INTERPRETING DESCRIPTIONS IN A PROLOG-BASED
KNOWLEDGE REPRESENTATIONS SYSTEM

Randy Goebel
Artificial Intelligence & Logic Programming
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

Research Report CS-85-08
May 1985

INTERPRETING DESCRIPTIONS IN A PROLOG-BASED
KNOWLEDGE REPRESENTATION SYSTEM{t

Randy Goebel

Logic Programming and Artificial Intelligence Group
Computer Science Department
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

Abstract

Descriptions provide a syntactic device for abbreviating expressions of a formal language. We
discuss the motivation for descriptions in a system called DLOG. We describe two approaches to
specifying their semantics, and a method for implementing their use. We explain why some descrip-
tions should be given a higher order interpretation, and explain how such descriptions can be inter-
preted in the simpler logic of Prolog. The essential idea is to constrain the domain of descriptions so

that an extended unification procedure can determine description equivalence within the Prolog
framework.

Introduction

A description is a syntactic device for abbreviating expressions of a formal language. For exam-
ple, “The king of America is an old cowboy’ might be rendered in first order predicate calculus as

Iz Vy|[king—of —America(y)=z =y|Aold —cowboy(z)|

and paraphrased as “there is an £ who is the unique king of America, and that z has the property
‘old-cowboy’.” This expression can be abbreviated, in the classical way, as
old —cowboy(1z [king—of —America(z)]); we say that “.” is used to form a definite description. In
first order logic, predicate arguments denote individual objects; the description operator ¢ has syntac-
tically “objectified” a portion of the original sentence.

The description operator has created a new syntactic object, but the meaning or denotation of
that object may not be well-defined. In this particular case, the existence and uniqueness properties
presupposed by the above description have been the issue of much debate (e.g., see [Kaplan75]).

Another example of descriptive abbreviation relaxes the uniqueness assumption. For example,
the expression “there is a person who is an old cowboy, and who is a Republican” might be rendered
as 3z [person(z)Aold ~cowboy(x)ARepublican(x)]. We might use another description operator, say §
(read ““an”), to provide the following abbreviations:

person £z [old —cowboy(z)ARepublican(z)}).
old —cowboy(&x [person(z)ARepublican(z))).
Republican(€z [person(z)Aold —cowboy(z))).

Each such abbreviation uses the description operator “£” to focus syntactic attention on the predi-
cate “person,” “old-cowboy,” and ‘Republican,” respectively. Again we must be concerned with the
meaning of such descriptions. It is somewhat natural to treat all of the above abbreviations are
semantically synonymous—that all assert the existence of an individual object with the three proper-
ties. But this creates the need to explain their obvious syntactic differences in some other way. One

{This paper will appear in the Proceedings of the Ninth International Joint Conference on Artificial Intelligence,
Los Angeles, California, August 18-24, 1985.

hint comes from Hilbert and his use of description operators (e.g., see [Leisenring69, Robinson79]).
Hilbert used the transformations

VzI(z)-+I(ex~I(z))
Jzl(z)=I(exI(z))

to simplify derivations. In other words, the transformations provided a computational advantage
even though their meanings are identical. Robinson nicely expresses the intuition:

“It would seem that Hilbert terms...do capture a certain intuitive manoeuvre, which is
worth formalizing: to introduce a unique name for an entity whose ezistence has been
established by some previous part of an argument, so as to continue with the argument
and be able conveniently to refer to it if need arises.” [Robinson79, p. 291]

This rationalization of the syntactic differences is related to the object-orientation of Al
representation systems, where the ability to refer to and manipulate objects is argued to be of con-
ceptual advantage in specifying symbolic representations of domains (e.g., [Moore76, Schubert76, Nor-
man79, Bobrow77a, Bobrow77b, Hewitt80, Steels80, Attardi81]). (Descriptions have also been used
within the logic database literature (e.g., [Dilger78, Dahl80, Dahl82]).)

In Al, part of the reluctance to adopt a logical interpretation of descriptions must be attributed
to the long-standing confusion and controversy about their meaning—logicians do not generally agree
on the semantics of descriptive terms (e.g., see [Carroll78]). The reluctance to analyze descriptions in

a logical framework probably results from a traditional misunderstanding of the role of logic
(cf. Hayes77)).

