EbARTMENT

EPARTMENT
EPARTMENT

i g

]
ut

Qe
OMP

33 ¢

ERE
VERSITY OF WATERLOO C

E WA
WATERL

3

§'”
'Y

VER
VER

How Big
Can an Atomic Action Be?

D.J. Taylor

CS-85-20

July, 1985




How Big Can an Atomic Action Be?

David J. Taylor

Department of Computer Science*
University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT

It is sometimes implicitly or explicitly assumed that one should
always be able to compose atomic actions to create larger atomic
actions. This paper describes the properties normally required of
an atomic action and examines them in the context of large (long
execution time) actions. This leads to the conclusion that such
large actions cannot reasonably be atomic.

1. Introduction

Atomic actions are now generally accepted as a fundamental principle for
the control of concurrency in both centralised and distributed systems. In some
cases, only one level of atomic action is considered, but usually the nesting of
atomic actions is allowed. In particular, it is frequently asserted that when an
atomic action is examined, it should be found to consist internally of a collection
of smaller atomic actions, which themselves consist of yet smaller atomic actions,
and so on, ad infinitum. The stopping point in this progression is taken to be
arbitrary, depending only on viewpoint and convenience.

In some cases, it is assumed that this progression should also exist in the
opposite direction. That is, given an atomic action, one should be able to
identify other related atomic actions which can be packaged to form a larger
atomic action, and so on. In this direction, the progression presumably stops

when one reaches an atomic action which includes the entire universe, both in
space and time.

The next section briefly summarises the properties usually demanded of an
atomic action, then the following section discusses whether these properties can
reasonably be expected of arbitrarily large actions. The last section then draws
some conclusions.

*This work was performed while the author was a Visiting Research Scientist at the
Computing Laboratory, University of Newcastle upon Tyne.



2 D. J. Taylor

2. Properties of Atomic Actions
Many authors have discussed atomic actions (sometimes using the name
“transaction”), using related but slightly different criteria to define an atomic

action. This section is an attempt to describe briefly the various criteria used in
a number of papers.

In a recent paper [9], Haerder and Reuter identified four criteria defining an
atomic action (“‘transaction” in their terminology). They are: (1) atomicity, the
action has its complete, desired effect, or no effect at all, (2) consistency, the
action leaves a consistent system state if the system state was initially consistent,
(3) isolation, there are no interactions with other atomic actions, and
(4) durability, once an atomic action has completed, all changes it has made to
the system state become permanent. The last property is modified slightly for
nested actions: in that case, the permanence is only with respect to the enclosing
action—if that action is aborted, the changes disappear. The consistency property -
may also be modified for nested actions, since different degrees of consistency
may be required at different levels of nesting.

The four criteria specified by Haerder and Reuter provide a convenient basis
for examining other authors’ atomic action definitions. Although the Haerder
and Reuter definition is not to be considered more authoritative, it is used as a
standard of reference in the following discussion.

The very early paper by Eswaran [4] requires that each atomic action see a
consistent system state and preserve that consistency. It also requires that
concurrent excution of actions produce the same effect as serial execution in
some order. The first requirement is essentially equivalent to the consistency and
isolation criteria stated above. The latter requirement, generally known as
serialisability, can be achieved by ensuring the isolation and atomicity criteria, if
it is understood that atomicity implies the ability to undo a partially completed
action. However, serialisability does not necessarily imply isolation and
atomicity: if the implementation mechanism has knowledge of operation
semantics, other techniques can be used to achieve serialisability.

Lomet [12] states three characterisations of an atomic action. (1) An atomic
action does not observe any state changes by other actions, during its execution
(the state appears static), and its state changes do not become visible until the
action completes. (2) There is no communication between concurrent atomic
actions. (3) An atomic action appears to be indivisible and instantaneous, hence
concurrent execution of a set of actions is equivalent to some serial execution
sequence. The first two of these are essentially the isolation criterion, but the
third implies serialisability. The relationship between serialisability and the four
criteria given initially has been discussed above.

Gray [8] requires atomicity, consistency, and durability of an atomic action
(“transaction”), but does not mention isolation. Davies [3] simply requires that
an atomic action perform all or none of its desired function, which is the
atomicity criterion, although a property equivalent to isolation is also discussed in
the paper. Liskov [11] makes two requirements: failure atomicity, which is
equivalent to the atomicity criterion, and indivisibility, which is equivalent to the
isolation criterion. A property called permanence of effect is also described,
equivalent to the durability criterion. Liskov and Scheiffler [10] require two



How Big Can an Atomic Action Be? 3

properties of an atomic action: indivisibility, equivalent to the isolation criterion,
and recoverability, equivalent to the atomicity criterion. Mueller, Moore, and
Popek [13] require that an atomic action (‘“‘transaction’) proceed indivisibly.
This requirement is equivalent to the atomicity and isolation criteria.

