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Abstract

Over the past three decades, Artificial Intelligence (Al) has been transformed from
a field concerned with modelling human cognition on a computer, to a computing dis-
cipline intent on the construction of programs that perform difficult human tasks. With
this transformation has come the utilization of many computing techniques, originally
deemed contrary to the theme of human cognition. Pattern Recognition (PR) has
developed tools that address some of the problems being faced by Al researchers. The
purpose of this paper is to evaluate and compare Pattern Recognition and Artificial
Intelligence techniques for developing intelligent systems, and to indicate areas where
PR techniques could be incorporated into an Al framework. The paper has been writ-
ten from an Artificial Intelligence perspective. It is assumed that the reader has the
equivalent background to an introductory course in Al. No prior knowledge of Pattern
Recognition is required.

An intuitive introduction to Pattern Recognition principles is provided. It contains
a summary of pertinent techniques in both decision-theoretic and syntactic PR. PR and
Al techniques are compared with respect to methodology, formalization, ease of imple-
mentation, ease of understanding and modification, domain applicability, and poten-
tial for future expansion. Three specific areas of Al are isolated for more in depth
study: knowledge representation, problem-solving techniques and learning. Within
each area, a comparison of PR ard Al is provided, and suggestions are made for the
application of PR techniques to the Al environment.
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A Comparative Study of Pattern Recognition and Artificial
Intelligence Techniques for the Development of Intelligent
Systems

1. Introduction

In the last three decades, a great deal of research has been done in the area of
machine intelligence, with the ultimate goal of creating an intelligent computer sys-
tem. This label has, perhaps inaccurately, been applied to a set of problems whose
common features include the fact that they can be performed by humans; they can-
not always be solved by conventional Von Neumann programming techniques; and
they require a great deal of knowledge. Medical diagnosis, chemical analysis,
game playing, theorem proving, speech understanding and image analysis are some
examples of machine intelligence problems.

Computers are becoming an integral part of society. There is a desire to build
computer systems that are user-friendly so that the general public may have access
to them and enjoy their use. Bridging the gap between man and machine requires
giving the machine a semblance of human intelligence; natural language under-
standing, game playing and intelligent computer assisted instruction (ICAI) assist to
this end.

The incorporation of computers into day-to-day life has produced an informa-
tion explosion. Suddenly, researchers in many diversified fields have the ability to
store and to process large quantities of data. This has escalated the production of
research results which in turn generates more information. ‘“Experts”’, such as doc-
tors, are then faced with the problem of retaining and utilizing these results.
Decision-making is becoming more and more difficult to perform accurately. The
application of intelligent computer systems to emulate these experts’ reasoning
processes, given a vast amount of knowledge, is a logical solution to the problem.

Solely as a research topic, machine intelligence is fascinating. It requires the
design and implementation of a unique style of computing. Computer researchers
have approached this problem in a variety of ways. Some have concentrated on
hardware, trying to produce machines capable of performing parallel computations
analogous to the parallelism in the brain. Others have invested their time in the
development of software techniques such as Pattern Recognition (PR) and Artificial
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Intelligence (AI), to perform human-like tasks. It is these techniques that are the
subject of this paper.

PR and Al began as one. One of the original domains for machine intelligence
research was scene analysis [25]. The problem was to develop a generalized pro-
cedure for recognizing objects in a detailed scene. These objects were to be recog-
nized, regardless of their size, orientation or detail.

Two different techniques were applied to the problem. PR researchers
attempted to use multivariate statistical methods for representing and recognizing
objects or patterns. These methods had no correlation to human techniques for per-
forming the same task, but they worked. Certainly that was enough to warrant
development of what is now a very active and successful methodology for problems
of machine intelligence.

Another, very different approach was taken to the same problem of scene
analysis. Al researchers attempted to draw on research done by psychologists into
how humans analyze scenes. In doing so, they tried to develop a computer model
of human cognition and then to structure their computing accordingly. From AI
came the concept of symbolic computing and with it, new programming languages,
new methods of knowledge representation and perhaps to come new styles of com-
puting machines. AI techniques were not as immediately successful as PR tech-
niques. However, a whole new style of computing was created based on the mani-
pulation of symbols This has yielded many successful applications and many exten-
sions of the original computing methodology.

There is an analogy to be drawn between the techniques of PR and Al, and the
principles behind Engineering and Science. Engineering is

‘‘the application of scientific principles to practical ends as in the design,
construction and operation of efficient and economical structures, equipment
and systems.’’ [24].

There is a direct concern with creating a finished product that is efficient and
economical. Scientific principles are applied, but to “practical ends’’. This is paral-
lel to the methodology behind PR. Statistical techniques have been applied to prob-
lems in machine intelligence to create an efficient and economical system. No
emphasis has been placed on trying to capture the methodology of the human mind.
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Conversely, Al more closely parallels scientific methodology. Science has been
defined as

‘‘Systematic and formulated knowledge; Branch of knowledge (esp. one that
can be conducted on scientific principles), organized body of the knowledge
that can be accumulated on the subjet’’ [33].

Additionally, the word scientific has been defined as

““according to rules laid down in exact science for performing observations
and testing soundness of conclusions, systematic, accurate; (of act or agent)
assisted by expert knowledge’’. [33]

Systematic and formulated knowledge is the foundation for all AI systems.
Knowledge is accumulated by an expert in the problem domain and stored in an
efficient, yet meaningful manner. There is an attempt to retain a direct mapping
between the functioning of the computer system and the real world model. As a
result, Al as a study of knowledge and intelligent behaviour is also of interest to
researchers in a broad spectrum of fields including psychology, philosophy, linguis-
tics, education and epistemology.

To describe Al as a field to develop computer models of human cognition is
inaccurate. Al has used human cognition as a model to guide its development.
However, there are radical physical limitations to what a computer can do. Al
researchers are computer scientists and as such, one of their mandates is to create
“efficient and economical”’ systems, regardless of the technique. Similarly, PR has
expanded from its original multivariate statistical methods to include more semantic
processing. More emphasis is being placed on retaining a mapping to the real world
model. The two techniques are less polar than when originally conceived.

PR and AI do have different approaches to machine intelligence. Conse-
quently, each method seems to be better suited to a subset of the existing problems.
PR techniques are more successful at giving computers sensory capabilities. Char-
acter recognition, speech recognition and computer vision have all been successfully
tackled. These problems are often characterized by analog input that must be
transformed before the mathematical reasoning process may be implemented. On
the other hand, AI techniques seem to be better suited to performing human think-
ing tasks. Medical diagnosis, natural language understanding, and intelligent com-
puter assisted instruction are just a few of the domains to which AI principles have
been applied. Although these problem areas can be seen as being different, there is
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still some overlap in the applicability of both techniques.

It is important for researchers to keep abreast of research in other areas of
computer science and engineering. VLSI design methodology has been modelled
after the design of large operating systems (OS), using the idea of virtual machines
in OS to abstract the complex design problem. Data communication has used many
of the results from graph theory and statistics to assist in modelling and designing
efficient networks. Syntactic PR, to be described later, has used formal language
theory. There are many more examples that could be cited. PR and Al are fertile
fields for similar cross-pollenation.

To date, there has been little interaction between the fields of PR and Al. In
general, PR and AI researchers have been critical of the other’s approach to
machine intelligence problems. Perhaps professional rivalry has played a part in the
lack of communication and shared effort between the two groups. There is a need
for increased cooperation. The academic community has been slowly accepting this
fact. In 1976 the first IEEE Joint Workshop on Pattern Recognition and Artificial
Intelligence was held. Selected topics in PR and Al, of interest to both groups were
discussed. In 1979 the IEEE Transactions on Pattern Analysis and Machine Intelli-
gence Journal was created to assist in communication between AI researchers and
PR researchers.

Despite this effort at shared literature, researchers have been slow to attempt
to incorporate their counterpart’s techniques. PR researchers seem to have been
more active in this area than AI researchers. A few of the existing PR systems
have started to use Al techniques for high level semantic processing. Al techniques
are much better suited for representing and dealing with meta level knowledge than
PR. There are many areas of AI where PR techniques could be used to supplement
existing methods. There is a need for more migration of theory form PR to Al

The human mind uses statistical uncertainty even though the human may not
explicitly recognize it as such. Many of the decisions made in a human’s daily life
involve weighing and evaluating choices based on some certainty factors. Humans
allow a degree of variance in criteria when making decisions. Therefore it does not
seem contrary to the methodology of Al purists to include some statistical or proba-
bilistic computations in the decision-making process. MYCIN, an expert system
that addresses the problem of diagnosing and treating infectious blood diseases, is
one of the few Al systems to implement certainty factors or numeric plausibility fac-
tors into its reasoning architecture. PR has many decision-making algorithms based
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on statistical and probabilistic theory that could assist in the AI decision-making
process.

The purpose of this paper is to evaluate and compare PR and Al techniques for
developing intelligent systems, and to indicate areas where PR techniques could be
incorporated into an AI framework. The original purpose of this paper was to cite
these applications in detail. Further reading and work displayed the enormity of
this task. PR is a vast field of study, generating volumes of literature annually.
To fully represent the field and to compare it to Al would require several texts.
The goal of this paper, therefore, is to educate and to provoke creative thought. It
is hoped that this paper will give the Al reader a strong introduction to the field of
Pattern Recognition while relating it to an Artificial Intelligence framework. There
are many arcas presented only briefly in this paper where much work could be
done. It is recommended that the reader interested in applying Pattern Recognition
techniques to Artificial Intelligence, select a specific subarea upon which to work.
Hopefully, this will assist in opening the channels of communication between Al
researchers and PR researchers and stimulate some combined work in the two
areas. The paper has been written from an Artificial Intelligence perspective. It is
assumed that the reader has the equivalent background to an introductory course in
Al. No prior knowledge of Pattern Recognition is required. A supplementary read-
ing list of material for further technical details in both areas is provided. The
author has attempted to present the material objectively, while trying to encourage
the reader to consider PR as a tool for Al applications.

Chapter 2 contains an introduction to Pattern Recognition principles. An intui-
tive description of the area is given, with little technical detail included. The
interested reader is referred to the supplementary readings. Chapter 3 contains a
comparison of PR and Al techniques with respect to certain metrics. Chapters 4, 5
and 6 deal with knowledge representation, problem solving techniques and
knowledge acquisition respectively; current PR and Al techniques in each of these
subcategories are compared. Proposals for the use of PR principles in an Al frame-
work are given. Chapter 7 is a concluding chapter. It summarizes important points
made herein and compiles suggestions for future research.



-6 —

2. Introduction to Pattern Recognition

What is Pattern Recognition? A reader having seen and understood that
sequence of symbols has just experienced pattern recognition first hand although
he/she may not have known it. Somehow those inanimate black patterns on white
paper were sensed, analysed and interpreted. The reader somehow gained some
meaning from them. What is of interest to scientists is how this was done and how
it can be emulated by a computer. Certainly the functioning of the eye is under-
stood. The printed characters are focussed on the retira where they are sensed and
transformed into signals to be interpreted by the brain. What are those signals?
How does the brain discern between an “r” and an “n’’? How does it so easily
recognize those letters when they are hand written or typed in different fonts? Iron-
ically, humans are experts at performing this task but they can’t explain how they
do it. Regardless of this lack of full understanding, automatic character recognition
systems have been created for restricted input. Character recognition is just one
application of pattern recognition techniques.

In human beings, Pattern Recognition (PR) is a perceptual process. Input is
either sensory or conceptual. Sensory input includes such physical stimulus
categories as vision, hearing, smell, touch and taste. Conceptual input is more
abstract. It includes such patterns as solution strategies and argument approaches.
This input is sensed, analysed and recognized. Perhaps it is a stimulus that has
been sensed before or perhaps it is similar to something of which the human has
previous knowledge. The human then assimilates this input with existing
knowledge to classify it or to improve on his/her knowledge store.

In a machine, PR is a data analysis technique emulating a perceptual process.
Its purpose is to give a machine perceptual capabilities. The machine accepts meas-
urements representative of a certain object, analyses them, and then classifies the
object as being most similar to a model or prototype of a known object stored in
memory. Formally, Pattern Recognition can be defined as

‘‘The categorization of input data into identifiable classes via the extraction
of significant features or attributes of the data from a background of
irrelevant detail.’’[34]

There is a popular misconception that PR techniques are only suitable for prob-
lems such as computer vision, remote sensing and speech recognition. Problems
that are characterized by input with little immediate meaning to a human, input
such as analog data. This has been supported by the fact that most of the PR
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applications are in areas related to those mentioned above. It must be stressed that
PR provides general techniques for the categorization of input data into identifiable
classes. These techniques are applicable to any problem domain where decision
making or classification based on data is required. Perhaps a failure to understand
this feature of PR techniques has been a cause for its lack of use by Al researchers.

