A Data Structure for
Sparse QR and LU Factorizations !

Alan George 11
Joseph Liu 111
Esmond Ng 11

CS-85-16
June 1985

Tt
Tt

Research supported in part by the Canadian Natural Sciences and Engineering Research Council under grants A8111 and
Ab5509, by the Applied Mathematical Sciences Research Program, Office of Energy Research, U.S. Department of Energy
under contract DE-AC05-840R21400 with Martin Marietta Energy Systems Inc., and by the U.S. Air Force Office of Scien-
tific Research under contract AFOSR-ISSA-84-00056.

Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

Department of Computer Science, York University, Downsview, Ontario, Canada M3J 1P3.



A Data Structure for Sparse QR and LU Factorizations'

Alan George

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Joseph Liu

Department of Computeri Science
York University
Downsview, Ontario, Canada M3J 1P3

Esmond Ng

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

ABSTRACT

For a general m by n sparse matrix A, a new scheme is proposed for the structural
representation of the factors of its sparse orthogonal decomposition by Householder
transformations. The storage scheme is row-oriented and is based on the structure of
the upper triangular factor obtained in the decomposition. The storage of the
orthogonal matrix factor is particularly efficient in that the overhead required is only
m +n items, independent of the actual number of nonzeros in the factor. The same
scheme is applicable to sparse orthogonal factorization by Givens rotations, and also to
the recent implementation of sparse Gaussian elimination with partial pivoting
developed by George and Ng [9]. Experimental results are provided to compare the
sparse Gaussian elimination using the new storage scheme with that proposed in [9].

t Research supported in part by the Canadian Natural Sciences and Engineering Research Council under grants
A8111 and A5509, by the Applied Mathematical Sciences Research Program, Office of Energy Research, U.S.
Department of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems Inc., and
by the U.S. Air Force Office of Scientific Research under contract AFOSR-ISSA-84-00056.



. References

Table of Conteﬁts

N § 4§ oo Yo RE T3 7 Ue 3 « WO PO 1
. A Structural Representation of Sparse Householder Vectors ......ccccevreneennnnenee.. 2
2.1. Background Material ... e rre e s s ene s e e e nee 2
2.2. Structural Characterization .....ccciiiiiiirieicriicrrierreer e ereseeersneeressnsensens 2
. A Data Structure for Sparse Orthogonal Decomposition ......cc.cccccceiiveeniierinanne. 5
3.1. Graph-Theoretic Interpretation .......cccccceceeiiiiiieieiiieiiiineeerrer e reeeennennnes 5
3.2. The Data Structure .......ccovviiiiiiiiicciiiciee e rererraeeeneeeesssesesanseesssnssesensns 7

. A Data Structure for Sparse Gaussian Elimination with Partial Pivoting ... 10

. Implementation of Sparse Gaussian Elimination with Partial Pivoting and

Numerical EXperiments ......ccccccocveiiiiiimiiiiiiiiiiiiniireeesscsneecesnssensessssssesssssenns 12
5.1. ImMpPlementation .....ccciiiiiiiiiiiiiie e reer e e et esnseren e sanneseresennnsennnns 12
5.2. Numerical eXperiments ......cccociiieieriiieriitieiiireeieieteeeemesressieeessssesnsssesssnaesannes 15
R ©7¢3 1 163 L1 153 T « AR U OO 20



1. Introduction

Consider the orthogbnal decomposition of an m by n matrix A by Householder
transformations, with m >n:

A=QO

where Q is m by m orthogonal and R is n by n upper triangular. It is well known
that the orthogonal matrix @ can be represented in a factored form as a sequence of
vectors which will be referred to as Householder vectors. When A is dense, the vectors
are simply stored in the lower trapezoidal part of the storage array. See, for example,
LINPACK [2]. In this paper, we propose a new structural representation for this
sequence of vectors which is appropriate when A is sparse.

The new data structure is row-oriented, and the row structures are shown to be
characterized implicitly by the structure of the triangular factor R. This same data
structure is equally applicable to sparse Gaussian elimination with partial pivoting.
Recently, George and Ng have devised efficient static storage schemes for sparse
Gaussian elimination with partial pivoting [11,9] and sparse orthogonal decomposition
using Householder transformations [10]. The scheme proposed in this paper provides
an alternate storage method for this static representation.

One advantage of this new data structure is its reduction in overhead indexing
storage. More importantly, since the storage method is row-oriented, it is much more
appropriate for the partial pivoting scheme which involves row interchanges and row
modifications. This leads to a more efficient implementation of sparse Gaussian
elimination with partial pivoting.

The original motivation for this paper was to design an efficient data structure for
sparse Gaussian elimination. However, we find that the structure is more easily
understood and better characterized in the context of sparse orthogonal decomposition.
Therefore, our presentation here covers sparse orthogonal decomposition before sparse
Gaussian elimination with partial pivoting.

An outline of this paper is as follows. In Section 2, we provide a brief overview of
sparse Householder transformations, and give a characterization of a structural
representation of sparse Householder vectors. We use this characterization in Section 3
to set up a row-oriented data structure. This structure is appropriate for sparse
orthogonal decomposition using Householder reflections or Givens rotations, when the
orthogonal transformations are to be stored. In Section 4, we briefly review the static
scheme of George and Ng [9] for sparse Gaussian elimination with partial pivoting.
The row storage scheme described for orthogonal decomposition is also applicable in
the static structural representation of the triangular factors obtained in Gaussian
elimination with partial pivoting. In Section 5, we provide experimental results for an
implementation of sparse Gaussian elimination with partial pivoting using this new



_9_

data structure. Its performance is compared with the original scheme developed by
George and Ng [9], and with the Harwell MA28 package [3] for solving sparse
nonsymmetric systems. Some concluding remarks are contained in Section 6.

2. A Structural Representation of Sparse Householder Vectors

2.1. Background Material

We provide a brief overview of results used in this paper, and also define the
necessary terminology. We shall assume that the given m by n (m >n) sparse matrix
A has full column rank. Hence ATA is symmetric and positive definite.

R

0
and R is upper triangular. It is well known that R is mathematically the same as the
Cholesky factor of ATA (apart from possible sign differences in some rows). However,
it is also well known that the structure of the Cholesky factor obtained by a symbolic
factorization of the structure of ATA may overestimate that of R. In [1], Coleman et.
al. have shown that if the matrix A has the strong Hall property, then the symbolic
Cholesky factorization of ATA will correctly provide the structure of R. For the
purpose of this paper, we shall assume that the matrix A has this property so that we
can refer to the structure of the Cholesky factor of ATA and the structure of the
factor matrix R interchangeably. This assumption is reasonable since if the matrix A
does not have this property, it can be permuted to block upper triangular form where
each diagonal block submatrix has the strong Hall property.

Consider the orthogonal decomposition of A into @ , where @ is orthogonal

Consider the structure of the factor matrix R. For each row 7 <n, define y[7] by
v[i] = min {j > | 7:; #0} ;
that is, y[¢] is the column subscript of the first off-diagonal nonzero in row ¢ of R. If
row ¢ does not have any off-diagonal nonzero, we set ¥[¢]=%. (Hence y[n|=n.) We

shall be using the quantities ~[1], 7[2], - -, 7[n] to characterize a structural
representation of sparse Householder transformations.

