Inductive Concept Learning
using the
Artificial Intelligence Approach

by
Bruce F. Cockburn

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

Research Report CS-85-12
May 1985

Inductive Concept Learning using the Artificial Intelligence
Approach

Bruce F. Cockburn

M695: Master’s Essay
Supervisor: Marlene Jones
Department of Computer Science
University of Waterloo

Copyright © 1985 by Bruce F. Cockburn

ABSTRACT

This essay is a critical survey of past attempts to build programs that learn
symbolic concepts by induction from examples. Specifically, emphasis is placed
on programs that use Artificial Intelligence techniques as opposed to the alterna-
tive methods of numerical and statistical analysis. First, the distinguishing
characteristics of previous programs are described to provide criteria for the
evaluation of actual systems. Then, learning programs developed by Winston,
Vere, Buchanan, Mitchell, Quinlan, Michalski and Stepp are presented and their
properties discussed. A critical discussion outlines areas of weakness in past
research. Finally, appropriate directions for future research are identified.

Acknowledgements

The author would like to extend his warmest thanks to his supervisor Marlene Jones of
the University of Waterloo. Marlene’s guidance at our bi-weekly meetings, her patience
as the first few months seemed to slip by without producing tangible results, and her
willingness to read several drafts of this essay were gratefully appreciated. I would also
like to acknowledge the financial support of the Natural Sciences and Engineering

Research Council of Canada.

1.

3.

Table of Contents

INtroduction ...ttt 1
1.1. Why Machine Learning is Importantcccccceevveviiviieiiiicieeeeeene 1
1.2, OVEIVIEW ..ooiiiiiiiicieceree e e sie s ete e ae et e e teete et ens e st e snssnestaeesenas 2
1.3. Definitions of Learningccccceveeiiiiniieriieciieeeeceece e eeeeceeesevee s 2
1.4. The Artificial Intelligence Approachccoeeviieiieviiiiiicieeeeeeene. 3
1.5, Brief HIStOPY .oooiiiiiiiicecectectt et cse e s nee s ee e e e san e s e s 4
Characteristics of Concept Learning Programscccccevvvviviiunenennnn.. 5
2.1. Representation LANGUAEESccccoeeieiiieieieceieeceeec e sereeeeeeeae e 5
2.2. Types of Conceptsccoccovverieiiriieciinerieeestee et eb et e s s 7
2.3. Resource Restrictionsccccecivviiiniiininiienieieeee et 8
2.4. Example Presentation Modeccccocoiiimiiniiiiiiiiieceeceeceeeeae e 9
2.5. Control Strategiescccooiiiiiiiiiiiiiiiceecce e 9
2.68. Generalization Rulescccoccoiiiiiiiiiiiiiiiececec e 10
2.7. Specialization Rulescc.ccocoiiiiiviiiiniincectece e 13
2.8. Domain Specific Knowledgecccocoevviiiiiiiiiciiecciecereeceee e 14
2.9. Constructive Inductioncccoccciiiiiiiiiiiiiicecce e 14
Representative Systems in Detailccccocviviininininiincceceee 16
3.1. Winston’s Ph.D. thesis (1870)cccccoominninniniinreeereeeeeseene 16
3.2. Vere : Multilevel Counterfactuals (1875-80)ccccocoevvvirvrenennnnenne. 20
3.3. Buchanan : Meta-DENDRAL (1977-78)ccccceemmmrreerecreceeeee e, 24
3.4. Mitchell : Candidate Elimination (1978)ccccccevininennnincerinienene 26
3.5. Quinlan : Chess Endgame Analysis (1978)ccccocovvinneenrccrecennnnne 29

3.8. Michalski and Stepp : Conceptual Clustering (1980-83) 33

4.

6.

-1 -

Critical DISCUBBIONccceiiiiiiiiiiiiieiitireecteercteer et ee s eerreeesaneceseneessesnaseenns 36
4.1. Monotonic Learningccoiiiiiiiiieeciiecnieeceeeeecceeeccseeesnseeessseesesnens 36
4.2. Intolerance of Errors and NOIS€c.ccccceviiriieciieccieeeieeecciecceeeaeeens 36
4.3. Exploiting Domain Knowledgeccccccoiuiiniiirnreciireceecieeieeeveeenene 37
4.4. Unjustified Generalization and Specializationccccceuviveuveeann.. 37
4.5. Constructive Inductionccocoiiiiiiiiciiieeececccee e 37
4.6. Disjunctive and Intersecting Conceptscccccevvievriievivciiiceiicnnnne 38
4.7. Fuzzy and Probabilistic Conceptscccccoevvierriecieeiiieceeceeeeeene 38
4.8. Empirical Methodologyccccocciiviiiiimiiniiiiieeccecceeeee e 38
Directions for Future Researchccccceeviiivrnrccnnenen, eerentesttee e anaereenraaaes 40
5.1. Model-driver and Mixed Control Strategiesceeeuveurvnennene.... 40
5.2. Coping With Modifiable Concept Description Languages 40
5.3. Standardized Domains and Learning Problemsc...c..c............. 40
5.4. Learning Appropriate Generalization and Specialization Rules 41
5.5. Bottleneck Detection and Active Learningcc.ccccovvevvevrinnerennnnn. 41
5.6. A Final Word of Cautioncccccceeiiiiiiiiiicercceeeeeccee e eeesene 41
REfErencesooiiiiie ettt sat e aeesanae 42

Inductive Concept Learning using the Artificial Intelligence
Approach

Bruce F. Cockburn

M695: Master's Essay
Supervisor: Marlene Jones
Department of Computer Science
University of Waterloo

Copyright © 1985 by Bruce F. Cockburn
1. Introduction

1.1. Why Machine Learning is Important

Machine learning is an important area of research in Artificial Intelligence (Al)
principally because the ability to learn is widely considered to be a fundamental charac-
teristic of naturally occurring intelligence. Learning has proved to be a particularly dif-
ficult behaviour to duplicate using computer programs. Today, after more that twenty
years of research, the performance of learning algorithms is still disappointingly poor by

human standards.

A second important reason for current interest in machine learning has arisen with
the recent successes of expert systems and with an increased awareness of the potential
of larger knowledge-based systems. Such computer models of human expertise are typi-
cally time-consuming to build because of the difficulty of acquiring and encoding human
knowledge. For knowledge to be translated into machine usable form, a highly trained
knowledge engineer must spend months and often years in close collaboration with a
human expert in the desired domain. Machine learning offers the prospect of transfer-
ring much of the tedious burden of encoding human knowledge from the knowledge
engineer to the target computer. The computer could then assume the responsibility of
finding and using its own appropriate data structures for storing human knowledge.
Once one computer has learned, many other computers can become identical experts

simply by copying the learned knowledge base.

1.2. Overview

This essay describes past attempts to devise computer algorithms that exhibit
what is believed to be a relatively simple form of learning: the inductive learning of
symbolic concepts from examples. Learning by example has received more attention
than other types of learning such as learning by being told, learning by discovery and
learning by analogy. The common characteristics and parameters of the many pub-
lished algorithms are described to obtain an appropriate perspective before considering
six illustrative programs in more detail. A critical discussion identifies the strengths
and weaknesses of existing programs and a concluding section suggests directions for

future research.

1.3. Definitions of Learning

Before one can meaningfully discuss programs that claim to learn, it is important
that a definition of the behaviour called learning be understood. Unfortunately, there is
no concise, universally accepted definition. As a first attempt, consider the definition

for the verb ‘to learn’ given in the Webster’s New Collegiate Dictionary:

‘to gain knowledge or understanding of or skill in by study, instruction or experi-
ence’ [26]

This definition might be useful to a foreigner wishing to confirm the English translation
for a word that they already know. Its vagueness makes it inadequate for the purposes
of evaluating progress in machine learning. A more suitable definition is given by
Simon in his skeptical introductory chapter to the book Machine Learning: An Arti fi-
csal Intelligence Approach :

‘learning is any change in a system that allows it to perform better the second
time on repetition of the same task or on another task drawn from the same popu-
lation. ... Learning denotes changes in the system that are adaptive in the sense
that they enable the system to do the same task or tasks drawn from the same

population more efficiently and more effectively the next time.’ [23]

This second definition is more useful in the context of this essay than the first, but it
can be criticized for its emphasis on promptly improved, externally observable perfor-
mance. It precludes the possibility that improvement might not be monotonic in the
short term. Certainly humans can learn concepts without necessarily manifesting the

new knowledge in an observable way. Scott prefers a definition that places more

emphasis on the internal world model that any successful learning program is assumed

to maintain.

‘[learning] is any process in which a system builds a retrievable representation of
its past interactions with the environment. ... Learning is the organization of

experience.’ [21]
A fourth definition of learning is that given by Carbonell, Michalski and Mitchell:

‘there are two basic forms of learning: knowledge acquisition and skill refine-
ment. Knowledge acquisition is defined as learning new symbolic information cou-
pled with the ability to apply that information in an effective manner. ... [skill
refinement) is the gradual improvement of motor and cognitive skills through prac-
tice’ [5]
Programs that learn concepts from examples are expected to accomplish the knowledge
acquisition part of this definition. Skill refinement is a property that usually is con-
sidered in other areas outside of Al such as the study of adaptive systems and parame-
ter optimization [3]. In this essay, the view of learning as symbolic knowledge acquisi-

tion comes closest to a suitable working definition of learning.

1.4. The Artificial Intelligence Approach

Learning machines have been devised and even implemented in several fields (e.g.
pattern recognition, adaptive control systems) but the emphasis in this essay is on
learning research using the Al approach. In an Al program, symbols denoting reai or
abstract objects, attributes, and relations rather than numbers are manipulated during
computation. Using suitable data structures as knowledge representation frameworks,
the Al programmer encodes what is judged to be the relevant knowledge in the problem
at hand. Constraints on the solution for the real problem being modeled must be
encoded as constraints on acceptable symbolic solutions to the program. It is common
to view the execution of an Al program as a search through the space of possible sym-
bolic solutions. Typically, Al techniques are employed when there are no known effi-
cient algorithmic solutions to a problem. In the worst cases, a solution can only be
found by a brute force method like systematic search. Often the search for a solution
can be made considerably more efficient if heuristics can be identified (often using
insights from the real domain) that direct the search effort in the most promising direc-

tioms.

