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ABSTRACT

This paper is concerned with the numerical solution of continuous minisum
multifacility location problems involving the I, norm, where 1 <p < oo This
class of problems is potentially difficult to solve because the objective function is
not everywhere differentiable. After developing conditions that characterize the
minimum of the problems under consideration, a second-order algorithm is
presented. This algorithm is based on the solution of a finite sequence of linearly
constrained subproblems. Descent directions for these subproblems are obtained
by projecting the Newton direction onto the corresponding constraint manifold.
Univariate minimization is achieved via a specialized linesearch which recognizes
the possibility of first derivative discontinuity (and second derivative unbounded-
ness) at points along the search direction. The algorithm, motivated by Calamai
[3] and Calamai and Conn [5,6] and related to methods recently described by
Overton [32] and Dax [10], is shown to possess both global and quadratic conver-
gence properties.

Degeneracy can complicate the numerical solution of the subproblems. This
degeneracy is identified, and a method for handling this degeneracy is outlined.

An implementation of the algorithm, that exploits the intrinsic structure of
the location problem formulation, is then described along with a discussion of
numerical results.

Key Words
multifacility location problem, Fermat problem,
Weber problem, nonsmooth optimization, projection
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A PROJECTED NEWTON METHOD FOR ;, NORM LOCATION
PROBLEMS

P. H CALAMAIf AND A R. CONN%

1. Introduction. In this paper we examine a continuous minisum multifacility
location problem involving I, distances, where 1 <p < =. For simplicity we con-
sider the case where all facilities lie on the plane, R®. The method and results
are readily extended to the more general case where facilities lie in a higher
dimensional space. The problem can be stated as:

Find a point z*T =§z]7, . . ., 7} in R*® that minimizes
f(z)= 2 v lz; -z, + 2 i wy 25 —vilp (P1)
15 <ksn i=1i=1

where
n A the number of new facilities (NF"s) to be located,
m A the number of existing facilities (EF’s),
z; A the vector location of NF; in R, j=1,...,n,
S YA thé vector location of EF;inR,i=1,...,m,
vj A the nonnegative weight on the [, distance between NFj and NF,
1<j<ks=n,
wj; A the nonnegative weight on the [, distance between NF; and EF;,
lsj=sn,1si<m,
lz; =z |p & the I, distance between NFj and NFy , 1<j <k <mn,
[z; —yilp A the [, distance between NFj and EF; , 1<j <n, 1<i<m.
The quantity of literature dealing with the algorithmic solution of problem
P1 is monumental. The bibliographies of Francis and Goldstein [18] and Lea [28]

and the books by Francis and White [19] and Eilon, Watson-Gandy and
Christofides [16] attest to this.

The most popular algorithm for solving P1 when distances are Euclidean-
(when p=2) was devised by Weiszfeld [34]. For the single facility problem,
where n=1 ( also called the generalized Fermat problem and the Weber prob-
lem ), he proposed an iterative fixed-step steepest descent algorithm that was

tDepartment of Systems Design Engineering, University of Waterloo, Waterloo, Ontario N2L
8G1, Canada. .

$Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Cana-
da.

This research was supported in part by the Applied Mathematical Sciences Research Program
(KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under Contract
W-31-108-Eng-38 and by Natural Sciences and Engineering Research Council of Canada grants
A-5871 and A-8838.



-2-

adapted by Kuhn and Kuenne [25] and Ostresh [31]. Various modifications to
Weiszfeld's algorithm have been used to solve the Euclidean distance multifacil-
ity problem [31], the , distance muitifacility problem [29] and the generalized
Weber problem in Banach space [15]. Other algorithms proposed for solving
these problems use a surrogate distance measure in place of the 4, distance
measure. Examples include the convex programming procedure of Love [27],
the hyperbolic approximation procedures of Wesolowsky and Love [35] and
Eyster, White and Wierwille [17], a variant of Weiszfeld's method used by Morris
and Verdini [29], and the trajectory optimization method of Drezner and Weso-
lowsky [14]. In addition, Vergin and Rogers [33] and Calamai and Charalambous
[4] provide heuristic methods for solving location problems.