There are two types of PR, Decision-theoretic PR and Syntactic PR.
Decision-theoretic PR is the classical Pattern Recognition approach, based on
mathematical principles. It commonly uses probabilistic and multivariate statistical
techniques to represent and classify patterns. Syntactic or Linguistic PR is slightly
closer to the Al approach to machine intelligence. It is frequently used for analyz-
ing and recognizing patterns that are not easily represented by numerical measure-
ments alone. The syntactic approach attempts to represent a pattern as a hierarchy
of subpatterns. These subpatterns are just primitive patterns with relations to con-
nect them. The hierarchy of subpatterns is analogous to the hierarchy of a parse
tree or language derivation. Consequently, many of the theories of formal
language have been applied to these pattern grammars.
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2.1. The Generic Pattern Recognition System

The creation of a generic Pattern Recognition system consists of two stages, the
analysis stage, and the recognition stage [18]. In general, the analysis stage
involves taking sets of samples, representative of a finite number of classes, and
training the PR system to distinguish between them. This requires selecting
representative features from each set of samples and defining a suitable classifier
that will efficiently and accurately be able to classify unknowns into one of the clas-
sification groups.

If the samples used to represent the class are sufficient, then the analysis stage
is complete. In most applications of machine intelligence problems, it is difficult to
fully represent a class by a small number of samples. Therefore, some automatic
PR systems contain an adaptive or learning element. An approximate classifier is
implemented, based on the original samples. This classifier is then iteratively
refined by the learning element procedure until a satisfactory level of classification

is reached.

ANALYSIS PHASE

knowm S..NSE messurements SELECT features CREATE
samples — 7 L * - -
FEATURES CLASSIFIER
LEARNING
RECOGNITION PHASE | _ELEMENT
unknown_ | mesasurements | EATRACT features . v
pottern | SLNSE FEATURES CLASSIFY eless

Fig 2.1 Generic Pattern Recognition System
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Once the initial analysis phase of the PR process is complete, the recognition
phase begins. This phase is comprised of several steps. The first step requires tak-
ing measurements from unknown patterns to be classified. These measurements are
then transformed into the features selected in the analysis phase and required by the
system’s classifier. The pattern classifier is then applied to the extracted features to
decide on a categorization or classification for the unknown input pattern. Figure
2.1 represents the operation of a generic Pattern Recognition system.

2.1.1. Specific Issues to be Resolved

Each step in the analysis and recognition phases of a PR system generates a
unique set of problems. Initially, both the representative samples and any unknown
patterns awaiting classification must be sensed. This requires taking measurements
and expressing them in a form that the computer can use and understand. In many
of the machine intelligence applications to which PR has been applied, this is not a
trivial task. Often problems are a result of a lack of understanding of how humans
perform the task, and therefore how to sense it to capture distinguishing attributes.
For example, in a speech recognition system, a tape-recorder could be utilized to
record an utterance, but this is not usable by the computer. A sound spectrogram is
often employed to capture the characteristics of the analog signal. It is digitized
and then further processed. Similarly, in image processing or computer vision prob-
lems, photographs are taken and then digitized to put them in computer usable
form.

Knowledge representation (KR), although not labelled as such, is an issue in
PR system design just as it is in Al system design. Once in computer usable form,
features must be selected and extracted from sensed measurements. Features are a
function of their measurements. One of the primary motivations for the translation
of measurements into features is to use only independent and discerning attributes
of a pattern in the classification process. By selecting features as a combination of
measurements or as one of several redundant measurements, the dimensionality of
the classification problem is reduced. The fewer features required to characterize a
class, the simpler the classification algorithm.

Unfortunately, with the increase in speed and efficiency comes a loss of infor-
mation. It is difficult to select features automatically to represent a class. Statisti-
cal techniques can be used to find linearly independent features with small within
class variance and large between class variance. This does not guarantee a good
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characterization of the class, and it is not applicable to all problem domains. The
feature selection and ultimate classification techniques applied are a function of the
specific problem. The process is not yet totally automated. Often the intuition and
experience of the system designer is required to make a PR application function
satisfactorily. This will be discussed in further detail in subsequent sections.

The next step in the PR process, classification, is quite complex. Many stan-
dard classification techniques exist. The selection of a classification depends on the
character of the data to be categorized. Two techniques frequently used for classifi-
cation are membership-roster and common property [34]. The membership-roster
technique involves representing a class as the list of all its individual members.
Classification is performed by directly matching an unknown pattern with a particu-
lar member of the class. This method is not very sophisticated. It requires a great
deal of memory to store all the members, and template matching is time consum-
ing. However it is a good method for a small number of classes with little variabil-
ity between samples of a class.

The common property approach is the conventional approach to classification.
Features are selected to represent a class and various similarity measures are used
to decide which class the features of an unknown resemble the most. When the
features are representable numerically, statistical techniques can be used to measure
similarity in feature space by representing classes as clusters of points in the n
dimensions of the n features. When they are not numeric, different techniques must
be used. The common property approach is much more flexible than the
membership-roster approach. Feature matching allows for variation in the pattern
to be classified. Similarity as opposed to equality is the criterion for classification.
Another advantage is that less storage is required for the class representation. A
disadvantage of the common property approach is that there is a loss of information
in the translation of a class representation to a finite set of features. A solution
would be to increase the number of representative features to include more informa-
tion, at the expense of increased complexity of the resulting system.

The learning element of a PR system only operates during the analysis phase,
or during a subsequent update to the system if performance is deemed unsatisfac-
tory. Most learning elements in PR systems are involved in adaptive learning, try-
ing to improve on initial classifiers from labelled sample input. There are applica-
tions where labelled sets of samples are not provided. In these cases, the system is
only provided with a set of unlabelled training patterns. It must sort these
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unlabelled patterns into similar groups and then select discerning features of each
group. This type of learning is often referred to as learning without a teacher.

Learning is an integral part of intelligent behaviour. It is a difficult problem in
the area of machine intelligence. In Pattern Recognition systems, learning is
displayed in several areas. The automatic selection of primitives or features from
labelled samples, the inductive creation of a classifier from these features, the
improvement of a classifier by an adaptive learning element, and finally the extrac-
tion of classes from a group of unlabelled samples, are all instances of machine
learning.



2.2. An lllustrative Example

To better understand the Pattern Recognition process, a very simplistic exam-
ple is given: the task of distinguishing between horses and donkeys. To most
humans, this may seem straightforward. However, to define it in computer terms
makes it a non-trivial problem. The sensing step of the analysis phase requires tak-
ing measurements from a herd of donkeys and a herd of horses. Many measure-
ments may be acquired: height, number of legs, weight, body shape, colouring,
ear size etc. A decision must be made as to whether the problem is better suited to
a membership-roster or common property approach, and to decision-theoretic or
syntactic PR techniques. Many of the measurements can be represented in numeric
terms. Therefore, the common property, decision-theoretic approach will be
selected. There is a limit statistically to the number of measurements that can be
employed and still give reliable estimates of the mean, variance and perhaps distri-
bution that may be used to represent a prototype for each class. Some measure-
ments are of no use at all, others supply redundant information. For example, both
donkeys and horses have 4 legs, thus this measurement gives no discriminating
information. Similarly both donkeys and horses come in assorted combinations of
colours. Caution must also be taken in adding features that are correlated. Take
for example height and weight; these two measurements are definitely correlated
within classes. Similarly, in distinguishing between races of people, skin type, eye
colour and hair colour are also correlated. To avoid statistical degradation of the
classifier, a linear combination of measurements may be used as a feature or all but
one correlated measurement may simply be excluded. It is important to remember
that the complexity of the classifier increases with the number of features. Thus a
minimum number of features should be selected.

In the horse and donkey example, two features shall be selected: height and
ear size. Thus every animal in the horse-donkey classification problem will be
represented by a 2 dimensional vector, one dimension being height, the other ear
size. The feature space upon which classification will occur is therefore two dimen-
sional. If these features were plotted for a sample of horses and donkeys, a
diagram similar to the ore in Figure 2.2 might be seen.

Once the features have been selected, a classifier is chosen. There are many
different ways of measuring similarity in a decision-theoretic approach. These will
be expanded upon in the following section. The PR problem is then to classify an
unknown, u of ear size u; and height u, by measuring its similarity to both classes
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using the selected classifier.

The unknown pattern is assigned to the most similar
class.
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Fig 2.2 Horse and Donkey Training Samples Plotted in Feature Space



2.3. Specific Pattern Recognition Techniques

Pattern Recognition is a large and well established field of research. Each
year, new techniques arc proposed for improving sensing, feature
selection/extraction, classification and learning. The following section gives the
reader an intuitive feel for the basic methodology behind both decision-theoretic PR
and syntactic PR. This should be sufficient background to understand comparisons
performed in subsequent chapters.

2.3.1. Decision-Theoretic Pattern Recognition

2.3.1.1. Knowledge Representation

In decision-theoretic PR, an object/pattern may be represented by a vector of m
measurements obtained from sensors. The task is to transform this measurement
vector into a new n-dimensional vector of features (n<m). The features selected
represent the defining attributes of the class. One of the main purposes of feature
selection is to reduce the dimensionality of the pattern representation and thus
reduce the complexity of the classification problem.

The horse-donkey example is an illustration of this pattern representation with
n=2. They may be plotted in feature space. From the hypothetical graphing of
sample horses and donkeys in Figure 2.2, it is easy to visualize the characteristics of
good features. Classification could be performed quite accurately by drawing a
diagonal line an equal distance between the two sets of samples. Unknown patterns
located on one side of the diagonal line would be horses and on the other side, don-
keys. The fact that the samples are clustered tightly together and that the two clus-
ters are recognizably far apart, makes classification simple. Translated into more
technical terms, ideal features would have a minimum intra or within class distance
and a maximum inter or between class distance. Statistically, this is represented by
features with little variance within a class and a great deal of variance between
classes. This can be measured on input data and is one means by which features
can be selected.

2.3.1.2. Classification |

The real power in PR is its ability to take unknown samples and classify them
into different groups/classes based on similarity. A class may be thought of as a
group of patterns which are similar or equivalent. It may be represented by a



- 15 —

prototype such as the mean, by a set of typical patterns belonging to that class, or
by the statistical distribution the samples generate.

The beauty of the system is that patterns need not be identical to belong to the
same class. A pattern feature may have a range of values because of normal varia-
tion or noise in measurements. By using statistical techniques, measures of similar-
ity may be created to allow for these variations.

The act of classification involves assigning a class name or label to a pattern.
There are three common types of classification problem. [18]

1. Each class is defined by a multivariate probability density function (pdf),
p(x|class), which is either known or derived. Classification is performed by
statistical decision-theory techniques to minimize the probability of error.

2. The pdf of each class is unknown. The class is represented by a set of labelled
samples. Classification may be performed by statistically estimating the pdf
and using statistical decision-theory techniques or by creating classification
rules based on the distribution of the samples.

3. The only information given is a set of unlabelled samples. Clustering tech-
niques are required to determine the number of classes and the definition of
each class.

The problem in defining a classifier is in deciding on a good measure of similar-
ity. Several possibilities for similarity measures will be discussed in the following
sections. They may be broken down into several categories including distance
metrics, metrics that make use of pdf information, trainable deterministic metrics
and trainable statistical metrics.

Distance Classifiers

Suppose an unknown pattern is introduced into the horse-donkey classification
problem. Its feature values are plotted in Figure 2.3. By visual inspection, the
unknown should be classified as a donkey. Visual inspection may be formalized as
a minimum distance measure between the unknown and the class. The class may be
represented by a prototype value such as the mean of the labelled samples, or by
some ideal form that best represents the class.
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Fig 2.3 The Classification of an Unknown Pattern

a) Minimum Euclidean Distance (M ED) Classifier

The simplest and least powerful of the distance metrics is minimum euclidean
distance (MED). A prototype for each class is selected, for example the mean, and
the euclidean distance is measured from the unknown to each prototype. The unk-
nown is categorized as belonging to the class yielding the MED.

This metric is good because it is not sensitive to outliers or noise. However, it
does not account for different variances for different features. For example, ima-
gine that ponies were added to the class of horses. The variance in ear size might
be marginally increased, but the variance in height of the horse class would increase
dramatically. This increase in variance is illustrated in Figure 2.5 by the elliptical
shape displayed by the horse class. The slight skew in the orientation of the ellipse
with respect to the major axes represents a slight correlation between ear size and
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height. Smaller horses/ponies have slightly smaller ears.

Consider the unknown again. If the means are used as prototypes, the unk-
nown would be classified as a donkey. However visual inspection indicates that the
unknown is closer to the horse class if the variance is taken into account. Thus mis-
classification would occur. The MED classifier works best with uncorrelated, equal
variance data.

An alternate application of the MED classifier would be to choose the nearest
neighbour of the unknown as a prototype. To implement this, the distance between
the unknown and all known samples of each class must be calculated. The class of
the sample creating the MED is then selected. The problem with this system is that
it is very sensitive to outliers and noise. Thus select the K-nearest-neighbours as
the prototype [18]. Both prototypes have difficulties. Their implementation
requires the individual storage of much of the labelled data. The calculations to find
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Fig 2.5 Inclusion of Ponies into the Horse Class
the prototype are numerous.

b) Minimum Intra-class Distance (MICD) Classifier

This distance classifier is based on the premise that within a class, samples
should be as similar as possible. Figuratively speaking, classes should be
represented by small diameter, tightly packed circles/ellipses. Thus, to classify an
unknown sample using this logic, equidistance contours measured in standard devia-
tion units are created around each class. These contours group possible patterns
that are equally similar to the class. A decision boundary for classification can be
created by connecting the intersection points of corresponding equidistance con-
tours. Figure 2.6 illustrates this notion.
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The MICD classifier displays superior performance to the MED because it uses
the mean and the variance in its class representation. MICD measures distance in
standard deviations, thus it is unitless. The result is a decision surface in »n space.
It does not function very well for one class contained within another. Another
problem with MICD is the question of whether mean and variance are sufficient
descriptors of the class. A more powerful classifier yet is MAP.