Anderson and Lee [1] simply require that there be no interactions between
concurrent actions, equivalent to the isolation criterion. Shrivastava [14] requires
serialisability, which, as discussed above, can be achieved if both the atomicity
and isolation criteria are met, but does not imply these criteria. Best and
Randell [2] provide a formal definition of atomicity which cannot readily be
reduced to a few words. However, their definition is essentially based on
serialisability.

Thus, in terms of the requirements stated by Haerder and Reuter, most
definitions of atomic actions require isolation, many also require atomicity. The
requirements of consistency and durability, although often not explicitly stated,
are also generally assumed. In some cases, a different approach is taken, and
atomic actions are defined in terms of serialisabilty. This property is related to
the others, in that atomicity and isolation together imply serialisability. The
definition used by Gray [8] is an apparent anomaly, requiring neither isolation
nor serialisability.

3. Large ““Atomic Actions”’

The paper by Shrivastava [14] is explicitly concerned with building large
atomic actions, whose duration could be several days, or even several months.
Gray [8] also explicitly considers atomic actions (“‘transactions’) which could last
a very long time. The same idea seems to be implicit in some other papers,
which essentially assume that atomic actions can be used as the sole tool for
structuring activities on a database or other system. (Although Haerder and
Reuter [9] do state that “Typically, a transaction is a short sequence...” they do
not make any stronger statement about transaction length.) Using atomic actions .
in a distributed system also tends to produce long running actions because of
communication delays, particularly if many nodes are involved.

A fundamental question then is: “Can an atomic action reasonably last for
an extremely long time?” It is clear that various implementation difficulties need
to be resolved, and the paper by Shrivastava presents one approach to these
difficulties. However, it does not consider whether the very long-lived entities
under consideration are really atomic actions at all. The paper by Gray presents
a different approach to these implementation difficulties. It does mention the
possibility that these long-lived entities may be different from “ordinary” atomic
actions, but dismisses the possibility.

In the remainder of this section, first the requirements listed by Haerder and
Reuter, and used by many other authors, will be considered, then the

serialisability criterion. Finally, the examples used by Shrivastava and Gray will
be considered in the light of the general discussion.

The consistency requirement for atomic actions seems a desirable property
for almost any activity on a database. Clearly it should be required of an activity
regardless of its duration, although different degrees of consistency may be



4 D. J. Taylor

specified at different levels of nesting. Thus, this one property presents no real
problems.

The durability requirement also appears straightforward, since again it is
desirable when an activity completes, no matter how long the activity, for the
changes it has made to become permanent. There is a difficulty, however, when
the nesting of atomic actions is considered. Durability is then only with respect
to the enclosing atomic action, thus if an atomic action lasts for a week, the
results of any internal atomic actions are not permanent in the ordinary sense of
the word until the end of the week. Thus, unless some guarantee can be made
that long-lived actions are not rolled back, very large amounts of work can be
lost. The worst aspect of this is that external interactions which took place long
in the past may be undone. For example, a data entry clerk will have to hope
that an atomic action abort on Friday afternoon doesn’t require him or her to
redo some data entry performed on Monday morning. There seems no reason to
believe that long-running actions will be any less prone to problems such as
deadlock (indeed deadlocks seem much more likely), and hence no reason to
believe that they will not sometimes have to be rolled back. Of course, the
problem can be circumvented by eliminating such rollbacks, but this will certainly
prevent achievement of the atomicity property, and probably the consistency and
isolation properties as well.

It likely is possible to achieve the atomicity property for long-running
actions, but at a very high cost. Systems which implement atomic actions usually
abort any actions which are running when a system crash occurs (in a distributed
system, when any node failure or network partition affects the atomic action). A
long-running action which was treated in this way would probably never
complete. Hence, it would become necessary to preserve at least some actions
across system crashes and similar unfortunate events. This would require that
information normally kept in volatile storage be kept in stable storage and would
also greatly complicate the restarting of a crashed system. The impact of
network partitions in such a situation requires further analysis, but a very serious
impact on both sections of a partitioned network seems likely.