In this paper we extend the ideas introduced by Calamai and Conn [5,6] and
Calamai [3] for solving P1. Optimality conditions, that avoid the qualifying con-
ditions that were assumed in these previous papers (an independence assump-
tion), are stated and proved. We then demonstrate how P1, a nonsmooth optimi-
zation problem, can be solved using optimization techniques for smooth func-
tions without modifying the objective function to eliminate the gradient discon-
tinuities. This is accomplished by successively minimizing f on linear manifolds
on which it is locally smooth. A linesearch that computes all derivative discon-
tinuities exactly, if any exist, and exploits this information is also presented.
The resulting algorithm for solving P1 is shown to possess both global and qua-
dratic convergence properties. One complication that sometimes arises in solv-
ing P1 occurs when groups of new facilities coincide. In such circumstances
tests equivalent to those presented by Juel and Love [24] for the rectilinear
problem (p=1 in P1) could be used to circumvent this difficulty. However these
tests can be prohibitively expensive {as demonstrated by Juel and Love [24] and
Dax [12]) because they are combinatorial in nature. The solution of a con-
strained least-squares subproblem, as demonstrated by Dax [11] for the
Euclidean problem (p=2 in P1) and introduced by Busovaca [2] for general non-
linear problems, will also verify optimality or provide a descent direction in such
circumstances. Unfortunately the solution of this least-squares problem is non-
trivial and involves techniques unrelated to the main procedure used in solving
P1. In this paper we present a simple perturbation scheme, motivated by tech-
niques for handling degeneracy in linear programming, that is unified in its
approach, simple to implement and inexpensive to use. We prove that this tech-
nique finds a descent direction for the perturbed problem (if one exists) with
very little computational effort and we demonstrate the effectiveness of this
scheme in combination with the line search. Although no theoretical result is
given, this technique has proven to be entirely successful on all problems tested.
Finally we provide implementation details for our algorithm and demonstrate
how the structure of these problems can be exploited to provide very efficient
techniques for almost all of the linear algebra involved in the solution process.

These techniques are developed by examining the incidence graph associated
with clusters of facilities.

2. Problem Formulation and Duality Relationships. Following Calamai and Conn
[6] we define the index set M = {1,..., 7}, where the set a = {a;, ..., a;] is in one-
to-one correspondence with the set of nonzero weights v; and wj;, and write P1
more conveniently as:

Find the point z*7 ={z;7, . .., 2?7} in %" that minimizes
f(=)= ) fi(z) (P2)
LeXd

where f,(z) = |7 ],, 7 = ATz — b, and where the 2n by 2 matrices 4 and the



2 by 1 vectors b; satisfy

A= oe(l) @Iy
b= ay(l)
4
e; —er when o, corresponds to v
e(l) =
e; when ¢, corresponds to wy,
0 when ; corresponds to vy
y(i) = :
Yi when a; corresponds to wy,
.

where e; denotes the j** column of the n by n identity matrix and ® is the
Kronecker product operator (see [23]).

Prior to stating optimality conditions for problem P2 it is convenient to
introduce the concepts of a dual norm |-|p, corresponding to a primal norm
{l-1 2. that satisfies

lvlp=max{viw | |wlp=1],

and a ||'] p-dual vector 9, corresponding to a nonzero primal vector v, that
satisfies

[#1p =1 and vT9 = |v]p.
For |-|p = |lp. 1 <P <=, and for g satisfyingp + g = pg,
lvlp =1vl,
and, for v #0, 7 has components 7; given by

lw] |
'ﬂi=sgnv,;{m .

We assume that p + ¢ = pg for the remainder of this paper.

3. Optimality Conditions. The objective function f is everywhere convex but is.
nondifferentiable (nonsmooth) at all points z*¥ where any of the functions
Ji(z*), teM, are zero. This occurs whenever two or more interacting facilities
coincide. '

If, for £ = 0, the set M (z*) satisfies
B (z*) = {lel | fi(z*) <¢]

then, at the point z*, the index set My(z*) identifies the functions f; that are
active ( nondifferentiable ) and the index set M~My(z*) identifies those func-
tions f; that are inactive ( differentiable ). Using these definitions we can divide
the objective function f into two parts as follows:

f@y= ¥ film+ Y ful=)

LeM-H (z*) 1el (z¥)

Theorem 3.1. The point z° solves P2 if and only if there exists vectors
w €R?, called the Lagrange vectors, such that

T V=)= Y Ay , (3.1)

‘Eﬂ“ﬂo(z ‘) l€H°(3 .)



and
lw Iq <1 VieMz"). (3.2)

Proaf. For any convex function g, a point z°* is a global minimizer if and
only if 0 € 8g(z°®), where 8g(z) denotes the subdifferential ( the set of subgra-
dients ) of g at z. In our case the functions f;, l € 4, are convex functions and.

