen because it uses the
entire display space of the colour monitor and it does not have the
extreme nonuniformities of the colour spaces which use brightness as an
axis.



4 EXPERIMENT ONE

The purpose of the first experiment was to determine the extent to
which colour helps in identifying how many clusters exist in a five-
dimensional space. A secondary purpose was to determine the effects of
learning by comparing the results obtained from 14 subjects, each of
whom had little experience with the task, with the performance of 1 sub-
ject (the author C.W.) who performed the experiment 14 times and had
considerable experience with experiments concerning colour perception,
but did not, of course know the sequence of stimuli, or how many clusters

were going to appear at a given time.

The algorithm used to construct the stimuli used on a given trial was
designed to simulate a variety of data sets. This algorithm contained a
number of random parameters which determined how many clusters
would appear (between 1 and 6), how large their standard deviations were
in each of the five data dimensions, and how their centres were distri-
buted on each of the five dimensions. The subject’s task was simply to
estimate how many clusters there were on a given trial. On half the trials
colour was used to display three of the data dimensions and space (i.e.
position relative to the X and Y axes) was used to present the remaining
two. On the other hall of the trials only spatial information was
presented and all the points were black. The performance measure used
was how much the subject’s estimate of the number of clusters present on
a given trial differed from the number of centres randomly allocated to
that trial. Note that this measure does not relate directly to any statisti-
cal measure of clustering; since allocation of points to centres was also
random there may have been cases of clusters created with no points in
them, or cases of clusters created with centers which were nearly coin-
cident in the 5 space. Nevertheless, in so far as a subject is capable of

making guesses which are close to the number of cluster centres created
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on a given trial this will reveal that the subject is using information about

the data. What follows is a more detailed description of the experiment.

The stimulus generation algorithm for experiment 1: The clusters
generated in the first experiment consisted of 40 points divided into
between one and six clusters, distributed randomly in a five-dimensional
space.” Given below is the sequence of steps used to generate the stimuli
used in experiment 1. Essentially, this consisted of two phases; one in
which the stimulus pattern was generated and a second in which it was
scaled to fill the display space. The algorithm contains a number of arbi-
trarily chosen parameters determining the distribution and spread of clus-
ters. These were adjusted to optimise the number of response errors and
thus make it possible to discriminate between experimental conditions.
Since errors were the independent variable it was important that they be
kept at a fairly high level. The procedure used was as follows.

1) With equal probability, select a number of clusters between one and six.

2) Choose centres randomly (and uniformly) distributed in a 5-dimensional
space. Position p; (¢ = 1,2,3,4,5) is chosen independently for each of the
five dimensions such that 0 < p; < N, where N is the number of clusters
selected for a given trial.

3) Choose standard deviation values independently for each cluster and
each dimension. The average standard deviation was 4.5 and the standard
deviation of the standard deviation values was 0.1 (this was to ensure that

clusters would have a variety of sizes and shapes).

4) Generate clusters according to the parameters chosen above.

7 The alogrithm used to generate uniformly distributed pseudo random numbers for all experi-
ments is from [Box1958| while the algorithm used to generate normally distributed random numbers
is from [Pike1965| . The authors are grateful to Victor Klassen for the C code implemenation of
these algorithms.
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Cluster Generation Algorithm

/* make number of clusters */

number_of_clusters = (a random integer from ! to 6)

/* make centres */
for i=1 to number_of_clusters
for j=1 to number_of_dimensions
centre(i,j) = (a random number uniformly distributed
between O and the number_of_clusters)

/* make standard deviations */
for i=1 to number_of_clusters
for j=1 to number_of_dimensions
standard_deviation(i,j) = normal() * 0.1 + 0.45
/* the standard deviations have an average value

of 0.45 and they vary about that with a standard
deviation of 0.1%/

/* make data points */
for k=1 to number_of_points
i = (a random integer from 1 to number_of_clusters)
for j=1 to number_of_dimensions
point(k,j) = centre(i,j)
+ standared_deviation(i,j) * normal(Q)

end Cluster Generation

/* Note that normal() is a function which returns a random

number from a population with a mean at zerc and a standard
deviation of one. */

Figure 7. The procedure used to generate clusters for experiment 1 is given in
the form of pseudocode.



Using Colour in Data Analysis 29

5) Scale the data so that it filled the display space by finding maximum

and minimum values for each display dimension and scaling appropriately.

6) Display the data, mapping the five data dimensions to X, Y, R, G and
B display dimensions, so that the data points exactly filled the display
window on the screen and also were scaled to be linear between the
minimum and the maximum signal on the red, green and blue phosphors
respectively. As a result of this procedure clusters could be of various
shapes and sizes, elongated or roughly spherical.

The data generation model is given in the form of pseudocode in Fig-
ure 7.

4.1. Display Parameters

The following display parameters were common to all three experi-
ments. The stimuli were presented on a 13 inch Electrohome ECM1301
monitor in a darkened room where the only light source other than the
display monitor and the terminal was light from a dimmed table lamp set
to provide illumination just sufficient for reading the keyboard. The
stimulus arrangement is shown in Figure 1. Data points consisted of 0.6
cm squares placed in a 11.2 cm square display window, on a neutral grey
background having a luminance of approximately 45 ¢d /m* measuring 14
cm square. A white surround was included to provide a visual reference
and a constant state of adaptation. Its luminance was approximately 80
cd /m®. The subject was located 270 cm from the screen. These measure-
ments can be converted to degrees of visual angle by multiplying each
centimeter value by 0.212.

To fully specify the stimuli it is necessary to know the chromaticity
coordinates of the monitor phosphors. To this end the spectral energy
distribution of the phosphors was measured spectroradiometrically and
from these measures the following CIE chromaticity coordinates were
derived
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Red Phosphor: 0.620 0.330  0.05000
Green Phosphor:  0.210  0.675 0.11500
Blue Phosphor: 0.150 0.060 0.79000

The maximum luminance values for the red, green and blue phosphors
were 1.93, 9.30 and 1.98 respectively.®

4.2. Instructions to the Subject

Instructions were delivered on the terminal with illustrative examples
appearing on the colour monitor. The subject was first required to enter
his or her name and then to read through “pages” of information appear-
ing on the terminal screen. The subject had control over when a new

page would appear and could also turn pages back to view earlier informa-
tion.9

Space considerations prohibit the full reproduction of these instruc-
tions here but in essence they covered the following points.1®

1) The subject was told that a cluster was a group of points, and was
given three examples of clusters with colour and three examples of clus-
ters without colour. In each case a written commentary described the

position and the colour (if it was used) of the clusters in the example.

2) The subject was told that he or she would be shown between 1 and 6
clusters and that the task would be to estimate the number and enter it
on the keyboard.

8 The luminance values were determined by measuring the luminance of the green phosphor us-
ing a photometer and measuring the relative values of the red and green phosphors using a psycho-
physical technique (the minimally distinet border - see Cowan, 1982).

