HNVEGSIRY 8 WATERE
e SIS ¢

QOO0

Robust Storage Structures
for Crash Recovery

D.J. Taylor
C.-J. Seger

Data Structuring Group
CS-85-18

July, 1985

Robust Storage Structures for Crash Recovery
David J. Taylor

Carl-Johan Seger

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT

A robust storage structure is intended to provide the ability to
detect and possibly correct damage to the structure. One possible
source of damage is the partial completion of an update operation,
due to a “crash” of the program or system performing the update.
Since adding redundancy to a structure increases the number of
fields which must be changed, it is not clear whether adding
redundancy will help or hinder crash recovery. This paper
examines some of the general principles of using robust storage
structures for crash recovery. It also describes a particular class of
linked list structures which can be made arbitrarily robust, and
which are all suitable for crash recovery.

1. Introduction

A robust storage structure is an implementation of a data structure which is
intended to provide the ability to detect and possibly correct errors in structural
data. The two principal measures of robustness are detectability and
correctability [11]. The detectability is the maximum number of changes to a
correct instance of the structure which is guaranteed to leave it incorrect. This
depends on some notion of correctness of instances, which may be defined in
. terms of an axiomatic description or implicitly by a detection procedure. The
“definition of correctabilty depends explicitly on the existence of a correction

procedure. The correctability is the maximum number of changes whose
correction by such a procedure can be guaranteed.

The damage (erroneous changes) to be detected or corrected can come from
a variety of sources: incorrect update procedures, “wild stores” by unrelated
update procedures, failure of the underlying storage mechanism, incomplete
updates due to crashes, etc. The damage caused by incorrect update procedures
is very hard to predict. The damage caused by “wild stores” or failure of the
underlying storage mechanism will presumably affect only one field (or possibly,
one node) per occurrence. Thus, all analysis has previously been performed
using the total number of fields (or nodes) modified as the measure of damage.
In the case of a crash affecting a correct update operation, the possible damage
can be exactly determined. The purpose of this paper is to analyse the effects of

2 Taylor and Seger

such damage on robust storage structures, in particular those for linked lists.

Of course, it is possible to design storage structures which are robust against
crashes, but not against other types of damage. One early example, described by
Lockemann and Knutsen [6] used redundancy to recover disk allocation data
after a crash. In his Ph.D. thesis [13], J. E. Vandendorpe described a B-tree

storage structure which allows partially-completed updates to be completed after a
crash.

The usual procedure to recover from crashes is to perform backward
recovery [1, Chapter 7] to recreate a previous system state. In this paper, we
consider an alternative: performing forward recovery, by the use of storage
structure correction routines. Such routines, if successful, will either recreate a
previous state of the storage structure, as backward recovery would, or will
complete a partially completed update operation.

In the remainder of the paper, we first define some terminology and
notation. Then, we consider crash recovery using global correction routines: we
consider two models for the updating of storage structures, one suited to main
storage and one suited to external storage. Then, we examine the somewhat
surprising results which can be obtained using a local correction routine for crash

recovery. Finally, we present a summary and some possible directions for future
work.

2. Terminology and notation

When discussing recovery of a storage structure after a crash, the situation
of interest occurs when the structure was being updated at the time of the crash.
We refer to the structure instance which existed prior to the update operation as
the “‘before’’ instance. We refer to the structure instance which would have
existed if the update operation had completed as the “‘after’” instance. The
instance which actually exists when the crash occurs is referred to as the partially
updated instance. We say that a correction procedure recovers to either the
“before” or the “after” instance if the correction procedure modifies the partially
updated instance so that it becomes one or the other of these correct instances.
Finally, crash recovery is successful if a correction (or other) procedure recovers
to either the “before” or the “after” instance.

We will use the term r-correction routine to mean a procedure which
performs correction of up to r errors in a particular storage structure, and whose
behaviour is unspecified if there are more than r errors. Such a correction
routine will also be referred to as a global correction routine to distinguish it from
a local correction routine, as discussed in Section 5.

In this paper, linked lists are used as examples. All of the linked lists
considered have a ‘“‘uniform” pointer arrangement, with each pointer field
pointing to a node at some fixed number of nodes following or preceding the
node which contains the pointer. Such structures can be conveniently described
by giving a vector of pointer distances, with positive values for forward pointers
and negative values for back pointers. For example, a standard double-linked
listis (1, —1) and a modified(2) double-linked list is (1, —2). Examples are
drawn from three parameterised families of lists: modified(k) double-linked
(pointers 1, —k) [11], k-spiral (pointers 1,2, - - -, k=1, —k) [3], and k-linked

Crash Recovery 3

(pointers 1,2, - - -,k —1,-2, - - -, —k) [2]. Four specific lists are used as
examples, standard double-linked (whlch is also modified(1) double-linked and
1-linked), 2-spiral (which is also modified(2) double-linked), 3-spiral, and 2-
linked.