I = 2)’: Thus, ( see [7]), 8f(z*) = Efm(z ) where

EVfi(z®) ]} VieHM-Hylz*)
8f.i(z") =
‘ fz | filz*+h)=fi(z*) + 2Th, VR ] VI € My(z")
or, equivalently,

§ V(") VieH-Hoz")
8s(z*) =
tz | [ATR], =2 2Th, VR ] VI € My(z").
Since 4Th = 0 for all h in the nullspace of 4], z € Range (4,;) or, equivalently,
0fi(z°) =t A4y | "AIThup 2y TATh, YR} VI Hyz*).

Now |A4Th| lwly =2 TATh, Y h (Hélder) and if h = 4w, where w; is the

solution to the full-rank s;’htem ATA4w, =4, and 7, is the 11 p- dual vector of v,
then | 47h ], = 1 and Ak = |u, | .

Consequently [4Th [, = wTATh, Vh,if and onlyif, |y ]q =< 1.
We therefore have
§9fi(=z") 3 VieM-Hoz")
8fi(z") =
Ay | [wlg=1] ViIeM(z*)
and the proof of the theorem is complete. =

Any point satisfying (3.1) will be called a statwnary point. If a statlonary
point also satisfies (3.2) then'it will be called a minimizer.

4. Motivation and Theory. Consider the following problem in which z* is fixed
and e =0:

minimize 2 16
£ Vel -M (=F)
(4.1)
subject to r(z) = r{z*) VL eM (z*).

This ob]ectwe function is differentiable at all points z in some nanempty
neighborhood of z*¥. Consequently, local first- and second-order methods exist
for this linearly constrmned Eroblem_ In addition, the solution z* to P2 is a solu-
tion to this problem when z* = z°* and M (z*) = My(z*). It would therefore be
beneficial if problern P2 could be posed, without a priori Icnowledge of Mq(z* )
and solved via a sequence of subproblems of the form (4.1) in which {z*} - z°
and {#(z*)] » Mo(z").

To aid further exposition define g (=g.) and G (=G,) so that in a neighbor-
hood of the current point z*,
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g= X Vi
leN -} (z*)
and
G= Y Vi
leli-M,(z*)

and define Z (= Z(z*)) as an orthonormal matrix whose columns span the space
th | ATh =0, LeM (z¥)].

Case 1. If z* is a nonstationary point then we can solve (4.1) up to second-order
terms by solving

minimize hTg(z*) + 1 RTG(z*)h

: (4.2)
subject to ATh=0 VL eM (z¥).

In other words, we can reduce f{z*) on the manifold defined by the con-
straints in (4.2).

The following lemmma applies to problem P2 in this case:

Lemma 4.1. If ZTg(z*) # 0 and if ZTG(z*)Z is positive definite then the
direction '
h® = Zn},
where h,; = h; salisfies
ZTG(z*)Zh, = —ZTg(z*) ,
solves (4.2) and is a local descent direction for P2 from the point z*.

Proof. Since any direction h that satisfies the constraints in (4.2) can be
written as Zh;, for some vector h;, problem (4.2) becomes

minihl;nize RIZTg(z*) + 1 RIZT G(zF)Zh,.
It ZTG(z*)Z is positive definite the solution to this problem can be obtained by
solving
ZTG(z*)Zh, = -ZTg(z*).
In addition, if ZT G(z*)Z is positive definite then
g(z*)ThE = —hT 2T G(z*)ZR; < O
which completes the proof. =

The vector ZTg(z*) and the matrix Z7G(z*¥)Z are called respectively the
projected gradient and the projected Hessian of f on z¥®Range(Z). In addition,
tlze vector h* = Z&; is the associated projected Newton step for f at the point
z=,

Case 2. If z*¥ is a stationary Eoint then, as a consequence of (3.1) and the
definitions of Z and g, Z7g(z*) =0 Ve >0. There therefore exists Lagrange
vectors u;, L €M (z*), such that

giz¥)= ¥ Au. (4.3)

lel (z*)
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We assume for the time being that the matrices 4, Vi €M (z*), are linearly
independent but in §5 we demonstrate how this qualification is relaxed.