1.5. Brief History

The following section recapitulates a history of machine learning given in a paper
by Carbonell, Michalski and Mitchell [4]. Research on learning from examples has been
influenced by the successive popularity of three learning paradigms: neural modeling
and decision-theoretic methods, general symbolic concept learning, and various hybrid

knowledge-intensive techniques.

In the neural modeling paradigm, popular from the late 1950’s until the mid
1960's, large networks of random or partially random neuron-like switching elements
were envisioned. It was expected that given some ability to re-organize themselves,
such systems would be able to react to stimuli and thereby demonstrate learning
behaviour. At roughly the same time, the field of pattern recognition and other related
decision-theoretic theories of learning emerged. The common approach was to employ
training sets to optimize the coefficients of some polynomial discriminant function. In
the late 1960’s and early 1970’s, adaptive control systems were developed by workers in
control theory. These systems learned by adjusting parameters to maintain stable per-

formance in the presence of perturbations.

The period of popularity of the general symbolic concept learning paradigm, from
the mid 1960’s until the late 1970’s, was the heyday for research into learning from
examples. Winston’s doctoral thesis of 1970 was an influential early work [27,28].
Vere's work on counterfactuals [24,25] and Mitchell’s candidate learning algorithm
[12,13] are just two examples of the flurry of interest that followed. A characteristic of
learning programs from this period is that they learned highly structured symbolic
representations of concepts embodied in a series of examples. Emphasis was placed on

discovering general, domain-independent principles of learning.

Originating in the mid 1970’s, the current paradigm in machine learning stresses
the importance of domain-specific knowledge. Research in learning by example has con-
tinued along with increased interest in other forms of learning such as learning from
instruction, learning by analogy and learning by discovery. Meta-DENDRAL, designed
by Buchanan's group at Stanford University, was a successful learhing program
developed for the field of mass spectroscopy [1,2,3]. Quinlan produced an interesting
series of programs that used human-specified features from a particular chess endgame
to infer rules that could decide a game’s outcome [15,16,17,18]. Michalski and Stepp
worked on programs that learncd taxonomic classifications from examples that

corresponded well with classifications previously developed by humans [9,10,11].

2. Characteristics of Concept Learning Programs

Before considering specific algorithms in any detail, it is worthwhile to discuss the

similarities and differences of all learning programs.

2.1. Representation Languages

The choice of representation languages is usually the most important decision in
the design of a learning program. Languages are required to encode the input exam-
ples, the tentative and final concept descriptions, and declarative representations of
heuristics. For simplicity, one all-purpose language may be preferable but separate

languages for each object are sometimes used.

If the vocabulary of the language is fixed for the life of the program then the size
of the space of describable concepts is also fixed. The programmer must ensure that all
of the concepts that the learning program will encounter are expressible in the descrip-
tion language. Thus, although using a fixed language usually makes the learning algo-

rithm simpler, it complicates the initial choice of language.

There are five major types of knowledge representation languages that have been

used in learning programs [6]:

1. The First Order Predicate Calculus: The first order predicate calculus (FOPC)
is probably the most thoroughly studied representation language. The FOPC has
its origins in the study of formal logic, a field with an intellectual history extending
back to the philosophers of ancient Greece. Using the full complement of opera-
tors (e.g. disjunctive, conjunctive, negative, implicative, equivalence) most objects
can be described to any arbitrary level of detail. Problems occur however when
objects involving probabilistic, fuzzy, default, heuristic or postulated knowledge
must be represented. A significant advantage of the FOPC is that its formal
semantics have been studied extensively. Resolution algorithms have been
developed that, for certain subsets of logic, are guaranteed to determine whether
or not a proposition is a logical consequences of known facts and rules. The pro-
gramming language PROLOG is an example of the Horn clause subset of logic
transformed into an executable programming language by the use of a resolution

algorithm.

Semantic Nets: Semantic nets have a long history in Al research and were used
in some of the earliest learning algorithms [27]. A semantic network is a set of
nodes and a set of inter-nodal directed arcs. Both nodes and arcs can be labeled
and assigned meanings appropriate to the particular domain. One advantage of
the semantic network is the uniform character of its nodes. Hierarchies of nodes
can be used to represent different levels of abstraction for related concepts or
objects. Different kinds of knowledge at various levels of abstraction can be mani-
pulated using essentially the same control mechanisms. Networks can be parti-
tioned off to limit visibility to the relevant parts for a given context. Both an
advantage and a disadvantage of semantic nets is the lack of a standardized syn-
tax: semantic nets are hand-crafted to suit the particular needs of each problem.

The semantic network formalism can be extended to have all of the logical opera-
tors found in the FOPC.

Frames and Scripts: Frames and scripts are data structures that can be useful
when the common characteristics of a class of objects are known. A frame type is
comprised of slots that are each capable of storing the value of one attribute for
an object from the corresponding class. Default values and executable procedures
can also be associated with slots: the defaults are often useful if an attribute is
required but not yet available, and procedures are useful for encoding additional
steps to be taken once the slot is filled with confirmed information. A script is a
special type of frame that encodes a stereotypical sequence of events. Slots typi-
cally represent objects, actors and other attendant details normally encountered in
the sequence. The slots in a script can also have default values. Scripts are useful
because they can be used by an algorithm to anticipate or expect particular

features in a situation.

Production Rules: A production rule is a pair comprised of a condition pattern
and an associated action. Production rules are applied by a control mechanism
with the goal of transforming a problem from its initial state to a solution state.
In a typical execution cycle, the pattern portions of all known production rules are
compared with the problem’s current state. Those production rules whose pat-
terns match become enabled. Using some fixed convention, or the values of some
heuristic evaluation function of the states reachable from the current state, a rule
is chosen and its action applied. There is no standardized syntax for production

rules, but it is common to express them in a predicate logic.

5 Hierarchical Descriptions: A hierarchical description shows the interrelation-
ships amongst the members of a set of objects. Closely related objects are
grouped together into the same class and dissimilar objects are placed into dif-
ferent classes. Classes can themselves be grouped together as subclass members of
a higher level class if their underlying members are sufficiently similar. Before a
hierarchical description can be constructed, criteria for judging the similarity of

objects and the optimal subdivision of classes into subclasses must be provided.

Scott has argued that researchers have not given enough attention to finding appropri-
ate knowledge structures as opposed to the Al data structures discussed above
[21,22). In his opinion, a good knowledge structure must not only be sufficient to
encode the desired information and be efficient for programs to manipulate, it must
also be easy to augment with newly learned knowledge. According to Scott, learning
researchers are confusing their data structures with the currently unknown knowledge

structures that they should be using.

‘Some authors (e.g. [5]) have suggested what appear to be classification schemes of
this nature [i.e. for learned knowledge] but on closer examination they appear to be
based not on the knowledge structure but rather the data structures used to

represent the knowledge.’ [21]

Scott raises a valid point, but does not give any examples of what he would consider to
be a true knowledge structure. The search for easily learnable knowledge structures is

an important area for future research.

2.2. Types of Concepts

Four main types of concepts appear in learning by example algorithms: charac-
teristic, discriminant, taxonomic and production. The first three types are described by
Dietterich and Michalski [6]. It is not claimed that these four concept types are used in
their pure form by humans or that all human concepts are expressible in only these four
types. They have been chosen merely as useful simplifications and abstractions of

human concept structures that might serve as a basis for research in machine learning.

1. Characteristic: A concept is described in terms of the attributes that distinguish
examples that are instances of the concept (i.e. positive examples) from examples
that are not (i.e. negative examples). No knowledge is required of any other con-

cepts that might exist in the universe: only membership with respect to the given

concept is relevant. For example, a hand mirror could be defined roughly as a flat

object with a handle and one reflecting face.

2. Discriminant: A finite number of possible concepts are described in terms of the
attributes that are sufficient to classify examples as members of one of the con-
cepts. For example, in the domain of a particular chess endgame, each board con-
figuration can in theory be classified as a win for white, a win for black or a stale-
mate, assuming that both sides make their best possible moves. It is possible to
construct a decision tree which would classify all possible configurations according

to their outcome. This tree would be a discriminant concept description.

3. Taxonomic: The desired concept is a hierarchical description or taxonomy of all
the known examples. Such a description groups similar objects together and shows
the probable relationships among group members. Criteria must be provided that
measure the optimality of alternate classifications. An example of a taxonomic
concept would be a complete classification of the different types of car body styles

avallable in current North American automobiles.

4. Production: A production concept has the form of one or more production rules.
A good example of a production concept learning program is Meta-DENDRAL in
the domain of mass spectroscopy [1,2,3]. In this type of chemical analysis,
molecules of a compound are broken up into smaller pieces and then separated out
according to mass. The population of fragments has a distribution that is charac-
teristic for each compound. Meta-DENDRAL represents molecules as nodes and
arcs representing atoms and chemical bonds respectively. The fragmentation pro-
cess is modeled by rules that break apart the molecules at certain bond sites.
When presented with an experimentally obtained mass spectrogram for a known
compound the program infers a set of production rules sufficient to account for the

distribution’s shape.

2.3. Resource Restrictions

Time and space resource requirements affect the usefulness of a learning algo-
rithm. A major reason for interest in machine learning is the hope that eventually
machines with a learning capability will be able to acquire knowledge faster, cheaper
and more reliably than is possible by direct programming by humans. Unfortunately,
most existing learning algorithms are far too slow, fragile and inflexible to be of any

more than academic interest.

The human brain has an enormous amount of storage capacity and parallel com-
puting power. On the other hand, the volume of information that is sensed from the
environment over the course of years of living is huge. Much incoming information may
be lost immediately. It is not clear to what extent retained information is encoded and

generalized with existing knowledge, or stored as distinct memories.

Learning algorithms must also operate with finite storage. For instance, it is not
advisable for designers to assume that an arbitrarily large number of examples can be
saved. Many systems incorporate all examples into the current concept description.
They are not saved as separate entities. Other programs incorporate only the positive
examples and save the negative examples separately (it is not always clear how many
can be saved). In Mitchell’s version space approach, the positive and negative examples
are used to update separate most specific and most general concept descriptions respec-
tively [12,13].