9 The authors are grateful to M.W.Schwarz for providing the code which was used in this part of
the user interface

10 The instructions are reproduced in full in Appendix 2.



Using Colour in Data Analysis 31

3) The subject was told to expect 20 trials with colour and 20 without
colour, and was told which to expect first.

4.3. Results and Discussion for Experiment 1

The data from 14 relatively inexperienced observers are shown in
Figure 8. This shows three measures of performance: the percentage of
correct identifications of the number of clusters generated; the average
absolute error - that is the average size of the departure from a correct
estimate, irrespective of whether this was an underestimate or an overes-
timate; and also, the average size of the error taking direction into
account, with a positive value indicating an overestimate and a negative

value indicating an underestimate.

Consider first the number of trials for which the observer correctly
identified the number of clusters: the data for the inexperienced observers
shows a clear advantage in the use of colour for all conditions except that
in which there was only one cluster, when overall the data show a slight
advantage for no colour. The overall advantage given by colour was
found to be highly significant (p <0.001) by the Wilcoxon matched pairs
signed ranks test. The benefits of colour increase with the number of
clusters in the data set, with the maximum benefit occurring for trials
where there were six clusters present. In this case with the help of colour
subjects correctly identified 6 clusters in 38 percent of the trials while

without colour no correct identifications occurred.

A possible interpretation for the disadvantage offered by colour on
the single cluster trials is that, given a lack of experience with colour,
observers tended to overinterpret the data and identify more clusters
than actually existed.

Consider next the data on the absolute size of the error in each of
the cluster categories. This data shows the same pattern of increasing
benefit for colour as the number of clusters increases, with a slight disad-
vantage for colour when only one cluster was present. Overall these data
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Figure 8: Data obtained from 14 relatively inexperienced observers who partici-
pated in experiment 1. Shaded bars show data obtained with colour while open
bars show data obtained without colour. In the top graph the height of each bar
represents the percent correct for between 1 and 6 clusters. The middle graph
shows the average size of the discrepancy between the number of clusters present
and the number the subject estimated. This data is normalized by taking the
absolute values of the errors. The lower graph shows the direction of the error; a
positive value indicating an overestimate on average.
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Figure 9: Data from a single experienced subject. See legend of Fig. 8 for graph
conventions.
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present a U-shaped function with the best performance (fewest errors) in
the middle of the range and the worst at each end.

The data giving the direction of error shows that on average,
observers tend to overestimate the number of clusters when there are few
and underestimate the number when there are many. This underestima-
tion is markedly greater without the assistance of colour.

Comparing the data obtained from the 14 inexperienced observers
with that of the single subject run 14 times (Figure 9), the most dramatic
difference appears when there are a small number of clusters. For the
number correct measure we can see a large improvement in performance
when there are one or two clusters, both with colour and without colour.
For example, where without colour inexperienced observers identified a
single cluster 40% of the time the experienced observer identified a single
cluster 909 of the time. This difference is also reflected in the error size
measure. Presumably, these differences reflect tendencies for inexperi-
enced observers to perceive structures in noisy data which are not in fact
present. Thus both colour and lack of experience contribute to the ten-
dency to overinterpret data.

An encouraging aspect of the results from the perspective of using
colour as a general purpose tool in data analysis is that the inexperienced
observers did better in the conditions where colour coding was used; they
were able to use colour information even though they had been provided
with only a single training session lasting approximately five minutes. This
ease of learning is supported by the observation that the experienced
observer really shows very little improvement in his performance over
inexperienced observers with the aid of colour when there are more than
two clusters present. This suggests that colour coding does not need to be
an esoteric tool of the specialist but can be used in presenting information
to a largely untrained audience.
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Although this experiment suggests that colour may be useful in
displaying extra data dimensions it can yield us no information about how
useful it is. The problem is the large number of variables involved in the
experiment, each of which may affect cluster perception in unknown ways.
Clusters may have a number of shapes, be large, small or elongated. And
we cannot know how all these variables affect cluster perception. This is
the cost of attempting to simulate ‘real’ data. In order to make precise
statements about the relative efficiency of colour in conveying information
about clusters we need a much simpler experimental paradigm. The
experiments which follow give more meaningful answers to the issue of
cluster resolution, but only in the restricted context of a situation in
which there can be only one or two clusters present in the display.



5 EXPERIMENTS TWO AND THREE

The purpose of experiments 2 and 3 was to explore the threshold
envelope for distinguishing clusters which differ along various vectors in
the five-dimensional perceptual space defined by two spatial and three
colour dimensions. By doing detailed measurements in a tightly controlled
situation it was possible to make direct comparisons between the ability of
observers to resolve colours in XY space (the de facto norm) and their
ability to resolve clusters separated along other vectors in the five-
dimensional space, including clusters which are separated in colour alone
and clusters which are separated in both colour and space. Experiments 2
and 3 were two investigations of the same problem; experiment 2 was
designed to investigate the lowest possible thresholds which might be
obtained by intensive study of a single individual, whereas experiment 3
was a pared down version of the same experiment, designed to get an idea
of what these thresholds are with a number of different subjects under
somewhat more realistic conditions.

To make these experiments manageable the experimental situation
was simplified to one in which the task faced by the subject was to deter-
mine whether there were one or two clusters in a particular display.
Thus, the goal was to assess the envelope for discrimination of two clus-
ters from one cluster in the 5-dimensional perceptual space. Unfor-
tunately, even with this simplified experiment, to sample this envelope

with any appreciable density would require an enormous number of trials.

For these experiments we decided to sample the envelope of thres-
holds for cluster separation by measuring separation along vectors defined
in the following way. Allow each of 5 coordinates to have a value of -1, 0
or +1. Taking all combinations this yields 3% or 243 different vectors.
Since we are not interested in the zero vector this leaves us with 242 vec-

tors. In addition, each two cluster stimulus involved clusters separated

36



Using Colour in Data Analysis 37

along opposite vectors. Thus the number of two cluster stimulus condi-
tions is given by the expression (3°-1)/2 = 121. In what follows, when a
direction of cluster separation is given, only one vector is specified for rea-
sons of economy. However, the reader should understand that the oppo-
site colinear vector is always also involved. We represent the display
space by the 5-tuple (X Y R G B). Thus, (1 0 0 0 0), represents separa-
tion on the x-axis only, and has an implicit opposite vector (-1 0 0 0 0).
The vector (1 0 1 -1 0) represents clusters which are separated so that
they are more red and less green on the right hand side of the screen and
less red and more green on the left hand side of the screen; it has the
implicit opposite vector (-1 0 -1 1 0). Observe that this notation is
intended to capture only the direction of cluster separation. The magni-
tude of cluster separation is specified independently.