2.2. Structural Characterization

The use of Householder transformations in the orthogonal decomposition of a
matrix is well known. We review it briefly as follows to establish the necessary
notation. Consider the m by n matrix

d vT

AzuE

’

where u and v are (m—1)- and (n—1)-vectors respectively. Let o be the 2-norm of the
first column of A:



S .

o = (d®+ uTu)?

Assume that o is nonzero. Then, a Householder reflection can be constructed to
annihilate the vector u in the matrix A. Let

d
B=1+—= ,
g4
U
w o= —
04

and
o5 = sgn(d) X o

where sgn(d) is a function whose value is +1 if d is non-negative, and —1 otherwise.
The Householder transformation is then given by

I

B
The vector [w is referred to as the Householder vector.

P =1-

L
B

It is easy to see that after the transformation the matrix becomes
—o;  oT—yT ]
0 E-wy'/B)

where yT=ﬁUT+wTE; that is, yT is a linear combination of vT and the rows from E.
The vector y plays an important role in terms of structural modifications in the vector
vT and the submatrix E.

|

Thus, the matrix A can be reduced to upper triangular form by a sequence of
Householder transformations

PI’P2’ .« .. ’Pn

defined by the corresponding Householder vectors

N

where f; is a scalar, and w; is a vector of size m—i.

In this paper, we are interested in the structure of this set of Householder vectors
when the given matrix A is sparse. For this purpose, we define the following m by n
Householder matriz H to be



B, 0 0 0
By O
wy B3 0
H =
Wo
w3 . . IBn
. w,

In what follows, we shall relate the structure of the matrix H to that of the upper
triangular factor matrix B. We shall also assume that the diagonal elements of A are
nonzero. This assumption is reasonable since the rows of a sparse matrix with full
rank can be reordered so that the diagonal elements of the permuted matrix are
nonzero. See [5] for details. When the diagonal elements of a matrix are nonzero, the
matrix is said to have a zero-free diagonal.

Let us re-examine the effect of applying the Householder transformation P to A in
order to annihilate the nonzero entries below the diagonal in the first column. From
the transformation process, we make the following observations, where we assume
throughout that exact cancellations do not occur. Recall that ~y[¢] denotes the column
subscript of the first off-diagonal nonzero in row ¢ of R.

Observation 1:

Observation 2:

Observation 3:

Observation 4:

The first row of the factor matrix R is given by
Ry, = (_ad ) 'UT_'yT)

The structure of R, is the union of the row structures of A;,
where a;;#0, assuming A has a zero-free diagonal.

7'1,7[1]9&0, and ry,;=0 for 1<5<[1].
If a;;%#0, then
(PA)i,'y[l] #* 0
and
(PA)i,j =0, for 1 <j<v[1]

In fact, the structure of (PA);, is the same as that of Ry,.
Furthermore, the diagonal of PA remains zero-free.

Observation 4 implies that if a;; %0, then after the Householder transformation is
applied to A the next nonzero entry in row ¢ of PA appears in column ~[1]. Since the
algorithm is to be applied recursively to the submatrix £ — wyT/B, observation 4 can
be used repeatedly and the next theorem then follows.



-5-—

Theorem 2.1:  If f, is the column subscript of the first nonzero in row A;,, then
the locations of the nonzeros in row H;, are given by

fosAlfl, Al ot

where t is defined as follows. If + <n, then ¢ =¢; otherwise, ¢ is some column subscript
with y[t]=t. W

3. A Data Structure for Sparse Orthogonal Decomposition

3.1. Graph-Theoretic Interpretation

In this section, we provide a graph-theoretic interpretation of the row structure of
the Householder matrix H defined in the previous section. It is based on the notion of
an elimination tree for the structure of the Cholesky factor of ATA, and is closely
related to the row storage scheme for sparse Cholesky factors developed by Liu [13].

Define an elimination tree for the structure of the Cholesky factor R as follows.
The tree has n nodes, labelled from 1 to n. For each ¢, if y[¢]>7, then node ~[7] is
the parent of node ¢ in the elimination tree. We assume that the matrix ATA is
irreducible, so that n is the only node with y[n]=n and it is the root of the tree. (If
ATA is reducible, then the elimination tree defined above is actually a forest which
consists of several trees.)

Theorem 2.1 says that the structure of each row of the Householder matrix H
corresponds to a chatn in the elimination tree of R. Since the structure of this tree is
already given implicitly in the row structure of R (by the 7’s), it is sufficient to know
for each row of H where the associated chain starts in the tree (that is, the f’s). This
can be viewed as a special case of row structures in [13], where row structures are
generally subtrees of the elimination tree. As we shall see in the next section, it is
useful to know the location of a given node in the elimination tree relative to the root.
Hence we define the level number [; of node ¢ in the elimination tree to be the number
of nodes on the chain joining the root and node 7. The graph-theoretic interpretation
given in this section and the notion of level numbers will be useful in setting up a
mechanism for directly accessing the nonzeros in a row of H.

We conclude this section by providing an example to illustrate the notion of
elimination trees. Consider the following 8 by 6 matrix



It is easy to verify that the structures of its Householder matrix H and its triangular
factor R are given by

X X f X
X X X f
X X x f f
X X R X X
H = X o] — X X
X f f X
X X f
X

Here “f” denotes fill-in. The elimination tree associated with R is given below.

As an example, the column subscripts of the nonzeros in row 6 of H are 1, 3, 4, 6.
Indeed, (1,3,4,6) is a chain in the elimination tree.



3.2. The Data Structure

An efficient way to store the sparse triangular factor matrix R is as follows. The
diagonal elements of R are stored in an array DIAG. The off-diagonal nonzeros in the
matrix R are stored by rows in a main storage vector RNZ and an accompanying index
vector XRNZ is used to point to the beginning of each row in the storage array. The
row structure of R is represented using the compressed subscript structure which is
described below. The compressed subscripts are stored in an integer vector NZSUB,
and an accompanying index vector XINZSUB is used to point to the beginning of the
subseript sequence for each row of R. This scheme is due to Sherman [14]. Readers
are referred to [7] for details. It should be pointed out that the values of ~[¢] can be
retrieved quite readily from the compressed subscript structure. There are efficient
algorithms for generating the vector XRNZ and the compressed subscript structure.
For example, the symbolic factorization algorithm described in [9], which applies
directly to A, can be simplified for this purpose. Alternatively, symbolic factorization
algorithms for sparse symmetric positive definite matrices, such as that described in
Chapter 5 of [7], can be applied to ATA. However, experience has shown that the
latter approach is usually more time consuming and requires more storage.

The result in Theorem 2.1 and our discussions in Section 3.1 suggest a simple data
structure to store the Householder vectors used in triangularizing the given sparse
matrix A. The diagonal elements of the Householder matrix H are stored in a one-
dimensional array HDIAG. The off-diagonal nonzeros in the Householder matrix H
can be stored by rows in a one-dimensional array HNZ. We shall assume that the
nonzeros in HNZ are stored in ascending order of their column subscripts. This turns
out to be easy to arrange.