Each list has as many header nodes as the maximum pointer distance (k in
each of the above cases). These headers are all assumed to be directly
accessible, without following pointers from other headers. For all lists, we
assume each node has an identifier field, containing a value uniquely identifying
the instance, and that the (first) header node contains a count of the number of
non-header nodes in the instance. For these lists, and all other structures, we
assume the Valid State Hypothesis [11], which asserts that the identifier field
values for a structure instance occur only in identifier fields of that instance, and
nodes outside the instance do not contain pointers into the instance.

3. Analysis for structures in main storage

In this section, we examine crash recovery for structures held in main
storage. For our purposes, the distinguishing feature is that each modification to
a field is reflected immediately in the structure. In the next section, we consider
structures on external storage. There, several modifications may be made to a
node of the structure, and then all appear simultaneously as the node is written
back to external storage. In most systems, structures in main storage do not
survive system crashes, but it is still important to consider the effects of partially
completed updates in this context. One reason is that an update routine might
fail during its operation, leaving a partially updated instance to be accessed later
by that program (if it continues execution) or some other program sharing the
structure. In such cases, a backward recovery technique will often be
appropriate, but it is also interesting to consider recovery using a correction
routine. Another reason is simply to provide background for the next section.

Following a crash, we must detect errors and, if possible, correct them. For
error detection, the situation is, in practice, straightforward. It would be possible
for an update routine to modify a structure in such a way that one or more
intermediate correct instances were created, between the initial and final correct
instances. In practice, update routines do not have such behaviour: all
intermediate states are incorrect instances and therefore any partially completed
update can be detected.

The harder problem is correction. To deal with this problem, we must
consider in some detail the operation of update and correction routines. We
normally restrict correction routines (and other routines) to accessing nodes by
following pointers from already accessible nodes. Then, any nodes which are not
connected to the header(s) of the instance are irrelevant to the correction routine.
We divide the changes made by an insertion routine into two categories: (1)
changes to fields in the node being inserted and (2) other changes. (Denote the
number of changes in these categories by ¢, and c,.) Then, all the changes in
category 1 can be made first, without having any effect on the correction routine.
All of these changes will appear simultaneously when the first change creating a
pointer to the new node is made. Denote the number of pointers to the new
node by p.

4 Taylor and Seger

The description in the preceding paragraph is for the insertion of a single
node, but can readily be applied to deletion as well. For example, the node
being deleted effectively disappears when the last pointer to it is changed. As
well, it can be adapted to the situation in which a single update operation inserts
or deletes several nodes, such as a key insertion into a B-tree which splits both a
leaf and its parent branch node. For simplicity, we assume throughout that an
insertion operation only adds a single node.

We can prove the following result, by using the ability to make c{+1
changes effectively simultaneously.

Theorem: Recovery by an r-correction routine from a crash during an insertion
operation can be guaranteed iff (a) c{+c,<2r+1 or (b) ¢,<2r+1 and p<r+1.

Proof: (If part). If case (a) holds, the result is trivial, since any sequencing of
the desired changes will always leave the partially updated instance within r
changes of either the ‘“‘before” or ““after” instance. So, consider case (b).

We will perform the insertion by making changes in this order: all the
changes in the first category, exactly min (r ,c,—p) of the changes in the second
category excluding changes which create pointers to the new node, one change
creating a pointer to the new node, the remaining changes. For convenience, we
will call the change creating the first pointer to the new node the central change.
As we make changes from the first category, they are invisible to the correction
routine (or any other routine accessing the instance), so crash recovery requires
no changes to the instance. Since we make at most r changes from the second
category before the central change, the correction routine will successfully
recover to the “before” instance if a crash occurs here. For crashes after the
central change, we must consider two cases. If r<c,—p, then we make r
changes from category 2 before the central change and since there are at most
2r+1 changes in category 2, there can be at most r changes remaining after the
central change. If r>c,—p, then we make all category 2 changes before the
central change except for pointers to the new node and hence exactly p—1
changes remain after the central change, which is less than or equal to r by
assumption. Thus, immediately after the central change, the partially updated
instance is within at most » changes of the ““after” instance, and the r -correction
routine is guaranteed to succeed.

(Only if part). We begin by observing that the correction routine will “see”
changes either when they are made, or when the node containing them becomes
accessible due to a pointer change. We also observe that if any node which is
part of the “before” instance becomes inaccessible during the insertion, the
correction routine must fail, since that node is part of both the “before” and
“after” instances, but cannot be located by the correction routine. Thus, the
only changes which can appear simultaneous to the correction routine are
changes in the node being inserted, combined with a pointer change creating a
pointer to the node.