Since the purpose of these experiments was to compare colour and
space, 1t is more meaningful to break down the set of experimental condi-
tions in terms of spatial components and colour components. We can con-
sider the set of conditions as the set derived by taking all combinations of
the set of possible spatial separations (Table 1) with the set of possible
distinct colour separations (Table 2).
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Table 1

Y-axis

X-axis

Table 2

BLUE

RED  GREEN

10
11
12
13
14
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Observe that in Table 1, the complementary of each entry is present
whereas the complementaries of the entries in the colour table are not
represented. The reason for this is to eliminate complementary vectors
from the set which results when the two tables are combined. This can
best be made plain with an example. Suppose for the moment, that the
complementary values were present in both Table 1 and Table 2. We will
have entries (0 1) and (0 -1) from Table 1, and entries (1 0 0) and (-1 0 0)
from Table 2. Taking all combinations we get (0 1 1 00),(0-1100),(01
-1 00) and (0 -1 -1 0 0). The last two of these are redundant because they
are colinear with the first two. Instead of removing complementaries
from Table 2 we could have achieved the same effect (though less

economically) by keeping complementaries in Table 2 and removing them

from Table 1.

Removing the complementaries from Table 2 has not entirely elim-
inated all redundancy. Taking the product of the 9 XY possibilities with
the 14 RGB possibilities we get 126 conditions. There are still 5 redun-
dant conditions introduced by adding the first entry in Table 2 to all the
enties in Table 1. The condition represented by (0 0 0 0 0) is spurious
since clusters are not separated for this condition. Furthermore, one
member of each of the following vector pairs 1s redundant because they
are colinear: (10000),(-10000);{(01000),(0-1000);(1-1000),
(-11000);(11000),(-1-1000). This reduces the total number by 5
to give the 121 stimulus conditions.

5.1. Cluster Creation

Centres for the two clusters were defined by taking the difference
vector for that trial multiplied by both +% and —~%. When the difference
vector was zero then the two clusters had the same centre. Having
created the cluster centres, 40 points were randomly allocated to the two
centres and normally distributed about them on all display dimensions.
Thus all clusters were of the same average size, that is, they had a uni-

form constant probability density function which was normally distributed
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and the same in all directions.

As in the first experiment the data were first generated and then
scaled to the display space. However, this scaling resulted in an unfore-
seen and undesirable effect. In the preliminary design stages, it was
discovered that thresholds for cluster discrimination were significantly
lower for clusters separated obliquely at 45 degrees on the screen than for
clusters which were separated either horizontally or vertically. The rea-
son for this was the scaling. The earliest manifestation of separation of
points into two clusters is an elongation of the cloud of points. Scaling
along x and y to fill the display space removes horizontal or vertical elon-
gations of the data, but oblique elongations remain. Figure 10 makes this
point graphically. Since we were specifically interested in perception of
discrete clusters (i.e. separation of the cloud of points into two distinct
groups), the fact that subjects could use elongation as a clue to cluster
separation before they appeared as separate groups was deemed undesir-
able. The solution adopted was to scale along the vector of cluster
separation prior to scaling to the display space. This preliminary scaling
was designed to (on average) give the cloud of points the same oblique
extent in the direction of cluster separation as in other oblique directions.
The corrected procedure was as follows:

1) Generate clusters separated by amount specified for that trial and as
part of the generation procedure scale down along the vector of cluster
separation.

2) Scale to fill the display space.

All display parameters, such as point size and background colour,
were the same as used in experiment 1.
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Horizontal Oblique
Separation Separation

small large small large

Figure 10. In the early stages of experimentation a problem was discovered in
that clusters separated along oblique axes were percelved as distinct when they
were closer together than clusters separated either vertically or horizontally.
This figure shows the reason for this. The blobby shapes in “A” represent clus-
ters separated by a small amount and a large amount respectively in horizontal
and oblique directions. ‘B’ shows what happens to these clusters when the data
are scaled to fit the display space. The small horizontal separation becomes
indiscernible, while the small oblique separation apears as an elongation in the
oblique direction. Since we were interested in perception of distinct clusters, not
in perception of elongated blobs we decided to scale in the direction of cluster
separation. “C” and “D” show the effects of this scaling. Now the oblique situa-
tion and the horizontal situation are equivalent; clusters can only be discerned
when the cloud of points separates into two distinct groups.



42 C. Ware and J.C. Beatty

5.2. Procedure for Experiment 2

The method used in experiment 2 to establish the threshold for
discriminating two clusters was the double staircase procedure [Hakel966].
This is a technique for measuring thresholds which is designed to reduce
the effect of experimenter bias. The procedure involves initially present-
ing a stimulus which is well above threshold, in this case two clusters
which are clearly discriminable. The subject responds “double” by press-
ing the designated key. On the next trial the distance between the two
clusters is decreased and the subject again responds “double” if he can tell
there are two. This sequence is repeated until he responds “single” at
which point the difference between clusters is increased for the next trial.
The separation is then increased iteratively until the subject responds
“double” again. The net effect of this procedure is that when cluster
separation is plotted against trial number an oscillating path around the
threshold is traced out. The version of the procedure used for this experi-
ment had some additional subtleties. One was that the step size (by
which the clusters increased or decreased their separation) was reduced at
each reversal. This had the effect of causing the subject to “home in” on
the threshold. In addition, trials in which there really were two clusters
were randomly interspersed with trials for which there was only one clus-
ter. In this way the subject could never know if he was actually seeing
one cluster or two. Pseudocode for the double staircase algorithm is given
in Figure 11.

5.3. Results from Experiment 2

The variance of the data was found to correlate highly with the
threshold. A log transformation made the variance more homogeneous
across experimental conditions (see Figure 12). Thus all statistical

analysis was done on the log of the raw data scores.
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Double Staircase Algorithm

while (reversals < CRITERION) do

in random order do

Test( 0 )
hightest = Test( highval )
lowtest = Test( lowval )

if new reversal on hightrace
half stepsize
reversals = reversals + 1

if new reversal on lowtrace
half stepsize
reversals = reversals + 1

1f ( response to hightest is "two clusters" )
decrease highval by high_stepsize
else increase highval by high_stepsize

if ( response to lowtest is "two clusters" )
decrease lowval by low_stepsize
else increase lowval by low_stepsize

if (false positive)
increase lowval
increase highval

end while

end Double Staircase

43

Figure 11. The procedure used to determine thresholds for experiment 2 is given
in the form of pseudocode.
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Figure 12. The top graph shows the means from experiment 2 plotted against
their standard deviations. The standard deviations correlated highly with the
means. In the lower graph the same data are plotted but the means and stan-
dard deviations are based on log transformed raw data.
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Since there was no discernible bias in terms of thresholds for left
oblique cluster separation versus right oblique cluster separation these
categories were collapsed into one ‘oblique’ category. Similarly, vertical

and horizontal scores were combined to give one ‘major axes’ category.