We need only two additional overhead integer vectors HFIRST and LEVEL,
where HFIRST[¢] keeps the column subscript of the first nonzero in row ¢ of the
matrix H (or equivalently, in row ¢ of the original matrix A) and LEVEL[{] is the level
number [; of node ¢ in the elimination tree of the triangular factor R. Thus, the
amount of overhead storage for the Householder matrix is m +n integer locations.

As an example, we have provided in Figure 3.1 the storage representation of the
Householder matrix H and the upper triangular factor R given in Section 3.1. The
values of ~[#] are also given for clarity; however, it should be noted that they are not
explicitly stored in the overall storage scheme since they can be obtained directly from
the row structure of the triangular factor R.

For example, to retrieve the structure of row 6 of H, we note that HFIRST[6]=1
so that the nonzero subscripts are given by

HFIRST[6]=1, y[1]=3, 7[3]=4, ¥[4]=6



5 3 4 4 6 6 6
LEVEL 4 3 3 2 2 1
HFIRST 1 2 1 2 5 1 3 2
HDIAG hiy  hoy  hgs  hyy  hss  hes

HNZ “hgy  hg  hgy  hes hes hqzs hqy  heg  hgy  hgy  hg

DIAG it Teg T3z T44  Tss  Tes

RNZ '3 Tie Toga Toe T34 T3 T Tse
XRNZ 1 3 5 7 8 9 9
NZSUB 3 6 4 6

XNZSUB 1 3 3 4 4 4 5

Figure 3.1: Storage representation of the Householder matrix H
and the triangular factor R.

Sometimes it is necessary to access an individual nonzero in the Householder
matrix H. An example is when we have to put the nonzeros of the original matrix A
into the appropriate locations in the storage array HNZ or RNZ. If the nonzero is in
the upper triangular portion of A, we can use the information in the compressed
subscript structure, together with the array XRNZ, to put the nonzero in the
appropriate location in the storage array RNZ. However, if the nonzero is in the lower
trapezoidal portion of A, it is slightly more complicated to find the correct location in
the storage array HNZ where the nonzero should be, since we do not have the column
subscripts explicitly. Suppose for the moment that we have an index array XHNZ
where XHNZ[i] points to the beginning of row ¢ of H in the storage array HNZ.
Assume again that ATA is irreducible. Thus, the elimination tree for the structure of
R has exactly one tree and n is the only root of the tree. Now using the observation
that the locations of the nonzeros in row ¢ of H form a chain in the elimination tree
(with starting node f; and terminating node minf{i,n}), the location for nonzero a,;
(¢>7) must be HNZ[p], where



—9-

p = XHNZ[i] + (LEVEL|f;] — LEVEL[j))

Here LEVEL|f;|—LEVEL][j] is the distance between node j and node f; (the first
nonzero in row %) in the elimination tree. Note that we do not really have to include
XHNZ in the storage scheme since it can be generated very easily from the
information in HFIRST and LEVEL, as the following discussion shows. Let

XHNZ[1]=1. Using Theorem 2.1 and the discussion in Section 3.1 again, it is easy to
see that

XHNZ[i] + (LEVEL[f;] — LEVEL[]) , for 1 <0< n
XHNZ[i] + (LEVEL|f;] — LEVEL[n]+1) , otherwise

b

XHNZ[i+1] = {

When ATA is reducible, the definition of XHNZ[¢+1] will be slightly different for
t=n+1, * -, m.

With the use of this row-oriented storage representation for the Householder
matrix H, the sequence of Householder transformations can be stored in factored form.
To use it effectively, we need to adapt the computation to this data structure. There
is a version of the Householder transformation described in [8] which consists of only

row operations. That computational scheme is appropriate for the data structure
proposed in this paper.

Orthogonal factorization can be used to solve overdetermined systems of linear
equations in the least squares sense

Az = b

By storing the sequence of Householder transformations, least squares problems with

the same coefficient matrix A but different right hand side vectors & can be solved
effectively.

It is important to point out that the data structure described here is also
appropriate for computing orthogonal decompositions using Givens rotations. If each
plane rotation is represented by a single real number as proposed by Stewart [15],
George and Ng [9] have shown that there is always enough room in the main storage
vector HNZ to store all the rotations required to reduce A to R. In this case, the
storage scheme may overestimate the number of rotations actually required.



— 10 —

4. A Data Structure for Sparse Gaussian Elimination with Partial Pivoting

We now turn to consider the problem of computing a triangular decomposition of
an n by n, sparse, nonsymmetric and nonsingular matrix A using Gaussian elimination
with partial pivoting. Such a decomposition is useful in many applications, the most
important being the solution of linear systems

Az = b
Following [9], we denote the triangular decomposition by
A = P1M1P2M2 T Pn—an—lU ’

where P is a permutation matrix that performs the row interchange at step k of the
partial pivoting algorithm, M, is an elementary lower triangular matrix with the k-th

column containing the multipliers used at step k, and U is the final upper triangular
matrix.

In [11], George and Ng have provided an implementation of sparse Gaussian
elimination with partial pivoting. Their scheme determines from the structure of the
Cholesky factor of ATA a data structure that will accommodate the nonzeros in the
factors M, and U for all possible partial pivoting sequences. Such a data structure is
said to be static since storage allocation and reorganization are not needed during the
numerical computation. Needless to say, such a static data structure necessarily
overestimates the actual structures of M, and U. However, it has the distinct
advantages that the data structure is independent of the numerical values of A (and of
the partial pivoting sequence), and overhead in performing storage allocation and
reorganization is eliminated during the numerical computation phase. Surprisingly,
even with the overestimation of nonzeros in the actual factors M}, and U, the approach
is demonstrated to be effective and compares quite favorably with existing
implementations of sparse Gaussian elimination with some form of pivoting for certain
classes of problems. In [9], George and Ng further improve the static scheme by
providing a new way to predict the structures of M;. This results in a much tighter
data structure for M, (and occasionally for U as well). This makes the approach
which uses static storage schemes even more attractive.

In what follows, we briefly review the new scheme proposed by George and Ng,
and show that the structural modifications one has to apply to A are the same as those
in computing the orthogonal decomposition of A using Householder transformations.
Hence the data structure we have described in Section 3.2 is equally applicable to
sparse Gaussian elimination with partial pivoting. We shall assume that the matrix A
is irreducible and has a zero-free diagonal.

As in Section 2.2, we partition A into



where u and v are (n—1)-vectors. In [9], George and Ng observe that, regardless of the
actual row interchange at step 1, the final structure of the pivot row (or row 1 of U)
must be contained in the structure of the following row vector

(d , v7) = (d , vT+u"E)

Thus, instead of considering A at step 1, they propose to consider applying one step of
Gaussian elimination without row interchange to the structure of the following
modified matrix

_ d ot
A = u FE

1 o||ld o __

— _ == MA

u/d I}lo E'-—uvT/d o
It is clear that the structure of M, must contain that of M, and the structure of the
matrix (E—ut’/d) should also contain the structure of the matrix that would result
from modifying E in Gaussian elimination with partial pivoting, irrespective of the
actual row tnterchange that occurs. One of the attractive features of this approach is

that the structure of the matrix (E—uET/d) can be computed readily from the
structure of A without knowing the actual pivoting sequence.