2.4. Example Presentation Mode

Learning algorithms differ in how they are presented with the training examples.
The entire available supply may be accessible at once, or examples may only be avail-
able one at a time. If presented incrementally, examples are available either as an
uncontrollable stream or selected as requested by the learning algorithm. Control over
the selection of examples allows the program to actively experiment with the environ-
ment in the ways that it decides will be most profitable. Winston's algorithm assumes
that the input examples will be presented by an ‘intelligent’ teacher who chooses them
to optimize the rate of convergence on the concept [27]. This represents the extreme

case in which the environment is actively controlled to suit the learner.

2.5. Control Strategies

The best concept description can be viewed as the description that accounts for
the most input data and that is optimal according to some predetermined preferences
in the concept description space. It is instructive to consider the relative importance of

data and predetermined biases in a learning algorithm's choice of concept description.
P P P

1. Data-driven / bottom up: A data-driven control strategy is one that produces
concept descriptions whose form is strongly dependent on the input examples and
only weakly affected by biases. The best concept evolves from the bottom up (i.e.

from the data to consistent concept descriptions). An advantage of a data-driven

- 10 -

strategy is that the control mechanism can be relatively simple: the best tentative
concept description is updated in response to each additional example. A disad-
vantage is that anomalous or just plain erroneous examples can disrupt or com-

pletely derail the evolving concept description.

2. Model-driven / top down: A model-driven control strategy is one that has
strong preferences regarding the best forms of concept descriptions and that only
modifies its preferred concepts enough to accommodate the data to an acceptable
extent. Hypothesized concept descriptions evolve from the top down (i.e. from pre-
ferred concept descriptions to descriptions consistent with the data). Criteria
must be provided that judge the adequacy of fit between data and concepts. In
many domains much can be said about which forms of concept descriptions are
most likely. Such information can be put to effect by a model-driven control stra-
tegy since the most likely concepts are considered before less likely candidates. On
average, convergence on a good concept should be rapid. Error tolerance is higher
for model-driven as opposed to data-driven algorithms because unusual examples
can be more easily recognized as irregular. The disadvantages include a relatively
complex control strategy and the requirement that past examples be stored to be

available for checking the consistency of postulated concepts.

3. Mixed Strategies A compromise between the data-driven and model-driven para-
digms, a mixed control strategy is one that attempts to inherit the advantages of
the two previous approaches and avoid their disadvantages. For example, a mixed
strategy might initially approach a learning problem in essentially a data-driven
mode using weak model preferences such as favouring syntactically simple con-
cepts. Once the character of the problem became clearer, stronger domain-specific
models might then be invoked to speed up the rate of convergence. Mixed stra-

tegies occupy a poorly researched continuum between two well-defined paradigms.

2.86. Generalization Rules

A fundamental operation in any learning algorithm is generalization, expanding the
scope of a concept description to include positive instances. Various rules have been
identified that generalize concepts by making syntactic changes on their coded
representations. Usually, there can be no guarantee that mere changes in syntax will
produce useful generalizations. Good generalizations tend to be produced only when

the representation language is chosen so that the syntax closely reflects the semantics

of the underlying domain [7].

The following is a list of generalization rules based on those identified by Dietter-

ich and Michalski [6]):

1.

Drop Conditions: A concept is generalized by dropping conditions from conjunc-

tive expressions or subexpressions in the concept’s description.

e.g. the concept ‘big(X) and expensive(X)’

with the new positive example ‘big(carl) and cheap(carl)’

generalizes to the new concept ‘big(X)’

Turn Constants into Variables: If an attribute is found that has one value in
the current concept and a different value in positive examples, replace appearances
of the constant with a variable that can assume any value. This generalization
rule can be interpreted in different ways as Vere has pointed out [25]. A conserva-
tive interpretation changes the smallest possible number of constants into vari-
ables to match the new positive examples into the concept description. A liberal
interpretation changes all occurrences of those particular constants in the concept
description to variables. On empirical grounds, Vere favours a moderate interpre-

tation that lies between these two extremes.

e.g. the concept ‘car_door_number(X,2)’
with the new positive example ‘car_door_number(carl,4)’

generalizes to the new concept ‘car_door_number(X,Y)’

Add Internal Disjunction: This is a less drastic alternative to turning constants
into variables. A constant in the concept description is converted into a variable
that is restricted to assuming only the values necessary to extend the concept’s
coverage over new positive examples. This is equivalent to introducing a new

typed variable.

e.g. the concept ‘shape(X,square)’
with the new positive example ‘shape(partl,triangle)’

generalizes to the new concept ‘shape(X,{square,triangle})’

4. Close an Interval: Constants belonging to an ordinal sequence are generalized to

the closed interval bounded by the constants.

e.g. the concept ‘length(T,50)
with the new positive example ‘length(trumpet1,80)’

generalizes to the new concept ‘length(T,50..80)

5. Climb a Generalization Hierarchy: Domain-specific knowledge might include a
hierarchy of concepts that embodies an intrinsic ordering from the specific to the
more general. If the current description is restricted to one concept and must be
generalized to cover a new example involving a second concept then perhaps a

third concept can be found that is a generalization of the first two.

e.g. the concept ‘shape(X,rectangle)’

with the new positive example ‘shape(part6,triangle)’

generalizes to the new concept ‘shape(X,polygon)’

if ‘polygon’ is a generalization of ‘rectangle’ and ‘square’.

This list of generalization rules is by no means complete. Often valid generalization
heuristics are known in a particular domain that are not expressed readily using any of
the preceding rules. In a simple example from analytical integration that appeared in
[14], it was found that when integral powers of trigonometric functions are involved, it
is useful to have the concept of odd and even integers. In this particular domain, clos-
ing intervals is still a useful generalization rule but when exponents of trigonometric
functions are involved, the elements in intervals must be restricted to being either odd

or even integers.

2.7. Specialization Rules

Not only must a learning algorithm be able to generalize tentative concept descrip-
tions to include positive instances, often it is also necessary to specialize a concept, res-
tricting its scope to exclude negative examples. Specialization rules are heuristically
motivated operations that are applied to reduce the scope of a concept description.

The following specialization rules are mentioned by Dietterich and Michalski [6].

1. Introduce an Exception: The existing concept description is specialized by
adding a supplementary condition that explicitly excludes known negative exam-

ples from the scope of the concept.

e.g. the concept ‘has_wings(X} and flies(X)’
with the new negative example ‘has_wings(ostrich) and (not flies(ostrich))’

specializes to the new concept ‘(has_wings(X) and flies(X))

except name(ostrich)’

Vere has developed a learning algorithm that uses an extension of this specializa-
tion rule with one or more nested levels of generalized exception terms called

‘counterfactuals’ [24,25].

2. Use a Generalization Rule in Reverse: Specialization rules can be generated by
applying generalization rules in the reverse direction. For example, a concept
expressed in logic could be specialized by adding a condition (c.f. Drop Conditions

rule).

e.g. the concept ‘tall(X) and dark(X) and handsome(X)’

with the new negative example ‘tall(george) and dark(george) and

handsome(george) and poor{george)’

specializes to the new concept ‘tall(X) and dark(X) and
handsome(X) and rich(X)'

2.8. Domain Specific Knowledge

Researchers in machine learning have discovered that general (i.e. domain-
independent) learning algorithms tend to fall victim to combinatorial explosions. It is
difficult to distinguish the plausible concepts from amongst the large number of gen-
eralizations and specializations that can be generated from the same example data. A
deeper understanding of the properties of a domain is required if learning is to be com-
putationally efficient. There are two main ways in which domain-specific knowledge

can be introduced into a learning system:

1. Change the Description Language: One strategy is to change the representa-
tion language so that the domain-independent generalization and specialization
rules operate efficiently. Domain knowledge can be used to prearrange constants
into generalization hierarchies. Appropriate variable types can be provided. Only

the relevant operators need be retained in the general description language.

2. Add Domain-Specific Heuristics: Another strategy is to provide heuristics that
apply within an existing general-purpose description language. These heuristics
might take the form of recommending that a particular structure of concept
description be given special consideration. Similarly, other concept description

structures may be identified as having low likelihood.

It seems that humans use other more sophisticated techniques that are not readily
encoded in the description language or as separate heuristics. For example, the ability
to recognize analogies between concepts from different domains is often a powerful way
of making ‘inductive leaps’ to the most likely concept candidates. Humans are able to
develop ‘insight’ about domains that gives them the ability to assess the plausibility of
proposed concepts. Unfortunately, the prospects of modeling ‘insight’ and ‘analogy’ in

computer programs remains a distant hope.

2.9. Constructive Induction

It is often the case in Al problems that the secret to constructing an efficient solu-
tion is to use an appropriate representation. For human programmers, the selection of
the representation may require some experimentation or may require insight derived
from similar problems encountered previously. The problem of learning by example is

no exception.

Since a learning program cannot be guaranteed a priori to have the optimal
representation for all potential learning problems, it would be advantageous for it to
have the ability to change its representation language to suit the problem. For exam-
ple, it might be able to add new descriptors and delete others. New logical connectives
that prove to be useful might be incorporated into a representation language. Existing

operators may be found to be of little use and might then be removed.

Constructive induction can pose difficult problems for a learning algorithm. Many
current algorithms are data-driven systematic searches of fixed concept description
spaces. Changes in the description language would be difficult to accommodate since
they would change the space as it was being searched. Model-driven or mixed strategies
would probably be disrupted less severely. They make no attempt to keep track of the
unqualified eligibility of each and every concept candidate in the concept description
space. They are already equipped with mechanisms for identifying and rejecting the
current tentative candidates in favour of better candidates. If new descriptors prove to
be useful, they will simply start appearing in tentative concept descriptions with no

catastrophic impact on the completeness of the algorithm.

Another potential problem with constructive induction is that it may become cru-
cial to the general acceptance of learning programs that the concepts they use be easily
understood by humans. Many of the anticipated uses of intelligent system require close
interaction with humans. Computer-generated description spaces may be unacceptable

if the descriptors are unfamiliar to the system’s users.