This leaves three spatial categories in place of the 9 shown in Table
2. They are: 1) separation in colour only, 2) separation partly in colour
and partly along a major spatial axis, and 3) separation partly in colour
and partly along an oblique spatial axis. Figure 13 shows a histogram of
the mean thresholds for the 14 colour categories in each of these spatial
categories. Values in this plot represent thresholds for perceived cluster
discrimination. These are measured in units which correspond to the

standard deviation of the generic cluster.

Summarising the major effects which appear here: the threshold for
separation on major axes only (i.e. X or Y) is 3.09 while the threshold for
separation on obliques i1s 3.02. There is no significant difference between
these two values; thus we take their average 3.055 to represent the thres-
hold for discriminating clusters separated only in space. This value is

marked by the dotted horizontal line on the bar plots.

It can be seen that thresholds for clusters separated only in terms of
their colour are somewhat higher than those where clusters are separated
in terms of colour and space components. In particular, the threshold is
much higher when the separation is along one specific colour direction,
namely when clusters are separated only by the magnitude of the signal
sent to the blue gun. Also, when clusters are partly separated in colour
and partly in space, the highest threshold for cluster separation was

obtained when the colour component was blue gun separation.

How much worse is cluster resolution in colour only as compared to
separation in colour and space? To make this comparison we plotted the
log threshold of clusters separated by colour only against the log threshold
for clusters separated by colour and major axes. (See Figure 14). These
points form a roughly linear distribution, with the exception of one outher
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Figure 13. A bar plot summarising the data from experiment 2. Bars show the
mean thresholds for discriminating clusters separated along various vectors in
XYRGB space. The top plot shows cluster discrimination thresholds for clusters
separated by colour only. Labels underneath each bar correspond to entries in
Table 2. There is no bar for the first position in the top plot because this is the
condition corresponding to zero separation. The middle plot shows cluster
discrimination thresholds for clusters separated partly along a major display axis
(that is, either vertically or horizontally) and partly in colour. The lower plot
shows cluster discrimination thresholds for clusters separated partly by colour
and partly along an oblique axis. The horizontal dashed line denotes the average
threshold for distinguishing clusters which are separated by space alone.
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Figure 14. Shows a different representation of the data in the top and the mid-
dle bar graphs of the previous figure. The log of the threshold for resolving clus-
ters separated by colour alone is compared with the log of the threshold for
resolving clusters separated by space and colour. Thus the y coordinate of data
point 7z is the log threshold for clusters separated along vectors correspcnding to
the 7th bar in the top graph of Figure 13 (separation in COLOUR ONLY), while
the x coordinate is the log threshold for clusters separated along vectors
corresponding to the ith bar in the middle graph of Figure 13 (separation in

MAJOR AXES and COLOUR).

The data points would fall on the oblique solid line, representing identical
thresholds for colour alone and colour plus spatial separation, if there were no
penalty for viewing clusters separated only in colour. To give an indication of
the kind of penalty paid for having clusters separated only in colour, the parallel
dotted oblique line shows a multiplication factor of 1.5 over the solid line. Thus
the threshold is approximately 509 worse if clusters are separated in colour
alone than if they are separated by colour and space.
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(the point representing separation on the blue gun alone). Because this is
a log plot, adding a constant value on a given axis represents a constant
multiplication factor. The oblique diagonal line drawn though the points
represents a multiplication factor of 1.5 over the situation of perfect
agreement between conditions. This line was placed by eye to give a very
rough indication of the perceptual penalty of having clusters separated
only in colour. It can be seen that to a first approximation clusters
separated only by colour have to be 50% further apart than clusters
separated by colour and space before they can be discriminated.

Before attempting to interpret what these results mean in practical
terms we present experiment 3.

5.4. Procedure for Experiment 3:
The important differences between experiments 2 and 3 were:

1) The data were obtained from multiple subjects, thus making more gen-
eral conclusions possible. A corollary of this is that the experiment was
considerably pared down since it was not feasible to obtain 60 hours of
observation per subject from 8 subjects.

2) The experimental setup was more representative of the situation of a
statistical analyst faced with unknown data. To achieve this the double
staircase procedure was abandoned in favour of a procedure in which clus-
ters were tested for distinctness at a fixed set of separations, namely 2, 4,
8, 16 and 32 standard deviations apart. In this experiment the subject
could have no idea in advance of how clusters would be separated in the
five dimensional space because all conditions were randomised. (Note that
in the double staircase procedure used in the previous experiment the sub-
ject could expect either no separation or separation along a particular
vector). Thus he had a clearer idea of what to look for.

To reduce the the number of hours per subject over experiment 2 we
took advantage of the finding that certain classes of conditions were

found experimentally to be equivalent. Consider, for example, clusters
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separated along (1 0 1 0 0) and (1 0 -1 0 0). In the first instance we have
redder clusters on the right and less red clusters on the left. In the second
we have redder clusters on the left and less red clusters on the right. In
other words the conditions are mirror symmetric about a vertical axis.
Since the results from experiment 2 showed no left-right asymmetries the
two conditions were collapsed to one (which consisted of a random alter-
nation between the above two), as were all analogous pairs. However, we
did not go so far as to assume that vertical is the equivalent of horizontal
or oblique. This has the effect of reducing Table 2 from a nine entry
table to the four entry Table 3.

Table 3

X-axis  Y-axis

PN I
— O = O
- = O O

Reading the table from top to bottom, it represents 1) a set of conditions
in which cluster separation is by colour only, 2) a set of conditions in
which cluster separation is by colour and horizontal displacement, 3) a set
conditions in which cluster separation is by colour and vertical displace-
ment, and 4) a set of conditions in which cluster separation is by colour
and oblique displacement.

Taking the cross product of table 3 with the 14 entry table of colours
(Table 2) we get 56 conditions, from which we subtract the zero separa-
tion condition, giving 55 conditions. This is less than half the 121 condi-
tions of experiment 2.

For each of the 55 conditions we tested cluster discriminability for
clusters separated by 2, 4, 8, 16, and 32 standard deviations. This yields
275 conditions. Add 75 conditions for which there was only one cluster
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and we get the 350 trials which were presented to each subject in a ran-

dom order in a single experimental session.

There were 10 such sessions for each subject. Note that although
the set of values for cluster centres was the same for all experimental ses-
sions, the normally distributed clouds of points around those centres were
created independently for each trial.

5.5. Training Session:

Prior to the experiment proper the subject was given a training ses-
sion which consisted of a run through the entire (randomised) sequence of
350 trials, but with the essential difference that after responding (one

cluster or two) feedback was given on each trial concerning actual cluster
separation.

This feedback took the form of a visual indicator in the lower left
corner of the display which showed the colour direction and spatial direc-
tlon of cluster differences as well as a bar whose length indicated the size
of cluster differences. In addition to this every 10 trials the subject was
told the percentage of “hits” (correct responses when there were two clus-
ters) and the percentage of “faise positives” (identification of two clusters

when there was only one).