Probabilistic Classifiers

Probabilistic Classifiers, in general, deliver better classification with a
minimum probability of misclassification. A prerequisite for using probabilistic
classifiers is knowledge of the probability density function (pdf) of the samples.
Techniques exist to estimate unknown pdfs.



a) Maximum A Posteriori Probability (MAP) Classifier

If the pdf of a class is known, a superior MAP classifier may be used to classify
patterns. Intuitively, an unknown pattern x is more likely to belong to the class
which has greater probability given the value of x. Reconsider the horse-donkey
problem. For ease of illustration, the height feature will be removed. The only
feature used for classification is the ear size. An unknown pattern of ear size x, is
to be classified. Since there is only one feature, p(x) = p(x;)

x is a horse iff
P(horse|x) > P(donkey|x)
However using Bayes theorem
P(horse|x) = p(x|horse)P(horse) / p(x)
This may be transformed into:
x is a horse iff

p(x| horse)P(horse) > p(x| donkey)P(donkey)

When the probability of either class occurring is equal then
x is a horse iff
p(x| horse) > p(x|donkey)
This is illustrated in Figure 2.7.

When the class probabilities are not equal, the curves are weighted by the probabili-
ties. Figure 2.8 illustrates the case when

P(horse) > P(donkey).

The classification threshold is shifted towards the mean of the class that is
weighted less, in this case donkeys. This classifier uses a much more accurate
description of the class. It also minimizes the probability of misclassification. The
difficulty is that in most classification problems, the labelled data is given without
knowledge of the underlying pdf. There are techniques for estimating the statistical
nature of a class. When the form of the pdf is known, parameter estimation can be
performed by maximum likelihood or Bayes estimation. When the form of the pdf
is unknown the statistical nature of the class can be estimated by density estimation
techniques such as parzen window or K-nearest-neighbour [12] [18].
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Trainable Classifiers

The classification techniques discussed in the previous sections were not
automatically trainable. They did not make explicit use of the learning element
depicted in Figure 2.1. Coefficients for different algorithms were calculated
directly from the labelled samples and substituted into the predefined formulae.
“Trainable” classifiers use an iterative approach to define their decision functions.
As with the other techmiques, a formula exists to define the form of the decision
boundary, all that is required is the coefficients. Trainable classifiers learn the
values of the coefficients from the representative samples of each class. An
assumption is made that the features selected are sufficient to define a unique boun-
dary in n space that will separate all the classes.

Two approaches may be taken to define these coefficients, a deterministic
approach or a statistical approach [9] [34]. The deterministic approach relies solely
on the individual samples. The statistical nature of the sample classes is not used.
The coefficients for the assumed function are calculated by techniques such as itera-
tively trying to minimize all the sample-to-boundary line distances. A common



trainable deterministic classifier is the Perceptron Algorithm [18] [34].

The statistical approach uses Bayes decision functions in its classification, just
as MAP did. The Bayes decision functions minimizes the probability of error.
From the MAP discussion, the threshold boundary was defined as

p(x| horse)P(horse) = p(x|donkey)P(donkey)
which was the point where the two curves intersected.
According to Bayes theorem

p(x| horse) = P(horse|x)p(x)/P(horse)
therefore the threshold may be defined as

P(horse|x) = P(donkey|x)

The trainable statistical approach to classification differs from MAP in that
MAP required estimation or knowledge of the pdfs p(x| horse) and p(x|donkey). In
the statistical training approach, the patterns of the donkey class affect the estima-
tion of P(horse|x) and vice versa. This was not true in the case of the pdfs required
for the MAP classifier. As a result, P(class|x) must be learned iteratively in an
interactive mode. Stochastic process are often used. The Robbins-Monro algorithm
is a popular method [34].

Learning Without a Teacher

All the classifiers described thus far work for labelled data. Known sample
data was given from which features could be extracted and classes formed. Unla-
belled data could then be classified. What if all the data given were unlabelled?
The task of classification would be much more difficult. Just as in the problem of
biological taxonomy, naturally occurring classes or groups must be found without
any knowledge of their number. Clustering techniques may be used to find those
naturally occurring groups.

a) Clustering

A cluster can be defined as a set of samples which are similar to each other.
Intuitively, a cluster should maximize between cluster distance and minimize within
cluster distance when plotted in feature space. Again this yields small diameter
circles/ellipses that are far apart. Reconsider the horse-donkey example, but
instead of being given a herd of horses and a herd of donkeys, a corral full of mixed



horses and donkeys is given. The problem is to recognize that there are two distinct
classes in the given sample and to derive a method for distinguishing between the
two.

Many problems are immediately apparent. How many different classes exist in
this corral? What distinguishing features can be used to differentiate between the
individual patterns? What method should be used to define a classifier?

There are many algorithms for clustering, hierarchical clustering, minimum
variance clustering, graph theoretic clustering [18] [33] [34]. An example of a sim-
ple clustering algorithm that gives the reader an intuitive feel for the problem is

The K-Means Algorithm [18] [34]

1. Choose K means arbitrarily Z,, Z,,...Zg

2. Assign the N samples to the X clusters using a minimum euclidean distance rule
from each sample to the cluster mean.

3. Compute new cluster means

4. If any of the means changed go to 2, else STOP

The efficiency of this algorithm is greatly affected by the initial selection of the K
means.

It should be noted that clustering algorithms are notoriously slow and require a
lot of storage space. Regardless, they are a workable technique for solving prob-
lems of learning without a teacher. Once classes have been isolated, any of the
afore mentioned classifiers may be used.
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2.3.2. Syntactic Pattern Recognition

Syntactic PR was originally developed in the 1960’s, although much of the
research was not done until the mid 1970’s. The major difference between syntactic
PR and decision-theoretic PR is that syntactic PR not only represents the pattern but
also the structure within which the pattern occurs. In decision-theoretic PR each
feature is used once to measure similarity within one dimension of the total pattern
representation space. Features are measured quantitatively with no emphasis
placed on the relationship between features. Conversely, syntactic PR explicitly
uses features to build pattern primitives. The primitives combine structurally to
create a pattern. This structure is explicitly defined.

Syntactic PR techniques are only applicable to a subset of the Pattern Recogni-
tion problems. In some classification problems, no relationship exists between
features. An example of a domain in which syntactic PR has been used quite fre-
quently is scene analysis, where relative positions of objects or pattern primitives
within the scene are important. Another application is speech recognition.

The structural description of a pattern has been found to be analogous to the
description of the syntax of a language. Consequently, many of the techniques of
formal language may be applied to the pattern recognition problem. Patterns are
composed of subpatterns, which in turn are composed of a set of pattern primitives.
Similarly, in formal language, sentences are composed of phrases which in turn are
composed of words. A pattern description language is a language that provides the
structural description in terms of primitives and relations. The grammar of a pat-
tern description specifies the rules for the composition of primitives into patterns.
Patterns are classified by performing a parsing of the sentence describing the unk-
nown pattern. This sentence is deemed grammatically correct or incorrect with
respect to the grammar.

2.3.2.1. Knowledge Representation

As in the decision-theoretic approach, pattern primitives are building blocks in
the creation of a sufficient representation for a pattern. These pattern primitives
are used as terminals in a pattern grammar utilized to hierarchically represent the
structure of the pattern. Depending on the type of grammar, a pattern sentence can
be represented as either a string, a tree, or a graph. The primitives selected should
be recognizable by decision-theoretic PR techniques. They should serve as an ade-
quate basis, when combined with structural relations, to represent any pattern. The
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hierarchical approach is well suited to complex patterns. Often these patterns have
many features. By dividing the pattern description into subpattern descriptions and
so on down to a set of basic primitives, the description and thus classification task is
greatly simplified. There are two classic examples of syntactic Pattern Recognition
applications that are used in most of the literature. The following string grammar
example was taken from [13], but can also be found in [14].
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Fig 2.9 Scene A [13]

Figure 2.9 represents a picture pattern, Scene A. This pattern contains a lot of
structural information and is thus a good candidate for description using syntactic
PR. Figure 2.10 shows a hierarchical structural description of Scene A. The anal-
ogy between this hierarchical description and a language parse tree is quite evident.
A relational graph representation of Scene A is illustrated in Figure 2.11. The
reader familiar with Al knowledge representation techniques may be reminded of
the semantic net. The relational graph lends itself to expression as a relational
matrix and thus to techniques applicable to relational matrices. It does not allow
for the use of formal language techniques.

To formalize the relationship between language theory and syntactic PR, some
terminology will be introduced. A grammar G is made up of four components.
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1) Vy : a finite set of nonterminals
2) V; : a finite set of terminals
3) P : a finite set of production rules
4) S : a start symbol contained in Vy
Thus the grammar G can be represented by the four-tuple
G=(Vy, V., P, S)

The following example illustrates the use of syntactic PR for recognizing
images of specific chromosomes. The primitives selected for the description of the
chromosome are portions of the chromosome, easily recognized by conventional
decision-theoretic PR techniques. This example has been described in [13] [14]
[34]. The task is to classify chromosomes as being either submedian or telocentric.
>>>

Fig 2.12 (a) Submedian Chromosome (b) Telocentric Chromosome [13]

This classification problem has an inherent structural nature. Figure 2.13
shows how a submedian chromosome can be represented hierarchically.

Five primitive features or terminals were selected as the building blocks for the
grammar. The grammar itself is depicted in Figure 2.14.
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G=(Vj, V4, P, {(submedian chromosome), {telocentric chromosome)})

where

1= '{submedian chromosome). {telocentric chromosome). {arm pair),
left part), (right part), (arm), {side), (bottom};
. u s
T'{ Q ]h. Y d, ~ }

C. e
and
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Fig 2.14 A Pattern Grammar for Classifying Submedian and Telocentric Chromosomes [13]



Primitive Selection and Grammatical Inference

As with features in decision-theoretic PR, the selection of primitives is an
important aspect of knowledge representation. Of additional concern in syntactic
PR is the creation of the hierarchical structure and accompanying pattern grammar.
The selection of primitives is application dependent. There is no generalized solu-
tion to date.

This lack of an automated, generalized solution is related to the fact that most
of the applications of syntactic PR are in image processing, speech recognition or
related fields. As a result, the sensing stage of the PR system is complex and can
result in the transformation of a pattern into many different measurements. There
are a vast number of primitives that can be selected. Conversely, in a problem like
the decision-theoretic horse-donkey application, feature selection is an easier task
because of the more limited, discrete measurements from which to choose.

Accompanying the selection of primitives is the creation of a structural gram-
mar to describe the pattern class. The task of creating a grammar is very much
related to the selection of primitives. The more basic the primitives, the more com-
plex the structural grammar. Given a set of primitives, it is not a difficult task to
manually design a grammar. Much work has been done in syntactic PR on what is
called grammatical inference. This is the automatic generation of grammars from a
set of labelled examples. Unfortunately, this is beyond the scope of this introduc-
tion. It is sufficient to say that no generalized techniques exist. There are
numerous algorithms for inferring restricted grammars. The reader interested in
machine learning is advised to see the related material in [14] [34] and the refer-
ences therein.

Extensions of String Grammars

The structural representations discussed this far have involved only concatena-
tion. High-dimensional pattern grammars [13] [14] [34] have also been created to
represent two and three dimensional patterns. These result in the representation of
patterns as trees or graphs. Figure 2.15 is an example of a two-dimensional pattern
grammar for representing houses [12] [14]. Instead of the implied concatenation of
primitives, explicit operators exist to link together primitives in various ways.

Other high-dimensional grammars include: web grammars [13] [14] which gen-
erate directed graphs with symbols at their nodes; branch oriented grammars such as
Plex and PDL that generate graphs with primitives on their branches [13] [14];
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G = (VN V1, P, S)
where

Vy = {(house), (side view), {front view), (roof, {gable),
(wall}, {chimney), {windows), (door}}

¥r={0.0,0.8,4.0.Q,~..0.0.1.~}
S = (house)
P: (door)—~Q
(windows) BB, (windows) -+ = ((windows), B8 ) .
(chimney) = 0, {chimney) - Q
(wall) = 3, (wall) > O ({door),[2)
(wall) = (© ((windows),TJ)
(gable) = A, (gable) =1 ({chimney),A)
(roof} = O, (roof) ~1 ({chimney) D)
{front view) =1 ({gabie), (wall))
(side view) =1 ((roof), (wall})
(house) - {front view)

(house) = — ((house), (side view))

The notation

= (X, ¥) means that X is to the right of ¥

(© (X, Y) means that X is inside of ¥

Q (X, Y) means that X is inside on the bcitom of ¥
1 (X. Y) means that X rests on tops of ¥

=~ (X. Y) means that X rests to the sight of ¥

Housc Description
A 1.0
@ 1(1(9,4).0(@.0)
A=) |~ oD.0@oNta.08.0) )

Fig 2.15 A Two Dimensional Pattern Grammar [14]

attributed graphs [35] [36] which generate graphs with attributes on the nodes and
branches; and tree grammars that extend 1-dimensional concatenation to multidi-
mensional concatenation, resulting in the production of trees instead of strings or

graphs.