3. Representative Systems in Detail

3.1. Winston’s Ph.D. thesis (1870)

In his doctoral thesis, Winston describes one of the most influential of the early
learning algorithms [27,28]. The problem studied is that of finding a maximally specific
conjunctive concept description from a series of simple geometric figures. Winston dev-
ised an algorithm that performs a data-driven depth-first heuristic search of the space
of concept descriptions. The coverage of the current best concept description is
extended when necessary to match all positive examples by the application of generali-
zation rules. Only one of the possibly many generalizations is retained as the best con-
cept description: any alternatives are stored on a backtrack list. Negative examples
cause the current best concept description to be specialized when they are mistakenly
matched. If a concept cannot be successfully generalized, the algorithm backtracks and
pursues one of the alternate concept descriptions that were generated previously but
that were not pursued as the best candidate. All negative examples must be stored to

allow newly activated concepts to be checked for over-generality.

Winston’s algorithm uses a semantic network as the knowledge representation
language. It is used to represent the input examples supplied by the teacher, the con-
cept descriptions developed internally by the learning algorithm and domain-specific
knowledge. Examples and concept descriptions are comprised of one or more parts. In
Winston's representation, each example or concept has a root node with HAS-AS-PART
arcs going to nodes representing parts. Parts in turn can have unary attribute values
or can be involved in binary relations with other parts. An attribute is represented by
an arc from the part node to the appropriate system-wide attribute node. Attribute
nodes are linked together into a system-wide domain-dependent generalization hierarchy
by A-KIND-OF arcs. A binary relation is represented by two oppositely directed arcs
joining the two part nodes (e.g. ON-TOP and BENEATH arcs). Each binary relation
type also has a unique system-wide node that can be linked with other associated rela-
tion nodes. In Winston’s examples, the ON-TOP and BENEATH nodes are joined by
NEGATIVE-SATELLITE links. Other link types are required for use in the graph

matching and generalization steps of the algorithm.

- 17 -

It is useful to consider an example that appeared in [6]. Two simple geometric fig-

ures E1 and E2 are shown below along with their semantic net representations.

Et

E2

HAS AS-PART
ON-TOP

BENEATH

A-KIND-OF

THas-ASPART

CONTAINS

INSIDE

SENEATH

HAS-PROPERTY OF

AKINDBF

A KIND UF

-1

8 —

Winston’s algorithm initializes the first concept description to be the description of

the first positive example. Further positive and negative examples are considered seri-

ally by a two step process. In the first step, a ‘best’ match is found between the

current concept description and the new example. An annotated difference description

network showing matches and mismatches is generated. In the second step, generaliza-

tions or specializations are produced from the difference description depending on

whether the example is positive or negative respectively. The annotated difference

description produced by considering E1 and E2 as two positive examples in a simple

learning problem is shown below:

exit

BENEATH

AKIND-OF

sgquare

A-KIND-OF

abyect

-

1
ILEFT-DE
N

HAS-PROPERTY JF

M»

!

|

|

i

POINTER !

i

3/—_\\ \\ 1
, N
!

i

i

{ tias-a5-part i
\ Ji

= —— e L o e —

AKiNO-OF
2

The two boxed-out portions of the net

are comparison notes.

They record the

mismatches between the structural descriptions of E1 and E2, namely, the different

sizes of part ‘b’ and the unmatched part ‘¢’

present only in E2.

- 19 —

By using Winston's generalization operators to resolve the mismatches, the follow-

ing concept description for E1 and E2 (labeled E12) results:

HAS-AS-PART

ON-TOP

BENEATH

AXIND OF

Roughly translated into English, the concept reads ‘there is a small circle on top of a
square.’

The generalization rules ‘Drop Conditions’, *Turn Constants into Variables', ‘Climb
a Generalization Hierarchy' and the specialization rule ‘Introduce an Exception’ are all
implemented in Winston's algorithm as graph operations on the nets. Of the one or
more generated candidates, one ‘best’ new concept description is chosen and ali alterna-
tives are stored on a backtrack list. Negative examples are also stored so that concept
descriptions recovered from the backtrack list at a later point can be specialized to

reestablish consistency.

Winston concluded that, based on his experience with his learning algorithm, learn-
ing systems would have to rely heavily on the cooperation of an intelligent teacher. He
also emphasized the usefulness of negative examples that are similar to the desired con-
cept, so-called ‘near-miss’ examples. In retrospect, these findings were largely a result
of the characteristics of his data-driven depth-first algorithm rather than due to gen-
erally applicable principles of learning. His training sets had to be chosen carefully so
that tke heuristics in his algorithm, such as the cheice of the ‘best’ corcept, would effi-
ciently find a consistent concept description. Constructing a good scguence of examples
is a difficult problem requiring detailed knowledge of the learning algorithm. Winston's
conclusion that the representation language must have an appropriate set of attributes

has been recognized as being an important issue for all learnire programs.
(=3 o

- 920 —

Advantages:

1. Simple data-driven control strategy.

2. Uses an elegant semantic net representation scheme.

3. Widely published and well known.

Disadvantages:

1. Needs a cooperative teacher, otherwise performance plummets.

2. The algorithm’s choice of ‘best’ concept description is vulnerable to noise in the

examples.

Order of presentation affects the final learned concept.
Needs a fixed hand-crafted representation language.
Disjunctive concepts are not representable.

Negative examples must be stored.

Alternative concept descriptions must be stored.

Backtracking is required.

© »® N2 o o~ ®

Computationally expensive graph comparisons required.

10. No guarantee that the most specific generalization will be learned. The algorithm

is not provably correct.

3.2. Vere : Multilevel Counterfactuals (1975-80)

In the middle 1970’s, Vere studied the formal correctness of several breadth-first
learning algorithms. The multi-level counterfactual, a generalization of Winston’s
must-not exception operator, was an important new idea to emerge from this work.
Vere's learning algorithms find one maximally specific concept description that matches
all members of a set of positive instances and no members of a set of negative
instances. In several papers, Vere proposed extemsions to his original algorithm to
include the learning of production rules and disjunctive concepts [24,25]. A variant of
the disjunctive algorithm presented in [25] restricted to learning conjunctive concepts is

considered below.

Concepts in Vere’s original representation scheme are conjunctions of LISP-style
list structures representing logical literals. In later work, he allowed concepts to be dis-

junctions of literal lists. The first term in a literal is by convention the relation name.

- 921 —

Subsequent terms are either constants or universally quantified variables. For example,

the concept of a stack of three cubes could be described as:
(cube X)(cube Y)(cube Z){on X Y)(on Y Z)

where ‘X’, ‘Y’ and ‘Z’ are variables and ‘cube’ and ‘on’ are relation names. Conjunction

operators are assumed between each literal. A positive example of this concept might

be:
(cube a)(cube b)(cube c)(on a b)(on b c)

where ‘a’, ‘b’ and ‘¢’ are constants denoting three specific cubes in the world.

Each conjunct can have an associated counterfactual, an exception condition that
must be true for all negative examples and false for all positive examples. In form, a
counterfactual consists of a conjunct and optionally, another counterfactual. An exam-

ple of a concept that has a single-level counterfactual is:

(on X Y)(cube Y)(red Y) except (green X)(sphere X)

All positive instances must be matched by (on X Y)(cube Y)(red Y) but not matched by
(green X)(sphere X). All negative examples must be matched by (green X)(sphere X).
The English translation of this would be ‘an object X is on top of a red cube and X is

not a green sphere’. An example of a concept with a two-level counterfactual is:

(on W Z)(cube W){plate Z) except
((small W)(yellow W) except (dense W))

In English this concept might be described as ‘a cube W is on top of a plate and it is
not true that W is small and yellow and W is not dense.’ It is often difficult for humans
to grasp the meaning of counterfactuals beyond the first level as this simple example

may have demonstrated to the reader.

Conjuncts and their counterfactuals can be nested to arbitrary depth, thus the
expression multi-level counterfactual. A first level counterfactual can be thought of as
a first order correction to an overly general conjunct (i.e. one that covers negative
instances). A second level counterfactual corrects for over-correction by the first level
counterfactual: the first correction could have over-specialized the whole concept by
uncovering positive examples. Levels of correction for over-specialization and over-
generalization can be added to arbitrary depth to ensure consistency with all examples.

The positive and negative examples themselves are represented with simple conjuncts of

literals with no counterfactuals.

Vere's multi-level counterfactual algorithm initially creates a first conjunctive con-
cept description that covers the given fixed set of positive examples. Then, using the
sets of positive and negative examples and the first concept, a second concept induction
problem is constructed whose solution is the first level counterfactual. Essentially, the
negative examples covered by the first concept have the matched literals in their
description removed creating the positive examples for a second learning problem. The
second problem’s negative examples are produced by subtracting the matched literals in
the first problem’s positive examples. Further problems are generated recursively until
the current concept is consistent: i.e. it matches all of the current positive examples but
none of the current negative examples. Vere has proven that this recursive algorithm

must terminate if a consistent concept description exists [25].

The individual steps in Vere’s algorithm are illustrated below in a learning problem
from a simple ‘block’s world’ [25]. A consistent concept description for the four positive

and four negative instances is sought.