Stabilising response criterion- In the task described above the sub-
ject could adopt a conservative strategy of minimising errors at the
expense of hits, or the opposite strategy of optimising hits. In order to
enable subjects to adopt a reasonably consistent response strategy the
feedback on overall performance (hits and false positives) was maintained
throughout the series of experimental sessions and the subjects were
requested to maintain false positives at 30% while maximising hits. Sub-
jects evidently found this easy to achieve and produced remarkably stable
performance. This feedback had the additional advantage of maintaining

the subjects’ level of motivation over the course of the experiment.
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Figure 15. Percent correct is plotted against cluster separation for three of the
cluster separation directions tested in experiment 3: (0 0 1 0 1) is the solid line; (1
010 -1) is the dashed line; (1 1 1 -1 -1) is the dotted line; The upper horizontal
dotted line shows the 65% threshold criterion. The lower horizontal dotted line
shows the average false positive rate at 30%.
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Figure 16. The log thresholds from each of the 56 categories of experiment 3 is
plotted against the same data from experiment 2 which has been collapsed to
create the same set of conditions. The solid line is a linear regression fit to the
data. The dashed line is the fit which would be obtained if the scores in the two
experiments were identical. The fact that the solid line is above the dashed line
represents a threshold which is approximately 20% higher for experiment 3 than
for experiment 2.
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5.6. Results and Discussion for Experiment 3:

Thresholds were derived from the data of experiment 3 by first
extracting the total number of ‘hits’ (correct identifications of two clus-
ters) for each of the conditions. The threshold was taken to be 65%, mid-
way between the error rate at 30% and 100%. To determine the thres-
hold for a given condition the scores at the various separations (2, 4, 8, 16,
32 standard deviations) a piecewise linear interpolation was used. The
point where the interpolated line crossed the 65% threshold criterion
determined the threshold separation. Figure 15 illustrates the threshold
determination for three cluster separation directions.

Figure 16 shows the results of experiment 2, plotted against those of
experiment 3 in the form of a scatter plot of the log transformed data.
This was done by collapsing the results of experiment 2 to the same
categories as those used in experiment 3. The correlation between the
two studies accounts for 479 of the variance and is highly significant (p
<0.01), showing that there is substantial agreement between the two stu-
dies. A linear regression of experiment 3 data onto experiment 2 data
produced a line with a gradient very close to 1. The vertical displacement
of this line on the log log plot corresponds to a threshold which is approxi-
mately 22% higher for experiment 3. This 229 difference in threshold
may be attributable to two factors; part may be due to the different
experimental technique used in the two experiments and part may be due
to the relative inexperience of the subjects involved in experiment 3.
Unfortunately, there is no basis for discriminating between these two fac-
tors with the given data. Nevertheless, the fact of the overall agreement
adds credibility to the results of both experiments since two radically dif-

ferent experimental techniques point to the same conclusions.

Figures 17 and 18 show the data from experiment 3 plotted in the
same manner as the plots for experiment 2. Overall, the pattern of
results appears to be substantially the same. That is, the highest thres-

holds were obtained for separation by colour only, with one condition in
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Figure 17. Data from experiment 3 summarised in the same manner as
that for experiment 2. See figure 13 for labelling conventions.
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Figure 18. The data from experiment 3 plotted in the same manner as that for
experiment 2 for comparison (see Figure 14) The plot compares the log of the
threshold for resolving clusters separated by colour alone with clusters separated
by space and colour. The dashed oblique line shows a multiplicatation factor of
1.5; 1t 1s not a statistical fit but is placed to facilitate visual comparison between
this figure and Figure 9. Thus the threshold is approximately 509 worse if clus-
ters are separated in colour alone than if they are separated by colour and space.

Note that the penalty is approximately the same as for experiment 3 as for
experiment 2.
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particular showing a very high threshold. However, the condition for
which the threshold is the highest differs in experiments 2 and 3. In exper-
iment 2, clusters separated on the variable sent to the blue gun only gave
the highest threshold. In experiment 3 clusters separated on the red and
blue guns produced the highest thresholds. The reason why this threshold
1s so high deserves some note. This is one of the thresholds illustrated in
Figure 15 and it can be seen that for this condition the detection rate only
just reached the defined threshold. If the threshold criterion had been
defined as 609, for example, instead of 659, the threshold would be a

more modest 16 standard deviations.

Thus, in spite of the above discrepancy between experiments 2 and 3,
there is general agreement between the two experiments; the second
highest threshold obtained in experiment 2 1s the highest for experiment 3,
and there is general agreement on which conditions yield a high threshold
and which yield a low threshold. Figure 18 shows that the penalty for
display using colour only is about a 509 decrement in performance,
approximately the same for the 8 subjects of experiment 3 as for the one
highly practiced subject of experiment 2.

5.7. Individual Differences

An Important issue regarding the utility of colour coding of data is
that of individual differences. It might be the case that some people, who
are not ‘“‘colour blind”, will have great difficulty in using colour coded
information.1! If such people are common then the utility of colour coding

data i1s substantially reduced.

11 There are, of course, in the population at large a substantial percentage of people who
are colour blind in the sense ol having one of the well defined colour anomalies - between 8
and 10 percent of males - and these people will unavoidably have difficulty with colour cod-
ed information.
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To look for evidence that colour may be harder for some individuals
to use we did an analysis of individual differences.

We collapsed the data for each subject into the four categories defined by
Table 3. Then we determined thresholds for discriminating clusters in
each category and for each subject. The results for 8 subjects are shown
in Table 4 where the standard deviation of individual clusters is the unit
of measurment.

Table 4
Subjects Categories
1 2 3 4
sl 6.429 4.540 4.157 3.127
s2 7.305 4.563 4.611 3.814
s3 5.608 3.495 4.529 3.169
s4 4.961 3.534 4.207 3.309
Sh) 7.167 4.393 3.817 3.410
s6 6.977 4.676 4.540 3.487
s7 5.920 4.211 4.031 3.180
s8 5.486 3.626 4.262 3.084

Individual differences were largest in category 1, which represents clusters
separated by colour only, and smallest for category 4, which represents
clusters separated in colour and an oblique direction. Overall the subjects
tested in this experiment differed very little from one another in their
scores. Certainly there is no evidence that any of them had a substantial

problem with using the colour information.
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Figure 19. The Predictions of Model 1 are plotted against the 121 data points
from Experiment 2 and the 55 data points from Experiment 3.



6 MODELLING THE DATA

The advantage of being able to model the data is that 1) a successful
model would allow the prediction of cluster separation thresholds along an
arbitrary vector, not just the vectors measured, and 2) with the aid of a
model it would be possible to deliberately enhance certain views by choos-
ing to orient the data optimally with respect to the display space.