Since we now must show that successful crash recovery implies either (a) or
(b), we assume that (a) is false and show that (b) then follows. If there are
more than r+1 pointers to the new node, then after the first pointer to the new
node is created, the partially updated instance will not be within » changes of the

Crash Recovery 5

“after” instance. If r+1 or more changes have been made to that point, it will
also not be within r changes of the “before” instance, so recovery will be
impossible. If not, then following the r+1'th change, recovery will be
impossible, since all changes will be visible and by assumption the total number
of changes required exceeds 2r +1.

If there are more than 2r+1 changes in category 2, then consider the
situation after r+1 of these changes have been made. Regardless of the visibility
of the changes in category 1, at least r4+1 changes are required to reach either
the “before” or the “after” instance, so the r-correction routine cannot succeed.
Thus, successful crash recovery implies either (a) or (b) holds. O

Although this result is stated for insertion, by appropriately restating the two
categories and the definition of p so that they apply to deletion, it can be trivially
extended to apply to deletion as well. For structures such as linked lists, for
which insertion and deletion are exactly symmetric, no separate consideration of
deletion is required.

To assess the practical implications of the above result, we can consider
some linked list examples, as described in the preceding section. Table I includes
four specific lists and three parameterised families, and simply gives the
correctability (r), the number of changes in each category, and the value of p,
for each list.

It is not possible to provide a brief justification of all the values in the table,
but consider the fourth line as an illustration. The correctability of a 2-linked list
has been published previously [2]. There are four pointers and an identifier field
to be changed in the new node, so c¢; is 5. Outside the new node, we must
change one +1 pointer, two +2 pointers, one —1 pointer, two —2 pointers, and
the count, so ¢, is 7. There are four pointers to the new node, one for each
pointer distance, so p is 4.

We observe that none of the structures satisfy c{+c,<2r+1, all of the
structures satisfy p<r+1, but only the standard double-linked list and the 2-
linked list satisfy c,<2r+1. (Some elementary algebra shows that these
observations hold for the parameterised families, as well as the specific lists
shown.) A complete analysis of all uniform linked list structures, in the
Appendix, shows that there are many others which satisfy the conditions, but
almost all of them are structures of very dubious utility. We thus conclude that
very few robust lists are suitable for crash recovery. However, this conclusion is
based on two assumptions used throughout this section of the paper: that the
structure is in main storage and that a “standard” r-correction routine is used.
The following sections examine the alternatives to these assumptions.

6 Taylor and Seger

List r cq %) p
1,-1) 1 3 3 2
(1,-2) 1 3 4 2

(1,2,-3) 2 4 7 3
1,2-1,-2) | 3 5 7 4
modified(k) | 1 3 k+2 2

k-spiral | k=1 | k+1 "ZJFT’“’Z k

k-linked | 2k—1 | 2k+1 | k%+k+1 2%

Table I: Crash recovery in main storage

4. Analysis for structures on external storage

In the preceding section, guaranteeing successful crash recovery depended on
making several changes appear to be simultaneous, by modifying the node being
inserted before creating the first pointer to it. For structures on external storage,
it is possible to do this for all nodes: the node may be read into main storage, an
arbitrary number of changes applied, and then written back to external storage.
We assume that writes take place atomically, that is, that a crash cannot cause a
write to be partially completed. Some crashes, originating with hardware
problems, may violate this constraint, but techniques are known for making
writes appear atomic even in such cases [5].

We now need to consider the effect of allowing all the changes to a node
being made simultaneously. We observe that by writing the new node before
writing the first node containing a pointer to it, it is possible to make all the
changes to the new node and one other node appear simultaneous. As in the
preceding section, we restrict the explicit discussion to insertion operations which
add a single node, we divide changes into two categories, and we denote the
number of changes in category i by ¢;. For a node in the “before” instance, M,

Crash Recovery 7

we denote the number of changes in M by m,,, and the number of pointers to
the new node, other than in M, by p,, .

Theorem: Recovery by an r-correction routine from a crash during an insertion
operation can be guaranteed iff there exists a node M such that (a)
C14+co—my <2r or (b) M contains a pointer to the new node, c,—my <2r, and
pm<r.

Proof: (If part). Although for efficiency, changes to most nodes would probably
be accomplished with single write operations, in the proof we assume all changes
are done singly except for those to node M. In case (a), we simply need divide
the changes other than to node M such that no more than r of them precede the
writing of node M, and no more than r follow.

In case (b), we perform the changes in the following order: changes to the
new node, min (r ,c;—my —pyy changes from category 2 excluding node M and
all pointers pointing to the new node, changes to node M (simultaneously), all
remaining changes.

The changes to the new node do not become ‘“visible” until node M is
written, so the number of visible changes prior to writing node M is clearly less
than r, and thus an r-correction routine will recover to the “before” instance.
To examine the number of changes immediately after writing node M, we must
consider two cases. First, if r<c,—my—py, then the number of changes
remaining after writing node M is c,—my,—r, which is less than or equal to r, so
recovery to the “after” instance will occur. Second, if r >cy—my —p,,, then only
Py changes remain after writing node M, which is less than or equal to r by
assumption, so again, recovery is guaranteed.