P1.1 : (on t1 t2)(sphere t1)(green t1)(cube t2)(green t2)

P1.2 : (on t3 t4)(pyramid t3)(blue t3)(cube t4)(green t4)

P1.3 : (on t5 t6)(cube t5)(yellow t5)(cube t6)(green t6)

P1.4 : (on t7 t8)(on t8 t9)(cube t7)(green t7)(cube t8)(red t8)(cube t9)(green t9)

N1.1 : (on t10 t11)(sphere t10)(blue t10){cube t11)(green t11)

N1.2 : (on t12 t13)(sphere t12){green t12)(cube t13)(blue t13)

N1.3 : (on t14 t15)(on t15 t16)(cube t14)(yellow t14)(cube t15)(blue t15) &
(cube t16)(green t16)

N1.4 : (on t17 t18)(cube t17)(blue t17)(cube t18)(green t18)

The first learning problem produces the overly general concept:
(on X Y)(cube Y){(green Y)

Note that it matches negative examples N1.1, N1.3 and N1.4. That it is overly general
is not too surprising since only positive examples P1.1 to P1.4 were considered. The

second level learning problem has the following positive and negative examples:

P2.1 : (sphere X)(blue X)
P2.2 : (on t14 X)(cube t14)(yellow t14)(cube X)(blue X)
P2.3 : (cube X)(blue X)

N2.1 : (sphere X)(green X)

N2.2 : (pyramid X)(blue X)

N2.3 : (cube X)(yellow X)

N2.4 : (on t7 X)(cube t7)(green t7){cube X)(red X)

The concept (blue X) matches all three positive examples but also matches negative
example N2.2 so another residual learning problem must be solved. The third level

problem has one positive example and three negative examples:

P3.1 : (pyramid X)

N3.1 : (sphere X)
N3.2 : (on t14 X)(cube t14)(yellow t14){cube X)
N3.3 : (cube X)

The concept (pyramid X) does not match any of the third level negative examples so
that the overall learning process halts. The final two-level counterfactual for the origi-

nal problem is thus:
(on X Y)(cube Y)(green Y) except ((blue X) except (pyramid X))

Vere’s inner algorithm for generating a concept from a set of positive examples has
four steps. It is itself a data-driven breadth-first search for a maximally specific con-
junctive concept description. The concept is initialized to the first example and then
generalized to match the remaining examples by applying the ‘Drop Conditions’ and
‘Turn constants into Variables’ generalization rules. First, a set is generated of all
matching literals between the current best concept and the new example. Two literals
match if they have at least one common constant in corresponding positions and the
same total number of terms. For the second step, subsets of the matching literal pairs
found in the first step are created subject to the condition that a literal from the con-
cept and the example can only appear once in each subset. In the third step, the sub-
sets of matching pairs are augmented with pairs of indirectly matching literals selected
from the literals not already in the subset. Two literals match indirectly if they have

the same number of terms and at least one corresponding pair of mismatched constants

also appears in one position in a directly matching literal pair. Finally, in the fourth
step, new candidate generalizations are produced by merging literal pairs. Differing

constant terms in the same position are matched by creating new variables.

In his algorithms, Vere’s goal was to develop provably correct induction algorithms
to place work on learning concepts from examples on a more theoretically secure basis.
While this has been achieved, there remain doubts about their practical usefulness in
real Al systems. It is not entirely clear how Vere's programmed implementations
avoided the combinatorial explosions that plague breadth-first search algorithms. It is
suspected that heuristics must have been used [6]. A drawback of counterfactual
descriptions raised by Vere is that humans can only comfortably comprehend single-
level counterfactual concept descriptions [25]. It is not clear how domain-specific infor-
mation could be exploited. The possibility of setting up and using generalization hierar-

chies among attribute values and relations was not mentioned.
Advantages:

1. Works with concept learning and production rule learning.
2. Can be extended to disjunctive concepts.

3. Has a provably correct learning algorithm.
Disadvanta.ges':

1. Requires a fixed representation language.

2. Domain-specific knowledge is not used.

3. Breadth-first search can be combinatorially explosive.

4

Concept descriptions are often difficult for humans to understand.

3.3. Buchanan : Meta-DENDRAL (1977-78)

The learning system Meta-DENDRAL was developed by Buchanan and others at
Stanford University as a knowledge acquisition tool for an existing knowledge-based sys-
tem [1,2]. DENDRAL is a widely used expert system for interpreting molecular struc-
ture from mass spectrogram data. Its knowledge base consists primarily of fragmenta-
tion rules that specify how molecules break apart in a mass spectrograph, an apparatus
used to identify chemical compounds. Inferring these rules from experimental data is a
laborious process even for a human expert. Meta-DENDRAL was designed as a special-

purpose learning program that could be used interactively by a chemist to infer new

- 95 —

fragmentation rules given compounds and their measured mass spectrograms.

The nature of Meta-DENDRAL’s domain, noisy measurement data and a huge
space of possible rules, necessitated a model-directed learning strategy. A weakly
directed exhaustive search would produce excessively long computation times. Instead,
generally applicable heuristics about the fragmentation process were used to guide an
iterative generate-and-test search toward a stronger set of rules sufficient to explain the
known empirical data. A semantic net scheme was chosen for representing compounds,
nodes and arcs denoting atoms and bonds respectively. Fragmentation heuristics
imposed restrictions on which kinds of bonds were most likely to break and on what
kinds of atomic rearrangements could occur in the resulting fragments. For example, it
could be assumed that molecules can only break once into two fragments, and that the
break can only occur at a single bond. The desired goal concept description was a com-
pact set of specific fragmentation rules operating on the known atomic structure of the
compound. In this way, learning effort was directed toward the most promising, physi-

cally plausible rules.

The learning process proceeds as follows. A set of fragmentation rules operating
on the given molecular structure is generated to meet the heuristic constraints and
cover most of the major peaks in the mass spectrograph (i.e. the positive instances).
Then the set of rules is compacted, modified and merged in an effort to improve cover-
age of the positive evidence and reduce any negative coverage (e.g. prediction of spec-
trograph peaks where none appear). This process is repeated until the fit between the
measured data and the data predicted by the rule set agree to within predetermined cri-

teria.

Meta-DENDRAL learns a disjunctive set of production rules. The rules of generali-
zation used were ‘Drop Conditions’, ‘Turn Constants into Variables’ and ‘Add Internal
Disjunction’. Specialization was achieved by applying the generalization rules in

reverse.

Meta-DENDRAL was particularly successful in its specialized domain. Known
fragmentation rules were rediscovered from real mass spectrogram data [2]. In addi-
tion, previously unknown rules were discovered and later accepted by human specialists
in the field. The program’s ability to infer valuable rules in a noisy real-world domain
with a proficiency equal to that of human experts has made Meta-DENDRAL an excel-

lent example of the model-driven paradigm.

— 98 —

Advantages:

1. Effectively exploits domain-specific knowledge.
2. Handles noisy data.

3. Learns disjunctive and intersecting rules.
Disadvantages:

1. Essentially a domain-specific algorithm.

3.4. Mitchell : Candidate Elimination (1978)

In his doctoral thesis, Mitchell presents theoretical analysis and two practical
applications of his candidate elimination learning algorithm [12]. The most important
new idea that emerges from this work is that of the version space, an efficient way of
representing the entire space of concept descriptions that are consistent with the train-
ing set. Candidate elimination has a simple data-driven control strategy: each time a
new example becomes available, the current version space is updated by removing all
concept descriptions that are not comnsistent with the example. A unique concept

description has been found if the version space contracts to include only one element.

The version space technique can only be used for certain types of representation
languages. The language’s fixed sets of constants and relations are assumed to be par-
tially ordered in generality by domain-dependent constraints. In his lecture given at
IJCAI-83 Mitchell gave the following as a fragment of the generalization hierarchy that

was used in his LEX learning program [14]:

- 97 —

£
|
L L T R dmm——— trmr e r e e ——— cee
| t
poly trans ee
| 1
| tmmmmrc - o m——— e
l |
monom trig e
I I
tom——— mm——— tm———— e
i |
sin cos P

where: f = real-valued function
poly = polynomial
trans = transcendental function -
monom = monomial
trig = trigonometric function
r = real constant

k = integer constant

Concept descriptions must take the form of conjunctions of relations over constants
and variables. The learning algorithm needs to be provided with a predicate that tests
whether one given concept description is more general than another. Also required is a

predicate that tests whether an instance is matched by a given concept.

By exploiting partial ordering in the space of concept descriptions, it is possible to
use a compact representation for potentially large version spaces. Mitchell shows that
only the most specific and most general boundaries are required to fully specify a ver-
sion space [12]. These boundaries can be represented efficiently as sets of concept
descriptions. Typically, the sizes of the so-called S and G sets (for the most specific and
most general boundaries respectively) are much smaller than any enumeration of all
members in a version space. One constraint must always hold among the members of S
and G: each element in S must be less general than at least one element in G, and each
element in G must be more general than at least one element in S. This restriction

ensures that the version space will be properly delimited.

Mitchell’s algorithm uses a positive training instance to initialize the version space.
The S set is initialized to contain the instance’s description and the G set is initialized
to its most general possible form. It is known at this point that all potentially con-
sistent concept descriptions must lie within this initial version space. Further examples
can only reduce the size of the space by causing the S and G boundaries to move mono-
tonically toward one another. The version space is updated indirectly by operations on
S and G. When a positive instance, Ipos, is matched by all elements of S, no changes
are required because all concepts in the version space must also match Ipos. If at least
one element in S does not match Ipos, the S boundary needs to be generalized to
remove overly specific concept candidates from the version space. Breadth-first gen-
eralization of S is achieved by applying one or more of the rules ‘Drop Conditions’,
‘Turn Constants to Variables’ and ‘Climb a Generalization Hierarchy’ within the con-
straint imposed by the G set. Finally, any elements of G that are not generalizations of
elements in the new S must be deleted. The procedure for handling negative examples
is analogous with the roles of S and G reversed and with the G set possibly being spe-

cialized.

The candidate elimination algorithm yields several important benefits. Until a
unique concept description has been found, the version space can be used as the
representation for a partially learned concept. As such, it can be used to help recognize
instances. If an instance is not matched by all concepts in the version space (i.e. all ele-
ments in S fail to match) then it cannot be an instance of the concept being learned. If
an instance is matched by all members of the version space (i.e. all elements in S
match) then it can safely be classified as belonging to the concept. Finally, if some but
not all members of the version space match an instance, then an estimate can be ven-
tured as to the likelihood of its belonging to the partially learned concept. The version
space can also be used to decide which new examples would produce the most rapid
convergence of the version space. An optimal next example is chosen to be consistent
with only half the concepts in the version space. A series of instances meeting this cri-
terion causes the version space to shrink in size exponentially. If the S and G sets
empty, the version space no longer has any candidates. From a correctness result
proved by Mitchell, it is certain that no consistent concept description for the training
set exists [12].