6.1. Model 1

The simplest model which could be applied to the data would be to
assume that the perceptual space is uniform everywhere. This would
yield a threshold envelope which is a hyperellipsoidal shell. (N.B. this does
not mean that its density is the same in all directions, only that on any

straight line through the space in any direction the density would be a
constant.)

This ad hoc model gives the threshold as
X%+ )Y+ 3RP+ ¢ G+ esB* =1

A simple way to test the model is by finding the values for the coefficients
c; using the thresholds measured empirically along the five display axis (1
0000),(010000),(00100),(00010),(00001). Then using these
values to see how good a fit is given for the remaining 116 observations

from experiment 2 and 52 observations from experiment 3.

The results of this exercise are shown in Figure 19 for the data from
experiments 2 and 3. If there were perfect agreement between the model
and the data all the data would lie on the oblique line. Looking at these
graphs it is apparent that apart from the data points on which the model
is based, most of the data lies above the line. This means that the fit is

conservative; lower thresholds were obtained than expected. Statistically,

59
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these fits are terrible. However, in order to explain why we must first

introduce a metric for evaluating the fit.

A Metric for Evaluating Models

To evaluate the models we compared the sum of the squared differ-
ences between the observed data points X; and the predicted data points
P; with the sum of the squared differences between the observed data
points and the data mean X. Here n is the number of data points.

Sum of squared differences from data mean:
MSS = 3 (X; — X)?.
i=1
Sum of squared differences from predicted values:

PSS = 3(X; = R)”.

t=1

Percentage reduction in variance attributable to model:

MSS — PSS

= 100
! MSS

For experiment 2 the model results in a 200% increase in the variance
over that which would be obtained if a simple mean were used. For

experiment 3 a mere 3% improvement is obtained through the use of the
model.

Model 1 assumes human colour processing to be a homogeneous
space. There are two strong reasons for thinking that this is an unwar-
ranted assumption.
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Firstly, there is the issue of form perception. How does the brain
decide that a pattern of stimulation is an “object” rather than part of the
general variation in light and colour? Clearly, gestalt factors such as
proximity of data points and whether or not proximal points have a com-
mon colour are important. However, beyond the formulation of rather
vague principles, vision science offers little help in modelling when the
brain should perceive a cloud of coloured points as one object or two.
The data from experiments 2 and 3 show that it is much harder to distin-
guish two clusters when the points are separated by colour but spatially
intermingled and this is undoubtedly a major reason why Model 1 give
such a poor account of the data. The brain seems to be able to make a
synthesis of colour and spatial information, using colour information more
effectively when it i1s correlated with a spatial separation than when there
is no spatial separation.

Secondly, there is the issue of colour processing. Most modern
theories of colour propose that colour information passes from the retina
to the brain in three more-or-less independent channels [Hurvich1981].
More is known about colour processing as an isolated phenomenon than
the interaction of colour and form. Therefore we attempted to apply a

channel model of colour processing to give a better account of the data.

6.2. Model 2

For our second model we assume the opponent channels are indepen-
dent. Thus the colour channel which has the highest signal-to-noise ratio
for a particular vector in the colour space is the one that “detects” the

cluster, determining the threshold.

There are a number of models of human colour channels available.
We arbitrarily chose Guth et. al. [Guth1980]. Given the noise in the data
and the essential similarity of the various opponent process models it is
reasonable to assume that any opponent channel model would give similar

results. The strategy used was to first attempt to model the data
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obtained in conditions where clusters were separated only by colour and
then incorporate this colour processing model intoc a variation of the

hyperellipsoid model given above.

Guth’s model is expressed as a function of relative cone excitations.!?
Thus it is necessary to first transform the cluster centres {rom the RGB
monitor coordinates into a coordinate system based on relative cone exci-

tations. This is done in three stages.

First we scale the RGB values to reflect the relative luminances of the

phosphors:
r =Lk
g = LG
b=L,B .

Second we transform into CIE XY7Z coordinates using:
X = 0.62000+ + £.21000g + 6.150005
Y = 0.33000r + 0.67500g + 0.660005

Z = 0.05000r + 0.11500¢ + 3.79000%

Note that the coefficients in the above set of equations are the chromati-

city coordinates of the phosphors as given in section 4.1.

Third we convert to excitations [or the three cone types, ¢y Cy and 0513

12 Cones are the colour receptors in the eye. There are three classes of cones: short
wavelength sensitive, medium wavelength and long wavelength sensitive.

13 Guth's model is actually expressed in terms of Judd Chromaticity coordinates, not
CIE chromaticity coordinates. However, the difference between the two only beccmes pro-
nounced for stimuli with a lot of energy at extremely short wavelengths. For the kind of
stimuli used in the present experiment the differences are negligible.
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C, = 0.2435X + 0.8524Y — 0.05167
C, = —0.3953X + 1.1642Y + 0.0837Z
Cy = 062257

Now we have the stimuli expressed in tristimulus values which correspond

to relative excitations of the three cone types.

Guth calls his three channels “A” for the achromatic channel, “7T” for the
red-green channel, and “D” for the yellow-blue channel. To convert to
ATD values we use

A = 0.5967C, + 0.36540,
T = 0.9553C, — 1.2836C,
D = 0.0483C,; — 0.0248C .

The set of equations given above can be collapsed to yield

T=LRR
g=LGG
b= LpB

A = 0.30875r + 0.6306g + 0.056b
T = 0.2266r — 0.3217g — 0.05362b

D = —0.009153r — 0.01193g + 0.02259b.

The three values, L, Ly and Ly have been left separate for reasons which
will become apparent later.

To determine how a pair of clusters will affect each of the three opponent
channels of this model it is necessary to calculate the cluster separation
(we call the the signal in what follows) as a ratio with the width of the
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clusters as they appear to each of the three channel (we call this the nose
). To obtain the signal produced by a given pair of clusters we pass the
cluster centre coordinates through the above set of equations to obtain
cluster centre values in terms of A, T and D tristimulus values. 1if the two

clusters are denoted 1 and 2 we obtain a signal on each opponent channel
by using

SA=A1'—A2
Sp =T, — T,
SDle_DQ'

Since variance is additive, noise on each of the opponent channels is given

by

’I‘=LRR
gzLGG
b= LgB

A, = 0.30875r + 0.6306g + 0.056b
T, = 0.2266r + 0.3217¢ + 0.05362b
D, = 0.009153r + 0.01193g + 0.02259b .

Recall that for experiments 2 and 3 noise was always given the value 1 on

R, B and B.

To predict a threshold for perceiving clusters separated in colour space we
select an arbitrary signal-to-noise ratio as the threshold. We define clus-
ters separated by more that this signal-to-noise ratio as visible, and clus-
ter separated by less than this ratio as invisible. Thus, given that the
channel with the highest signal/noise ratio defines the threshold, we get
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Sa St Sp

Q= T =
T Ay Ty Dy

C .