Descriptive terms in DLOG

DLOG is a representation system implemented in Prolog. It is a ‘“‘system” in the sense that it
provides a general representation language (including various kinds of descriptions), a query evalua-
tion mechanism, a simple integrity maintenance scheme, and an abstract description of the intended
semantics of the representation language independent of implementation. Although originally
developed to to help describe concepts in the Department Database (DDB) domain, the DLOG system
is domain independent in the sense of traditional data base management systems.

The descriptions in DLOG are motivated by a desire for brevity in describing undergraduate
degree program requirements in the DDB. For example, suppose that “CS115 or a 1.5 unit elective”
is a requirement. The desire is to avoid an expression like

requirement(BScCS ,CS115)
V [3z[requirement(BScCS z)
Aunits(z,1.5)Aelective(BScCS,z))]
in favour of something like
requirement{BScCS,
kz|z=CS115
Vz =xylelective(BScCS y)
Aunits(y,1.5)]])

by using some appropriately defined description operator “x.” Similarly, descriptions of sets were seen
to be useful. For example, the expression “at least 12 CS courses” might suggest the use of an
expression like that in fig. 1 where the components grouped by the left brace must be written once
for each set of twelve CS courses. This is clearly a tiresome way to express the assertion, and furth-
ermore, would require extensive modification after any new CS course was created (e.g., by adding an
assertion like “CS-course(CS123)”). We would prefer something like

)
requirement(BScCS,CS115)

Arequirement(BScCS,CS5215)
A

Arequirement(BScCS,C5442)

(

\

requirement(BScCS,CS118)
Arequirement(BScCS,CS215)

A
V <
L Arequirement (BScCS,CS442)
Figure 1. ‘““...at least 12 CS courses”’
requirement(BScCS,

Kz |set(z)
Acardinality—of(z)=12
AVyly€z DCS —course(y)]})

(1998 5]

where “k” is another appropriate description forming operator.
Similar motivations have given rise to the following description forms in DLOG.

Definite individuals. DLOG’s definite individual provides a shorthand syntax for referring to a
unique individual whose name is unknown. Intuitively, the variable binding symbol ‘’ can be read as
the English definite article “the.” For example, we might refer to “the head of Computer Science” as

1z |head —of (x ,ComputerScience)]

If our description distinguished the intended individual, then we need never know which individual
constant actually names that domain individual. We normally expect that the variable bound with
the symbol ‘¢’ appears somewhere in the formula that constitutes the body of the description.

Indefinite individuals. When we need to refer to “any old o’ with some property specified by
a formula ‘@(a)’, we can use an indefinite individual. We use the variable binding symbol ‘¢’ as the
English indefinite article “a” or “an.” For example, “a course with course number greater than 300”
might be referred to by the indefinite individual

ez,[course(z)AIz [course —no(z,22)Az,=300]]

As for definite individuals, we normally expect that the variable bound with the symbol ‘¢’ appears
somewhere in the formula that constitutes the body of the description.

Definite sets. A definite set is used to refer to a set consisting of all individuals that satisfy
some property. The name “definite” is used to correspond to its use in “definite individual.” A
definite set is ““definite” because it refers to all individuals in the current knowledge base that satisfy

the specified property. For example, “the set of all numerical analysis courses” might be designated
as

{z:course(z,)Atopic —of (z,,NA)}
Here the braces “{ }’’ serve as the description forming symbol.

Indefinite sets. Indefinite sets are “indefinite” in the sense that they refer to one of a set of
sets. Like indefinite individuals, they are intended to be used to refer to “any old set’ that is an ele-
ment of the set of sets that satisfy the specified properties. For example, the indefinite set

{z,, X :course(z)Acardinality —of (X ,3)}

is the DLOG term that represents an arbitrary set that is a member of the set of “all 3 element sets
of courses.”

Lambda constants. Lambda constants were introduced to capture a kind of individual occur-
ring naturally in the DDB domain: regulations. For example, in describing a typical degree program,
we must classify all kinds of requirements for that program, e.g., “nobody can register if they’re
under 16 years old” refers to a regulation that uses the lambda constant

xa, [3zsage ~of (z,2)Az,216]]
In this way regulations can be placed in relation to other individuals and sets, e.g.,
program —prerequisite(BScMajors,
first,
Az, [Fzolage —of (z,,22)Az,=16]})

says ‘“‘one of the regulations for the first year of a BScMajors program is that an individual be at least
16 years old.”

Semantics of descriptions

We have suggested that there is more to the meaning of descriptions than their denotation in a
first order language. In DLOG (and, we claim, in any representation system) there are at least two
aspects to the meaning of descriptions.