The candidate elimination algorithm with its use of version spaces was an impor-
tant advance in machine learning. Its systematic search of all possible concept descrip-
tions facilitates the use of incompletely learned concepts. Mitchell has used the version
space method in his LEX series of learning systems [14]. Extensions to the basic algo-
rithm for disjunctive concepts and for training sets with limited inconsistency are dis-
cussed in Mitchell’s dissertation. It is not clear how the restrictive conditions imposed

on the structure of the learning space will limit the usefulness of the technique.
Advantages:

1. All consistent concept descriptions are found.

2. Partially learned concepts are usable.

3. Learning is independent of the order of presentation.
4. Past examples need not be stored.

5. Backtracking is not required.

Disadvantages:

1. Need a fixed and sufficient description language.
No exception operator.
Inconsistent training examples are expensive to handle.

Cannot exploit domain-specific concept likelihoods.

(AT N L N]

Partially learned concepts are difficult for humans to understand.

3.5. Quinlan : Chess Endgame Analysis (1879)

In the late 1970’s, Quinlan designed a series of programs that learned discriminant
concepts for evaluating board positions for a well known chess endgame problem
[15,16,17]. Specifically, the game scenario under study was white king and rook playing
against black king and knight with black about to make a move. The learning goal was
to decide the game’s outcome, either safe or lost for black, over the next two moves.
This learned knowledge was to be expressed as a decision tree using the values of
relevant features in the board positions. Quinlan chose chess as the domain because the
game has already been studied extensively by human experts: the choice was not a
reflection of any serious limitations in his algorithm. The motivation for the work was
the observation that human experts seem to be able to identify relevant features in

complicated situations and then combine them in apparently simple ways to yield

- 30 -

expert judgements. However, when asked to justify their reasoning, expert chess
players are often unable to express the complete set of rules that they are using.
Quinlan’s program objectively infers a sufficient set of rules using the experts’ own

attributes.

Rather than attempting to classify board positions in terms of four pairs of coordi-
nates, considerable data compression is realized by classifying board descriptions
instead. In general many distinct positions have the same description. For example,
there are over 11 million possible ‘black to move’ positions for the particular endgame
that was studied (i.e. 64 x 63 x 62 x 45). Using any set of attributes reduces the
number of instances to roughly 1.8 million distinct descriptions simply by removing
symmetric variants from consideration. For one set of 25 attributes used by Quinlan,
the database was further reduced to 29,236 instances [16].

Conventional chess wisdom was used to select attributes such as ‘distance from
white king to rook = 1 , 2 or more squares’ or ‘black king can move adjacent to the
knight = true or false’. Some difficulty was encountered in finding sets of attributes
that mapped only positions with identical outcomes to the same description. A set of
attributes that does not have this property cannot possibly be used to form a complete
decision tree. Quinlan was able to circumvent the problem by adding a new node type
‘search’ for those descriptions where the attributes are not sufficient for deciding the
outcome. If the number of ‘search’ nodes is small the decision tree should be sufficient
for most board positions. A fourth node type ‘null’ was used as a label for descriptions
that did not correspond to any legal board positions. By settling for a mostly complete
decision tree, only 11 nodes in a 393 node tree produced in one run were labeled ‘search’
rather than ‘lost’ or ‘safe’ [16]. A small portion of this tree is given below (subtree #7
in [16]):

wk at p3?
e e e--—— e mrc e e n-e-- +
true false
I |
distance r-wk? LosT
fwmm----—- e rcccnon--- +
1 2 >2
| | I
SAFE SAFE r threatens king?
P ———— mm——————— +
true false
I |
SAFE n at p3?
s trmmmmm———— +
true false
| I
LOST distance n-r?
- -—--—-- LA L L +
1 2 »2
| | I
n at p4d? SEARCH LOST
tmmm—- toemm—- +
true false
| {
SAFE SEARCH

where: ‘wk at p3’ means white’s king is on an edge two squares from a corner
‘distance r-wk’ is the distance from white’s rook to white’s king
‘r threatens k’ means white’s rook threatens black’s king
‘n at p3’ means black’s knight is on an edge two squares from a corner
‘distance n-r’ is the distance from black’s knight to white’s rook

‘n at p4’ means black’s knight is on a diagonal one square from a corner

Quinlan’s learning algorithm operates as an iterative generate and test cycle. A
random subset of the complete set of board descriptions is chosen as the first ‘window’.
Using heuristics that promote compactness, a decision tree rule is generated that parti-
tions all elements in the window so that all descriptions reaching the same node from
the root have the same outcome. Then the generated rule is tested for accuracy
against the entire set of pre-classified board descriptions. If the rule correctly classifies
all descriptions, the algorithm terminates. Otherwise, a new window is formed from the
old window and incorrectly classified board descriptions, and the cycle is repeated until

a correct rule is found.

- 32 —

The behaviour of Quinlan’s program is encouraging in several respects. Conver-
gence on the correct decision tree tends to be rapid. Using only a small fraction of the
total number of descriptions in the window, a rule is found that applies to them all.
Summarizing the behaviour of the algorithm over several endgame problems, Quinlan

proposed the rule:

running time = constant * (total size of the instance space)
* (number of description attributes)

* (complexity of decision tree)

In other words, Quinlan’s algorithm learns rules in time linearly proportional to the
number of examples. This is in marked contrast to the combinatorial explosions to
which Winston’s and Vere’s algorithms can fall victim. On the negative side, some diffi-
culty was occasionally experienced in finding sets of attributes sufficient to resolve all
board descriptions into classes with common outcomes. This suggests that either
human experts are not fully aware of all the attributes that they are using, or that they
are in fact relying on a combination of pattern analysis, search and perhaps other
methods.

As a footnote to this problem, after considerable trail and error Quinlan was able
to develop a set of 23 binary-valued attributes that partioned the set of descriptions
into sets with common outcomes [17]. The total space of 1.8 million board positions
collapsed to just 428 distinct board descriptions. The exact decision tree that resulted
contained only 83 nodes. Interestingly, the attributes in this run were not nearly as
obvious as the set of 25 in the initial study. They consisted of broader, less obvious
patterns of piece positions that are not recognized as primitive features in the chess

literature.
Advantages:
1. Efficiently learns decision trees for large databases using small windows.

2. Human knowledge of relevant features is exploited to infer the unexpressed rules

underlying expert performance.
Disadvantages:
1. Needs a sufficient set of domain-dependent attributes.

2. A complete set of examples needs to be pre-classified by independent means.

- 33 —

3.8. Michalski and Stepp : Conceptual Clustering (1980-83)

At the University of Illinois (Urbana-Champaign), Michalski and Stepp developed
algorithms that construct hierarchical classifications based on what they called concep-
tual clustering [9,10]. Traditionally, the problem of identifying clusters in data is
assisted by using numerical techniques such as those of pattern analysis and numerical
taxonomy. Clusters in data are recognized as sets of elements that are close together
in some predefined multidimensional feature space. Efficient computer programs are
available that implement various different clustering criteria to form numerically
optimal classifications. Michalski and Stepp observed that humans have difficulties
interpreting such clusters: they are unlike the kinds of clusters that humans normally
use. They pointed out that object classes normally are chosen according to a few
important features. As a result, the meaning of each cluster tends to be readily
apparent from the description itself. Conceptual clustering assumes that clusters
should be expressed as simple conjuncts of descriptive relations. This should make their
meaning readily apparent. Creating a good classification involves finding a set of con-
junctive concept descriptions that optimizes the partitioning with respect to such cri-
teria as fit, simplicity and disjointedness. The programs CLUSTER/paf and CLUS-
TER/2 were written to embody these ideas.

The variable valued logic VL1, developed by Michalski, was used as the representa-
tion language for cluster concept descriptions [8]. Variables in VL1 are typed to finite,
discrete value sets such as unordered sets, linearly ordered sets, and tree-structured
sets. Concepts are conjunctions of relational statements. A relational statement is
comprised of a variable and a subset of its possible values. Thus the following expres-

sion is a concept comprised of four relational statements:
[Height = tall][Colour = {blue,red}][Length > 2][Weight = 2..5]

A logical AND is assumed between each relational statement. The four variables in the
expression are ‘Height’, ‘Weight’, ‘Length’ and ‘Weight’. The second relational state-
ment illustrates the internal disjunction operator: the variable ‘Colour’ can assume

either one of the values ‘blue’ or ‘red’.

The classifications created by the CLUSTER programs are hierarchical taxo-
nomies. A hierarchical taxonomy is recursively defined as either a single terminal node
enumeration of instances, or as a concept description and a disjunction of one or more

sub-hierarchies. For example, CLUSTER/2 was used to generate the following

- 34 —

classification for a universe of twelve microcomputers [10]:

[MP = 6502A][ROM = 11k..16k] &
[Display = colour-tv][Keys = 64..73]
FZEERAEBEZEFEEERE AR EAEEER RGBT EEREEES VIC20

*
« [MP = 6502x][ROM = 10k] & Apple II
[MP <> 8080x] & [Display = tv][Keys = 52,.63] Atari 800
FREERERAEFFREE R BRI ERREEERREAEREAEEEEREERAREEIEEREEEREREES Challenger
3 - Ohio Sc.11
- « [MP = hp][ROM = 80k] &
- # [Display = built-in)]lKeys = 92]
&* BREFEREEFREREREREEERELERRESGESIAAESRERAREAES HPGS
*
L X X
- [ROM = 4k..8k][Display <> built-in] &
- [Keys = 57..63] Sorcerer
&* FEEEEFERAEEETFRERREREFRRAE AR R RS ER RS S Horizon
& *
* *
« [MP = 8080x] & [ROM = 11k..16k][RAM = 48k] TRS-80 I

BRERBERRFRBEABERBRBRREZSREBBEERBEBERERERB AR SRR EERERERREESE TRS-80 I
*
4« [ROM = 1k..8k][RAM = 64k] &
#+ [Display = built-in][XKeys = 64..73] 2Zenith HS8
EXFRFRERERFRFRAERREEEERAEERBEREBEEEREERRESE Zenith HBY
The terminal node comprised of the Sorcerer and Horizon microcomputers belongs to
the major subdivision [MP = 8080x] and the minor subdivision [ROM = 4k..8k|[Display
<> built-in][Keys = 57..63]. It should be pointed out that the choice of divisions is
governed by the choice of some clustering quality evaluation function. Changes in this

function would likely cause substantial changes in the form of the classification.