The isolation property seems untenable for a long-running action. Data
cannot be kept “locked up” inside an action for arbitrarily long periods. In
addition to the greatly increased probability of deadlock, there is the very basic
requirement of obtaining reasonably current information from the system. A -
read-only action can always be made to work promptly by allowing it to access
the state which existed prior to the start of all currently executing actions, but if
this state is weeks old it is of very little value. The paper by Shrivastava attempts
to avoid this problem by allowing actions to release tentative output values before
they terminate. However, if these values are used by, for example, a report
generator, we are faced with the prospect of seeing almost every element in the
output report followed by “(this may or may not be correct).”

Finally, there is the serialisability criterion. Based on the above, it cannot be
achieved in the usual way, by enforcing the atomicity and isolation criteria.
However, it is also possible to consider serialisability independent of any
particular implementation. Suppose there is a set of atomic actions each of
which lasts on the order of weeks. Suppose there is also an atomic action which



How Big Can an Atomic Action Be? 5

reports how many widgets have been sold. If the long-running actions have
anything to do with widget sales, then it is important to establish some serial
order for the reporting action and the other actions. If the reporting action
logically precedes the currently executing actions, it can be executed immediately
but it will give a sales figure which is weeks out of date. If it logically follows the
currently executing actions, it can’t be executed until they have terminated, in
which case we don’t find out for weeks how many widgets have been sold, and
the figure we obtain is still out of date when we finally receive it. Using the
approach in the Shrivastava paper, the reporting action can be run immediately,
using uncommitted results, and will produce an output such as “2756 widgets
have been sold (maybe).”

Having discussed the application of the criteria for atomic actions to long-
lived actions, it is useful to consider some specific examples. Since the
Shrivastava and Gray papers explicitly discuss such actions, it is appropriate to
use the examples from those papers.

The first example used by Shrivastava is not fully developed, but concerns
the processing of an insurance claim. The assertion is that such an action might
last six months. Presumably, the action includes such lower-level actions as
receive report of loss, receive report of claims adjuster, evaluate amount to be
paid, issue cheque. The sequence is likely a number of data recording actions
followed by a few actions which complete processing of the claim. If the entire
action really is an atomic action, then the clerk who performed the initial data
entry action could be asked to perform it again up to six months later. As well,
trying to execute an action which determines how productive claims adjusters
have been recently will suffer from the same problem as occurred above in
determining widget sales. Thus, this six-month long activity cannot reasonably
be an atomic action.

The second example is a distributed calendar system, allowing, among other
things, the scheduling of meetings among participants in the calendar system.
The assertion is that the entire process of scheduling a meeting, from tentative
location of possible time slots through to final confirmation should be a single
atomic action. However, it is clear that several such ongoing actions must
interact with each other if the calendar system is to be of any use. Thus, neither
isolation nor serialisability can be achieved. The example, using techniques of
the paper, does achieve a useful calendar system, but the “atomic actions” are
not serialisable and thus do not meet the definition of atomic action presented in
the paper.

Gray presents as an example the making of an extensive set of travel
arrangements, involving airlines, hotels, etc. It is claimed that the entire
sequence of activities related to a single trip should be considered an atomic
action. It is again clear that neither serialisability nor isolation can be achieved.
Interestingly, neither of these is required by the definitions of that paper, so the
example is reasonable in terms of the paper containing it. However, as observed
previously, the omission of both serialisability and isolation distinguishes that
paper from all the others cited. In practice, it scems certain that one would want
these properties to hold for the shorter-lived actions embedded in the long-lived
action.



6 D. J. Taylor

4. Conclusions

The material presented in the preceding section indicates that very long-
lasting activities cannot reasonably be treated as atomic actions. It is not possible
to provide a precise threshhold, but likely any action lasting for even several
minutes should be viewed with suspicion. It is not claimed that atomic actions
are unsuitable for distributed systems, but caution is required because distribution
will tend to increase execution time. Thus, while it is appealing to use a single
principle, such as atomic actions, regardless of scale, in this case it appears not to
be possible. In particular, only Gray’s definition is suitable for large actions, and
it is unsuitable for small actions.

To some extent, the inability to build very large atomic actions simply
reflects the non-atomicity of long-lasting events in the real world. Garcia-
Molina [6] discusses an example involving transfer of funds within a banking
system. In such examples, it is generally assumed that preventing any loss of
funds is an essential requirement, but he states: “Furthermore, money is lost in
the real world anyway, so why shield the database users from this fact?”” Even
when an activity is short enough that it seems intuitively appealing to treat it as
an atomic action, practical considerations may make it impossible. In particular,
since the probability of deadlock is dependent on the number of atomic actions in
the system and the number of resources each holds, a very busy system may be
able to tolerate only very short atomic actions. An airline reservation system is
an example of such a very busy system: there, the process of booking a seat is
broken into a number of atomic actions, but the whole process is not atomic [7].
Essentially, in such systems, an engineering decision has been made to limit
atomic actions so that no interaction with the environment, including the
individual invoking the action, takes place during the action. Thus, the duration
of each action can normally be limited to a fraction of a second.