One important aspect is the traditional specification of denotational semantics along Tarskian
lines: given a well-defined class of formal expressions, one specifies a systematic way in which expres-
sions and their parts can be attributed denotations in an interpretation. Two assumptions underlying
this methodology are (1) that the expressions in question are being evaluated as to their truth; and (2)
that the denotation of complete expressions depends solely on the denotations of their parts.

Another important aspect, often overshadowed by concerns of the former, is the intended
meaning of such formal expressions when they are being formed {e.g., by a user), during their use in
assertions (e.g., when adding facts to a knowledge base), and during their use in queries (e.g., when
requesting that facts be verified with respect to a knowledge base). In this regard, the use of descrip-
tive terms impinge on philosophical problems associated with names and their use (e.g., [Donnellan66,
Brinton77, Katz77, Linsky77]). A most common example is the difference between referential and
attributive use of descriptions. The issue is whether a description is intended to refer to a known
referent (referential), or unknown referent (attributive). Apparently only a few Al researchers have
considered the problem (e.g., [Schubert76, Ortony77]). These and related issues are further discussed
in [Goebel84, Goebel85]

-5

Approaches to specifying DLOG’s semantics

To attempt a coherent description of a Prolog-based mechanism for proving existential formulas
in DLOG, one must first select a methodology for specifying the meaning of descriptions. The most
common method is Russell’s contextual definition [Kaplan75]. Contextual definition is essentially
macro definition, e.g., any string of the form $(tz [H(z)]) is replaced with

JzVy[[Uy)=z =y|AP(z))].
The meaning of the description is specified by the logic from which the definition is taken.

A related issue is the meaning of descriptive terms when their proof-theoretic preconditions fail.
For example, a constructive proof of 3z &(z)A¥(z) will produce a referent of the description in
&(&z[Hx)]), but what does the latter mean when a proof of the former fails? Under one popular
theory [Kaplan75, p. 215, the meaning of such descriptions whose logical preconditions fail have been

specified by convention, e.g., a failing description refers to a designated null constant that lies outside
the domain of discourse.

First order semantics

One possible choice for the description defining language is first order logic. The overwhelming
advantage of first order semantics is simplicity; an abstract, implementation independent specification

of semantics is worthwhile in that it provides a simple way to understand the complexity of the actual
system.

Using first order logic, most of the intended meaning of DLOG descriptions can be specified in a
relatively straightforward way. The individual descriptions (definite and indefinite) are specified as
above; sets can be axiomatized with a set relation and a set membership relation “€” (DLOG set
theory is finite, thus very simple). However, lambda terms rely on semantic notions foreign to first
order logic; their definition here requires the use of meta language concepts.

Contextual definitions for set descriptions are defined as follows. The sentence
(L EFR N (1)

contains no set variables—the term {z,:¥(z,)} describes a set consisting of all individuals a such that
Ya) is true. In a first order language that distinguishes set variables X, X, Xj,..., the definition of
sentence (1) is rendered as

X [P(X)AVz [z, €X =¥z,)]

This can be read as “there is a set X; that has property @, and all individuals z, in the set have pro-
perty ¥.” Because the only defining property of a definite set is the property attributed to each of
its members, its uniqueness is easy to establish. In contrast to definite individuals, there is only one
extension for each definite set so a further specification of uniqueness is not required.

The contextual definition of indefinite sets can be approached in a similar way. We can view
O({z, X Wz)AAX)
as having the definition
3AX Ve [[z,€X 2z)INAX)AP(X 1))

This says that “some set X that has the property {} and whose elements each have property ¥, also
has property ®.” Intuitively, the indefinite set construction specifies a set that fits the description,
similar to the way that an indefinite individual specifies an individual that fits its description.