If the same idea is applied recursively to the structure of (E—uﬁT/d), we would
obtain a lower triangular matrix, say L, and an upper triangular matrix, say U, such
that the structure of U is contained in that of U, and the structure of column k of M,
is contained in that of column k of L, regardless of the partial pivoting sequence. An
efficient algorithm has been given in [9] for determining the structures of L and U.
Now from the structures of L and U, a static storage scheme that exploits the sparsity
of L and U can then be set up for computing a triangular decomposition of A using
partial pivoting. In [9], the structure of L (and hence the structures of M,) is
represented by columns using a compressed subscript structure.

1 ﬁ
It is not hard to see that the structure of [ /d] is identical to that of , the

Householder vector at step 1 in Section 2.2, and the structure of (E—uv’ /d) (or A is
also identical to that of (E—wy%/B) (or PA) in Section 2.2. That is, structurally, L
and U are identical respectively to the Householder matrix H and the upper triangular
factor R described in Section 2.2. (Of course, here we assume both H and R are n by
n.) Thus, it should be clear that the row-oriented storage scheme described in Section
3.2 for H is also applicable for L, and no compressed subscript structure is required.
Experimental results in [9] also provide the number of compressed subscripts for L.



- 12 —

This will represent the saving in terms of overhead storage if the factor L is
represented in the same way as the Householder matrix H. Typically, it ranges from
1/3 to 1/2 of the subscript storage for U.

The actual saving in subscript storage for L is quite modest, in relative terms. A
more important advantage of this storage scheme is that it can be adapted well to the
numerical factorization phase with partial pivoting. Since partial pivoting involves row
interchanges, the storage scheme described in this paper, which is row-oriented, allows
a simple implementation. Furthermore, after the selection of the pivot row, the
submatrix update operation

E —uwl/d

can be organized as a sequence of row operations, which will be appropriate for this
storage scheme. The next section will provide experimental results on the savings in
factorization time.

5. Implementation of Sparse Gaussian Elimination with Partial Pivoting and
Numerical Experiments

5.1. Implementation

In this section, we describe in detail an implementation of sparse Gaussian
elimination with partial pivoting using the row-oriented storage scheme proposed in
this paper. Some numerical experiments and comparisons with the implementation of
George and Ng [9] and MA28 [3] will be presented in the next section.

As we have mentioned in the previous section, the data structure required for L
and U is identical to that for the Householder matrix H and the upper triangular
factor R, and it has been described in detail in Section 3.2. The only difference is
that, in the case of Gaussian elimination, we do not need the array HDIAG since all
the diagonal elements of M) are equal to 1. This data structure can be set up
efficiently using a simplified version of the symbolic factorization algorithm described
in [9].

Now let us consider the implementation of the numerical factorization in detail.
In order to implement partial pivoting, we have to be able to search for the pivot and,
after finding the appropriate pivot, to perform the row interchange and row
modifications efficiently. Note that all the candidate pivots are below the diagonal and
in the same column. That is, they are in L. However, since the proposed storage
scheme for L is row-oriented, these candidate pivots are sprinkled in the data structure
for L. This raises two problems. First, how do we identify the candidate pivot rows at
a given step, and second, how do we locate the candidate pivot in a candidate pivot
row in the data structure?



- 13 -

Without loss of generality, let us consider the first step of Gaussian elimination
with partial pivoting. First, for 1<k <n, define Z, as follows.

Zy = {ilfi=k}

(Recall that f; is the column subscript of the first nonzero in row ¢ of A.) That is, Z
is the set of (indices of) rows such that their first nonzeros are all in column k.
Clearly, at the first step of Gaussian elimination, the candidate pivot rows are given by
the rows in Z;. As George and Ng have shown in [9] and as stated in Theorem 2.1,
after step 1, the next step in which these rows (except row 1) will again be used as
candidate pivot rows has to be step [1]. Thus, all we need to do is to “merge” Z; and
Z,,[l] after step 1; that is,

Zyy) — Zq U % — {1}

This is done at each step. That is, at the end of step k, we replace Z (k] by
Zyie) U Zk—{k}. Thus, Z, will contain the correct indices of candidate pivot rows at
the beginning of step k. These sets Zy, Zy, ***, Z, can be maintained efficiently
using linked lists. In our implementation, we have two integer vectors LNKBEG and
ROWLNK for this purpose. At any time, the elements in Z), are given by

LNKBEGIk] ,
ROWLNK [LNKBEGIk]],
ROWLNK [ROWLNK [LNKBEG[k]]] ,

If p is the last row in the set, then ROWLNK [p|=0. The linked list of candidate pivot
rows allows the search for the pivot row to be carried out extremely efficiently. The
merging of two sets can also be performed easily. All we have to do is to modify the
values of ROWLNK [p] and LNKBEG|[y[k]]. Note that at the beginning of the
elimination process, LNKBEG and ROWLNK can be generated very easily using the
information in the HFIRST vector.

It is also easy to locate the candidate pivot in a candidate pivot row in the row-
oriented data structure, as the following discussion shows. As in Section 3.2, we shall
assume that the nonzeros in a row of L are stored in the storage array in ascending
order of their column subscripts. Now before the elimination begins, we generate a
vector NXTNZ of integers, where NXTNZ|k] points to the beginning of row k of L.
The initial content of NXTNZ is identical to that of the vector XHNZ described in
Section 3.2 and can be constructed from HFIRST and LEVEL. Thus, the candidate
pivots at step 1, for example, are found in HNZ[NXTNZ[:||, where ¢ €Z,. After the
first step of elimination, we simply increment NXTNZ[:] by 1, for ¢ €Z}, to indicate
where the nonzero in row ¢ to be used next time is. (Alternatively, one can use the



— 14 —

index vector XHNZ and the integer vectors HFIRST and LEVEL to compute the
location of a certain nonzero. However, experimental results have shown that this
approach is much more time consuming than the one described above.)

Finally, it is important to point out that it is possible to exploit completely the
sparsity of the pivot row when we perform row modifications. More specifically, if we
are at step k of the elimination process and if row ¢ is a row to be modified, then we
only have to modify column j of row 7, where u; is actually nonzero. Th'f can be
achieved by maintaining a list of locations of the actual nonzeros in row k£ of U. In our
implementation, we use an integer vector OFFSET for this purpose. (Its name comes
from the fact that we keep the location of each real nonzero in row k of U relative to
the first predicted nonzero in that row.) As we shall see in Section 5.2, there is indeed
a significant reduction in factorization times in the new implementation where all the
zeros in the pivot rows can be exploited.

The discussion above shows that we need 6 overhead integer vectors (HFIRST,
LEVEL, LNKBEG, ROWLNK, NXTNZ, and OFFSET) in our implementation using
the new row-oriented data structure. In an implementation of the approach due to
George and Ng [9], these 6 integer vectors are not required, but we need two floating-
point temporary arrays for accumulating intermediate results during the numerical
factorization. Furthermore, we also need the index vector into the nonzeros of I: and
the space for the compressed subscript structure for L (which includes the space for
the compressed subscripts and its index vector).

Let ¢ denote the number of compressed subscripts for L. If we assume that one
integer location and one floating-point location have the same number of bits, then the
number of locations required by the overhead integer vectors in our implementation
that are not in [9] is 6n. Similarly, the number of locations required by the overhead
integer and floating-point vectors in [9] that are not in our implementation is
¢+4n+2. Hence the ‘“‘saving” in storage in our implementation using the row-
oriented data structure is

o+ 2—2n

Thus, there is a real saving if ¢ (the number of compressed subscripts for 1:_,—) exceeds
2n.