Clearly, there are many cases, such as the above example, in which sets of
related atomic actions extend over (relatively) long intervals. A method of
structuring them should be sought, but another level of atomic action will not do,
so some alternative approach is required. (I am tempted to call this alternative a
“molecular action,” but I resist the temptation.) Such actions will have weaker
constraints than atomic actions, most notably as regards isolation. Likely, the
central difficulty is in formulating a criterion which can be used to determine
whether an execution sequence of such actions produces an acceptable result. In
the case of atomic actions, equivalence to a serial execution sequence provides a

straightforward test, but, as argued above, such a requirement is inappropriate
here.

Fleisch [5] has discussed the idea of grouping atomic actions into larger units
called jobs with the requirement that a job be coherent. Unfortunately, the
concept of coherence is not given a precise, formal definition, so it is difficult to
evaluate the general applicability of the concept. Another distributed system
which has addressed the problem, from a practical standpoint, is TABS [15]. In
TABS, four properties for actions are defined, but a programmer may choose to
implement an action which does not possess one of the standard properties. This
provides an efficiency/complexity tradeoff for the programmer. It does not



How Big Can an Atomic Action Be? 7

appear that a weaker version of any of these properties is available: it is simply a
binary choice for each property.

Researchers have been investigating such long-lived actions, but under the
assumption that the objects under investigation are essentially atomic actions,
with minor modifications. Here it has been argued that they are fundamentally
different. It may be that better approaches to the problems of long-lived actions
can be obtained by recognising the fundamental difference. Most importantly,
one should not try to find a single, universal solution. Rather, one solution is
required for atomic actions, and a second solution for the long-lived actions
containing atomic actions.

References

1. T. Anderson and P. A. Lee, Fault Tolerance: Principles and Practice,
Prentice-Hall, Englewood Cliffs, N.J. (1981).

2. E. Best and B. Randell, A formal model of atomicity in asynchronous
systems, Acta Informatica 16(1) pp. 93-124 (1981).

3. C. T. Davies, Data processing spheres of control, IBM Systems Journal
17(2) pp. 179-198 (1978).
4. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, On the notions

of consistency and predicate locks in a data base system, Communications of
the ACM 19(11) pp. 624-633 (November 1976).

5. B. D. Fleisch, META-Activities: Towards coherent distributed jobs,
Proceedings, The 4th International Conference on Distributed Computing
Systems, pp. 566-578 (May 14-18, 1984).

6. H. Garcia-Molina, Using semantic knowledge for transaction processing in a
distributed database, ACM Transactions on Database Systems 8(2) pp. 186-213
(June 1983).

7. D. Gifford and A. Spector, The TWA reservation system, Communications
of the ACM 27(7) pp. 650-665 (July 1984).

8. J. N. Gray, The transaction concept: Virtues and limitations, Proceedings,
Seventh International Conference on Very Large Data Bases, pp. 144-154 -
(September 9-11, 1981).

9. T. Haerder and A. Reuter, Principles of transaction-oriented database
recovery, Computing Surveys 15(4) pp. 287-317 (December 1983).

10. B. Liskov and R. Scheifler, Guardians and actions: Linguistic support for
robust, distributed programs, ACM Transactions on Programming Languages
and Systems 5(3) pp. 381-404 (July 1983).

11. B. Liskov, On linguistic support for distributed programs, IEEE Transactions
on Software Engineering 8(3) pp. 203-210 (May 1982).

12. D. B. Lomet, Process synchronization, communication and recovery using
atomic actions, SIGPLAN Notices 12(3) pp. 128-137 (March 1977).



8

13.
14.

15.

D. J. Taylor

E. T. Mueller, J. D. Moore, and G. J. Popek, A nested transaction
mechanism for LOCUS, Proceedings of the Ninth ACM Symposium on
Operating System Principles, pp. 71-89 (October 10-13, 1983).

S. K. Shrivastava, A dependency, commitment and recovery model for
atomic actions, Proceedings, Second Symposium on Reliability in Distributed
Software and Database systems, pp. 112-119 (July 1982).

A. Z. Spector, et al, Support for distributed transactions in the TABS
prototype, Proceedings, Fourth Symposium on Reliability in Distributed
Software and Database Systems, pp. 186-206 (October 15-17, 1984).



	