DLOG lambda constants provide the user with a method of asserting axioms about unary predi-
cate abstractions, intuitively interpreted as regulations. For example, the assertion

Az, ¥(z,))

can be interpreted as asserting that the property & is true of the regulation named by \z,¥(z,).
These terms are useful because they allow a user to assert relations about properties. Intuitively,

lambda constants are most reasonably interpreted as a special kind of constant, indexed for retrieval
by the terms they appear with. However, they cannot be manipulated without the definition of an
application mechanism. This definition relies on a meta relation satisfies, which is defined in terms
of the provability meta relation derivable (cf. [Bowen82)). The satisfies meta predicate then pro-

vides a method for testing whether an individual satisfies the relation denoted by a DLOG lambda
constant. That is,

Vz[satis fies(z Axo¥)=derivable(DB,¥(x,)))

For any individual constant a of a DLOG database DB, satis fies(a, \z;¥(z,)) holds if and only if
Ya) holds in DB. An assertion of the form

satis fies(a 2z, P(z,)) (2)
is interpreted to mean that, in the current database,
9(a) (3)

is derivable. Indeed (2) is a clumsy alternative to (3), but by using lambda constants in this way, we
not only provide a way of asserting axioms about regulations, but also a way of using those regula-
tions in question answering. The satisfies predicate provides the mechanism for applying lambda
constants as unary predicates of the current database.

An example will illustrate. The experimental DDB domain requires the description of degree
requirements, which can often be expressed as lambda constants, e.g., the assertion

enrolment —requirement(BScCS, (4)
Xz [Jy[age —of (z,y)Ay=16]})

states that “an enrolment requirement of the BScCS degree is that the candidate’s age is greater than
or equal to sixteen.” The lambda constant format allows the requirement to be asserted and queried,
and the satis fies predicate provides the mechanism to pose a query like

3z [enrolment —requirement(BScCS) (5)
Asatis fies(John x)]?
that can be read as “Has John satisfied an enrolment requirement for the BScCS program?”

Notice that, in the DDB domain, degree requirements are most naturally conceived as conditions
which must be satisfied. Since degree programs are distinguished by their various requirements, it is

most straightforward to describe degree program requirements as relations on degree names and con-
ditions to be satisfied—in DLOG, as lambda terms.

Of course there are alternatives to the use of this special term. For example, the meaning of
sentence (4) might be rephrased in terms of a standard first order language as

Vz [satis fied —requirements(z ,BScCS) (6)
D3ylage —of (z,y)Ay=16]]

where we would use BScCS as the name of a degree program and modify the predicate satisfies to
correspond more closely to our intuition regarding what one must do with degree requirements. This
alternative has a more straightforward meaning since there are no “special” forms. But now there is
no way of asking what the requirements of the BScCS program are, short of providing another non-
first order primitive for manipulating sentences. For example, to answer the equivalent of query (5)
in the alternative notation, we require an operation that retrieves a sentence of the form (6) from the
current database, and then returns the consequent of that sentence as an answer.

Lambda terms can be manipulated with a standard (sorted) proof procedure to answer existen-
tial queries about requirements; they are simply retrieved and bound to existential lambda variables
as in normal answer extraction. Furthermore, they can be used in conjunction with the satisfies
predicate to determine if an individual has satisfied a particular requirement.

The case for higher order semantics

The clear disadvantage of first order semantics is an inability to directly deal with higher order
concepts. Though DLOG domains are restricted to be finite and no abstraction is permitted in the
DLOG proof mechanism, the specification of certain DLOG expressions in a first order way is con-
torted and mitigates against the desired semantic simplicity. This is most obvious in the way that
lambda terms must be explained in terms of meta relations.

One alternative is to use a second-order intensional logic, as used by Montague to explain such
concepts as “obligation,” “event,” and “task.” For example, Montague’s formalization of the concept

of obligation [Montague74, p. 151{f.] corresponds well with the use of lambda terms in the DDB appli-
cation of DLOG.

Montague’s system provides a natural semantics for DLOG’s lambda terms, and is obviously
powerful enough to be used to describe the rest of DLOG’s descriptive terms (individuals, sets). Only
DLOG lambda terms require this treatment, but Montague’s system provides a rather more uniform
treatment of DLOG’s semantics than is possible in weaker systems.

The complete picture of Montague’s system requires careful study, but the essence can be
explained in a relatively straightforward manner. An essential concept is the classification of indivi-
duals into categories of two different kinds. Each n place predicate constant has an associated type
<80,81, * ° ' 8=~ that indicates the kind of object that can appear in each term position: s; =—1
specifies a standard* individual; s; =0 specifies a proposition; and s; =1 specifies a s;-place predi-
cate. **

For example, a predicate constant P of type <—1,1> takes individual constants in its first posi-
tion and unary predicates in its second. In the Department Data Base domain, the satssfies predi-
cate constant has type <—1,1> e.g., the assertion

satis fies(fred Az [completed(zx ,cs115)])

has an individual constant ‘fred’ in the first argument position, and a lambda constant in the second
argument position. The first denotes an individual object (the person with name ‘fred’), and the
second denotes a predicate specifying the property of “z completing the course CS115.”