The situation is quite different if a floating-point location and an integer location
do not have the same number of bits, and if the machine (such as some of the IBM
machines) allows the use of ‘“‘short” and “long” integers. Suppose a floating-point
location can hold &g short integers or & long integers. Typically, {s=2 and =1 if
single precision arithmetic is used. When double precision arithmetic has to be used,
£s=4 and & =2. If n is not too big (that is, if n can be represented as a short integer),
then the vectors HFIRST, LEVEL, LNKBEG, ROWLNK and OFFSET can all be
short integer arrays, but NXTNZ has to be a long integer array since the number of



~ 15—

predicted nonzeros in L may be so large that the pointers cannot be represented as
short integers. By the same token, subscripts can be represented by short integers, but
index vectors are usually long integer arrays. Hence, the overhead space required in
our proposed scheme is

n n
5 X + ,
k &
while the overhead space required in [9] is
oxn + [ |4 ax [t
€s &,

If single precision arithmetic is used, and if £g=2 and & =1, then our scheme always
requires approximately (n+4¢)/2 fewer floating-point locations than the scheme in [9].
On the other hand, suppose we use double precision arithmetic, and =4 and & =2.

Then the saving in our new proposed scheme will be approximately n +¢/4 floating-
point locations.

Backward substitution can be implemented very efficiently since the upper
triangular matrix U is represented by rows. However, implementation of forward
substitution is a bit awkward since we want to access of nonzeros of L by columns, but
they are stored by rows. However, it turns out that we can again use the vectors
LNKBEG, ROWLNK and NXTNZ to facilitate accessing the nonzeros, although the
time required to perform forward solution is still larger than those required when the
nonzeros are stored by columns.

5.2. Numerical experiments

We have implemented sparse Gaussian elimination with partial pivoting using the
row-oriented storage scheme proposed in this paper for solving sparse nonsymmetric
linear systems

Az = b

The objective of this section is to present some numerical experiments to report on its
performance, and to compare it with two other approaches for solving the same class of
problems. The two other approaches are an implementation of the scheme proposed by
George and Ng [9] and the Harwell package MA28 [3]. In the following discussion, the
Harwell package will simply be referred to as MA28. The implementation of [9] and
the implementation described in Section 5.1 will respectively be referred to as OLD-DS
and NEW-DS. Here “DS” stands for ‘‘data structure”. Following [9], in the
implementation of OLD-DS and NEW-DS, we have preprocessed each coefficient
matrix A twice. First, we find a row permutation Q, using an algorithm from [5] so
that the reordered matrix Q,A has a zero-free diagonal. Second, we find a minimum



— 16 —

degree ordering P, for ATA and then apply the ordering symmetrically to the columns
and rows of @Q,A. Experience shows that this tends to minimize the number of
nonzeros in L and U for the matrix P,Q,APF. The minimum degree algorithm used in
our experiments is due to Liu [12]. Since dense rows of A tend to destroy the sparsity
of ATA, and hence the quality of the minimum degree ordering, any rows with more
than 100 nonzeros were withheld from A when the minimum degree ordering was
determined. The reader is referred to [9] for more details. Thus, we are effectively
solving the following permuted system of linear equations

() (n2) - (r)

It should be noted that the times required to find @, and P,, which are usually small
compared with those for the numerical factorization, have not been reported here.

All experiments were carried out on a DEC VAX 11/780 computer running UNIX.
The programs were written in ANSI standard FORTRAN using single precision
floating-point arithmetic, and were compiled using the Berkeley FORTRAN compiler
(f77). Throughout this section, storage requirements are expressed in terms of the
number of floating-point locations required and execution times are in seconds. (One
floating-point location and one integer location have the same number of bits.)

There were twenty-nine test problems used in our experiments. These problems
arise from typical scientific and engineering applications, and were kindly provided by
Iain Duff, Roger Grimes, John Lewis and Bill Poole [6]. Problems 1-14 were chemical
engineering problems, problems 15-20 were supplied by Francois Cachard from
Grenoble, and problems 21-29 were mathematical programming problems and survey
problems. Problem 29 has the same structure as problem 28, and its numerical values
were generated using a uniform random number generator. The characteristics of the
test problems are summarized in Table 5.1. The right hand side vector b for each
linear system was chosen so that the solution vector consisted of all ones.

In Tables 5.2 and 5.3, we have provided the results of the experiments for OLD-
DS and NEW-DS. The corresponding numerical results for MA28 are given in Table
5.4. Note that MA28 uses the technique of threshold pivoting which, depending on a
so-called threshold parameter between 0 and 1, allows the multipliers to be larger than
1 in magnitude [3]. Loosely speaking, when the threshold parameter is small, MA28
tends to choose the pivots to preserve sparsity, and when the threshold parameter is
large, MA28 will tend to choose pivots to enhance numerical stability. Thus, if the
threshold parameter is equal to 1, the package effectively performs partial pivoting. In
our experiments, we have tried using 0.1 and 1.0 as the threshold parameters. In the
tables, ‘“‘error’ is the error in the computed solution measured using the /_snorm. For
MAZ28, execution time includes the time to factor the coefficient matrix and the time to
solve a linear system using the triangular factors.



— 17 —

Based on the results of the numerical experiments in Tables 5.2-5.4, we make the

following observations and remarks.

(1)

(2)

(4)

Symbolic factorization in NEW-DS is more efficient than that in OLD-DS, both in
storage requirements and execution times. This is expected since the compressed
subscript structure for the lower triangular matrix L is not required in NEW-DS,
and hence need not be generated. The symbolic factorization algorithm for
NEW-DS is simpler than that for OLD-DS.

For the numerical computation phase, both NEW-DS and OLD-DS require about
the same amount of space. Although a compressed subscript structure is not
required for the lower triangular matrix L in NEW-DS, extra integer arrays are
needed for efficient implementation of numerical factorization (and numerical
triangular solution). As a result, the overall storage requirement in NEW-DS may
turn out to be larger than that in OLD-DS. This is found to be the case in some
instances. In Section 5.1, we have shown that NEW-DS will require less space for
numerical factorization than OLD-DS if the number of compressed subsecripts for
L in OLD-DS exceeds 2n. As we can see from Tables 5.2 and 5.3, NEW-DS
indeed requires less space than OLD-DS when the number of compressed
subscripts for Lis large.

The numerical experiments confirm that NEW-DS is more efficient than OLD-DS
in terms of factorization times in almost all cases. This is partly due to the fact
that the data structure proposed in this paper is well suited for the row-oriented
operations. The reduction in execution times is also due to the ability to exploit
completely the sparsity of the pivot row, as explained in Section 5.1.

The time required to compute the solution using the triangular factors is in
general larger in NEW-DS than in OLD-DS. This is because L is now represented
by rows in NEW-DS, but the nonzeros have to be accessed by columns in the
forward substitution (since we only store the k-th column of M;). In OLD-DS, L
is represented by columns. Thus it is more complicated to access the nonzeros in
the lower triangular portion in NEW-DS than in OLD-DS. However, from the
numerical results, we should note that the reduction in factorization time is in
general much larger than the increase in solution time so that the total time

required for the numerical computation phase remains smaller in NEW-DS than in
OLD-DS.