The following three possibilities exist:

Case 2.1. T |y ]y =1 and f,;(z*) = 0, M (z*), then M (z*) = Me(z*). g = g0
and z* is a minimizer of P2 (as demonstrated in Theorem 3.1).

Case 22 If |wul,=1 WVeMl(z*) but [f;(z*)=0,jcH (z*), then
M (z*) # Mo(z*). Since we may be on the correct linear manifold and in the
neighborhood of a minimizer for P2 the point z*+v*, where the step v¥ is the
minimal norm solution of the full-rank system

r{zt+v®) = 0, VM (z*)

is considered (since Mo(z*+v*) = M (z*)). If f(z*+v*) > f(z*) this new point
is)rejected and our computations are refined (by, among other things, reducing
g).

Case 2.3. If |u; ], > 1, j€M (z*), where u; is uniquely determined in (4.3), then
z* # z° if M {z*) = Mo(z*). To demonstrate how f can be reduced on a new
linear manifold let Z; (= Z;(z*)) be an orthonormal matrix whose columns span
the space $h | ATh =0, WeM (z*)-§j} }. If we reconsider problem (4.1) with
M (z*)-{j} replacing M.(z*) then locally we wish to find a direction A such that,
for A > 0 sufficiently small,

Y (i) - £i(zF)} <0 (4.4)
leld- c(’k)"'b‘] * ’
and

ATh =0 Ve (z*)-{53. (4.5)

The following lemma applies to problem P2 in this case:

Lemma 4.2. If |u;lq > 1, j€M (z*), where u; is unigquely determined by
(4.3) when the matrices 4 l€M, (z*) are linearly independent, then the direc-
tion

h¥ = Zjhy, (4.6)
with h, 3 chosen so that

AfRF = —pi;, p >0, (4.7)

where 1; is the ||- | ,dual vector of u;, satisfies (4.4) and (4.5) and is a local des-
cent direction for P2 from the point z*.

Proof. The definition of Z; and the fact that hfcRange (Z;) guarantees that

(4.5) is satisfied. In addition, using (4.3), (4.5), (4.7), and ignoring higher-order
terms, we have

: y% . k)ifz(z"ﬂh}‘) - Fu(z*)] = MrF)Tg (z%)
= MAJ)T 4yu;.
= —\oi]u;

= -Nolujillq-
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Now explicit ( but tedious ) calculation shows that when jgZMg(z*)
Vs ;{z¥) = A;#;, where 7} is the |-|,-dual vector of r;. Consequently, if we ignore
higher-order terms when JjEMy(z*¥) and wuse the fact that
—2j7; < |2 ], |71l = 1, we have

N AT JEHo(=")
Ji(@®+Mnf) - fi(z*) = [ )\(hf)TV.;j(;k) J £ Mo(z*)
_ Ap"'l‘l_, np jEMO(zk)
= AaHT47 £ Mo(z*)
_ Ao JEMo(z*)
T | henfn 3 £ Hol=")
<M jEH(z*).

We therefore have

. HZ(: ey ;ifz(x"*-?\h;‘-’ = 1(=2®)) = 2(1 = Tz o) + O(IMRS| B)
—_ ‘z +J‘

which completes the proof. »

It should be emphasized that this section in no way describes the numerical
implementation of our method. These details are left for §9.

5. Degeneracy. When the matrices 4;, LM (z*), are linearly dependent we call
problem (4.1) a degenerate problem and the point z* a degenerate point.

A difficulty arises with degenerate problems when a unique solution to (4.3)
is sought; however, a unique solution can be obtained and the results of §4, Cases
2.1 and.2.2 can be used, if (4.3) is replaced with the problem of finding Lagrange
vectors v, L €M (z*) such that :

gizF)= ¥ Ay (5.1)
teM, (z¥)
with
u =0 Vi eM (z*)-H (z*), (5.2)

where the index set M (z*) is chosen from M.(z*) so that the matrices 4,
leM (z*), form a basis for the span of the matrices 4, leM (z*). However, if
Ajespani4, leM (z*)—{j}} then ZJA; = 0 and the direction hf defined by (4.8)
and (4.7) will not provide a local descent direction for P2 from the degenerate
point z*. ‘