The meaning of the above assertion is assigned in a way that introduces the second and most
important difference of Montague’s system. The assignment of truth values to sentences is an
inherently two phase process. As Montague explains [Montague74, p. 157], an tnterpretation assigns
intensions to symbols, and a model assigns extensions. Extensions include the standard objects
well-known from traditional Tarksian semantics, as well as sets of sequences of individuals. Intensions
are functions from possible worlds to the universe of individuals. They are introduced in order to dis-
tinguish the sense or abstract meaning of a predicate from its denotation in a particular possible
world.

The complexity of Montague’s complete system can be perplexing, the essence of the system
provides a rich specification language for DLOG’s complex objects. Some of the complexity dissolves
because of the simplicity of DLOG theories: they are finite, and the intended interpretation is over a
highly restricted domain. This simplicity constrains the number of possible worlds that can serve as
interpretations for DLOG theories (thus, for example, providing a restricted interpretation of “0”).
In the DDB example, the intended interpretation together with partial knowledge of each particular
student identifies the intended possible world for semantic interpretation.

In Montague’s second order logic, the meaning of DLOG lambda expressions is given by express-
ing them as unary predicate constants. For example, the DLOG formula

* Here “‘standard individual” means the usual notion of an individual in a first order model.
** See [Montague74, p. 150|. The notion of predicate used in this context is sometimes called a “relation in inten-
sion.”

requirement(BScCS Az [completed(z ,CS115)]) (10)
is written as

requirement(BScCS Zcompleted(z,CS115)) - (11)
In general, the ‘4®’ syntax is shorthand for

TRAuD(Q [u]=¢

Montague uses the symbols ‘A’ and ‘v’ for Vv’ and ‘Q’, respectively. He also uses brackets where
parentheses are typical, e.g., P[z] for P(z). In addition Montague employs the symbols "1’ and ‘0’,
read as “the” and “necessarily,” respectively. These latter symbols are used to form names of predi-
cates. DLOG’s lambda symbol ‘A’ plays the same role as Montague’s ¢’ symbol.

Formula (11) is intended to mean “‘a requirement of the BScCS program is to bear the relation
completed to the course CS115.” The intensional semantics provides a way of admitting different
intensions for the completed relation, e.g., completing a course might have different meanings in dif-
ferent possible worlds. In the case of DLOG, the particular possible world in which symbols are
assigned extensions is fized to be the Departmental Database.

The second order power of Montague’s logic provides the expressive ability to assert relations on
predicates: it is the property of completing CS115 that bears the requirement relation to the pro-
gram BScCS, and not any particular extension of the property.

Again, the application of lambda terms can be explained with the aid of a relation called
satis fies. However, in Montague’s language satis fies is a predicate constant of type <—1,1> and is
interpreted (in a possible world ¢ in a structure <I,U,F'>) as a relation <I,U,<I,U>> where I is the
set of possible worlds and U the universe of possible individuals. (So <I,U> is a unary relation,
<I,UJU> is a binary relation, etc.)

Computing with descriptions by extended unification

The mechanism for manipulating DLOG descriptions is implemented in the Horn clause logic of
Prolog. Adopting one of the above approaches to semantics means to adopt the corresponding view
of what the DLOG proof procedure is doing. The simplest way to view the DLOG proof procedure is
as a Horn clause prover extended with meta relations to handle the non-Horn features of DLOG.
However, we speculate that the theoretical foundation of a higher-order proof procedure based on
unification due to Jensen and Pietrzykowski [Jensen75] will provide the corresponding view for the
Montague system. Here the intuition is to consider the DLOG implementation as a restricted imple-
mentation of their unification procedure for general type theory. We have not yet investigated the
possibility of adapting Jensen and Pietrzykowski’s procedure for use in an intensional logic.

Instead of extending Prolog’s Horn clause theorem prover to handle the expressions that arise
from any method of contextual definition, the unification algorithm can be augmented to provide the
correct matching of descriptive terms. As others have observed (e.g., [Clark78, van Emden84]), any
assertion of the form

Pty te - tn)
where {;, 1=:¢=n are terms, can be rewritten as
P(xy,xq, " 2,) Cx =L AT,=tA - - - AT, =t
and implications
D(ty,tg, - L)CHARA - - - AV,
can be rewritten as

¢(l’1,$2, o ,CE")C$1=£1A12=£Q/\ T /\xn=tn

/\!pl/\W2A st /\‘I’m

where the z;, 1i=n are new variables not occuring in the original formulas. In DLOG, the equality
expressions arising from this transformation are determined from within unification. In a sense, some
of the complexity of derivation is off-loaded to the “pattern matcher” (cf. [Reiter75]).