A common problem in both decision-theoretic and syntactic PR is overlap in
class representation. This can be visualized as intersecting clusters in the decision-
theoretic approach. The overlap is often caused by either noise in measurement
data, or by representing classes with features that inadequately capture the informa-
tion required for full differentiation. This can usually be overcome by the use of
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probability and statistics. In syntactic PR, a pattern grammar, n
G=(Vy, Vs, P, S)

can be transformed into a stochastic pattern grammar

G=(Vy, Vs, P, Q, S).

This is done by assigning a probability measure to each of the productions of P.
The probability measures are represented by the set Q. Techniques exist for learn-
ing the production probabilities from examples. These techniques are not fully gen-
eralized for all types of grammars. A brief explanation is found in [33].

2.3.2.2. Classification

A set of M pattern classes may be represented by M or less distinct grammars.
If classes are similar, it is often more efficient, as in the chromosome example, to
combine grammars and to have two separate start symbols, depending upon the
class. Most of the classification techniques in syntactic PR are based on the formal
language concept of parsing. Both top-down and bottom-up parsing may be used.
Top-down parsing involves taking the start symbol and from left-to-right, trying to
break it down into a sentence of the grammar by successively applying production
rules to produce terminals. Conversely, bottom-up parsing starts with the sentence
of terminals and successively applies the production rules backwards until the start
symbol is reached or it is decided that the task is impossible.

By looking at the chromosome grammar, it is evident that there are decisions
to be made as to which production rule to apply at a particular point in the parsing
procedure. To avoid an exhaustive search, and to minimize backtracking, heuristic
rules are often added to the search process to assist the decision-making process.
When dealing with stochastic languages, the production probabilities can be used as
heuristics in the search strategy. The production offering the highest probability of
success should be tried first.

An advantage of structural descriptions and parsing for classification problems
is that it is easy to detect specifically where a pattern differs from a class grammar.
The structural description can provide a limited explanation of why a pattern does
not belong to a specific class.
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Error-Correcting Parsing

Stochastic languages attempt to minimize misclassification of noisy or distorted
patterns by enhancing grammars with probabilistic information. In decision-
theoretic PR, the concept of similarity, as opposed to perfect equality was used
extensively to combat this problem. Similarity measures have been extended to syn-
tactic PR via error-correcting parsers. The criterion for similarity is often minimum
distance. The distance between two strings, or between a string and a language can
be described in terms of error transformations. There are three transformations
that can be performed on a string to cause it to deviate from a sentence of a
language. The three transformations are: substitution, where one primitive of the
class is substituted for another primitive also belonging to the class; deletion, where
a primitive occurrence is deleted from the string; and insertion, where a primitive of
the class is inserted into the string. The number of transformations required to con-
vert a deviant string into a string of a language constitutes that pattern’s distance
from that class. Transformations can be weighted if some types of errors are less
likely than others.

Some error-correcting parsers add the three types of error transformations to
their grammar. Production rules are created to represent all possible strings gen-
erated by these errors. A string is then classified as belonging to the class which is
the a minimum distance from that string. Just as there are several different meas-
ures of similarity in decision-theoretic PR, there are several types of error-

correcting parsers.

Clustering

The notion of cluster analysis, used extensively in decision-theoretic PR, has
been extended to deal with problems in syntactic PR. Not only must the similarity
of the primitives be taken into account, but also the similarity of the resultant pat-
tern structures. Classical clustering algorithms such as minimum spanning tree and
K-means have been enhanced for syntactic PR problems. These algorithms have
been combined with error-correcting parsing and grammatical inference techniques
‘to generate a grammar for a set of patterns [14]. Unfortunately, a detailed descrip-
tion of syntactic clustering would require a more in depth background than provided
herein. Further study in this area is recommended.
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3. A Comparison of PR and Al

3.1. Interaction Between PR and Al

As stated previously, there has been little interaction between the fields of PR
and AI. Most of the literature combining facets of the two fields, deals with the
application of AI techniques to PR systems. These systems almost exclusively per-
form the task of scene analysis or speech recognition. Al techniques are used for
high level semantic processing [25], whereas PR is suited to manipulating low level
primitives, which These do not necessarily map to real world knowledge. Al can
represent knowledge at any level. Its application to represent knowledge about
knowledge, metaknowledge, assists in the reasoning strategy and makes use of
human expertise at performing a task. PR has no efficient mechanism for
representing and utilizing such knowledge.

The AI methodology can be applied to a PR system and remain intact. The
converse is not true. There is little mentioned in AI/PR literature of the application
of PR techniques to Al systems. PR is a toolbox of techniques. Tools exist to assist
Al systems in the selection of knowledge, decision-making, and learning. There
have been some Al researchers in the past who have realized the potential of Pat-
tern Recognition. Banerji, in Theory of Problem Solving (1969) [1] tried to con-
vince his readers of the value of PR techniques. Other work in Al appears to have
reinvented some of the methods of PR. This could have been prevented by better
communication between the two fields. Early AI work in learning by Samuel [6]
makes use of the concept of features and adaptive learning. More recent work by
Buchanan, Mitchell, Michalski [21] [22] [23] and Rendell [29] [30] indicates the use
of PR as a tool in AI machine learning. Much more work is needed in the applica-
tion of Pattern Recognition principles to Artificial Intelligence.

3.2. Metrics for Comparison

3.2.1. Methodology

There is a basic difference in methodology and approach taken by Al research-
ers as compared to PR researchers. Central to Artificial Intelligence is the physical
symbol system hypothesis proposed by Newell and Simon in 1976 [31].
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‘A physical symbol system consists of a set of entities, called symbols, which
are physical patterns that can occur as components of another type of entity
called an expression (or symbol structure). Thus, a symbol structure is com-
posed of a number of instances (or tokens) of symbols related in some physi-
cal way (such as one token being next to another). At any instant of time the
system will contain a collection of these symbol structures. Besides these
symbol structures, the system also contains a collection of processes that
operate on expressions to produce other expressions: processes of creation,
modification, reproduction and destruction. A physical symbol system is a
riachine that produces through time an evolving collection of symbol struc-
tures. Such a system exists in a world of objects wider than just these sym-
bolic expressions themselves.’’ [31]

The physical symbol system hypothesis is:

““‘A physical symbol system has the necessary and sufficient means for general
intelligent action."”’ [31]

This hypothesis has not yet been proven or disproven. Artificial Intelligence
attempts to support its validity by the application of symbolic computing techniques
to the performance of intelligent human tasks by a computer. This involves
representing knowledge as symbol structures and manipulating this knowledge using
search strategy. Knowledge, its acquisition, representation and manipulation is at
the heart of all intelligent tasks. These three areas have been isolated for more in
depth discussion in subsequent chapters.

As stated in Chapter 1, one of the original motivations for the AI methodology
was to model human thinking on a computer, to create computer programs that per-
form human tasks the way humans do them. This has been part of the motivation
for the physical symbol system approach to computing. By using symbol structures
to represent knowledge, a direct mapping can be established between the real world
model and the computing model. While symbolic computing is the major implemen-
tation mode for most Al applications, not all of today’s Al applications model
human thought. In recent years, the Al goal has been to perform tasks that humans
perform, in the easiest way possible.

Decision-theoretic PR and syntactic PR may be compared; they are sufficiently
different in methodology. Syntactic PR is built cn top of decision-theoretic PR
primitives, so the comparison of PR to Al may begin with decision-theoretic PR.
Decision-theoretic PR does not represent its problems as physical symbol systems.
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This is a fundamental difference in methodology. To reiterate comments made in
Chapter 1, the main goal of Pattern Recognition researchers in the 60’s, as today,
was to make economical, efficient, workable systems. To do so, they based their
techniques on Von Neumann programming principles, using what then was present
day technology. The result today is a well established discipline, able to solve many
machine intelligence problems within specific domains. This methodology has its
limitations though. There is little relation between the Pattern Recognition
representation of a problem, and the real world model. As such many PR systems
cannot benefit from expert human knowledge.

Syntactic PR is a step towards the physical symbol system approach. Subpat-
terns in a pattern description are represented as symbols, physically related in a
symbol system structure or hierarchy. However, the basic primitives, and even the
subpatterns are selected on the basis of their suitability for nonsymbolic processing.
They do not necessarily map to the real world model. This contradicts AI metho-
dology. The inability of Pattern Recognition systems to represent and manipulate
higher level world knowledge, has prompted the application of Artificial Intelligence
techniques for high level semantic processing. It has enhanced several PR systems
[25].

3.2.2. Formalization

Although PR techniques are applicable to many different domains, the field
has focussed on a subset of these application areas, the use of computers to give
machines sensory capabilities. Consequently, there are specific techniques for
speech recognition problems, computer vision problems etc. These are established
methods for application to specific domains. The methods are affected by the
characteristics of the data. As a result human expertise is sometimes required for
fine tuning of PR systems. |

Conversely, Al has tried to establish generalized techniques for creating com-
puter programs that perform human tasks. There are basic knowledge representa-
tion and problem solving techniques. However, for many of the large Al applica-
tions such as expert systems, domain specific fine-tuning prevails. Al programs are
heavily customized for the specific application. Only now are more established
methods for building AI programs being created. This is a reflection of the size and
diversity of the problem of generalized machine intelligence. Unfortunately, it
makes comparison of specific AI and PR principles, such as complexity, difficult.
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3.2.3. Implementation

As a metric for comparison, ease of implementation may be divided into two
subcategories, manpower requirements and software, hardware and equipment
requirements.

Large Al applications, such as expert systems, have far greater manpower
requirements than PR systems. Many of the expert systems to date have required
man-decades to implement. Again this is a reflection of the lack of formalism in
techniques and the nature of the specific applications to which Al has been applied.
The major drain on manpower is in the acquisition and sufficient representation of
knowledge. Computer professionals and domain specific experts must combine
forces to select required knowledge and a means by which to represent it. Exten-
sive work must then be done to ensure a satisfactory level of performance. The
task would be reduced immensely if there were one professional, trained in both
areas or if automatic knowledge acquisition could be performed by the computer.
Al programs are often more sophisticated and user-friendly than PR systems.
Expert systems have user interfaces and facilities for providing explanations. More
development time is required to add all these tools.

In PR, especially decision-theoretic PR, the task of knowledge acquisition and
representation is more automated. Knowledge required for the decision-making
process is learned by the computer on the basis of labelled training samples. A
human is required to collect the training samples and to assist in the sensing stage
(see Fig 2.1). He/she may also be needed for assistance in feature selection,
depending upon the problem domain. The role of the human is far less significant
than in an Al application. In decision-theoretic PR there is no explicit mapping
with the real world model; knowledge is represented in a mathematical form that is
easily manipulated by Von Neumann programming techniques. Therefore a human
expert is not needed to map real world knowledge into a computer framework.
Furthermore, there is no interaction between the user and the computer; hence,
there is no need to design a user interface.

In syntactic PR the knowledge acquisition and representation process is less
automated. Although primitive selection is not fully generalized, because of the
limited domain of applicability of syntactic PR, primitives have been substantially
preselected for specific domains. Hence, little human interaction is needed. Gram-
mar generation from labelled samples is not fully automated. The structural
representation used by the PR system does not have to map to one used by an
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expert. Therefore, generation by a human is a minor task. The manpower require-
ments for a syntactic PR system are still significantly less than for an Al system.

Software, hardware and equipment requirements are very different for PR and
Al systems. Al operates in a symbolic programming environment. Specialized Al
languages such as LISP and PROLOG are needed. There are also many software
tools available for specific AI tasks. For example, planning programs such as
STRIPS and expert system shells such as EMYCIN and OPSS are frequently used.
The software environment is generally high level and, in agreement with AI metho-
dology, user-friendly. AI tasks have been coded in conventional Von Neumann
programming languages such as C and Pascal. Al purists might argue however that
these are not Al applications because they lack the segregation of knowledge base
and inference engine characterizing an Al program.

At present, Al software runs on Von Neumann machines. Processing is some-
times slow. Recently, a machine was designed and marketed specifically for pro-
cessing LISP code. Similar machines are being designed for PROLOG. In the
future, AI may have specialized hardware, unless the Al programming methodol-
ogy becomes the norm.

PR has fewer specialized software requirements. It utilizes Von Neumann pro-
gramming techniques and thus can use conventional programming languages.
Because of the mathematical nature of decision-theoretic PR techniques, languages
that are capable of rapid mathematical calculations, high precision, and calculations
on n dimensional matrices are desirable. Von Neumann machines are capable of
running decision-theoretic PR programs, albeit slowly. Array processors or
machines with distributed storage and processing are faster and more efficient
because of their specialized architecture. When dealing with syntactic PR systems,
a compromise must be made between facilities for numeric calculations and facilities
for parsing of pattern grammars.

Pattern Recognition systems have additional equipment requirements because
of the problem areas to which they have been applied. To give a machine sensory
capabilities, equipment is needed to accept the original sensory stimulus and to
transform it into a machine useable form. For example, computer vision systems
require photographic equipment and digitizers. Speech recognition systems need
acoustic equipment to generate sound spectrograms.
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3.2.4. Understanding and Modification

An important component of any piece of software is the ability to understand
how it works and to be able to modify it if necessary. Al programs are much easier
to understand and modify than PR programs. The investment of time in the
development stage to create a mapping between world knowledge and the internal
knowledge of the program pays off in this regard. Also the fact that the knowledge
base and control structure are separate, allows for an updating of knowledge
without affecting the search strategy. If knowledge is organized hierarchically,
metaknowledge r heuristics can be added to enhance the system. Similarly, dif-
ferent search strategies may be tested to try and optimize the system without affect-
ing the knowledge store.