V. is the distance between cluster centres required to create discriminable
clusters separated in the specified direction. 1 is the threshold signal-to-

noise ratio.

To obtain V, having specified a threshold, we can use

v Ay Tn Dy
o = min SA' ST , SD

The results for clusters separated only in colour space are given in Figure
20, compared to data from experiments 2 and 3, respectively. As can be
seen, a very poor result is obtained. The model predicts far higher thres-
holds than were obtained.

To get a reasonable f{it to the data some further assumptions are
required. One possible reason for the poor data prediction is that the
model assumes some specific state of colour adaptation in the subject

which may have little bearing on his actual spate of adaptation.

The visual system comes to a state of equilibrium with respect to the
overall balance of colour. For this reason the approximately 5:1 ratio
between the maximum phosphor luminances Ly L; and Ly (see section
4.1) may not reflect the relative effect these phospors will have on the
visual system once a state of adaptation has been attained. A reasonable
alternative assumption 1s that the human visual system adapts to the
colour balance of the monitor. We therefore assume maximum gun lumi-

nances which are effectively equal for the purposes of modelling.

Thus, for the second attempt we change the constants to Lp = Lg
— Ly = 1.0

The modified model yields the results shown in Figure 21.
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data from the conditions in which clusters were separated only in colour.
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Figure 21. The predictions of the second version of Model 2 are plotted against
the data from the conditions in which clusters were separated only in colour.
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Now we Incorporate this model of colour processing into the hyperel-
lipsoidal model. This involves a two stage calculation. For the first stage
we calculate the cluster separation distance (C) required to achieve a sig-

nal to noise ration of 1.0 ignoring spatial separation for the moment. This
is given by

Ozmax{—-—--—— —_—

Ny Npr Np
Sa, Sr’ Sp )

The threshold for detecting two clusters as distinct in the five-dimensional
space 1s

0% =

R? G*? B?
XP4 Yy — + =+
Ok C? C*

Where Q is a specified signal-to-noise ratio as before. Figure 22 shows the
results for this hybrid model, comparing its predictions for the 121 condi-
tions of experiment 2 and the 55 conditions of experiment 3. The value of
2 for experiment 2 was 2.5, while the value for experiment 3 was 3.1.
This difference is close to the 229 difference in the thresholds shown in
Figure 15. Given these values of @, MODEL 2 accounts for 40% of the

data from experiment 2 and 579 of the data [rom experiment 3.

Model 2 is a considerable advance over model 1, both because it suc-
cessfully accounts for some of the varience and because it relies on a sin-
gle variable to account for the differences between the two experiments.
This signal to noise ratio is used to account for colour separation and for

spatial separation and mixed data.

We could continue making refinements to the model and no doubt
with enough tweaking produce an accurate fit to the data. However,
because of the ad hoc nature of the exercise, we could have little confi-

dence in the predictive power of the result.

The most important additional modelling factor would be the intro-
duction of some kind of gestalt “grouping factor” which would reduce the

threshold for clusters separated on both colour and space. However, to
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from Experiment 2 and the 55 data points from Experiment 3. The model thres-
hold was set at 2.6 to fit the Experiment 2 data and 3.1 to fit the Experiment 3

data.
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introduce such a factor in a meaningful way would require further empiri-
cal investigations of the variation in threshold as a function of the angle of
cluster separation. What is required are measurements of the way the
threshold changes with the angle between separation in terms of colour
only and separation in terms of space only. There may be some regularity
about this function; i.e. it may not be necessary to sample for all colours
and all directions of spatial separation.

What can we conclude from this modelling exercise? How well have
we met the stated goals of being able to predict thresholds for the detec-
tion of separate clusters? The answer is that the exercise has not been
very satisfying. We are left with the feeling that too many unknown fac-
tors having to do with form perception are involved. Perhaps the only
thing which has been gained is the feeling that we have some understand-

ing of why certain directions in the RGB colour space result in better
discrimination than others.

Overall we feel that the results of this study must stand as valuable
mainly because they represent an extensive demonstration of the utility of
colour in detecting clusters in a multidimensional space, not because they
add anything significant to our theoretical understanding of how humans
perceive such patterns.



7 DISCUSSION

What do the results tell us about the utility of using colour to view
clusters in a five-dimensional space? In general the results are favourable;
in most cases adding colour was like adding three extra spatial dimensions
to the display space. Thus colour does give the possibility of perceiving 5
data dimensions simultaneously. However, it is also clear that the percep-
tual space is not uniform and resolution in some directions is worse than
others. Resolution is worst when clusters are separated in colour alone.
When clusters are separated by colour and space, each extra colour
dimension added almost as much as an extra spatial dimension.

Observers were truly perceiving five dimensions.

Concerning the problem of poor resolution for certain directions, a
relevant issue is the likelihood of clusters being separated only by colour.
Assuming that the direction of cluster separation is equally probable for
all directions in the 5D space, in the sampling of the space used in experi-
ment 2 clusters were separated by colour on only 1195 of the trials.
Separation by both colour and space or by space alone accounted for the
remaining 8995.14 Thus it is only in 119 of the instances where resolution
is moderately impaired and only in 2% (separation only on the blue gun or
on the red and blue guns) where it is seriously impaired.

Fortunately, there is a simple practical solution to the problem of
“bad” directions for cluster separation, which is to use multiple views of
the data. With multiple views, clusters which are separated only by
colour in a given view will be separated only by space in some other view.
Since it not possible in advance to know which views are likely to be most

14 The conditions in which clusters were separated by colour alone were over-represented
in experiment 3 because of the decision to reduce the number of conditions in which clusters

were separated by colour and space. This collapsing of conditions meant that the sampling
was not uniform as it was in experiment 2.
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revealing, the best solution is to make a colour enhanced generalised
draftsman’s plot. This is a plot of all pairwise combinations of the five
data dimensions with some arbitrary mapping of the remaining three
dimensions to colour dimensions (an example is given in Figure 3). The
generalised draftsman’s plot will ensure that any clusters which are
separated only by colour in a given view will be separated only by space in
some other view. The utility of the generalised draftsman’s plot is
increased as the number of clusters increases, since with more clusters the
possibility of overlap is increased. At this point it may occur to the
reader to question the mneed for colour enhancement. Since the
draftsman’s plot contains all the information about the data, why bother
with colour enhancement? The answer lies in the difficulty of integrating
information from the different views of the conventional generalised
draftsman’s plot. With the colour enhanced generalised draftsman’s plot
we are not interested in integrating across views - each separate view con-
tains all the information - we are simply increasing our chances of the best
possible view. It is not even necessary to present all the views of the gen-
eralised draftsman’s plot in a matrix. An alternative would be to allow

the user to step through them in sequence.