The idea of extending a resolution proof procedure’s power by augmenting unification was first
suggested by Morris [Morris69], who proposed that equality be manipulated with so-called “E-
unification.” There have been many other related proposals including Stickel [Stickel75], Morgan
[Morgan75], and Kahn [Kahn81]. Of related interest is the representation language KRL [Bobrow77a,
Bobrow77b, Bobrow79], which relies on a complex “mapping” process on several different kinds of
object descriptions called “descriptors.” We argue elsewhere that KRL’s mapping can best be under-
stood as a elaborated unification scheme [Goebel85].

Returning to the handling of descriptive terms by augmenting unification, we cite Rosenschein
on the advantage of embedded terms:

...the data object is kept small and “hierarchical” so that where an exhaustive match must
be performed, failure can occur quickly. That is, deep, heterogeneous structures are pre-
ferred to broad, homogeneous structures. For example, {({()()}} is better than {{H{}{H}}.1

We view Rosenschein’s claim as support for the interpretation of descriptions as embedded terms,
rather than as their contextual definition by rewriting.

The DLOG unification algorithm is invoked by the DLOG derivable predicate, similar to the
way Prolog’s derivation procedure uses a built-in unification algorithm. Intuitively, whenever a unifi-
cation must be performed and there are special DLOG terms to be matched, standard unification is
intercepted, and DLOG unification is used. For example, suppose that the two terms £z $(z) and
Fred are to be unified. The applicable DLOG unify axiom is

uni fy(&x $(z),Fred)~apply(Zz $(z),Fred)
where apply binds the symbol “Fred” to the lambda variable “z” and invokes dertvable.

The DLOG unification definition uses an organization similar to the LOGLISP system of Robin-
son and Sibert [Robinson80, Robinson82]. LOGLISP consists of a logical proof theory embedded
within LISP, and allows the invocation of LISP by the theorem-prover, and the theorem-prover by
LISP. Similarly, the DLOG derivable procedure can invoke the standard Prolog proof procedure, and
both are accessible from with DLOG’s unification matcher.

In general, the correct “unification” of the DLOG extensions requires a derivation procedure
more powerful than that provided by Prolog. For example, the equivalence of two lambda expres-
sions, e.g., Az $(z) and Ay ¥y) can only be established if it can be shown that Vz &(z)=¥(z) follows
from the current database. The current DLOG unification procedure uses a local context mechanism
to derive this equivalence. It is also the case that disjunctive terms require a more general proof
mechanism, since a proof of 3z ®{z)v¥y) cannot be handled by the current implementation,

although a special heuristic will use a notion of partial proof to retrieve facts relevant to such a query
[Goebel85].

Bobrow and Winograd’s description of KRL’s matching framework (see [Bobrow77a, §2.5]) also
uses the notion of partial match. Their discussion about what is deductive and what is heuristic is
sufficiently interesting to pursue here because DLOG already provides some of the features of KRL’s
“flexible” matching.

Recall that the basic data type of KRL is a frame-like structure called a “unit.” A unit is a col-
lection of “descriptors” that attribute various properties to the unit in which they appear. Of
interest here are the various ways in which units can be related by matching their descriptors. For
example, consider KRL’s matching by “using properties of the datum elements” [Bobrow77a, pps. 23-
24]:

t [Rosenschein78, p. 534].

- 10 -

Consider matching the pattern descriptor (which Owns (a Dog)) against a datum which
explicitly includes a descriptor (which Owns Pluto). The SELF description in the memory
unit for Pluto contains a perspective indicating that he is a dog. In a semantic sense, the

match should succeed. It can only do so by further reference to the information about
Pluto.

This form of matching already exists in DLOG. For example, the KRL descriptors (which Owns (a
Dog)) and (which Owns Pluto) might be rendered as 3z [Owns(z ,ey[dog(y)]) and Iz [Owns(z ,Pluto)],
respectively. If we have the fact that Pluto is a dog (i.e., the assertion dog(Pluto)), DLOG unification

will successfully unify the above pair by recursively proving that dog(Pluto) follows from the
knowledge base.