PR systems are much more difficult to understand and to modify. As
knowledge and inferencing are interwoven. A programmer can comprehend the
mathematical algorithms being performed. However, it is much more difficult to
see the correlation between the n dimensional vectors and matrices, the mathemati-
cal formulae and the human task that is being performed. As such, it is difficult for
a human to modify the program unless it is simply to add another feature at the
feature selection stage, or to select another classification algorithm. There is no
obvious cause-and-effect relationship between what goes into the PR system, and
what come out. Therefore it is difficult to modify a PR program on the basis of a
specific performance inadequacy.

3.2.5. Application Domains

It may be argued that PR and AI need not be compared because they are appli-
cable to different machine intelligence problems. AI does not have the mathemati-
cal ability to analyze digitized scenes or sound waves. Similarly, decision-theoretic
PR techniques are not well suited to storing knowledge such as red or concepts such
as love. They cannot solve problems such as those encountered in Natural
Language Understanding. Syntactic PR might be altered to address some of these
symbolic problems. However, it is incapable of dealing with them as it exists.

PR is a generalized classification/decision-making technique, dependent on the
character of the data to be analyzed. A PR system selects criteria for the decision-
making process on the basis of training samples. It is thus well suited to any prob-
lem domain that generates a lot of data and requires decision-making or classifica-
tion. PR systems have been designed in such diversified problem areas as medical
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diagnosis [3] [4] and the granting of credit [S].

Unlike AI, PR can perform human tasks whose functioning is not fully under-
stood. This is a very powerful quality. It is one reason why PR is so well suited to
problems of sensory perception. In such problem domains, performance algorithms
and heuristics cannot be defined by an expert. Few AI expert systems have power-
ful learning elements. Consequently all knowledge must be supplied by a human
expert. The resulting system is only as good as the expert providing the original
knowledge.

PR systems are capable of dealing with inexact data. Decisions made using
measures of similarity as opposed to equality, allow for both noise and outliers.
This facility has been sorely lacking in Artificial Intelligence systems.

The PR approach is applicable to any domain where classsification or decision-
making is the main task. The domain must generate sufficient data for mathemati-
cal analysis, and must be representable using the limited decision-theoretic KR tech-
niques.

Syntactic PR, without modification, is restricted to problems that have physical
structural characteristics and that are built of decision-theoretic primitives. Scene
analysis and speech recognition are two such problem domains. Beyond this, there
are few applications for this specialized technique.

The greatest asset of the Artificial Intelligence approach is its ability to
represent knowledge and heuristics. Human tasks that require conceptual
knowledge and rules of thumb are better suited to AI methodology. Artificial Intel-
ligence systems provide a user-friendly, interactive environment that is suitable for
many human problems where the required input is not known in advance. Hence,
Al is applicable to a much broader range of problem domains.

3.2.6. Future Research Potential

Both Pattern Recognition and Artificial Intelligence have many unresolved
problems. There is room for work in both areas. PR is a well established discip-
line. None of the questions are new. It is possible that PR techniques alone are not
capable of solving its problems.

Each stage in the PR process has unique issues. The sensing stage could be
improved by the introduction of more sophisticated sensing equipment. For exam-
ple, low level lasers are being used to extract measurements in some experimentary
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computer vision systems. This can yield vital depth information without extensive
calculations.

Feature selection/extraction is a fascinating problem and would be an extremely
powerful tool if it were it fully automated. Decision-theoretic PR methods have
provided a limited solution. Primitive selection in syntactic PR is not automated
either. Currently, syntactic PR is applied to such a narrow range of problem
domains that primitives can be very easily preselected manually. This is not a final
solution. Grammatical Inference is directly related to learning work done by Al
researchers such as Winston [6]. There are many possibilities for expansion of
present work in this area.

In both syntactic and decision-theoretic PR, an ideal classifier would character-
ize the data fully. Pdf based, decision-theoretic classifiers have minimized the pro-
bability of misclassification of a pattern. More complex alterations on the decision-
theoretic techniques are proposed yearly. Work in stochastic grammars and error-
correcting parsers in syntactic PR has great potential. Clustering techniques are
already well developed for decision-theoretic PR. More research should be per-
formed in syntactic clustering. To summarize, decision-theoretic PR is reaching a
plateau adhering to a strict PR framework. Some syntactic PR problems are related
to Al problems. Hence, research in this area may benefit the field of AL

Al has much room for expansion. Even adhering strictly to current AI metho-
dology, there are many areas where research has just begun. One major task is to
design a knowledge representation scheme that is sufficiently general for most
domains. This knowledge representation scheme would need to be combined with a
powerful inferencing mechanism. Machine learning is an important area of
research in AI. To date it has had only limited and very specialized success. The
work on symbolic processing machines will stimulate work on new symbolic pro-
gramming languages and accompanying software tools. Both in Pattern Recogni-
tion and in Artificial Intelligence, it would be a great asset to have more generalized
techniques. This would make individual machine intelligence applications much
easier to perform.

Moreover, the develpment of composite AI/PR systems or tools warrants
further attention. This issue is addressed in the following three chapters. Tech-
niques in PR are compared to current techniques in AI. Suggestions are made as to
where PR tools might fit into the Al framework.



4. Knowledge Representation

For a computer to display intelligent behaviour, it first needs a method for
acquiring and storing knowledge. The representation of this knowledge must be
compatible with a method for its manipulation. The following discussion of PR and
Al techniques for Knowledge Representation has been divided into two sub-
categories: Computer Representation and Knowledge Selection. Computer
Representation, more conventionally known as Knowledge Representation in most
Al literature, is the task of physically representing knowledge in a computer.
Knowledge Selection is the initial job of taking a great deal of information on a
problem domain and selecting a concise, sufficient subset of that information to
represent the domain. Knowledge selection is a subset of knowledge acquisition dis-
cussed in Chapter 6. Representation not only implies the physical method by which
something is described, but also the conceptual portrayal of that notion. The selec-
tion of content or information used to characterize a concept is crucial to the perfor-
mance of any machine intelligence program.

4.1. Computer Representation

The Al term Knowledge-based system, puts proper emphasis on the importance
of knowledge in the implementation of a machine intelligence program. There are
several characteristics of knowledge that restrict the choice of a computer represen-
tation scheme. A computer can only handle a limited store of information; hence,
knowledge must be represented concisely, and restricted to a specific domain. A
computer representation scheme should not be rigid; knowledge often changes with
time. Knowledge can be expressed using generalizations and analogies. Further-
more, knowledge about knowledge exists and can be used to alleviate the burden of
managing knowledge. Ideally, a computer representation scheme would include
facilities for handling all of these features.

4.1.1. A Comparison of PR and Al

The computer representations used by decision-theoretic PR and Al epitomize
the polarity in these methodologies. The fundamental difference is that Artificial
Intelligence uses the physical symbol system approach. Knowledge is represented in
terms of symbols and symbol structures. These symbols can map directly to real
world knowledge. Pattern Recognition represents knowledge in terms of features
with pattern vectors, covariance matrices and probability density functions. The
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features are a mapping of world knowledge into a minimum representation. The
features do not necessarily have an intuitive meaning. The pattern vectors,
matrices and pdfs are used to create a classifier that performs the decision-making.
Knowledge and the inference mechanism are intertwined. Conversely, the Al
approach is characterized by a separate knowledge base and inference mechanism.

Syntactic PR is built on the same nonsymbolic foundation as decision-theoretic
PR. Knowledge is represented at an elemental level by a set of primitives that are
identified using decision-theoretic techniques. These primitives are selected on the
basis of ease of recognition and do not correspond to an expert’s set of primitives.
Primitives are combined to form subpatterns, and so on, up to a pattern. The sub-
patterns do not necessarily correspond to logical divisions in a pattern. The
hierarchical description of a pattern class as a combination of subclasses and primi-
tives is represented using a language grammar. The language grammar is symbolic
in nature but lacks the conceptual mapping of an Al scheme. It is reminiscent of a
semantic net in appearance.

Pattern Recognition does not have a very powerful computer representation
scheme by Al standards. The concept of knowledge is more fundamental to the Al
approach. PR is better judged as a whole system than as the sum of its parts. In
support of the PR approach, it could be argued that knowledge symbols such as blue
or small mean nothing to the computer. They also yield no common ground for
comparison. Conversely, PR uses low level primitives or features. All features are
comparable and measurable within the common medium of feature space. Low
level primitives are building blocks, especially in the area of machine learning. It is
often from low level primitives that new concepts can be extrapolated. The fact that
the primitives do not always have intuitive meaning should be secondary to the fact
that they generate a successful method for classification. The human thinking
model is only one way of performing a task, and not guaranteed to be the most effi-
cient.

All this is not an argument for abandoning the Al approach. It is much more
flexible than the PR approach. The AI computer representation maps to real world
knowledge. This makes it understandable, easily modified and capable of generat-
ing explanations of its reasoning. PR knowledge is translated, condensed and
intertwined with its inferencing mechanism. Therefore, it is difficult to understand
and not easily modified. Decision-theoretic PR cannot yield an explanation of how
or why it made a decision. The hierarchical structural description in syntactic PR



gives it more power. It can at least tell where in the hierarchical structure of a
class, an unknown pattern deviated. The AI approach can represent many different
types of knowledge. Concepts such as ‘“‘likes”, “hates”, descriptors such as “red”’,
“small”’, ‘“‘very”, and numeric data can all be represented. PR techniques can only
represent numeric measurements or concepts that can be mapped to a numeric scale
as primitives. A very important attribute of the AI scheme is its ability to represent
metaknowledge and heuristics. These two types of knowledge greatly assist in the
decision-making process. PR has neither the capability to represent metaknowledge
nor the capability to represent heuristics, yet these are needed in many PR applica-
tions.

The PR approach does have some advantages. The most important of which is
its ability to represent inexact knowledge including noisy data, incomplete data and
outliers. PR uses a representative sample of a class to formulate a description of
that class. When possible, it uses a pdf to capture allowable variability in patterns.
Conversely, Al represents the general case description of a class. Heuristics are
used to help with common deviations. Thus, the PR approach does not require
heuristics in many cases. PR condenses its knowledge thus reducing the dimen-
sionality of the decision-making problem and highlighting important characteristics
of the problem domain. Lastly, the AI approach has no generalized computer
representation that works in all instances. However, neither does PR, as the selec-
tion of a classifier is data dependent. PR does have a finite number of workable
schemes that can be implemented.

4.1.2. Application of PR Techniques to Al

Computer representation is not an area where PR can offer much assistance to
Al Instead, the converse is the case. Semantics, represented in Al systems, are
sorely lacking in PR systems. PR computer representation does have a few attri-
butes which would be helpful to an AI computer representation scheme. Because of
the interwoven nature of knowledge and inference in PR systems, some tools will be
discussed in the chapter on problem-solving. The ability to characterize variability
in knowledge is a strength of PR systems. It allows for the measure of similarity as
opposed to equality between input and a knowledge base. To see how PR can be
applied to AI computer representation schemes, several specific schemes will be
analyzed.
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Logic is the classical computer representation scheme. It has been a popular
representation for problems in theorem proving. Logic is one area where research-
ers have already undertaken to incorporate PR techniques. Banerji [1] saw a direct
relationship between solutions to problems and games, and Pattern Recognition.
Using Banerji’s terminology, patterns are sets of objects, and objects belong to the
“universe’’. Given an element of the universe, it may be classified as belonging to
a pattern by the application of a procedure. These procedures are a set of state-
ments, called predicates. The predicates are thus descriptions of the pattern. Ban-
erji created a model for a description language of patterns using logic. The model
was generalized and implied the embedding of specific description languages for
specific types of patterns. Each description language consisted of initial predicates
and means by which to connect them. Connection of the initial predicates yielded
descriptions of patterns. Banerji’s work was extended by Cohen who designed
CODE, a logic-based description language [7].

Another researcher who applied PR concepts to a logic representation was
Michalski [21] [22]. Michalski created a variable-valued logic calculus called VL,;.
VL,, is an extension of predicate calculus which has been used for inferring descrip-
tions of classes from examples or from partial class description. VL, is capable of
representing pattern descriptors as variables, functions or predicates. These
descriptors can have several different types which Michalski described as nominal,
linear and structured. Hypotheses, data rules, problem knowledge rules and gen-
eralization rules can all be described in VL,;. It uses selectors instead of predicates.
The selectors specify relations between atomic functions. VL,; expressions can have
a value of true, false or unknown. VL,; and its other version VL, allow the basic
PR methodology of inductive inference, classification and clustering to be applied to
a broader range of machine intelligence problems.

Finally, fuzzy logic [17] should be mentioned for completeness. Fuzzy logic
represents an imprecise description of a piece of knowledge as a fuzzy set. Each
value in the fuzzy set has a corresponding probability. For example, animal height
is represented by the variable x, in the horse-donkey problem. The knowledge that
horses are tall would be represented by a fuzzy set similar to the following:

0 < x; < 4 (feet) probability = 0
4<x,<5 probability = 0.3
5<x; probability = 0.7



Although it is not directly related to Pattern Recognition, it applies probability and
variability to knowledge just as PR has.