7.1. Generality of the Results:

All of the experimentation of this paper has been limited to examin-
ing perception of a single type of data structure, namely the cluster with a
hyperellipsoidal probability density distribution. We can only speculate
about the extent to which colour will be useful in detecting other data
structures. However, our informal observations suggest that colour is

likely to be effective in assisting in the perception of correlations in mul-
tidimensional space.
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7.2. Practical Considerations

Beyond the conclusions which we derived from the empirical results,
the time spent playing with various representation schemes using colour
gave us a number of insights about what features are desirable in an
interactive plotting package using colour.

1) It is essential to have control over the size of the plotted points. As a
rule of thumb, if there are a large number of points they should be plotted
smaller than a small number of points.

2) Control over the background colour is important. The background
forms a visual reference by which all coloured points are judged.

3) The ability to arbitrarily map data dimensions to display dimensions is

useful, since certain mappings will enhance certain data features.

4) Colour provides a valuable enhancement to the generalised draftsman’s
plot.

5) Colour coding enables the complete display of five-dimensional space.
However, it can also be used as an enhancement to other schemes to
examine more or fewer dimensions. For example, it is well known that
simulating the rotation of a three-dimensional cloud of points about an
axis which is perpendicular to the line of sight conveys information about
the three-dimensional shape of the cloud. This technique could be
enhanced by the use of colour to effectively display six data dimensions.
For data of a higher dimensionality these techniques can be used to pro-
vide a six-dimensional window onto that data. If fewer than five dimen-
sions are required the colour technique can be simply restricted. For
example, four-dimensional data can be displayed by holding the signal to
the blue gun constant and varying only the four remaining display vari-
ables.
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7.3. Summary and Conclusions

Five-dimensional data can be usefully displayed on a colour monitor

by mapping data dimensions to the following {ive display dimensions:
Position relative to X-axis.
Position relative to Y-axis.
Amount of light emitted by the red phosphor.
Amount of light emitted by the green phosphor.
Amount of light emitted by the blue phosphor.

1) For the task of resolving clusters, a display of the type defined above
gives the effect of having a five-dimensional display space. Adding colour
1s effectively like adding three additional spatial dimensions. In general,
for two clusters to be perceived as distinct they have to be separated by
between 3 and 5 standard deviations along most of the possible vectors.
However, when clusters are separated on a few specific colour vectors,
much greater cluster separation is necessary before two clusters can be
resolved. Thus the perceptual space defined by two spatial dimensions

and three colour dimensions is highly nonunilorm.

2) Little or no training is required to enable subjects to utilise information
which is conveyed through the medium of colour. The main effect of
experience is to reduce the tendency of observers to overinterpret data,

and find structures that do not exist.

3) The benefits of colour increase with the number of clusters present in
the data. This can be attributed to the increasing probability of cluster

overlap with increasing numbers of clusters.

4) The use of colour to express data dimensions should be combined with
other techniques for viewing multidimensional data, such as rotation in
real time, or generalised draftsman’s plots. This will ensure views of the
data which avoid those conditions when cluster resolution is poor, namely

when data are separated only by colour.
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5) Except for those instances where clusters are separated only by colour,
colour enhances the immediate visual impression of a cluster as a visual

object.



APPENDIX 1

The C code used to convert from coordinates in opponent colour
space to coordinates in RGB colour space is shown below.

OPPtoRGB( L, yb, rg, R, G, B)
/* take in OPP 0.0 to 1.0,

spit out RGB in 0.0 to 1.0
*/

float L, rg. yb;
float *R, *G, *B;

{
float ¥YB;
YB = yb*L;
*B = (1.0 - yb)x*L;
*R = rg*YB;
*G = (1.0 - rg)*YB;
b
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APPENDIX 2

The instructions given to the subjects during Experiment 1 are given

below and on the following pages.

THANK YOU FOR VOLUNTEERING YOUR TIME
FOR THIS EXPERIMENT

Please enter your name and hit RETURN to continue

cware
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page 1

With this experiment we wish to investigate the perception
of discrete groups or "clusters" of data points in graphs.
The experiment is divided into two discrete phases. 1In the
first you will be shown a number of examples intended to
help you identify clusters. 1In the second you will be asked
to determine how many clusters there are in a series of test
displays.

The clusters which you will be attempting to identify
are present in a multidimensional space which is mapped onto
the x and y dimensions you see in front of you. If you find
the concept of a higher dimensional space confusing you can
regard the monitor as a "window" into a space. Because the space
has more than two dimensions clusters may sometime lie in
front of one another and therefore be hard to distinguish.

For the first example, the display you see on the monitor
contains two very distinct clusters, one at the bottom and one
at the right edge, and two not so well separated clusters in the

upper left corner, making a total of four clusters.

PRESS "f' on the keyboard to move FOREWARD to the next page
of instructions



she

Using Colour in Data Analysis

page 2

In this example there are two clusters but they are
not so discrete. The one in the upper left overlaps
with the one in the lower right.

PRESS °f’ for the next page of instructions
PRESS 'b’ for the previous page of instructions

page 3

There can be as many as six, or as few as 1 clusters.

In this example there are 5 clusters.

PRESS ’f’ for the next page of instructions
PRESS °b’ for the previous page of instructions

79
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page 4

In this example there is only one cluster.

PRESS *f’ for the next page of instructions

PRESS "b’* for the previous page of instructions

page 5

Colour may help us to distinguish clusters where they are
adjacent. Thus in this example there are two clusters.

There is one at left of centre made up of pastel blues, pinks
and violets, and one at right of centre made up of greens and

browns.

PRESS *f’ for the next page of instructions
PRESS 'b’ for the previous page of instructions
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page 6

Colour can also enable us to distinguish clusters when one
lies on top of amother. 1In this example there are 4
clusters, a blue one, a yellow one, a pink one and a

light blue-green one. The pink cluster and the light
blue—-green are both at the lower right. They can only be
distinguished by their colour.

PRESS *f’ for the next page of instructions
PRESS 'b’ for the previous page of instructiomns

page 7

In this example there are 5 clusters, a blue one, a green one,

a hot pink one, a beige one and one made up of dark colours.

In the following test phase of this experiment you will be shown
a sequence of graphs containing between 1 and 6 clusters.

Your task is to try to estimate how many clusters there are

in each graph and enter that number as a single integer followed
by RETURN to move on to the next display.

If you wish you can turn back the pages and review the examples

by hitting b’ before continuing with the exXperiment.

PRESS 'f’ for the next page of instructions

PRESS b’ for the previous page of instructiomns
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page 8

There are a total of 40 graphs.

First you will get 20 trial graphs with colour then
20 trials without colour.

You should try to estimate the number of clusters 1in
each graph, enter that integer and hit RETURN

Press RETURN to begin

On all successive pages the subject received the prompt:

How Many:
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