Several other forms of KRL matching fall into similar categories, where a recursive proof will
provide the inferences required to demonstrate the equality of descriptions. The only clear instance
in which partial matches arise are due to resource limitations. Again the partial results determine

whether the current line of reasoning is to continue (perhaps given further resources), or to be aban-
doned.

Concluding remarks

We have argued that there may be more to the meaning of descriptions than their traditional
Tarskian semantics, especially as regards the way that they are manipulated within a logic-based
representation language. We briefly outlined the kinds of descriptive terms included in the Prolog-
based DLOG representation system, and discussed various ways in which those terms could be inter-
preted. Lambda terms, useful in a particular application, do not have an obvious formal meaning and
suggest the need for higher-order semantics. Regardless of which semantic specification is selected,
the notion of extended unification can be used to manipulate embedded descriptions. With some

effort, the extended procedure can be viewed as providing either metalogical or higher-order proof
theory extensions.

Finally, it is important for representation systems to exploit the computational as well as the
traditional denotational meaning of descriptions. The proceduralists have been saying this for years;

we claim that logic can contribute to an understanding of the computational use of certain kinds of
descriptions.

Acknowledgements

David Poole suggested many improvements to an earlier draft of this paper. Richard Robinson

pointed out the relationship between DLOG’s lambda terms and Montague’s formalization of obliga-
tion.

References

[Attardi81] G. Attardi and M. Simi (1981), Consistency and completeness of Omega, a logic for
knowledge representation, Proceedings of the Seventh International Joint Con ference on
Arti ficial Intelligence, August 24-28, The University of British Columbia, Vancouver,
British Columbia, 504-510.

[Bobrow77a] D.G. Bobrow and T. Winograd (1977), An overview of KRL-0, a knowledge
representation language, Cognitive Science 1(1), 3-46.

[Bobrow77b] D.G. Bobrow and T. Winograd (1977), Experience with KRL-0, one cycle of a knowledge
representation language, Proceedings of the Fifth International Joint Con ference on
Arti ficial Intelligence, August 22-25, MIT, Cambridge, Massachusetts, 213-222.

[Bobrow?79] D.G Bobrow and T. Winograd (1979), KRL, another perspective, Cognitive Science 3(1),

- 11 -

29-42.

[Bowen82] K. Bowen and R.A. Kowalski (1982), Amalgamating language and metalanguage in logic
programming, Logic Programming, A.P.1.C. Studies in Data Processing 16, K.L.. Clark
and S.-A. Tarnlund (eds.), Academic Press, New York, 153-172.

[Brinton77] A. Brinton (1977), Uses of definite descriptions and Russell’s theory, Philosophical
Studies 31, 261-267.

[Carroll78] JM. Carroll (1978), Names and naming: an interdisciplinary view, Research Report
RC7370, IBM Watson Research Center, Yorktown Heights, New York, October.

[Clark78] K.L. Clark (1978), Negation as failure, Logic and Data Bases, H. Gallaire and J. Minker
(eds.), Plenum Press, New York, 293-322.

[Dahlg0] V. Dahl (1980), Two solutions for the negation problem, Proceedings of the Logic
Programming Workshop, July 14-16, Debrecen, Hungary, S-A. Tarnlund (ed.), 61-72.

[Dahl82] V. Dahl (1982), On database systems development through logic, ACM Transactions on
Database Systems 7(1), 102-123.

[Dilger78] W. Dilger and G. Zifonun (1978), The predicate calculus-language KS as a query language,
Logic and Data Bases, H. Gallaire and J. Minker (eds.), Plenum Press, New York, 377-
408.

[Donnellan66] K.S. Donnellan (1966), Reference and definite descriptions, Philosophical Review 75(3),
281-304.

[van Emden84] M.H. van Emden and J.W. Lloyd (1984), A logical reconstruction of Prolog II,
Proceedings of the Second International Logic Programming Con ference, July 2-6,
Uppsala University, Uppsala, Sweden, 115-125.

[Goebel84] R.G. Goebel (1984), DLOG: a logic-based data model for the machine representation of
knowledge, ACM SIGART Newsletter 87, 45-46 [reprinted, with corrections, from ACM
SIGART Neuwsletter, 86, 69-71].

[Goebel85] R.G. Goebel (1985), A logic-based data model for the machine representation of
knowledge, Ph.D. dissertation, Computer Science Department, The University of British
Columbia, Vancouver, British Columbia, (accepted with revisions in February), 247 pages.