If we let Z;( = Z;(z*)) be an orthonormal matrix whose columns span the
space (h|ATh = 0, WEM (z*)~{7}] then the following theorem suggests a method
for handling degeneracy:

Theorem 5.1. If we assume that

(1) the current point z* is a degenerate stationary point,
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(2) the Lagrange vectors v;, LM (z*), satisfy (5.1) and (5.2),
(3) there erists anindex j <M (z*) such that u; |4 > 1, and
(4) the scalars n(l,i), LeM (z*), satisfy

A= Y n(li)4 ViEM (z*)-HM (z*)
LeXd, (z*)

then, if we perturb our problem by setting
. bi =A¢T2k —fi’aj, W€N,

where N = fieM (z*)—HM (z*) | n(j.i) # 0}, 14; equals the || ,-dual vector of u;
and ¢&; = vy sgnn(f.i) with v; > ¢, then

(1) the terms l,;, tEN, are differentiable in some nonemply neighborhaad of
the point z* and i £ M (z*) in the perturbed problem,

(2) if the vectors y;, leM (z*), are the Lagrange vectors af z* for the per-
turbed problem then [u;|q = [u;lq > 1, and

(3) the direction hf = Z;h,, where h,, is chosen so that AfR¥ = —pi;, p > 0,
intersects each of the perturbed (2n —2)-dimensional hyperplanes defined
by ri{z) =0, ieN, and is a descent direction for the perturbed problem.

Proof.
Part 1

For the perturbed problem we have:

Ji(zF) = |rulz®)p = 16ty lp = lwl >, WVEN,
and

Viu(zF) = A7 = vy sgnn(G i) Ayy/ [y, VieN,
where 7; equals the |-[4-dual vector of 7;.

Part 2

For the perturbed problem we have:
g(z*) =gu + 3, V1:(z*)
teN
=gu + ¢§~V‘ sgnn(j.i) Avy/ lugl .

where g,, corresponds to g (z*) for the unperturbed problem.
Therefore, using assumptions 2 and 4, we have

giz)= ¥ A;u,+{2visgnn<j.~c>s > na.v:mu,-/nu,-aq}
1e@ (z%) ieN lel (=£)

= Y Au, (5.3)

e ,(z")

where s = + 3} v sgnn(G 1) @)} i/ [ lq, WeTL(z*).
3
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Consequently [u;llq =7 |u;j]lq wherey =1 + iigﬂvi | n(G.i) | 3/ lu;llg= 1.

Part 3

Using assumption 4 and the definitions of 7;{z) and h¥ we have
ri(zF+AR)) = i (zF) + MATRF
= $uily — Nom(J,1);
=0, when A = ¢&/pon(j.1), VEN.

Using (5.3) and the definition of A} we have

N (@=F)TRE =N Y w AR
1eX (zF)

= MufAfRy.
= —Noufy
= =Nyly g

In addition, using the fact that -12_,-773 < 20,17 1q =1, where #; is the H-Ilq-'
dual vector of 7;, ignoring higher-order terms when JEMy(z*) and following the
proof in lemma 4.2, we have

Fi(z¥+ ) ~ fi(z*) < o FEM(=*).
Therefore

I (@ +Nef) = £ (2%) = 2(1 = 7l lg) + O(INRE] B)
which completes the proof. =

One distinct advantage of this perturbation scheme is that a descent direc-
tion from the point z* can be found without computing {for the perturbed prob-
lem) the restricted gradient g or the Lagrange vectors pu;, leM.(z*). Exact
values for ¢;, V€N, and additional advantages to this scheme are presented in
§7.

6. The Minimization Algorithm. Ignoring the details of implementation (that
will be described in §9) we now present a second-order algorithm for solving
problem P2.

In this algorithm the user is responsible for setting six parameters: &, ¥, Tr
Th» 0 and &, While there is no a priori optimal choice for these parameters a
reascnable choice is often available.