Procedural Representation is a computer representation scheme where
knowledge is contained in procedures. These procedures perform calculations or
inferencing to yield knowledge. A procedural representation would be an ideal way
of inserting PR-type knowledge into an AI system. The procedure name would
describe what the procedural representation did but not how it did it. The low level
mathematical calculations would be hidden. The reasoning of the system as a whole
would still be understood. This idea could also be extended to Production Systems,
where knowledge is represented in terms of productions rules. A production rule is
an IF condition THEN action statement. Some production rules could be translated
into PR procedures. For example, IF big ears AND short THEN donkey could be
replaced by something similar to the classifiers discussed earlier. PR techniques
would be helpful in discerning concepts like big, tall or small within the range of the
domain because they are relative and variable. For both production systems and
procedural representation, condensed low level features could be used to represent
some knowledge. Explicit rules could be represented at a higher level. The PR
classifiers would be invisible to the normal inferencing mechanism. The insertion of
PR classifiers would be most effective for procedures that are static and need not be
changed. Its implementation would require a programming language with powerful
mathematical capabilities, as well as symbolic processing.

Semantic nets are the final computer representation to be discussed. Their
structure is analogous to the structural representation used in syntactic PR. As
such, some of the techniques used in syntactic PR may be applicable. Semantic nets
are represented by nodes and arcs. The nodes contain entities and the arcs
represent relationships between the entities represented at the nodes. Conceptually,
a semantic network may be thought of as a graph or network. However, when the
semantic net is actually represented in an Al program it is often represented as an
attribute-value memory structure. Syntactic PR grammars have the capability of
representing patterns as strings, trees, or graphs. High-dimensional grammars such
as web grammars or graph grammars [14] could easily be used to represent semantic
nets. This would characterize the graph-like structure explicitly in a set of produc-
tions, as opposed to implicitly. The blocks world is a domain commonly used for
testing Al machine learning techniques. It is well suited to representation by syn-
tactic PR, as illustrated in Chapter 2. This would allow for the use of syntactic PR
machine learning techniques to be easily integrated into an AI framework.



The actual grammar representation is secondary to the tools that can be applied
to the grammar. Techniques such as error-correcting parsing, measures of similar-
ity as opposed to equality, graph isomorphisms and grammatical inferencing could
all be utilized. Semantic nets might also be extended by the use of attributed graphs
[36] [37] which allow for bidirectional branches.

Another syntactic PR technique applicable to semantic nets is stochastic
languages. Stochastic languages assign probabilities of success to different produc-
tion rules. This allows for the representation of uncertainty in the problem solu-
tion. It also allows for the exclusion of erroneous knowledge that may be inferred
by the computer representation scheme. There are PR techniques for inferring sto-
chastic languages and their probabilities [14].

Finally, it should be noted that the above discussion of the application of syn-
tactic PR techniques to semantic nets could be extended to any AI representation
scheme utilizing graphs or trees.

4.2. Knowledge Selection

The initial acquisition of knowledge is a vital task in the creation of any
machine intelligence program. Knowledge selection is one portion of knowledge
acquisition. It involves taking a large source of information on a problem domain
and selecting a representative subset for the knowledge-base. The original domain
information usually comes from a human expert, the designer’s personal
knowledge, textbooks, or representative test cases of the task to be performed.
Ideally, it would be nice to store all available information, and have the computer
disregard anything redundant or irrelevant. Unfortunately, computer representa-
tion schemes already require time consuming manipulation techniques. It is impor-
tant to find a minimum representation for the domain knowledge. Also, without
careful preselection of knowledge, there is more chance of error and side effects in
the knowledge-base. The following discussion deals specifically with the selection of
knowledge. It is partially motivated by the existence of PR techniques to perform
this task. A broader range of knowledge acquisition facilities will be discussed in
Chapter 6.



4.2.1. A Comparison of PR and Al

Pattern Recognition has many automated techniques for assistance in the selec-
tion of knowledge. AI researchers predominantly rely on human expertise for
knowledge selection. This is partially a reflection of the domains to which PR and
Al are commonly applied. PR often attempts to perform sensory perception.
There are no experts available that can tell a system designer how to perform this
task. Therefore, the system must figure out an alternative method based on the
available data. Conversely, most Al applications deal with tasks that humans know
how to perform. Human experts exist to assist in the selection of pertinent
knowledge.

Al uses the combination of domain experts and knowledge engineers almost
exclusively in the selection of knowledge. Although there are Al tools to assist in
the organization and thus selection process, the task is time-consuming. There are
editors and interfaces such as EMYCIN, KAS and RLL [17], explanation facilities
such as EXPERT [17], and knowledge-base revision systems such as TEIRESIAS
[17], which check for inconsistencies in the knowledge-base and can propose rules.
None of these tools are capable of actually selecting knowledge on their own.

In recent years, there has been some work in automatic knowledge acquisition
by AI researchers. Two such systems are META-DENDRAL by Buchanan [6] [8]
and AQ11 by Michalski [8] [22] [23]. META-DENDRAL operates in the domain
of mass spectrometry. It proposes and selects fragmentation rules for organic struc-
tures. Experimental data is analyzed to generate and test these rules. AQ11 has
formulated rules for the diagnosis of soybean plant diseases as well as for the clas-
sification of microcomputers. Both systems infer general class rules from training
samples using inductive inferencing techniques. This is conceptually similar to the
PR approach of training from labelled samples. However, the technique is dif-
ferent. Both of the above programs use positive and negative training samples.
Common features are searched for in the positive training samples; these features
must be capable of distinguishing the positive examples from the negative examples.
Both systems are, in effect, generating generalizations. In contrast, PR systems
often select features on the basis of maximum difference in features.

Most of the AI knowledge acquisition programs require domain specific
knowledge. Often it takes just as much time and just as many human resources to
add the domain specific knowledge and fine tune the system as it would for an
expert to sit down and manually select the knowledge. Another problem with these
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automatic knowledge acquisition systems is that they make many generalizations
from the given examples, but they still have weak knowledge selection skills. They
are not capable of chosing the most appropriate generalization rules and thus
features. These programs are beneficial if no expert is available. However, at this
point in their development, PR techniques are in general more powerful.

PR systems often have no human expert from whom to obtain domain specific
knowledge. Their knowledge acquisition and knowledge selection relies on learning
from training samples. The knowledge selection task in a decision-theoretic PR sys-
tem is referred to as feature selection. Feature selection involves taking a finite
number of measurements from training samples and translating them into n
features. The purpose of feature selection is to reduce the dimensionality of the
knowledge representation and thus to reduce the complexity of the classifier.
Feature selection is not totally automated. However, a series of tools exist which
may be applied to PR systems to assist in selecting knowledge. Syntactic PR
requires the selection of primitives and the inferencing of a grammar. Primitive
selection is a function of feature selection at a higher level. No automated tech-
niques exist. Grammatical inferencing will be discussed in Chapter 6.

Unlike the Al approach, PR knowledge selection involves the use of mathemat-
ical measures of independence, correlation and probability. It does not perform
symbolic generalizations as most AI approaches do. PR may be assisted by a
human, familiar with the problem domain, who may preselect certain features
before the feature selection stage.

One criterion for feature selection is minimum intra-class distance. This is
analogous to minimum variability in a feature. This characteristic is beneficial for
knowledge selection where one class exists. It does not reflect any comparative
information between classes. Another feature selection criterion is maximum inter-
class distance. This ensures that a feature has maximally different values in X dif-
ferent classes. A third algebraic and statistical approach to feature selection is to
find an orthogonal set of basis vectors that represent as much of the variability in the
knowledge as possible. Probability techniques may also be used. If a feature has a
probability of occurring equal to 1, it will always occur and is not a distinguishing
feature. Similarly, if two features are independent, then their individual probabili-
ties equal the sum of the probability that they both occur.
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It is obvious from this discussion that automatic knowledge selection techniques
are very different in PR as compared to AI. Both use training samples as a means
by which to extract knowledge. PR is more formalized and powerful as an indepen-
dent technique. Human experts use some of these criteria implicitly in their
knowledge selection. Unfortunately, they cannot always see the subtle correlation
and independence characteristics between features, evident when sophisticated pro-
babilistic and statistical techniques are applied. Some of the concepts could be
applied to Artificial Intelligence.

4.2.2. Application of PR Techniques to Al

Feature selection, factor analysis and other related areas would have great
implications were they fully automated. Many of the concepts developed thus far
could be integrated into an Al knowledge selection or knowledge acquisition sys-
tem. Al programs are often slow. This is a result of the huge knowledge base that
must be searched. Formalized knowledge selection would be of great assistance in
removing redundant information not always obvious to the expert. Al uses dif-
ferent computer representation schemes than PR. Some of the feature selection
techniques require the mathematical nature of feature space. Many symbolic
features can be translate to a mathematical scale. Concepts like tiny and huge or
colours along the colour spectrum are examples of such symbols. Other Al
knowledge could use the PR feature selection techniques intuitively.

Minimum intra-class distance could be applied as a rule to select characteristics
of a class that never change, or change only marginally. Maximum inter-class dis-
tance could be applied as a rule to select characteristics shared by all classes but of
maximum difference in every class. For example, in the horse-donkey example,
both horses and donkeys have ears. Horses have small ears and donkeys have large
ears. Similarly, brownies, girl guides and nurses all wear uniforms. Brownies
have brown uniforms, girl guides, blue, and nurses, white. This would be a good
feature for discrimination. The probabilistic techniques to determine independence
could be performed on the symbolic knowledge without its transformation to feature
space. This would be a quick simple test for redundant knowledge.

Feature selection techniques could also be applied in reverse to generate gen-
eralization hierarchies required in many AI applications. A good generalization of
several classes would minimize inter-class distance. It could be applied as a rule
that searched for a feature that was common among all classes and always had the



same value. The leg-count measurement in the horse-donkey problem is an exam-
ple of minimum inter-class distance; horses and donkeys both have 4 legs.

Feature selection techniques can also be added to an existing Al program as a
method of evaluating existing knowledge in a knowledge store. It could also be of
use in self-improving systems. This will be discussed in Chapter 6.



5. Problem-Solving Techniques

Having all the knowledge in the world is of no use to a machine intelligence
program if there is no means by which to reason with that knowledge. Knowledge,
and the existence of a problem-solving and inference method, implicitly or expli-
citly, are the basis for any machine intelligence program.

5.1. A Comparison of PR and Al

Pattern Recognition and Artificial Intelligence have very different problem-
solving techniques. The difference is a reflection of the knowledge representation
schemes used by the two fields; consequently, even decision-theoretic PR and syn-
tactic PR differ in their problem-solving approach.

In decision-theoretic PR, problem-solving implies the application of classifiers
to patterns described in feature space. In syntactic PR, it suggests the recognition
of pattern primitives using decision-theoretic techniques, and the parsing of the
resultant pattern to check for structural matching. Problem-solving in the field of
Al is distinguished by search, deduction, inference, theorem proving, planning and
common sense reasoning [2].

Al uses symbolic reasoning to manipulate the knowledge that it has stored as
symbols. Conversely, decision-theoretic PR uses algebraic, statistical and proba-
bilistic techniques, in a mathematical framework, to solve its problems. Syntactic
PR may liberally be thought of as a hybrid of the two conceptual approaches;
mathematical techniques are used to identify pattern primitives, which are
represented as symbols and the parsing of structural knowledge is a symbolic mani-
pulation approach.

Problem-solving techniques exploited by the two fields may be compared at a
more abstract level, the mode of reasoning. Decision-theoretic PR uses a bottom-up
or data-driven method of reasoning. It begins with the data, and proceeds to apply
the problem-solving reasoning to produce the classification of the pattern. The
opposite of bottom-up reasoning is top-down or goal-directed reasoning. This mode
takes the goal and recursively applies problem-solving techniques to create subgoals,
until each subgoal is solvable. Humans often apply top-down reasoning in their
problem-solving strategy. Similarly, many Artificial Intelligence programs also use
top-down reasoning. Unfortunately, top-down reasoning does not always take the
given data into consideration when generating possible solutions. Thus it is some-
times inefficient. There is another reasoning method commonly incorporated into
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Al programs, called means-ends analysis. Means-ends analysis involves a combina-
tion of both top-down and bottom-up reasoning. A difference measure is taken
between the current state and the goal state. An operator is prescribed to reduce
the difference. If the operator cannot be applied to the goal state, subgoals are set
up recursively until an operator can be applied. Means-ends analysis was first
applied in Newell’s General Problem Solver (GPS) [31]. It was motivated by the
idea that humans perform a type of means-ends analysis when solving problems.

Syntactic PR can use a combination of top-down and bottom-up techniques,
although not in the same manner as means-ends analysis. The recognition process
to identify pattern primitives applies a bottom-up approach. The parsing procedure
to detect structural relationships between pattern primitives can either implement a
top-down or a bottom-up parse.

PR problem-solving techniques are applicable to solitary problems. Given a
problem description, the black box PR system will deliver an answer. PR systems
are not appropriate for problems that require man-machine communication. Con-
versely, AI programs thrive in an interactive problem-solving environment.
Knowledge is mappable to real world, user understandable knowledge. Hence,
explanations may be generated. The PR classifiers discussed in this paper process
feature information in parallel; all knowledge is considered at once. The feature
space is cleaved into class spaces, and the unknown pattern is mapped into one of
these subareas. Thus, the algorithms yield no room for interaction. AI systems
solve problems state-by-state until they reach their goal. At each new state, a new
decision must be made. Thus, it seems natural to query the user for data required
by the problem-solver, if needed.