[Hayes77] P.J. Hayes (1977), In defence of logic, Proceeding of the Fifth International Joint
Con ference on Artificial Intelligence, August 22-25, MIT, Cambridge, Massachusetts,
559-565.

[Hewitt80] C. Hewitt, G. Attardi, and M. Simi (1980), Knowledge embedding in the description system
Omega, Proceedings of the First American Assoctation of Artificial Intelligence
Con ference, August 18-21, Stanford University, Stanford, California, 157-163.

[Jensen75] D.C. Jensen and T. Pietrzykowski (1975), Mechanizing w-order type theory through
unfication, Theoretical Computer Science 3(2), 123-171.

[Kahn81] K. Kahn {1981), UNIFORM - a language based upon unification which unifies (much of)
LISP, PROLOG and ACT1, Proceedings of the Seventh International Joint Con ference
on Arti ficial Intelligence, August 24-28, Vancouver, British Columbia, 933-939.

[Kaplan75] D. Kaplan (1975), What is Russell’s theory of descriptions?, The Logic of Grammar, D.
Davidson and G. Harman (eds.), Dickenson, Encino, California, 210-217.

[Katz77] J.J. Katz (1977), A proper theory of names, Philosophical Studies 31, 1-80.

[Leisenring69] A.C. Leisenring (1969), Mathematical Logic and Hilbert’s E-symbol, MacDonald
Technical & Scientific, London, England.

[Linsky77] L. Linsky (1977), Names and descriptions, The University of Chicago Press.

[Montague74] R. Montague (1974), On the nature of certain philosophical entities, Formal
Philosophy, R.H. Thomason (ed.), Yale University Press, 148-187 [reprinted from The
Monist 53(1960), 159-194].

[Moore76] R.C. Moore (1976), D-SCRIPT, a computational theory of descriptions, IEEE Transactions
on Computers C-25(4), 366-373.

[Morgan75] C.G. Morgan (1975), Automated hypothesis generation using extended inductive
resolution, Advance Papers of the Fourth International Joint Con ference on Arti ficial

-12 -

Intelligence, September 3-8, Thlisi, USSR, 351-356.

[Morris69] J.B. Morris (1969), E-resolution: extension of resolution to include the equality relation,
Proceedings of the Internationl Joint Con ference on Artificial Intelligence, May 7-9,
Washington, D.C., 287-294.

[Norman79] D.A. Norman and D.G. Bobrow (1979), Descriptions: an intermediate stage in memory
retrieval, Cognitive Psychology 11(1), 107-123. '

[Ortony77] A. Ortony and R.C. Anderson (1977), Definite descriptions and semantic memory,
Cognitive Science 1(1), 74-83.

[Reiter75] R. Reiter (1975), Formal reasoning and language understanding systems, Proceedings of the
First Con ference on Theoretical Issues in Natural Language Processing, June 10-13,
MIT, Cambridge, Massachusetts, 175-179.

[Robinson79] J.A. Robinson (1979), Logic: Form and Function, Artificial Intelligence Series 6, Elsevier
North Holland, New York.

[Robinson80] J.A. Robinson and E.E. Sibert (1980}, Logic programming in LISP, Report 8-80, School
of Computer and Information Science, Syracuse University, Syracuse, New York,
December.

[Robinson82] J.A. Robinson and E.E. Sibert (1982), LOGLISP: an alternative to PROLOG, Machine
Intelligence, vol. 10, J.E. Hayes, D. Michie, and Y-H Pao (eds.), Ellis-Horwood, 399-419.

[Rosenschein78] S.J. Rosenschein (1978), The production system: architecture and abstraction,
Pattern-Directed In ference Systems, D.A. Waterman and F. Hayes-Roth (eds.), Academic
Press, New York, 525-538.

[Schubert76] L K. Schubert (1976), Extending the expressive power of semantic networks, Arti ficial
Intelligence 7(2), 163-198.

[Steels80] L. Steels (1980), Description types in the XPRT-system, Proceedings of the AISB-80
Con ference on Artificial Intelligence, July 1-4, Amsterdam, Holland, (STEELS 1-9).

[Stickel75] MLE. Stickel (1975), A complete unification algorithm for associative-commutative
functions, Advance Papers of the Fourth International Joint Con ference on Arti ficial
Intelligence, September 3-8, Tbhlisi, USSR, 71-76. ‘

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