Although the increase in solution time in NEW-DS is small compared to the
reduction in factorization time, this increase will become significant if we have to
solve several linear systems that have the same coefficient matrix A but different
right hand side vectors 6. In this case, it may be worthwhile to postprocess the
nonzeros in L in order to speed up forward substitutions. Recall that Gaussian
elimination of A with partial pivoting may be stated as follows



(6)

(7)

~- 18 —

PA = LU ,
where
P = P, P, o PP
and
L = P(P\MPyMy - - P, M,_,)
Thus, after the triangular factors M;, M,, ---, M,_; and U have been

computed, we may use the pivoting information (Py, Py, -, P,_;) to
reconfigure the structure of L so that we obtain the off-diagonal nonzeros of L
stored by rows rather than those of (M;+My+ -+ +M,_;—(n—1)I). Then
both forward and backward solutions can be carried out very efficiently.
Alternatively, we can generate the compressed subscript structure for the columns
of L after My, Ms, -+, M,_; have been computed. Then the off-diagonal
nonzeros of L can be accessed efficiently by columns in the forward solution. We
are currently investigating how these two approaches can be implemented
efficiently and how they compare with each other in terms of execution times.

NEW-DS (and OLD-DS occasionally) competes well with MA28 both in terms of
storage requirements and execution times. The maximum amount of space
required by NEW-DS (which wusually occurs in numerical factorization and
solution) is, in most cases, about the same as that required by MA28, but the total
time required for the symbolic factorization and numerical computation by NEW-

DS (excluding the times for finding @, and P,) is usually smaller than that
required by MAZ28.

It should be pointed out that the storage requirement reported in Table 5.4 is the
mainimal amount of space required by MA28 to solve a problem. It is well known
that if only the minimal amount of space is used, the execution time will be large
due to the necessity to reorganize the data structure during the numerical
computation. See [4,11] for more on this point. Hence extra storage is usually
allocated in an attempt to prevent storage reorganization from occurring too
frequently and hence to reduce the execution time required. In Table 5.4, the
execution times reported were the times required when extra storage had been
provided so that storage reorganization did not occur.

Our experiments show that threshold pivoting with small threshold parameter
does not necessarily produce a solution that is as accurate as that obtained with
partial pivoting. The results also show that increasing the threshold parameter
usually increases both the storage requirement and execution time. Similar
observations have been made elsewhere, such as in [11].



- 19 —

(8) For problem 28, it is interesting to note that MA28 performed much better when
the threshold parameter was 1.0 than when the parameter was 0.1. This is also
the only problem in our test set for which MA28 with partial pivoting (that is, the
threshold parameter was 1.0) performed significantly better than both OLD-DS
and NEW-DS in terms of execution time. The following discussion provides an
explanation. The coefficient matrix A in problem 28 is a banded matrix with
bandwidth close to 200. All off-diagonal nonzeros have value 1.0. If we denote
the number of off-diagonal nonzeros in row k by 8, then the value of ay; is given
by

e = —max{@k,l}

When we apply Gaussian elimination with partial pivoting to the original
coefficient matrix, only three row interchanges occur. This implies that the k-th
diagonal element at step k& usually has the largest magnitude. Now in MA2S, if
the threshold parameter is set to 1.0, the package will choose pivot elements to
enhance numerical stability. That is, in most cases, the diagonal elements are the
only suitable pivots. As a result the banded structure of the original matrix A
will likely be preserved. However, when the threshold parameter is 0.1, there may
be several nonzeros that could be chosen as pivots. Now MA28 chooses the one to
preserve sparsity. This may destroy the original banded structure of A and

increase the bandwidth. Thus the cost of factoring A will subsequently be
increased.

The explanation above is further supported by the results for problem 29. (Recall
that problems 28 and 29 have the same structure but different numerical values.
The numerical values for problem 29 were random numbers between 0 and 1.) In
problem 29, since the numerical values are random numbers, it is unlikely that the
k-th pivot (in partial pivoting) will lie on the diagonal. Hence, more row
interchanges are likely to occur in this case when partial pivoting is employed.
The banded structure will therefore be destroyed and more time will probably be
needed to search for the appropriate pivots. This is confirmed by the numerical
results. In fact, substantially more time was needed to solve the problem when
the threshold parameter was 1.0 than when it was 0.1.

Note that, for problem 29, the factorization time is larger in NEW-DS than in
OLD-DS. In fact, problem 29, which is a problem with random numerical values,
is the only problem in our test set where NEW-DS behaves anomalously in terms
of factorization time. This is apparently related to the number of row
interchanges performed. Other experiments using matrices which differ from that
in problem 29 only in (random) numerical values show that NEW-DS can be faster
than OLD-DS in the numerical factorization phase. Also, it should be pointed out
that random test problems are usually not capable of revealing the behavior of
algorithms on practical problems.



— 920 —

(9) The results for problems 28 and 29 also illustrate the fact that data structures for
OLD-DS and NEW-DS are insensitive to numerical values and pivoting sequences.

Recall that the structure of L and U depends on the structure of A (and P,).
Since the structure of A may be quite different from that of AT, it may sometimes be
more beneficial to work with AT than A. More specifically, one may alternatively use
Gaussian elimination with partial pivoting to compute a triangular factorization of
JSCQ,AT]?’E , Where Qr is chosen so that QrAT has a zero-free diagonal, and 15c is a
minimum degree ordering for AAT. Then instead of solving the linear system Ax=b,
one may solve the following system

s apar) (a4 A
(poad?#t) (R0,0) = (2o)
The important observation is that one can decide whether to use A or AT by first
applying a symbolic factorization to both A and AT to determine how much space is
needed for the numerical computation in each case. This is quite reasonable since the

symbolic factorization algorithm for either OLD-DS or NEW-DS is very efficient. A
similar suggestion has been made in [9].

6. Conclusion

In this paper, we have proposed a data structure for sparse orthogonal
decomposition using Householder transformations and sparse Gaussian elimination with
partial pivoting. The new data structure is row-oriented and is suitable for the two
problems since the numerical computations can be described as row operations. Also,
as in [9], the data structure is static since storage allocation and reorganization are not
necessary during the numerical computation. This allows the numerical computations
to be implemented efficiently. Another advantage is that the data structure is
independent of the numerical values of A (and the pivoting sequence in the case of
sparse Gaussian elimination with partial pivoting), hence the data structure can be
used to solve problems in which the structure of A is fixed, but the numerical values
vary. Numerical experiments are presented to show that an implementation of sparse
Gaussian elimination with partial pivoting using the new row-oriented data structure
indeed competes well with a static storage scheme proposed by George and Ng [9] in
terms of storage requirements, and our new scheme is superior in terms of factorization
times. We have also demonstrated that the implementation using the new static data
structure is comparable to one in which storage allocation and reorganization are
performed during the numerical computation, so that all sparsity is explicitly exploited.
In some cases, our static implementation is more efficient than the dynamic
implementation.