(Only if part). We begin by noting that the only case in which changes to two
nodes can appear simultaneous occurs when the first node is written containing a
pointer to the new node. (As in the preceding section, a node in the “before”
instance which becomes inaccessible will prevent crash recovery. Thus, no other
node which is part of the “after” instance can change from inaccessible to
accessible.) We must show that successful crash recovery implies either (a) or
(b), so we assume that (a) is false and show that (b) then follows.

Let M be the node which is written when the number of changes first
exceeds r. Unless this write creates the first pointer to the new node, it can
cause a maximum of my, changes. Since (a) is false, the partially updated
instance will then be more than r changes distant from both the “before” and
“after” instances. So, we conclude that this write must also create the first
pointer to the new node.

Immediately after writing M, at least p,, changes will remain to be made.
To allow recovery, this must be less than or equal to r, so we conclude py, <r.
The maximum number of changes which can become “visible” when M is
written is my+c;. The number of changes excluding these is c,—m,y,. Since the
number of changes preceding the writing of M is not greater than r, and the
number of changes remaining after the writing of M also must not be greater
than r , we conclude that c,—my, <2r, as required. O

8 Taylor and Seger

The theorem requires that we select a node, M, to satisfy two inequalities,
but in practice selecting M is quite simple. Usually, a node will contain at most
one pointer to any other specified node, and therefore p,, will be the same for all
nodes containing a pointer to the new node. Thus, M must simply be selected as
the node containing a maximal number of changes among those nodes containing
a pointer to the new node.

We can consider again the linear list examples used in the previous section.
Table II gives the values of r, ¢y, c3, my, pu, and c;—my,. M is chosen to
maximise my, , among nodes which contain pointers to the new node. The value
of py, does not depend on the choice of M for these lists.

Again, we justify the fourth line of the table, for illustrative purposes. The
values of correctability, ¢{, and ¢, were discussed in the previous section. The
maximum number of changes to any node other than the new node occurs for
the nodes immediately preceding and following the new node. In each of these,
two pointers must be changed, so my, is 2. Since p is 4 and each of these nodes
contains one pointer to the new node, p,, is 3.

List r c1 Cy Ny, Pu Cz—my
1,-1) 1 3 3 1 1 2
1,-2) 1 3 4 1 1 3

(1,2,-3) 2 4 7 2 2 5
1,2,-1,-2) 3 5 7 2 3 5
modified(k) | 1 3 k+2 1 1 | k41

k -spiral k-1 | k+1 5—2-%"-‘—2— k-1 | k-1 kz_—§+4

k -linked 2k—1 | 2k+1 | **+k+1 k 2k—1 k241

Table II: Crash recovery on external storage

Crash Recovery 9

The k-spiral data applies only for k>1 (for a 1-spiral, my, is 1 not 0, so m,, and
c,—my, are incorrect for k=1).

For very short lists, the values may be different from those indicated, since
nodes ‘“following” the new node and nodes ‘“preceding” the new node may
overlap. Also, insertions near the beginning or end of a list may produce
different values, by causing other changes in the header node containing the
count. In all cases, the differences will make m,, larger or p,, smaller, so that
recovery will not be precluded in cases where the table indicates recovery is
possible. In some cases, this might allow recovery where the table indicates
recovery is not possible, but this is of little interest, since we would like to
guarantee recovery for all insertions regardless of list length or insertion position.

The only specific lists in the table for which recovery can be guaranteed are
the standard double-linked list and the 2-linked list. Here, some algebra reveals
one additional list in the parameterised families for which recovery can be
guaranteed, the 3-linked list. However, it is disappointing that the only new list
structure for which crash recovery can be guaranteed is a 6-pointer list. A
complete analysis of all uniform linked list structures, in the Appendix, shows
that there are a few others which could be of some practical use.

The conclusion which must be drawn from this and the preceding section is
that crash recovery can be guaranteed only for a very limited selection of
“useful” list structures, if recovery is performed using a standard r-correction
routine.

5. Local error correction

The intuitive idea of local error correction is that an arbitrary number of
errors can be corrected, provided not too many are encountered at once. A
precise characterisation of this property is complex [3], and is not attempted
here. It seems unlikely that a local correction routine should be suitable for
crash recovery, since the “erroneous” changes to be fixed by the correction
routine will be all or almost all near the new node being inserted. Any
correction routine which uses a conventional traversal should encounter at least -
most of them “all at once” and thus offer no improvement over a global
correction routine. In this case, intuition is wrong.

The results in this section concern a particular local correction routine, used
for k-spiral lists, thus we begin with a brief description of its operation. A more
complete description and a proof of its behaviour is available elsewhere [3].