The parameter & controls the sets #, and #, which, in turn, determine the
subspace in which the current minimization is performed. Recall (see §4.) that
our procedure solves a sequence of subproblems of the form (4.1) such that
{z¥{-z* and {M(z*)}>M(z*). In the initial stages (when we are most likely far
from the solution z°') a large value of ¢ (relative to £=0) is appropriate since
smaller values may inhibit the algorithms progress by admitting terms in the
subproblems objective that have near-singularities in their gradients.
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The user-supplied parameter, ¥, is used to control the accuracy of the
current subspace minimization. Since there is little justification for performing
this minimization exactly (by setting ¥=0) when far from the solution z* a rela-
tively large initial value is again appropriate.

Whereas ¢ and ¥ are dynamically adjusted by this algorithm when appropri-
ate, the remaining four user-supplied parameters are not. These four parame-
ters are used in tests for termination and descent and, for the weli-defined
problem, should reflect (within a few orders of magnitude) the machine preci-
sion. For ill-conditioned problems additional conditions and tests should be
imposed to ensure convergence to the desired solution. [The choice
¥ = 7, = T, = 0 corresponds to the situation described in §4.]

The parameter A used in steps 9,10 and 11 of the following algorithm is
determined via the line search described in section 7.

MINIMIZATION ALGORITHM
(1) Choose any z! € R and set k& « 1.
(2) Identify the index sets M (z*) and #.(z*).
(3) Compute the restricted gradient g and the restricted Hessian G.
(4) Compute the second-order desr;ent direction h¥.

(5) [Branch if z* lies outside the neighborhood of any stationary point]
If |R¥ |2 > ¥ go to 11.

(8) Compute the Lagrange vectors {1} by setting v = 0, W €M, (z*)-H (z*),
and solving

minimize [g(z*) - Y Awl,.
tugd 1R, (2%)

(7) [Branch if any Lagrange vector is out-of-kilter]
If |yl > 1. FeM(=*) go to 10.
(8) [Stop if z* is a minimizer of P2]
If [R¥ |2 < 7 and f,(z*) <7, WM, (z*) then stop.
(9) [Attempt to find a stationary point on the current manifold]
Set £ « z* + h* + 0¥,
where v* is the minimal norm solution to f;(z* + v*) = 0 W €M (z*).

Ef(Z) -7 (z*) <=8l 2Tg(z®) 12+ T fulz®) (1-lwlg))

el (z*)
where dg > 0 is chosen to guarantee a sufficient decrease in f, then
set z¥*!' « £, k « & + 1 and go to B;

otherv]vise [do a linesearch and refine activity and stationarity toler-
ances|,

setd « R*, ¥ « ¥ + Md, g« le, ¥« 1 ¥,k «k + 1andgoto2.
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(10) [Attempt to reduce f on a new manifold (the dropping step)]
If Jujlg > 1, jeM(z*), and p(1-]u;]4) < =3,
where ¢ > 0 is chosen to guarantee a sufficient decrease in f, then
identify the index set N,
perturb the residuals 7;(z*), V€N, and
set d « hF, 25" « z¥ + Ad,k « k + 1 and go to 2;

otherwise [refine activity and stationarity tolerances],

seteele ¥Yel¥ kek+landgoto?

(11) [Take a second-order step on the current manifold]
Set d « h*, z¥*! « z*¥ + A\d, k « k + 1 and go to 2.

The strategy suggested by this algorithm is simple and is based on limited
numerical testing. Alternate strategies exist that would, no doubt, exhibit con-
vergence properties similar to those possessed by this algorithm.

7. The Line Search. Calamai and Conn [6] and Overton (32] have both noted
that any line search algorithm for problem P2 should recognize the possibility of
first derivative discontinuities at steps A where f;(A) = f;{(z +Ad) = 0 for some
leM. ( Overton also noted that second derivative unboundedness can occur in
“the neighborhood of these same points. ) Fortunately, if the function
J(A) = f(z+Ad) is nonsmooth the set i)\,,leM {, where A=), is the least-squares
solution to :

'r;()\) =r{z+Ad) = (7.1)

includes all the breakpoints of f (A). In addition, the largest element of this set,
say 7, is an upper-bound on A°’, where A=A minimizes f (A).