The concept of a single stage classifier that utilizes all knowledge at once, in
parallel illustrates some limitations of the PR approach. The single stage approach
requires that all the classes represented in the classification problem share common,
distinguishing features. For example, it would be difficult to put birds into the
horse-donkey problem. The height feature would uniquely distinguish them, but
birds have no ears with which an ear size measurement could be taken. The prob-
lem is more complex in larger domains or where more classes are contained within
the classification problem.

There is another disadvantage to the PR approach, if applied to some tasks
normally performed by Al programs. This is the requirement that all data must be
provided before classification can be performed. This limits the application of
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single stage PR techniques to problems where the required data is known even if the
classification of that data is not. This approach would be unsuitable to many medi-
cal diagnosis systems. These systems are often designed as doctor’s assistants. The
requirement for specific data is related to a partial prognosis of the disease, as a
result of initial data manipulation. If the doctor had collected all the data required
by the system beforehand, the doctor would quite possibly know what the diagnosis
was as well.

To combat the common feature requirement of single stage PR systems, some
multi-stage classification schemes have been designed. If there are K distinct classes
in the problem, the feature space is not split into K subareas all at once. Areas are
split and resplit by the application of different distinguishing features, between dif-
ferent subsets of the K classes. This type of classifier makes decision-making more
efficient when there are many classes with many different features, each of which
do not discern between all classes.

Single stage PR systems have also been permuted into internally interactive sys-
tems. This strategy is commonly exploited on large problems with a great deal of
data. A decision-making system can take a pattern descriptor and either perform a
classification or make no external decision, and request more information from the
internal pattern description. In this way, the decision-making procedure can make
a crude classification and then request more specific knowledge to obtain an exact
classification. This tactic reduces the dimensionality of the classification task, but it
does not address the requirement of entering all possible data into the system origi-
nally. Because of the low level of processing of PR systems, it would be more diffi-
cult to provide a user interface than in an AI system. Therefore, PR techniques
should be applied to problems implementable in a solitary environment, and requir-
ing no interaction or understanding by the user.

An important aspect of Pattern Recognition is its ability to represent and conse-
quently process inexact knowledge. This is a reflection of the probabilistic and sta-
tistical basis of PR techniques. The processing of inexact, noisy knowledge is
achieved in both decision-theoretic and syntactic PR through the use of measures of
similarity. The inability to represent variable knowledge is a weakness in Al sys-
tems. However, Al does have means by which uncertainty in reasoning about
knowledge may be performed. Examples of uncertainty in reasoning are found in
the expert systems MYCIN [17] and PROSPECTOR [17] and in the application of
fuzzy logic [17].
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It is important to stress the difference between variability in knowledge and
uncertainty in knowledge. Pattern Recognition represents variability in knowledge
by representing a class in terms of its mean and covariance within feature space or
by the pdf generated by the training samples. For example, it means that donkeys
are not required to have 6 inch ears. Their ear size can vary between 4 inches and
8 inches and still be acceptable. Similarity measures such as MICD and MAP, and
error-correcting parsers provide a means of classifying unknown patterns. In con-
trast, uncertainty in knowledge means that a fact may or may not be true. For
example, most cats have long tails, but there are cats that do not. Therefore, the
feature long tails in classifying cats is uncertain knowledge. In PR, uncertainty is
represented and measured by stochastic languages and maximum likelihood parsers.
The MAP and MICD classifiers allow for uncertainty in reasoning implicitly because
they are measuring similarity.

The AI expert system PROSPECTOR finds ore deposits from geological data.
Uncertainty is implemented by the use of Bayes theorem. Prior probabilities of the
occurrence of various individual minerals and the probabilities of certain physical
characteristics given certain minerals are known. Bayes theorem can compute, how
likely a certain mineral is to occur, given collected data. This application of Bayes
theorem is almost identical to the very popular MAP classifier of decision-theoretic
PR.

The AI expert system MYCIN gives advice on the diagnosis and treatment of
infectious blood diseases. It incorporates uncertainty in reasoning in a fashion simi-
lar to that of stochastic languages. In the MYCIN system, each IF condition THEN
action rule is assigned a probability. Simple probability rules are applied to select
production rules just as stochastic language parsers select a derivation. MYCIN
also defines measures of belief and disbelief associated with each rule. These com-
bine to create a certainty factor for the hypothesis being tested. PROSPECTOR and
MYCIN exemplify the ease with which mathematical measures can be incorporated
into an Al system.



5.2. Application of PR Techniques to Al

As mentioned previously, Al techniques have been applied to PR systems for
the implementation of high level semantic processing. Limited work has been done
in explicitly applying PR techniques to Al systems. There is sometimes a fine line
of distinction between PR systems incorporating AI techniques and Al systems
incorporating PR techniques. Examples of domains where this is the case are
speech and image understanding. Speech and image analysis problems have been
addressed by both PR and Al researchers. Speech analysis [20] is speech recognition
in PR and speech understanding in Al, similarly for image analysis. Speech under-
standing uses syntactic and semantic processing, utilizing conventional speech recog-
nition techniques to analyze primitive sound data. Similarly, there are speech
recognition systems that implement high level syntactic and semantic processing
using Al techniques.

A good example of speech understanding, and more generally, of the ability of
PR problem-solving techniques to be implemented within an AI framework, is
HEARSAY [11] [28]. HEARSAY, developed at CMU, was one of several speech
understanding projects funded by DARPA in the mid 70’s. HEARSAY-I, the
successor to HEARSAY-I, had relatively good success as a speech understanding
system. However, it is best known for its unique architecture. As opposed to hav-
ing one central knowledge base and one problem-solving technique, HEARSAY-II
had 12 knowledge sources (KSs) each with unique knowledge and a tailored reason-
ing strategy. The 12 knowledge sources were each experts in a subproblem area of
speech understanding. For example, there were syntactic, pragmatic, prosodic,
and acoustic KSs etc. The different KSs communicated with each other via a global
working memory called a blackboard. On the blackboard, information of different
type and level was all integrated into a uniform representation scheme. Each KS
posted hypotheses to the blackboard, based on information already on the black-
board, and new information yielded by the KS. Specific knowledge probabilities for
success were associated with each hypothesis. A controller was used to focus atten-
tion on the most likely hypothesis. This unique architecture allowed for low level
knowledge sources to be implemented using decision-theoretic PR techniques. The
high level KSs applied conventional Al techniques, and all were able to communi-
cate and reason together. The modularity simplified the system.



HEARSAY-II architecture is ideal for integrating Pattern Recognition into any
problem domain. The existence of the blackboard eliminates many of the interface
worried of implementing the two methodologies together. HEARSAY-II has
yielded HEARSAY-III, a software tool and domain-independent AI framework for
expert system.

An interesting application of PR problem-solving techniques to a medical expert
system, would be to give the system limited sensory perception via PR techniques.
For example, imagine a medical diagnosis system that could also listen to a pulse,
or hear a murmur, or listening to breathing patterns, while having access to medical
knowledge and also patient-specific information. Electro-cardiogram (ECG) [15]
[27] or digitized X-rays could be input into the system along with regular medical
expert system data. It would yield a more powerful system with not only access to
a doctor’s mind, but also to his/her eyes and ears.

PR techniques could also be incorporated into an Al framework to perform a
crude classification to reduce the dimensionality of the search space. AI techniques
could then be applied to fine-tune the decision. Generalized data on the problem
that was structured towards use by PR techniques could be quickly processed in
parallel, narrowing the problem space immensely. Conversely, decision-theoretic
PR could be used in an Al framework similar to its use in syntactic PR. PR could
be employed to process low level primitives which could be combined and
represented as symbols. These symbols could be manipulated by conventional Al
programming techniques. '

PR concepts have been applied to game playing. The idea of features has been
used to create evaluation functions. These evaluation functions are used as heuris-
tics in a heuristic search of the state space. Originally, Samuel designed evaluation
functions for checkers. Typical features included piece advantage, control of the
centre etc. The PR problem was to select a weighting for these features. The
linear combination of features required to generate the best search had to be learned
using an adaptive training mechanism. Rendell [29] [30] did similar work with the
15-puzzle; this will be discussed in the next chapter.

In Chapter 4, some methods for applying PR to the computer representation of
knowledge were proposed. Each of these composite representations requires a com-
plimentary problem-solving technique. The procedural representations and produc-
tion system representations suggested were self-explanatory. They were simply
small classifiers inserted into Al programs. The semantic net permutation requires



more sophisticated problem-solving methods. It was put forth that semantic nets be
represented using formal language grammars. Grammars have been defined for
representation of string, trees and graphs in syntactic PR; thus applications are
numerous. The major advantage of representing semantic nets as language gram-
mars is to employ the accompanying PR problem-solving techniques. Specifically,
error-correcting parsers could be used to handle noisy and distorted data. These
error-correcting parsers implement similarity measures for symbolic data. This
would be of great advantage in specific situations of AI domains where noisy data is
found. General Al techniques in this situation are weak. Another technique for
dealing with noisy data is to represent semantic nets using stochastic grammars.
Each production in the grammar has associated probabilities. A maximum likeli-
hood parser could be used for reasoning. Finally, the detection of graph isomor-
phisms has been used to match attributed graphs, another syntactic PR representa-
tion. It is debatable whether the time required to detect graph isomorphism would
justify their use in an Al environment where required processing capabilities are
perhaps less powerful.

Finally, it should be reiterated that many of the decision-theoretic PR classif-
iers could be adapted to an Al environment with a slight transformation of data or
redefinition of similarity. Similarity was previously redefined in the creation of
error-correcting parsers. The MAP classifier was the most powerful decision-
making technique discussed. Bayes theorem is the foundation for this classifier. It
is used very successfully in PROSPECTOR for reasoning with uncertainty. It could
be similarly implemented in other domains. Bayes theorem requires a priori
knowledge of certain probabilities or estimation of pdfs. If this knowledge is not
available, one of the distance metrics could be applied with slightly poorer perfor-
mance resulting.
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6. Learning

One of the most important aspects of human intelligence is the ability to learn.
Learning has confounded researchers in many diversified fields for years. Com-
puter scientists have not been immune to this confusion. Machine learning has been
a topic of study for several decades; only limited success has been achieved. The
motivation for research into learning is two-fold [7]. Learning is studied as a pure
science to help psychologist and epistemologists better understand the functioning of
the brain and how knowledge relates to that functioning. More practically, with the
advent of AI expert systems, has come the requirement for automated knowledge
acquisition. Expert systems now require a domain expert. Development costs are
high and knowledge acquisition is time consuming. On the other hand, PR systems
have needed machine learning since their conception. Because of the problem
domains PR systems currently addressed, and the problem-solving methodology
which is not suited to human interaction, PR systems always require some degree of
machine learning. Machine learning is a large and diverse area of study. This
chapter briefly relates work in PR with pertinent Al research.

6.1. A Comparison of PR and Al

Pattern Recognition and Artificial Intelligence have both addressed the problem
of machine learning. Many of the techniques originally developed in PR were
related to fundamental problem-solving methods. They were not explicitly labelled
as machine learning techniques until their operation was analyzed. In contrast, the
Al research concerning machine learning has always been identified as such;
machine learning is generally recognized as a distinct area of AI. However,
machine learning is less crucial to basic Al decision-making algorithms. As a reflec-
tion of the differences in methodology, PR and AI have somewhat different
approaches to machine learning. Pattern Recognition has used mathematical tech-
niques to solve problems in machine learning; symbolic learning methods have been
implemented in AI. However, there have been exceptions to this rule. Several Al
researchers such as Samuel [8] and Rendell [29] [30] have applied mathematical
learning techniques, of a PR nature, to problems of heuristic search in game-

playing.
There are several different types of AI machine learning: rote learning, learn-

ing by being told, discovery learning, learning by analogy and learning by example.
Pattern Recognition addresses only two, rote learning and learning by example.



Rote learning involves the memorization or recording of data. In a sense, all com-
puter programs are capable of rote learning. In PR systems, rote learning is per-
formed by the K-nearest-neighbours classifier, where training samples, characteriz-
ing the boundaries of the class, are learned and stored without any transformations
being performed. Learning by example, or induction, is the common type of learn-
ing performed by PR systems. In learning by example, a system is given examples
of how it should perform. The systems must group together this information and
make generalized rules that can be applied to new input data. This is exactly what
all PR systems do. They take training samples and generate a classifier for use on
subsequent unlabelled data. Therefore all PR systems are instances of learning by
example.

To complete the descriptions, learning by being told is comparable to a system
taking advice. It involves accepting high-level knowledge and transforming it into a
form that is usable by the system. On the other hand, in a discovery learning sys-
tem, a set of elementary knowledge primitives are given and it must apply these to
discover new concepts. Finally, learning by analogy is a difficult form of machine
learning. It involves taking knowledge from another domain, and identifying
analogous relations with knowledge in the problem-domain. The relevant
knowledge may then be transferred and applied to the problem-domain.