- 921 -

number number of nonzeros number of nonzeros
problem order of per row per column comment
nonzeros minimum maximum minimum maximum
1 167 507 1 9 1 19 rigorous model of a chemical stage
2 381 2157 1 25 1 50 multiply fed column, 24 components
3 67 294 1 6 2 10 cavett problem with 5 components
4 656 2854 1 12 1 35 16 stage column section, some stages simplified
5 479 1910 1 12 1 35 8 stage column section, all sections rigorous
6 497 1727 1 28 1 55 rigorous flash unit with recycling
7 1505 5445 1 12 1 27 11 stage column section, all sections rigorous
8 2021 7363 1 12 1 26 15 stage column sections, all sections rigorous
9 989 3537 1 12 1 26 7 stage column section, all sections rigorous
10 207 572 1 8 1 ] heat exchange network
11 59 312 2 7 1 12 cavett’s process
12 137 411 1 1 8 ethylene plant model
13 425 1339 1 10 1 10 nitric acid plant model
14 225 1308 1 12 1 23 hydrocarbon separation problem
15 115 421 2 7 2 7 unsymmetric matrix from Grenoble
16 185 1005 3 7 3 7 unsymmetric matrix from Grenoble
17 216 876 2 5 2 5 unsymmetric matrix from Grenoble
18 343 1435 2 5 2 ) unsymmetric matrix from Grenoble
19 512 2192 2 5 2 5 unsymmetric matrix from Grenoble
20 1107 5664 2 7 2 6 unsymmetric matrix from Grenoble
21 113 655 1 20 1 27 unsymmetric pattern supplied by Morven
Gentleman
22 199 701 1 6 2 9 unsymmetric pattern of order 199 given by
Willoughby
23 130 1282 1 124 1 124 unsymmetric matrix from laser problem given
by A.R. Curtis
24 663 1712 1 426 1 4 unsymmetric basis from LP problem (Shell)
25 363 3279 1 33 1 34 unsymmetric basis from LP problem (Stair)
28 822 4841 1 304 1 21 unsymmetric basis from LP problem (BP)
27 541 4285 1 11 5 541 unsymmetric facsimile convergence matrix
28 991 6027 1 16 1 16 unsymmetric matrix from Philips Ltd.,
supplied by J.P. Whelan
29 991 6027 1 16 1 16 same as problem 28, but numerical values are
random numbers

Table 5.1:

Characteristics of test matrices.




—929

symbolic factorization

numerical solution

number of number of
problem . . fact solve
storage | time subscripts NONZETos storage error
lower | upper | lower upper time time
1 3720 0.200 173 524 349 830 3717 0.217 | 0.033 | 2.200(—1)
2 17897 1.033 | 2462 6544 8780 17539 39520 12.800 | 0.567 | 1.766(—3)
3 1953 0.100 171 385 426 843 2566 0.250 | 0.033 | 2.742(—6)
4 20140 1.100 | 1579 4988 5358 11794 30928 6.483 | 0.417 | 4.292(-2)
5 13771 0.800 | 1158 3040 3698 7203 20372 4050 | 0.283 | 1.176(—1)
6 12082 0.750 558 2101 1447 5748 15325 1.183 | 0.217 | 1.860(—2)
7 38542 2.100 | 2464 7123 4688 12221 43055 3.633 | 0.550 | 2.629(—1)
8 52017 2.800 | 3328 9726 6059 16347 57695 4.700 | 0.733 | 1.429(—1)
9 25026 1.317 | 1523 4556 2771 7565 27298 2.000 | 0.350 | 6.625(—2)
10 4404 0.217 180 591 321 845 4218 0.200 | 0.033 | 5.735(—4)
11 1570 0.083 81 152 190 458 1534 0.100 | 0.017 | 2.157(—3)
12 2810 | 0.133 48 291 61 309 2220 0.067 | 0.017 | 4.768(—7)
13 10640 | 0.517 664 2193 1531 3561 12628 0.633 | 0.183 | 7.749(—6)
14 6645 0.367 347 977 739 1964 6506 0.417 | 0.083 | 6.065(—4)
15 3393 0.183 372 794 904 1697 5036 0.783 | 0.050 | 4.530(—6)
16 7106 0.367 925 1946 2711 5083 12704 2.900 | 0.183 | 3.132(-3)
17 7084 0.350 880 1855 3184 5828 14127 3.867 | 0.217 | 2.265(—6)
18 12105 0.633 | 1784 3330 7573 13401 29865 11.367 | 0.483 | 7.987(—6)
19 18911 1.167 | 2890 5488 | 15735 27923 .|| 57672 34.283 | 0.983 | 7.749(—6)
20 49798 3.200 | 9794 | 15387 | 78081 | 137358 || 252801 | 269.400 | 4.600 | 9.675(—2)
21 3351 0.183 111 569 313 1322 3562 0.433 | 0.050 | 1.629(—4)
22 5393 | 0.267 440 1158 960 2194 6945 0.917 | 0.083 | 1.070{-—3)
23 4661 0.567 272 260 2720 7763 12449 2.517 | 0.217 | 3.906(—2)
24 13168 1.017 429 1354 617 2216 11913 0.350 | 0.150 | 0.000(+0)
25 15337 | 0.783 800 3618 2562 6972 17949 2767 | 0.233 | 2.431(—3)
26 27729 1.717 | 1875 6303 6889 17995 42108 8.183 | 0.633 | 4.913(-3)
27 23868 1.250 | 2167 6634 7610 16600 38966 10.950 | 0.567 | 5.875(—2)
28 46542 2700 | 7681 | 14910 | 70772 | 119646 || 223914 | 334.400 | 4.233 | 1.383(—5)
29 46542 2.667 | 7681 14910 | 70772 | 119646 || 223914 | 373.483 | 3.900 | 2.006(—4)
Table 5.2: OLD-DS using A.




— 923 -

symbolic factorization

numerical solution

number of number of
problem . . fact solve
storage | time subscripts nonzeros storage error
upper lower | upper time time
1 2704 0.133 524 349 830 3876 0.100 | 0.067 | 1.603(—1)
2 12514 0.717 6544 8780 17539 || 37818 8.167 | 0.683 | 8.606(—4)
3 1352 0.083 385 426 843 2527 0.150 | 0.050 | 2.742(—6)
4 14395 0.783 4988 5358 11794 30657 3.233 | 0.517 | 4.348(-2)
5 9743 0.533 3040 3698 7203 20170 2.150 | 0.367 | 6.593(—2)
6 8801 0.500 2101 1447 5748 15759 0.533 | 0.250 | 1.860(—2)
7 27621 1.467 7123 4688 12221 43599 1.717 | 0.733 | 2.655(—1)
8 37292 2.067 9726 6059 16347 58407 2.233 | 0.917 | 1.336(—1)
9 17986 0.967 4556 2771 7565 27751 0.983 | 0.433 | 6.250(—2)
10 3236 0.133 591 321 845 4450 0.100 | 0.067 | 2.558(—3)
11 1057 0.067 152 190 458 1569 0.067 | 0.033 | 2.157(—3)
12 2075 0.083 291 61 309 2444 0.033 | 0.033 | 4.768(—7)
13 7785 0.367 2193 1531 3561 12812 0.267 | 0.183 | 7.987(—6)
14 4538 0.250 977 739 1964 6607 0.267 | 0.117 6.065(—4)
15 2368 0.133 794 904 1697 4892 0.583 1 0.100 | 4.530(—6)
16 4804 0.267 1946 2711 5083 12147 2.100 | 0.233 | 2.789(—3)
17 4894 0.283 1855 3184 5828 13677 2.600 | 0.250 | 4.530(—6)
18 8198 0.483 3330 7573 13401 28765 8933 | 0.583 | 5.245(—6)
19 12803 0.750 5488 15735 27923 55804 25.850 | 1.183 | 8.464(—6)
20 32124 2.400 15387 78081 | 137358 || 245219 | 213.983 | 5.817 | 9.942(-1)
21 2357 0.150 569 313 1322 3675 0.233 | 0.050 | 1.629(—4)
22 3852 0.183 1158 960 2194 6901 0.550 | 0.117 | 1.070(—3)
23 2845 0.583 260 2720 7763 12435 1.967 | 0.283 | 3.906(—2)
24 9699 0.783 1354 617 2216 12808 0.183 | 0.200 | 0.000(+0)
25 10530 0.633 3618 2562 6972 17873 1.683 | 0.317 | 1.824(-3)
26 19367 1.400 6303 6889 17995 41875 3.567 | 0.717 | 4.997(—3)
27 16332 0917 6634 7610 16600 37879 7.650 | 0.750 | 5.875(—2)
28 30850 | 2.100 14910 70772 | 119646 || 218213 | 292.367 | 5.183 | 1.383(—5)
29 30850 | 2.033 14910 70772 | 119646 | 218213 | 381.683 | 5.150 | 2.006(—4)
Table 5.3: NEW-DS using A.