The learning algorithm used in CLUSTER/2 consists of a clustering module and a
hierarchy building module. The former finds a partitioning for the set of examples that
is optimal with respect to a list of criteria chosen by the user. Among the criteria that
might be chosen are, the closeness of the fit between the examples and the concept
classes, the syntactic simplicity of class descriptions, the number of classes, the disjoint-
ness of the classes with respect to one another and the syntactic similarity of the exam-
ples grouped together into the same class. The optimal clustering can be found by sys-
tematically generating all possible partitionings and choosing the one that best meets
the chosen criteria. As is, this approach is not acceptable for practical problems

because of the combinatorially explosive number of possible partitionings. Heuristic

- 35 —

techniques were applied successfully in CLUSTER/2 to keep the run times reasonable.
The details of how a disjoint set of partitions is created are involved and are not
repeated here. Briefly, seed events are picked to start each class. Then various gen-
eralization and specialization rules are employed to ‘grow’ the classes to include all of
the remaining examples. The hierarchy building module applies the clustering module
at each level for each class to construct the overall classification. It terminates once
the fit between the members of the proposed new classes and their class descriptions is

no longer an improvement over the fit achieved at the previous level.

The classifications produced by CLUSTER/2 were compared against the clusters
produced by the numerical taxonomy package NUMTAX in two domains: the classifica-
tion of popular personal computers and the reconstruction of a classification of selected
plant diseases [10]. It was found that the classifications produced by conceptual cluster-
ing corresponded much better to the human-developed classifications for the same
domains. This result should not be too surprising since CLUSTER/2 used the same
sorts of attributes as those used by humans, qualities that are not considered by purely
numerical techniques. The more understandable classifications produced by conceptual
clustering do incur an increased computational cost. For example, in the microcom-
puter problem 4 to 40 seconds of processor time was required on a Cyber 175 compared
with the 60 milliseconds required for each classification produced by NUMTAX. This
difference is caused by the iterative nature of CLUSTER/2’s generate and test algo-
rithm. The increased one shot cost may not be significant in many applications since

conceptual clustering should save time at the interpretation stage.

Advantages:

1. Produces human-understandable classifications.

2. Cluster classes have easily understood meanings.

Disadvantages:

1. Need a domain-dependent evaluation function for cluster quality.
Classes must be describable by conjunctive descriptions.

2
3. Computationally expensive compared with numerical taxonomy.
4. Relative importance of features not specifiable.

5

Substructure of objects not exploited as a clustering feature.

4. Critical Discussion

The following sections identify areas of weakness in current algorithms that learn

concepts from examples.

4.1. Monotonic Learning

A seemingly unavoidable characteristic of human learning is that the accumulation
of new knowledge rarely proceeds smoothly. Some misconceptions must be expected
along the way. Still, in the longer term, humans eventually recognize and correct faulty
aspects of their accumulating understanding. The inability to handle short term set-
backs is an area of weakness in current learning algorithms, particularly those that use
the data-driven control strategy. Most of these programs embody the optimistic
assumption that the concept description will improve monotonically. For example, it is
common to encode all of the known positive examples into the evolving concept
description(s). It is assumed that there will be no need to re-examine past data to deal
with inconsistencies that might emerge. Without separately storing past examples, it is
impossible to keep track of certainty, assumptions, dependencies and other related

details. Such information is helpful when recovering from misconceptions.

4.2. Intolerance of Errors and Noise

Most learning algorithms, especially those that are data-driven, are unable to
tolerate errors, noise or inconsistent training sets. For example, Winston’s and Vere's
algorithms would be disrupted completely by a single spurious example. Mitchell’s algo-
rithm can only be modified to handle moderate inconsistencies with substantially
increased computational cost [12]. Noise is inevitable in the real world. If learning
algorithms are to be able to handle real world input, they will have to be able to
tolerate background levels of noise. Intolerance of errors and noise is closely related to
the often overly optimistic assumption of monotonicity. A learning algorithm must be
able to recover from misconceptions caused by error in previous data since it cannot
always be assumed that error will be detected when an example is first considered.
Being able to store past examples independently of the concept descriptions would prob-
ably simplify error recovery since it would permit knowledge to be reconstructed from
original data. It would also allow the algorithm to estimate the level of noise in its

source of further examples.

- 37 —

4.3. Exploiting Domain Knowledge

Learning programs such as Buchanan's Meta-DENDRAL and Quinlan’s chess
endgame analyzer owe much of their performance to their ability to exploit domain-
specific knowledge. General learning algorithms are important to study but it is their
ability to access and use domain knowledge that is a major factor in their power [4].
Using domain knowledge, an algorithm can direct most of its resources toward the most
likely concept description models. Using domain knowledge, errors in the training set
can be recognized earlier. Also, by using domain knowledge the more plausible generali-
zations and specializations can receive more attention than the often large number of
possible syntactic mutations. Model-driven learning algorithms are in a better position
to exploit knowledge than those of the data-driven control strategy. To make domain-
specific knowledge more usable, new knowledge representation schemes should be

developed.

4.4. Unjustified Generalization and Specialization

Current learning algorithms are not able to justify the ways in which concept
descriptions can be most usefully generalized and specialized. This is a drawback in
several respects. Typically, numerous syntactic mutations can be proposed by the
available generalization and specialization rules. Without knowing the justifications for
each rule, a learning algorithm must expend equal effort on each possibility, making
combinatorial explosion a problem. Also, it is possible that the justification for using a
particular rule might be enhanced or diminished by knowledge acquired during past
experience. This information would also be useful in speeding up the rate of learning.
Finally, if the results of learning algorithms are to be accepted by humans, explanations

and justifications for them will be expected.

4.5. Constructive Induction

Most current learning algorithms use a fixed representation language. It is
assumed that concepts will be both expressible and learnable in a previously chosen con-
cept description space. This assumption can be problematic: a good set of descriptors
and operators is not always known ahead of time. Humans often have to discover the
best representations before efficient learning can take place. It has been the experience
in Al that the performance of many programs is critically dependent on the choice of

representation language. For these reasons, constructive induction is an important

capability that has not appeared in many learning algorithms.

4.8. Disjunctive and Intersecting Concepts

To date, most learning algorithms have only been able to learn conjunctive con-
cept descriptions. A few, such as CLUSTER/2 and Meta-DENDRAL, were designed to
handle disjunctive concepts. Meta-DENDRAL is also capable of learning intersecting
concepts: a peak in a mass spectrogram can be attributed to more than one fragmenta-
tion rule. In general though, learning disjunctive and intersecting concepts is more dif-
ficult than learning purely conjunctive concepts. Learning such concepts tends to be a
non-monotonic process requiring domain-specific heuristics and iteration. Interestingly,
humans seem to be able to learn disjunctive and intersecting concepts apparently
without substantially increased conscious effort. Perhaps humans are able to use
deeper knowledge to prune away all but the most likely of the possible partitionings of

the examples.

4.7. Fuzzy and Probabilistic Concepts

Most of the knowledge representation schemes used by current learning programs
can only handle exact, deterministic information. Yet, there is much information in the
world that is not readily encodable within these restrictions [19]. Much knowledge is
inherently vague or uncertain. Fuzzy and probabilistic knowledge representation
schemes have been developed for Al programs that must manipulate non-exact

knowledge but these have not yet appeared in machine learning algorithms.

4.8. Empirical Methodology

Al research has a tradition of considering various different domains using rather ad
hoc techniques and often not attempting to rigorously test assumptions [20]. The jus-
tification for this empirical approach is that the field is still in a primitive state and
that investigators should be free to try a variety of methods in diverse domains to build
up an understanding of the important issues. Also, Al problems tend to have so many
parameters that it would be impractical to try to systematically control them all. How-
ever, there is a danger inherent in current practice. Algorithms and data structures are
rarely published at the source code level, just described in English prose. Such informal
descriptions can be ambiguous, making it hard for other investigators to duplicate and

extend published results. Winston's algorithm requires an intelligent teacher to achieve

— 39 —

reasonable learning performance, but how then will this algorithm be compared with
others in the same domain? How will a teacher’s helpfulness be controlled or compared?
As was seen in the introduction to this essay, there is no universal agreement as to
what constitutes learning behaviour. Progress in machine learning would probably
accelerate if agreement could be reached on standardized learning problems that could

then receive more systematic investigation.

5. Directions for Future Research

The following sections discuss directions for further research with programs that

learn concepts from examples.

5.1. Model-driven and Mixed Control Strategies

More research on the model-driven and mixed control strategies is justified on the
basis of past experience. Many of the problems identified in the critical discussion such
as error tolerance, non-monotonic learning, use of domain knowledge, comstructive
induction, disjunctive and intersecting concept learning, would be more readily tackled
using top-down methods rather than any of the well known data-driven algorithms.
Techniques must be found that address the problem of having to store all past exam-
ples so that they can be used later to check the consistency of proposed concepts.
Quinlan’s chess program demonstrated that only a small representative subset of all
possible examples need be stored when a rule valid for the complete set is to be learned.
Perhaps only the most ‘typical’ or ‘representative’ positive instances and exceptions for
the current rules should be remembered. Heuristics that indicate the best examples to

retain are required.

5.2. Coping With Modifiable Concept Description Languages

The use of a single representation language for both the examples and the concept
descriptions can be a drawback. There might be advantages to using a low-level
representation for stored examples as opposed to a more highly encoded representation
used for the concept descriptions. Thus changes in the concept description language
would not cause problems if past examples needed to be re-interpreted using a new set
of descriptors. Learning programs that have separate representation schemes and that

allow the concept description language to be changed are worth investigating.

5.3. Standardized Domains and Learning Problems

In the interests of making the testing and comparison of different learning algo-
rithms more systematic, standardized domains and learning problems should be found.
Learning does not seem to be a behaviour that can be tested fairly in any one problem.
The winner of the decathlon series of events in track and field is often considered to be
the best all-round athlete. By analogy, a series of sample learning problems could be

selected to determine the best all-round learning algorithm. The mere exercise of

- 4] —

creating such a series of test problems and then getting them accepted by the research
community would help clarify what is understood to be learning behaviour. Even an
imperfect test series would provide a definite goal toward which new algorithms could

be developed.