In a k-spiral list, there is one back pointer (which spans k£ nodes) and k—1
forward pointers (1,2, - - -, k-1). The local correction routine traverses the
list backwards. Its principal task is the verification and correction of the back
pointers. Once a back pointer has been verified or corrected, then the forward
pointers in the node it points to can easily be corrected, since they must point to
the last k—1 nodes traversed. The routine maintains a vector of the last k¥ nodes
traversed. It obtains k constructive votes for the location of the next node by
following the —k pointer in the “oldest” node in the vector, —k then +1 from
the next node in the vector, ..., —k then k—1 from the node most recently placed
in the vector. For each distinct node located in this way, the routine evaluates
k—1 diagnostic votes, by checking whether the forward pointers have the expected

10 Taylor and Seger

values. The correct next node in the traversal is that one which receives at least
k votes in total. Once the identity of this node has been established, the forward
pointers in the node and the —k pointer in the oldest node in the vector may be
corrected if necessary. This procedure is guaranteed to correct an arbitrary
number of errors in a list, provided that the total number of errors in all the
pointers just described is less than k each time the voting is carried out. (Details
of the handling of identifier fields and the count have been omitted.)

Figure 1 shows that part of a 4-spiral list relevant to one application of the
voting procedure just described. In the figure, the correction procedure is
attempting to reach node 4, having already traversed nodes 8, 7, 6, and 5. Only
the pointers used by the voting procedure are shown: one forward pointer in
each of nodes 1, 2, and 3; all forward pointers in node 4; and the back pointer in
each of nodes 5, 6, 7, and 8.

1 7 2 3 4
3 %/\/
5 6 7 8

Figure 1. Voting structure in a 4-spiral list

We begin by restricting our attention to main storage. We will make the
changes required for insertion in a particular order. The sequence of changes -
should be intuitively appealing, but the only real justification is the proof of crash
recovery which follows. For convenience, let us denote the nodes in the ‘“after”
list by their position relative to the new node: N will be the new node, N +1 will
be the node following the new node, etc. We make changes in the following
sequence: all fields in N, back pointer in N +1, ..., back pointer in N+k-1, +1
pointer in N —1 (the central change), remaining changes in any order. Note that
all changes to nodes following the new node are made before the central change,
except the back pointer in N +k. After correcting the pointer structure, the local
correction routine simply sets the count to the number of nodes it has observed,
so we omit any further discussion of the count field.

The new node does not become visible to the correction routine until the
central change is made, so after any preceding change, the only changes
separating the “‘before” instance and the partially updated instance are the back

Crash Recovery 11

pointers in k—1 or fewer nodes following the new node. Since this means there
are at most k—1 changes in total, local correction will clearly succeed.

Immediately after the central change, the number of pointer changes
separating the partially updated instance and the “after” instance is k¥ —2 in node
N-1, k—i in node N—i for i=2,-- -, k-1, and 1 in node N+k. Thus, the
total number of pointer changes is (k—1)(k—2)/2+k—1. For k=2 this evaluates
to 1: the local correction routine will clearly be successful, since the total number
of errors does not exceed k—1. For larger values of k, this simple justification
does not work, so we must examine the operation of the local correction routine
in more detail.

As the correction routine tries to reach nodes N +k -2 through N +1, it will
encounter the “erroneous” forward pointers in nodes N —k+1 through N-1. If
‘N +j should be the next node reached in the traversal, it will receive at least one
constructive vote, since the back pointer to it is correct. It will also receive k—1
diagnostic votes, since all its forward pointers are correct. The only other node
receiving any constructive votes will be N +j+1 and it will receive no diagnostic
votes. Thus, N+j will be the only node receiving k votes, and the correction
routine will perform the proper traversal, but will not correct any of the forward
pointer errors encountered during this part of the traversal.

When the correction routine tries to reach node N, we obtain the following
constructive votes: starting from N +k, a vote for N —1; starting from N +k—1, a
vote for N; the other k-2 votes for N+1. N gets k—1 diagnostic votes (all
forward pointers match), N+1 gets no diagnostic votes, and N—-1 gets k-2
diagnostic votes (all forward pointers, except +1, match). Thus, we correctly
select N as the next node, and correct the back pointer in N +k. Figure 2 shows
the situation when trying to reach node N in a 4-spiral. All pointers used in
constructive votes are shown. Pointers used in diagnostic votes are shown only if
they apparently point to the right place, thus no forward pointers are shown in
node N +1. Pointers which need to be corrected are marked with an "x".

N=-3 N=-2 N-1 N
X Va oA =/

\ h \

\
N+1 ‘/N+2 N+3 N+4 g

Figure 2. Immediately after central change: Trying to reach node N

12 Taylor and Seger

The remaining pointers requiring correction are in nodes N —k+1 through
N-1. The errors are all in forward pointers, but none of those pointers are used
in constructive votes after node N is reached. (All were used earlier, as
discussed above.) Thus, at each step, the proper node will receive k constructive
votes, and will be selected regardless of the number of diagnostic votes it
receives.