Machine learning exists in at least three different forms: as a knowledge
acquisition tool to develop initial problem-solving rules, as a mechanism to improve
system performance, and as a complete machine learning program whose purpose is
to acquire new knowledge by one or more learning techniques. Artificial Intelli-
gence has implemented symbolic machine learning in all three forms. Pattern
Recognition has accomplished machine learning in the first and the third.

Every PR system must automatically acquire knowledge to develop problem-
solving rules. In a decision-theoretic system, it involves the selection of features
from training samples and the subsequent construction of a classifier. AQ11 and
META-DENDRAL are examples of the few Al applications to actually perform ini-
tial knowledge acquisition to generate rules for a task; they are both instances of
learning by example.

Self-improving systems are not common in AI. Samuel’s checker program is an
instance of an adaptive Al learning program [8]. Samuel tried three different
approaches to get a computer to learn to play checkers. One of these approaches
involved building a heuristic evaluation function to optimize the search for a



solution. Features of the game were selected. The learning problem was to create
a linear function weighting each feature appropriately to yield an optimal solution.
An adaptive training method was used to calculate the weights. After each pro-
gram run, the weights were updated until a satisfactory heuristic was obtained.
Doran, Michie and Rendell have done similar work and extensions with the 8-
puzzle and the 15-puzzle. This adaptive learning mechanism is a direct application
of PR to Al machine learning.

TEIRESIAS [17], a tool for the acquisition of knowledge in the expert system
MYCIN. If MYCIN fails, TEIRESIAS is capable of both suggesting what kind of
rule will correct the problem and of writing a form of the rule. TEIRESIAS
interacts with a human when performing such improvements. Other expert systems
tools exist for similar knowledge-base revisions [17].

In PR, adaptive or training techniques are sometimes used to learn the classif-
ier. The classifiers are self-improving in the sense that they ‘‘train’’ until satisfac-
tory performance is obtained. After which, the classifier is static. The self-
improving nature of the system only exists during the analysis phase or during
updating; self-improvement is not integrated into the recognition stage. Thus there
is no ongoing mechanism for improving system performance.

Finally, most of the existing Al learning programs have learning as their pri-
mary task. Examples of such systems are Lenat’s AM [8], Winston’s work on
learning structural descriptions from examples [6] and Mitchell’s LEX [8]. PR clus-
tering programs are examples of PR systems whose primary task is to learn. They
find naturally occurring clusters in samples of unlabelled data. Clustering tech-
niques exist for both decision-theoretic and syntactic PR. Grammatical inferencing
programs ar also an example of syntactic PR programs designed solely to learn.

Machine learning techniques like all other problems in machine intelligence,
are very much a function of the utilized knowledge representation scheme. Al
knowledge representation addresses a much larger problem domain than PR. As a
result, Al has attempted to tackle many different types of learning problems using
at least five different learning methods. A criticism of most Al learning programs
is that they are not self-sufficient; they require domain specific knowledge to assist
in the learning procedure. In contrast, PR learning methods require no domain
specific knowledge. Mathematics is a very powerful framework within which to
operate, as illustrated by the success of PR in machine learning. Because the vari-
ous PR learning techniques are not domain specific, they are well suited as learning
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tools. These tools could be “plugged in’’ to an Al program. Al learning techniques
appear to be less adaptable. Like most Al programs, they ar fine-tuned to the
specific domain.

6.2. Application of PR Techniques to Al

The greatest number of applications of PR techniques to Al have been in the
area of machine learning. PR has exhibited superior learning capabilities within its
methodology. Some PR learning tools have been applied, as is, to the Al environ-
ment. Others have been adapted to perform the same conceptual task using sym-
bolic reasoning. There is potential for much more interaction. PR has three distinct
techniques that could act as tools in an Al framework: knowledge selection, adapt-
able classifiers, and independent learning tools such as clustering and grammatical
inference.

Knowledge selection was described in detail in Chapter 4. It has many conceiv-
able applications to Al in the area of original knowledge acquisition. Knowledge
selection could also be applied to evaluate the knowledge being employed for
decision-making, once the system is in place. Many Al systems do not have access
to training data at their conception. Therefore, it is more difficult to apply
knowledge selection techniques initially. However, once an AI system is opera-
tional and generating results, knowledge selection could be used as a learning pro-
cedure to check the efficiency of the knowledge being employed to generate deci-
sions. Knowledge selection could improve the quality of the knowledge by detect-
ing redundancies and inapplicable data, and by proposing a minimum basis to
represent the required knowledge.

A limitation of many of the AI learning programs is that they require domain
specific knowledge. Mitchell’s LEX is an example of such a system. LEX learns to
solve elementary problems of symbolic integration. It requires a generalization
hierarchy of concepts before it can be implemented. This hierarchy must be created
manually. Knowledge selection techniques could be implemented to assist in build-
ing and streamlining such a hierarchy. All nodes at a particular level of the hierar-
chy would be independent or distinct. A group of independent nodes would be
attached to a common ancestor. The ancestor would be the conceptual grouping of
all the common features of the independent nodes. They would be characterized as
all the features that were not discerning in the creation of a classifier.



The concept of an adaptive classifier has been applied to Al for some time.
Rendell [29] [30] proposed its use for state-space learning directed to games such as
the 15-puzzle. Rendell’s work is a good example of the power of PR methodology
applied to a symbol system design. The original probabilistic learning system,
PLS1, is similar in nature to Samuel’s system previously described. Features are
combined to form an evaluation function. The evaluation function assists in per-
forming a heuristic state-space search. Adaptive methods are utilized to select
weightings for the features. Statistical performance measures from solutions to the
15-puzzle help to generate the probability of usefulness of a task. PLS1 generates
locally optimal feature weights. Rendell handles the issue of noisy data via proba-
bilistic measures and clustering. PLS2 is an extension of PLS1 to accommodate
feature interaction.

Adaptive learning techniques could be applied in other areas of AI. The train-
able statistical classifier was employed to develop approximation of the Bayes clas-
sifier.  PROSPECTOR is an example of an expert system that utilizes Bayes
theorem for reasoning with uncertainty. It could implement an adaptive statistical
approach to Bayes theorem. This would ensure optimal probabilities.

An interesting technique that might be applied to Al in a state-space learning
problem is the learning of production probabilities in a stochastic grammar [34].
This is an inductive learning technique that estimates the production probabilities.
It would be particularly suitable for applying reasoning with uncertainty to a seman-
tic net or graphical AI KR scheme. This would aid search and make the system
more efficient. The technique requires a set of samples, to be implemented.

Of the independent PR tools both grammatical inference and clustering are
applicable to machine learning. Grammatical inference is an instance of symbolic
learning by example and as such it is directly related to Winston’s work on learning
structural descriptions from examples. There are several different methods applied
to the problem of grammatical inference. One of these methods involves the use of
positive and negative examples and the application of generalization and specializa-
tion; these techniques are reminiscent of Al symbolic learning. Grammatical infer-
ence has also used statistical approaches to generate a structural hierarchy. Bayes
theorem is employed to help select the most probable grammar from training
instances. There are several other enumerative and constructive techniques [8] that
could be applicable to AI learning research beyond the scope of Winston’s work.
Grammatical inference is a very specific learning problem. Unless some of the
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formal language representations are implemented in an Al framework, grammatical
inference will only be applicable as an exercise in AI machine learning.

Clustering is another technique commonly utilized but not originally conceived
in PR. It has its foundations in numerical taxonomy. In recent years, several Al
researchers have implemented clustering in inductive learning systems. Michalski
{21] [22] [23] and Langley [19] have been foremost among these researchers. As
with many other Al researchers, they have been critical of the lack of semantic pro-
cessing in the very mathematical methods used to implement clustering. The com-
mon complaint is that the approach does not allow for symbolic knowledge and that
the clusters generated have no intuitive meaning. This criticism may be valid for
specific Al learning applications but it does not warrant abandoning numerical clus-
tering. There are still many areas of AI where numerical clustering techniques may
be applied.

Both Michalski and Langley have implemented conceptual clustering, clustering
without numerical tools. Conceptual clustering could be described as an intuitive
approach to clustering. Michalski has had a great deal of success with his CLUS-
TER/2 program which employs a technique comparable to a conceptual K-means
algorithm. Objects are represented as a series of conjunctive concepts in VL, the
variable-valued logic described in Chapter 4. As a result, both numeric and sym-
bolic data may be represented in a symbolic framework. Using a set of positive and
negative examples of concepts, CLUSTER/2 selects K seeds. Each seed is used as a
prototype for one of the K classes. The other K-I seeds are negative instances of
that class. By clustering the remaining data, a set of descriptions is generated, cov-
ering each seed. From these clusters, new seeds are generated and the algorithm
repeated until the seeds become stable. The resultant seeds each represent one of X
classes. To generate a hierarchical description of each class, the CLUSTER/2 pro-
cedure is applied recursively, generating nodes and branches for the class.

Langley takes a slightly different approach to conceptual clustering. Based on
some of the work by Quinlan [26], Langley’s DISCON system generates discrimina-
tion networks. Instead of using positive and negative instances, Langley considers
all observed data to be positive examples, and all unobserved data to be negative
examples. From the discrimination network, a classification tree is generated.

Both of these methods have utilized the concept of clustering in a symbolic
framework. Conceptual clustering is a good technique for learning by example. It
is an application of PR in an Al framework. Unfortunately, it is not very good at



dealing with complex problems with variability in data measures [10]. Numerical
clustering could also be applied to the problem. It holds many of the advantages of
PR previously stated. In particular, a class is often represented by many slightly
different objects and numerical clustering uses mathematical measures of similarity
to overcome this common problem. Much of the symbolic data in an Al program
could be mapped into a mathematical framework to take advantage of numeric clus-
tering techniques. There are also clustering techniques for dealing with some nomi-
nal data [35]. These remarks are not in criticism of the conceptual clustering
approach, but a remark in support of the application of other types of clustering in
an Al environment.

Database management is another field of computer science having application
to AI. Many of the problems of managing large stores of knowledge are common
to both fields. As knowledge on various problem domains increases in size, it
becomes more difficult for domain experts to see all the relationships between
knowledge. The medical profession is a good example of such a domain. Recently,
work has been done on the creation of an intelligent database management system
(dbms) [32] that finds relationships between attributes stored in the database using
conventional clustering techniques. At the moment it only deals with mathematical
data, but the possibilities are numerous. Imagine such clustering techniques being
applied to a knowledge-base. Numerical clustering techniques, statistical methods,
or even conceptual clustering applied to knowledge could result in the finding of
relationships not even known by the domain experts. The advantage the system has
over the human expert is that it can consider many different attributes at the same
time and perform as many statistical comparisons as desired. This technique could
also be applied to a medical database of patient histories. If the system were
allowed to identify and cluster attribute relations it might discover subtle hereditary
or lifestyle relationships between diseases.

This technique also has implications to the creation of self-improving systems,
where initial knowledge selection is difficult. If a cluster was made of each distinct
class or diagnosis and the results from the decision-making tests grouped together,
it might be possible to identify tests that predicted the correct class. Tests yielding
incorrect or irregular results could be omitted.

Finally, syntactic PR has applications to the AI study or learning by analogy.
Although the syntactic PR KR scheme is limited in applicability, it is able to yield a
hierarchical representation of the blocks world. The blocks world is frequently used



as a simple domain upon which to test theories of learning. In learning by analogy
knowledge entities are not matched so much as the relationships linking those
knowledge entities. Pattern grammars are a means of representing those structural
relationships.

To test to see whether a foreign pattern is analogous to a pattern of a pattern
grammar, the foreign pattern could attempt to be parsed by the pattern grammar.
Patterns and subpatterns in the grammar could be represented as variables. The
variables could be maintained to ensure consistency in the patterns and subpatterns
but not necessarily a match between the specific values of the foreign pattern and
the pattern grammar. The structural relationships are more important. If a foreign
pattern did not parse using the start goal, then the subgoals could be replaced as
start goals and parsing attempted again. The parsing technique would also yield a
description of where the foreign pattern did not match the grammar. The descrip-
tion of a pattern as a grammar allows for the representation of specific rules recur-
sively where multiplicity exists. The matching of multiplicity is one of several prob-
lems to be addressed in learning by analogy.
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7. Conclusions

Pattern Recognition and Artificial Intelligence differ a great deal in methodol-
ogy. Al attempts to validate Newell’s physical symbol system hypothesis by
representing knowledge as symbols and symbol structures. A mapping of
knowledge to the real world is retained. A separate set of processes are defined for
symbolic manipulation of this knowledge. In contrast, PR takes a nonsymbolic
approach to the problem of machine intelligence. Knowledge is reduced to concise
mathematical representations. No simple mapping to the real world exists. Alge-
braic and multivariate statistical techniques are used for manipulation of this
knowledge; knowledge and the reasoning mechanism are intertwined. Syntactic
PR is a step towards the symbol system approach. A hierarchical symbol system
structure is placed on top of the mathematical framework, for processing of struc-
tural knowledge. The difference in methodology provides the basis for the contrast
in techniques applied to issues of knowledge representation, problem-solving and
learning.

PR techniques are very powerful. However, they are not capable of solving all
the problems of machine intelligence. Throughout the paper, specific areas where
PR tools are applicable to problems in AI have been briefly highlighted. PR is a
vast field. Relevant techniques are not restricted to those mentioned herein. There
is potential for much interaction. It is hoped that this paper has provided the
stimulus for further research into the utilization of PR methods as tools of Al
machine intelligence.
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