5.4. Learning Appropriate Generalization and Specialization Rules

Not knowing which generalization and specialization rules are most plausible in a
given learning situation is a weakness in current algorithms. Learning programs should
be developed that learn over the course of many learning problems which rules are plau-
sible and which are unlikely. Perhaps generalization and specialization rules should be
constructed as condition-action production rules in which the condition part embodies

the learned limits of a rule’s usefulness.

5.5. Bottleneck Detection and Active Learning

Mitchell points out that a learning algorithm should have some declarative aware-
ness of the performance of its different components [14]. If a bottleneck is discovered,
an algorithm should be able to request specific kinds of training examples from the
environment and then make improvements to its own internal mechanisms. This would
reduce the dependence that some of the current algorithms have on a benevolent exter-
nal teacher. There are limits as to how well a human can learn in a read-only mode.
Two-way interaction with the training source (e.g. a teacher) allows a student to
request clarification on matters that do not make sense. Similarly, learning programs

should be devised that actively participate in the learning process.

5.8. A Final Word of Caution

Finally, it may be that significant progress in machine learning will have to wait
for progress in other areas such as knowledge representation, learning by discovery, pro-
babilistic and fuzzy reasoning, associative storage structures and parallel hardware.
Even if this pessimistic scenario proves correct, additional successful learning programs
like Meta-DENDRAL will likely emerge as spin-offs of machine learning research. This
possibility by itself is justification enough for further efforts in this difficult area of Al

8.
1]

[2]

[3]

[4]

(5]

[6]

[7]
(8]

[9]

(10]

[11]

12

[13]
[14]

[15]

[16]

References

Buchanan, B.G. and Mitchell, T.M., ‘Model-Directed Learning of Production Rules’, Com-
puter Science Department, Report #STAN-CS-77-597, (Stanford University, Stanford, CA,
1977).

Buchanan, B.G. and Feigenbaum, E.A., ‘DENDRAL and Meta-DENDRAL : Their Applica-
tions Dimension’, Heuristic Programming Project Memo 78-1, Computer Science Depart-
ment, Report #STAN-CS-78-649, (Stanford University, Stanford, CA, 1978).

Buchanan, B.G., Mitchell, T.M, Smith, R.G. and Johnson, C.R., ‘Models of Learning Sys-
tems’, v.11, pp.24-50 in J.Belzer, A.G. Holzman and A. Kent (Eds.), Encyclopedia of Com-
puter Science and Technology , (Marcel Dekker Inc., New York, 1978).

Carbonell, J.G, Michalski, R.S and Mitchell, T.M., ‘Machine Learning Part I: A Historical
and Methodological Analysis’, Department of Computer Science, Carnegie-Mellon University,
Report #CMU-CS-83-135, (Carnegie-Mellon University, Pittsburgh, 1983).

Carbonell, J.G, Michalski, R.S. and Mitchell, T.M,, ‘An Overview of Machine Learning’,
pp.3-24 in R.S. Michalski, J.G. Carbonell, and T.M. Mitchell (Eds.), Machine Learning : An
Artificial Intelligence Approach , (Tioga Press, Palo Alto, CA, 1983).

Dietterich, T.G. and Michalski, R.S., ‘Inductive Learning of Structural Descriptions: Evalua-
tive Criteria and Comparative Review of Selected Methods’, Artificial Intelligence , v.16,
1981, pp.257-294.

Lenat, D.B. and Brown, J.S., ‘Why AM and EURISKO Appear to WORK’, Artificial Intelli-
gence , v.23, 1984, pp.269-294.

Michalski, R.S., ‘Pattern Recognition as Rule-Guided Inductive Inference’, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence , v.PAMI-2, no.4, July 1980, pp.349-
361.

Michalski, R.S. and Stepp, R., ‘Revealing conceptual structure in data by inductive infer-
ence’, pp.173-196 in J. Hayes, D. Michie and Y-H Pao (Eds.), Machine Intelligence 10, (Ellis
Horwood, Chichester, England, 1981).

Michalski, R.S. and Stepp, R.E., ‘Automated Construction of Classifications: Conceptual
Clustering Versus Numerical Taxonomy’, IEEE Transactions on Pattern Analysis and
Machine Intelligence , v.5, no.4, July 1983, pp.396-410.

Michalski, R.S. and Stepp, R.E., ‘Learning From Observation: Conceptual Clustering’,
pp.331-364 in R.S. Michalski, J.G. Carbonell and T.M. Mitchell (Eds.), Machine Learning :
An Artificial Intelligence Approach , (Tioga Press, Palo Alto, CA, 1983).

Mitchell, T.M., ‘Version Spaces: An Approach to Concept Learning’, Ph.D. dissertation,
Computer Science Department, Report #STAN-CS-78-711, (Stanford University, Stanford,
CA, 1978).

Mitchell, T.M., ‘Generalization as Search’, Artificial Intelligence , v.18, 1982, pp.203-226.

Mitchell, T.M., ‘Learning and Problem Solving’, Computers and Thought Lecture, Proceed-
ings of the Tth International Joint Conference on Artificial Intelligence , 1983, pp.1139-
1151.

Quinlan, J.R., ‘Induction over Large Data Bases’, Stanford Heuristic Programming Project,
Memo HPP-79-14, Computer Science Department, Report #STAN-CS-79-739, (Stanford
University, Stanford, CA, 1979).

Quinlan, J.R., ‘Discovering Rules by Induction from Large Collections of Examples’, pp.168-
201 in D. Michie, (Ed.), Ezpert Systems in the Micro Electronic Age , (Edinburgh University
Press, Edinburgh, 1979).

[17]

18

[19]
[20]

[21]
[22]

(23]

[24]
[25]

[26]
[27]

[28]

Quinlan, JR., ‘Semi-autonomous acquisition of pattern-based knowledge’, pp.159-172 in J.
Hayes, D. Michie and Y-H Pao (Eds.), Machine Intelligence 10 , (Ellis Horwood, Chichester,
1981).

Quinlan, J.R., ‘Learning Efficient Classification Procedures and their Application to Chess
End Games’, pp.463-482 in R.S. Michalski, J.G. Carbonell and T.M. Mitchell (Eds.),
Machine Learning : An Artificial Intelligence Approach , (Tioga Press, Palo Alto, CA,
1983).

Rich, E., Artificial Intelligence , (McGraw-Hill, New York, 1983).

Ritchie, G.D. and Hanna, F. K., ‘AM: A Case Study in AI Methodology’, Artificial Intell:-
gence , v.23, 1984, pp.249-268.

Scott, P.D., ‘Learning: the Construction of A Posteriori Knowledge Structures’, Proceedings
of 8rd National Conference on Artificial Intelligence , (AAAI, 1983), pp.359-363.

Scott, P.D. and Vogt, R.C., ‘Knowledge Oriented Learning’, Proceedings of the 7th Interna-
tional Joint Conference on Artificial Intelligence , 1983, pp.432-435.

Simon, H.A., ‘Why Should Machines Learn?’, pp.25-38 in R.S. Michalski, J.G. Carbonell and
T.M. Mitchell (Eds.), Machine Learning : An Artificial Intelligence Approach , (Tioga
Press, Palo Alto, CA, 1983).

Vere, S.A., ‘Induction of Concepts in the Predicate Calculus’, Proceedings of the 4th Inter-
national Joint Conference on Artificial Intelligence , 1975, pp.281-287.

Vere, S.A., ‘Multilevel Counterfactuals for Generalizations of Relational Concepts and Pro-
ductions’, Artificial Intelligence , v.14, 1980, pp.139-164.

Webster's New Collegiate Dictionary , (G. & C. Merriam Co., Springfield MA, 1981).

Winston, P.H., ‘Learning Structural Descriptions from Examples’, pp.157-209 in P.H. Wins-
ton (Ed.), The Psychology of Computer Vision , (McGraw-Hill, New York, 1975).

Winston, P.H., ‘Learning Class Descriptions from Samples’, ch.11 in Artificial Intelligence ,
2nd Ed., (Addison-Wesley, Reading, MA, 1984), pp.391-414.

7. Appendix A - Glossary

Candidate Elimination - a data-driven learning algorithm discussed by Mitchell in his
doctoral thesis [12]. A version space is updated with each positive and negative exam-

ple to remove inconsistent concept description candidates.

Combinatorial Explosion - the situation that exists when the amount of computation

grows rapidly with the size of the problem (e.g. exponentially increasing).

Concept Description - a symbolic data structure that represents a concept (i.e. for a
particular domain describes one class of instances, or a classification of all known

instances).

Counterfactual - ‘a set of conditions which must be false if a generalization is to be
satisfied’ [25].

Deductive Inference - a mode of reasoning in which postulated facts are recognized

as being logical consequences of a known body of facts and rules.

Generalization - the process of extending the scope of the current description to
include more instances. Also, the new concept description whose scope has been

extended.

Inductive Inference - a mode of reasoning in which a collection of facts is analyzed

and general theories or rules that imply the facts are postulated.
Martin’s Law - ‘you cannot learn anything unless you almost know already’ [28]

Maximally Specific Conjunctive Concept Description - A concept description that
is the logical AND of one or more predicates and that matches the least number of pos-

sible instances beyond the known positive examples.

Near-miss - a negative example that is similar to previously encountered positive

examples of the concept.

Negative Example - a counter-example of a concept that may result in specialization

of the current concept description.

Partially Ordered Set - A set on which is defined a transitive binary relation. Let
‘A’, ‘B’ and ‘C’ be elements and ‘>’ denote the relation, If (A > B) and (B > C) are
true then (A > C) must also be true. The binary relation is not necessarily defined for

all pairs of elements.

Positive Example - a correct instance of a concept that may result in generalization

of the current concept description.

Predicate - a labeled relationship that possibly holds among one or more terms in a

logical system.

Specialization - the process of narrowing the scope of a description to reduce the set

of instances that it matches.

Term - a logical object that is recursively defined as either a variable, a constant, or a

functional expression made up of a functor name and one or more terms.

Version Space - a subset of the space of all possible conjunctive concept descriptions

that is delimited by most specific and most general boundary descriptions.

	