Thus, correction will succeed immediately after the central change. Each
subsequent change simply removes one of the changes which has to be made by
the correction routine, so correction will also succeed for all subsequent partially
updated instances. We conclude that, provided changes are made in the
specified sequence, the k-spiral correction routine will always recover from a
crash during insertion. Unlike the results of the two preceding sections, this
provides a class of lists of arbitrarily great robustness all of which are suitable for
crash recovery.

If the list is on external storage, then we can make several changes at once,
eliminating many of the partially updated instances. However, it is clearly
possible to follow the above sequence of changes so that no other partially
updated instances are created. In fact, it is possible to follow the above update
sequence without writing any node more than once, provided the insertion is not
very near the beginning or end of the list. Since we can group the central change
with all other changes to node N—1, the maximum number of changes ever
needing correction is reduced to (k—1)(k—2)/2+1. This provides an immediate -
justification for crash recovery with k=2 and k=3 on external storage, but the
more complex justification is still needed for larger values of k.

6. Conclusions and further work

In this paper, we have shown how to characterise those storage structures
which are suitable for crash recovery using r-correction routines. This analysis
was performed separately for structures in main storage and on external storage.
The implications of these characterisations were examined for uniform linked list
structures, yielding the conclusion that few useful robust lists are suitable for this
form of crash recovery. Then, we examined the use of a local correction routine
for crash recovery. Although this seemed intuitively unsuitable, it proved to be
more successful than the global correction routines. In particular, it provides a
class of arbitrarily robust, useful, linked lists. ’

It may be appropriate to mention that the behaviour of various correction
routines was first examined by observing the behaviour of actual implementations
when subjected to damage caused by crashes. This provided a general
understanding of their behaviour which assisted in the development of the
theoretical results. In particular, the excellent behaviour of the k-spiral
correction routine first came to our attention in this way. However, the results
presented here do not depend in any formal sense on the experimentation.

Many aspects of crash recovery remain to be investigated. For example, we
have not examined local correction in general, but only for linked lists, and there
only for one particular local correction routine. Other local correction routines
should also be examined, and, if possible, a general characterisation obtained of
those situations in which local correction provides guaranteed crash recovery.

Crash Recovery 13

Another aspect which should be examined is case (a) in each of the two
theorems. It appears that this can only occur for pathological structures: a
characterisation of such structures should be sought.

One problem not addressed in the paper is that recovery to the ‘“before”
instance will usually result in the new node becoming lost. That is, it will not be
part of the structure into which it was being inserted and it will also not be part
of whatever free list structure it was taken from. Ideally, one would like to
arrange that crash recovery of both the free list and the other structure would
result in the node being placed in exactly one of the two structures. Because it is
generally necessary to completely change the new node before creating any
pointers to it (and, symmetrically during deletion, to delete all pointers to a node
before changing the node itself), this cannot be guaranteed. This leads to two
problems: loss of usable storage space and violation of the Valid State
Hypothesis. Probably the only general solution is to use some form of garbage
collection after crash recovery. If all structures are checked during crash
recovery, such garbage collection can probably be achieved at little additional
cost.

Another problem which has not been addressed is a crash during execution
of a correction routine. Some correction routines, including the k-spiral
correction routine, do not modify the structure except to make corrections.
Other correction routines use “guessing” [10] which involves making trial
corrections which may be wrong. A crash in the middle of such a correction
routine could result in additional damage to the structure. In principle, one
could modify such routines so that they did not make actual changes to the
structure until a guess had proved correct, but this could greatly complicate the
checking of a structure to validate a guess.

One advantage which is gained by local correction is that an error in the
count field does not affect the operation of the correction routine. For some lists,
it is possible to make a minor modification to a global r-correction routine so
that it always corrects count errors plus up to r other errors. Such routines
should be examined to determine whether they might be significantly better for
crash recovery. It is possible that other ad hoc modifications might be made
which would have no harmful effect on the ordinary behaviour of a correction
routine but which would greatly improve crash recovery.

As well, the investigation should be extended to consider other specific
examples in addition to linked lists. We do not know of any parameterised
families of B-trees or binary trees, but two specific robust B-trees [4, 9], and four
specific robust binary trees [7,8,11,14] have been reported. These should be
examined for their suitability in crash recovery. It is possible that none of them
will prove suitable. In that case, other robust implementations should be sought
which will have as good detectability and correctability, and also resistance to
crashes.

14 Taylor and Seger

Appendix: Analysis for all uniform lists

The main body of the paper examines only a few specific list structures and
three parameterised families of lists. These probably include all lists which
should be used in real systems, but for completeness, this appendix includes an
analysis of all uniform list structures, meaning all those with a uniform pointer
arrangement as described in Section 2.