threshold parameter = 0.1

threshold parameter = 1.0

problem - -
storage time erTor storage time error
1 4087 0.517 | 8572(-3) 4119 0.667 | 8.572(—3)
2 16353 6.833 | 7.697(—4) 16459 7.933 | 8.597(—4)
3 2412 0.500 | 6.080(—6) 2541 0.550 | 3.278(—6)
4 23528 10.933 | 3.324(-2) 25866 25.417 | 7.245(-3)
5 15058 4.433 | 2.642(-2) 16182 8.500 | 1.372(-2)
6 12795 1.683 | 4.547(—3) 12907 2.017 | 4.917(-3)
7 42263 26.517 | 1.551(—1) 43947 46.633 | 1.378(—1)
8 56335 46.167 | 7.695(—2) 58745 87.600 | 1.697(—1)
9 27001 12.367 | 1.253(—1) 27913 20.933 | 1.814(—1)
10 4706 0533 | 1.422(-3) 4724 0.533 | 1.377(-3)
11 2056 0.350 | 1.009(—4) 2056 0.333 | 4.926(—4)
12 3199 0.267 | 0.000(+0) 3199 0.283 | 4.768(-7)
13 10597 1.750 | 5.960(—7) 10657 1.783 | 2.384(-7)
14 7384 1.133 | 7.439(-5) 7384 1.133 | 2.861(—5)
15 4281 1.050 | 8.357(—5) 4437 1.250 | 1.192(—6)
16 12995 6.717 | 4.076(—1) 12947 5.833 | 2.420(-3)
17 12145 3.800 | 3.731(—5) 12727 5.983 | 3.695(—6)
18 23471 9.900 | 1.270(—4) 26449 25.017 | 8.225(—6)
19 42515 49.117 | 1.376(—2) 55184 67.350 | 6.676(—06)
20 128074 | 223.917 | 3.141(+2) || 125742 222.517 | 6.891(—1)
21 3905 0.817 | 8.571(-5) 4243 1.317 | 5.198(—5)
22 6525 1550 | 1.486(—3) 7689 3.850 | 9.044(—4)
23 5934 1.517 | 9.766(—2) 5934 1.517 | 9.766(—2)
24 14418 1.200 | 0.000(+0) 14418 1.200 | 0.000(+0)
25 17297 5.417 | 1.636(—4) 17829 6.083 | 1.359(—5)
26 27817 5.083 | 1.361(—3) 28351 5.783 | 1.225(-3)
27 45191 36.317 | 7.265(—3) 42824 41517 | 7.095(—3)
28 176755 | 409.733 | 6.399(—2) || 145345 149.817 | 4.649(—6)
29 168444 | 445950 | 1.078(—2) || 278690 | 2492.400 | 3.242(—4)
Table 5.4: MA28 using A.




_ 95 _

7. References

1]

[2]

[5]
[6]
[7]
8]

[10]

[11]

[12]

[13]

T.F. COLEMAN, A. EDENBRANDT, AND J.R. GILBERT, ‘‘Predicting fill for sparse
orthogonal factorization’, Technical Report 83-578, Dept. of Computer Science,
Cornell University (1983).

J.J. DONGARRA, C.B. MOLER, J.R. BUNCH, AND G.W. STEWART, LINPACK
users’ guide, SITAM, Philadelphia (1980).

1.S. DUFF, “MA28 - A set of FORTRAN subroutines for sparse unsymmetric linear
equations”, Tech. Report AERE R-8730, Harwell (1977).

I.S. DUFF, ‘‘Practical comparisons of codes for the solution of sparse linear
systems’’, 'in Sparse Matrixz Proceedings 1978, ed. 1.S. Duff and G.W. Stewart,
SIAM Press, pp. 107-134 (1979).

I.S. DUFF, ‘“Algorithm 575. Permutations for a zero-free diagonal’”’, ACM Trans.
on Math. Software 7, pp. 387-390 (1981).

I.S. DUFF, R.G. GRIMES, J.G. LEWIS, AND W.G. POOLE, JR., ‘“‘Sparse matrix test
problems”, ACM SIGNUM Newsletter 17(2), p. 22 (1982).

J.A. GEORGE AND J. W-H. LIU, Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1981).

J.A. GEORGE AND J.W-H. LIU, “Householder reflections versus Givens rotations in
sparse orthogonal decomposition”, Linear Algebra and its Appl., (1985). (To
appear.)

J.A. GEORGE AND E.G-Y. NG, ‘“Symbolic factorization for sparse Gaussian
elimination with partial pivoting’’, Research Report CS-84-43, Department of
Computer Science, University of Waterloo (1984).

J.A. GEORGE AND E.G-Y. NG, “Orthogonal reduction of sparse matrices to upper
triangular form using Householder transformations’, Research Report CS-84-05,
Department of Computer Science, University of Waterloo (1984). (To appear in
SIAM J. Sci. Stat. Comput.)

J.A. GEORGE AND E.G-Y. NG, “An implementation of Gaussian elimination with

partial pivoting for sparse systems’, SIAM J. Sci. Stat. Comput. 6, pp. 390-409
(1985).

JW-H. LU, “Modification of the minimum degree algorithm by multiple
elimination”, ACM Trans. on Math. Software 11(1985). (To appear.)

JW-H. LIU, “A compact row storage scheme for sparse Cholesky factors using
elimination trees”, ACM Trans. on Math. Software, (1985). (To appear.)



— 926 —

[14] A.H. SHERMAN, “On the efficient solution of sparse systems of linear and

nonlinear equations’’, Research Report #46, Dept. of Computer Science, Yale
University (1975).

[15] G.W. STEWART, “The economical storage of plane rotations”, Numer. Math. 25,
pp. 137-138 (1976).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