For this appendix, we need some additional notation. We denote the vector
of pointer distances by (d;)/;. (Duplication is allowed, although of dubious
value, as discussed below.) Since the quantity is needed frequently, we let

A=Y|d;|. The correctability of such a list is min(|A /2},n—1) as shown
i=1
previously [12]. Throughout, we denote the correctability by r.

A.1 Lists in main storage

We can now calculate the quantities ¢y, ¢5, and p defined in Section 3. The
number of changes in the new node is simply one greater (because of the
identifier field) than the number of pointers in a node. The remaining changes
are a change to the count, and pointer changes. For a pointer with distance 4;, a
total of |d;| changes to pointers not in the new node must be made. The
number of pointers to the new node is simply the number of pointers in a node,
since one pointer at each distance points to each node. Thus, we have c;=n+1,
cy=A+1, and p=n. (We will also use these values of ¢; and c, in the next
section.)

The lists for which we can guarantee crash recovery have either
c1+¢2<2r+1 or ¢,<r+1 and p<r+1. Since c¢;4+cy=A+n+2, which is greater
than both 2(|A /2))+1<A +1 and 2(n—1)+1 (clearly, A>n), no uniform linked
list meets the first condition. Thus, crash recovery can be guaranteed precisely
for those lists meeting the two inequalities of the second condition.

If r<n—1, then p<r+1 is false, so for successful crash recovery, we must
have a list with correctability exactly n—1. Since we require ¢,<2r+1 and we
have c,=A +1 we obtain A <2n-2. If this inequality is strict, the correctability
will not be n—1, so we conclude that A =2n-2.

Since A does not depend on the signs of the pointer distances, we can give
unsigned vectors of pointers, to represent a class of lists obtained by attaching
any combination of signs to the distances. The class of lists satisfying A =2n—-2
is infinite: the first few members are: (1,1), (1,1,2), (1,1,2,2), (1,1,1,3),
(1,1,2,2,2).

Clearly, most of these are not very intuitively appealing lists. If we assert
that we are only interested in lists without duplicated pointer distances, we will
eliminate most of them. (We provide no theoretical justification for eliminating
all other lists, but simply state that a list in which each node has two or more
copies of some pointer field does not seem useful.) For convenience, call lists
without duplicated pointer distances useful. Now, the signs of the distances
become important. If an unsigned pointer distance occurs at most twice, we can
avoid duplication. For the lists being considered, if there are more than four
pointers, duplication must occur since 1414-24243(n—4)>2n -2 for n>4 (if we

Crash Recovery 15

have only two each of 1 and 2, all the others must be at least three). Thus, only
the first three of the lists above are possibilities. From them we obtain four list
structures: (1,-1), (1,-1,2), (1,-1,-2), and (1,-1,2,—2). Since the two three-
pointer lists are mirror images of each other, there are really only three distinct
list structures. Only the three-pointer lists were not included in Section 3.

If the definition of “useful” is accepted, we must conclude that there are
very few useful uniform list structures suitable for crash recovery in main storage.

A.2 Lists on external storage

Here, we must find all lists satisfying either c{+c,—my<2r or both
co—my <2r and py, <r, with the conditions on M as stated in Section 4. If the
correctability is n—1, the first condition becomes A +n +2—my, <2n—2, which is
A—my<n—4. Since my is at most n (if all pointer distances have the same
sign), this condition can only be satisfied if A<2n—4. However, if this is the
case, the correctability is not n—1 since the correctability is at most [A /2|. If
the correctability is |A/2], then the first condition becomes
A+n+2-my<2(|A/2])<A. Again, my<n, so we have A+2<A, a
contradiction. We conclude that there are no uniform linked lists satisfying the
first condition.

We consider the second condition, made up of two inequalities, as applied to
lists with correctability of |A/2]<n-1, and let j=n—|A/2|. |A/2]=n—j
implies A—1<2n—2j. This implies that (|d; |)2; must include at least 2j—1
ones, hence (d;)/.; must include at least j positive ones or j negative ones. If -
there are j positive ones, select M as the node immediately preceding the new
node, otherwise select M as the node immediately following the new node. For
this node, py<n—j=|A/2]. Thus, all of the lists under consideration satisfy
pu <r, for at least one node M.

We also require cy—my,<2r, which becomes A +1—my,<2(|A /2])<A 1.
For the node M selected in the preceding paragraph, m,, >j since there are j
pointers to the new node. Given the initial assumption about correctability, j is
at least 2, so this inequality is also satisfied for all of the lists under
consideration.

We must now consider lists for which the correctability is n—1. Here, for
any node pointing to the new node, py,<n—1, so the only the first inequality
need be considered. That inequality becomes A +1—my, <2n-2. There is always
one node pointing to the new node in which all the forward pointers must be
changed, and another node pointing to the new node in which all the back
pointers must be changed. Thus, there is a node for which my, >[n/2]. If we
consider starting with a collection of unsigned distances and attaching signs to
them, by making all the signs the same we can achieve my=n. Thus, if
A <2n+[n/2]-3, crash recovery can be guaranteed. If A <3n—3, then signs can
be attached to the collection of unsigned distances so that crash recovery can be
guaranteed.

Each of the inequalities just derived is conditioned on the correctability
being n—1, but if the correctability is smaller, then crash recovery can always be
guaranteed. Since the condition for correctability less than n—1 is stronger than
both inequalities, we can ignore the distinction and simply use these two

16 Taylor and Seger

inequalities for all lists. Enumerating lists satisfying these conditions is very
tedious, even for small values of n. Omitting one list from each mirror-image
pair, the only two-pointer lists are (1,1), (1,—1), and (1,2), but for three pointers
there are 14 lists.

Again, we restrict our attention to ‘“useful” lists, with no duplicate pointers.
The minimum value of A for such lists is achieved by having the absolute values
of the pointer distances as 1, 1, 2, 2, 3, 3, ... Since the sum of these grows
quadratically with » and the upper bound on A is 3n -3, there is clearly an upper
bound on the number of pointers per node in such lists. A quick calculation

gives n <8, although we eventually discover that there are no such lists with seven
or eight pointers.

The complete set of lists can be found by enumeration of list structures
satisfying the established inequalities. Again omitting mirror-image duplicates,
Table III gives all such lists.

n | Pointer vectors

2 (1 ’_1) (1’2)

3| (@1,-12) (1,-1,3) (1,2-2) (1,2,3)

4| (1,-1,2,-2) (1,-1,2,3) (1,-1,2,-3) (1,-1,2,4) (1,2,-2,3)

5 (1"1’2,"273) (1)_1,27_274) (1’_1’2)3)_3) (1,_172;374)

6 | (1,-12,-2,3,-3) (1,-12,-2,3.4)

Table III: “Useful” lists for crash recovery

The table includes, of course, the k-linked lists for £ <3. Some of the other
lists are probably as useful as the k-linked lists, but for a given number of
pointers, likely none of them would be considered particularly good, other than
for crash recovery.

Crash Recovery 17

References

1.

2.

10.

11.

12.

13.

14.

T. Anderson and P. A. Lee, Fault Tolerance: Principles and Practice,
Prentice-Hall, Englewood Cliffs, N. J. (1981).

J. P. Black, D. J. Taylor, and D. E. Morgan, A compendium of robust data
structures, Digest of Papers: Eleventh Annual International Symposium on
Fault-Tolerant Computing, pp. 129-131 (24-26 June 1981).

J. P. Black and D. J. Taylor, Local correctability in robust storage
structures, CS-84-44, Dept. of Computer Science, University of Waterloo
(December 1984). Accepted for publication in IEEE Transactions on
Software Engineering.

J. P. Black, D. J. Taylor, and D. E. Morgan, A robust B-tree

implementation, Proceedings of the Fifth International Conference on Software
Engineering, pp. 63-70 (9-12 March 1981).

W. H. Kohler, A survey of techniques for synchronization and recovery in
decentralized computer systems, Computing Surveys 13(2) pp. 149-183 (June
1981).

P. C. Lockemann and W. D. Knutsen, Recovery of disk contents after
system failure, Communications of the ACM 11(8) p. 542 (August 1968).

J. I. Munro and P. V. Poblete, Fault tolerance and storage reduction in -

binary search trees, Information and Control 62(2/3) pp. 210-218
(August/September 1984).

S. C. Seth and R. Muralidhar, Analysis and design of robust data structures,
Digest of Papers: Fifteenth Annual International Symposium on Fault Tolerant
Computing, pp. 14-19 (19-21 June 1985).

D. J. Taylor and J. P. Black, A locally correctable B-tree implementation,
CS-84-51, Dept. of Computer Science, University of Waterloo (December
1984). Accepted for publication in Computer Journal.

D. J. Taylor and J. P. Black, Principles of data structure error correction,
IEEE Transactions on Computers C-31(7) pp. 602-608 (July 1982).

D. J. Taylor, D. E. Morgan, and J. P. Black, Redundancy in data
structures: Improving software fault tolerance, IEEE Transactions on
Software Engineering SE-6(6) pp. 585-594 (November 1980).

D. J. Taylor, Robust Data Structure Implementations for Software Reliability,
Ph. D. Thesis, University of Waterloo, Ontario, Canada (August 1977).

J. E. Vandendorpe, A crash tolerant B-tree structure for database retrieval
systems, Ph.D. Thesis, Illinois Institute of Technology (December 1980).

K. Yoshihara, Y. Koga, and T. Ishihara, A robust data structure scheme
with checking loops, Digest of Papers: Thirteenth Annual International
Symposium on Fault Tolerant Computing, pp. 241-248 (June 28-30, 1983).

	