Our interval-reduction procedure uses these breakpomts to partition the
interval of uncertainty (initially [0.7]) into subintervals in which the function
S (\) is smooth. As long as we are in one of these Subintervals we apply safe-
guarded quadratic approximations to estimate A° (such techmques exhibit
superlinear convergence on well-behaved functions). However, if an approxima-
tion of this sort takes us across subinterval boundaries then the resulting esti-
mate is rejected (since the function we are approximating is no longer locally
smooth). In this case we take the subinterval boundary crossed (a breakpoint)
as the current (unsa.feguarded) estimate. For example, if the ""best’ estimate of
A’ found so far, say B, lies in the subinterval ()\lk Ay, ﬂ) where A, and A, are two

consecutive breakpoints found using (7.1), then a quadratic approximation to A°,
say ¢, is accepted if {€(N\ A, ). However, if {£(N,.Ny,,,) then we set the
current estimate to Ay, if N, €(8.{). and to A, otherwise. Safeguards are
imposed on these estimates to ensure that the interval of uncertainty, (8,7), is
reduced at every iteration and to ensure that successive estimates are not
numerically indistinguishable.

The criteria for terminating this process is based on our convergence

requirements. To ensure that the objective function decreases sufficiently we
insist that

F(O) =75 (\) = - fi(0), (7.2)
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where u is a preassigned scalar in the range 0<p.$% and f1{0) is the right first

derivative of f{(0), and we control the accuracy of the line search by insisting
that '

max {f2(A),0,~/1 (M)} = —n f£:(0), (7.3)

where 7} is a preassigned scalar in the range u<n<1 and f2(A) and fi(\) are,
respectively, the left first and right first derivatives of f(\). However, if the
current interval of uncertainty is sufficiently small these tests are ignored and
the process is terminated.

The reader should note that test (7.3) differs from the (corresponding) test
that is often employed in smooth univariate minimization (see, for example,
[20,22,30]) only when A is a breakpoint. The convexity of f guarantees that the
comparison to = fi(0) in this test is made using the subdifferential of f (\) hav-
ing minimal modulus. Elementary analysis shows that at least one point in the
interval of uncertainty satisfies both (7.2) and (7.3).

The following notation is used in the line search algorithm that follows:
(i) A€(B.y) impliessB<A<yory<A<Rg,
(ii) ew A the smallest machine number satisfying 1 + g > 1.

LINE. SEARCH ALGORITHM

Step 0: ( Initialize )

~ATD)Tr(0) / |ATE1E (V| [ATd]2 % O3
Let N =

] otherwise.

Define Ag := {N I€M [N >0 and £, (\)=Vegy).

Set 8«0, d«zyf (0}] f1£0)| 7! and y«min __2[_(7.2)_ ,max § \; > 0}{.
‘gyIAld“p

Step 1: ( Unsafeguarded )
Set {8 ~ fi(B)/ f"(B) and define A(B.{) := (N €A N €(B.E).
If A(8.¢) # ¢ set AeA, where A mi)\neixai‘z)es | 8—A|; otherwise, set A«¢.

Step 21 ( Safeguarded )

IEXN£[ 8.1 (B+7) ] then set A « 1 (8+7).
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If |]A—B| <6 and B # O then set A « B+sgn(A-g) 6.

Step 3: ( Update the interval of uncertainty )

IEf(A\)> f(B) thensety « \;

otherwise,
if (A\—=B) fi(A) > Oset y « 8.

Set £« A 7 (8) « £ (V). £u(B) = Fi(N). J46) « J200) and 7"(6) « 1(N).
Step 4: ( Termination test )
16[ (7(0) =7 (8) = ~u 8 7:(0) and max {£2(8).0.~7i(8)} = —n i(0))
or ( |B—y| =6 and g # 0) ] then STOP with A = B:
otherwise go to step 1.

[In this algorithm the quantities fi{(39), f2(38) and f"(¥) are given by,
£is) = ;{ aTA4m(8)+ 3 |ATd],.

el (s Ll
28y = Y dTam@) - Yy [Ald],,
leM,(3) le M%)
and
fad\ = Lo — dT4 (D, -7 )Ald
70 = 1)15%:@) Fi(8) ’

where M(8) = {{eHM | f1(¥) >0}, Hx(®) = M — M,(¥) and D, (=0,(8)) is the 2 by
2 matrix whose i-th diagonal component is the modulus of the i-th component of
7, (=7,(¥)) raised to the power ({(p —2)/ (p —1)) with #; equaling the |- | ;-dual vec-
torof ry (forp =2, D, = I3 ).]

The following theorem demonstrates how the solution to (7.1) is particularly
appropriate when any of the residual vectors 7;, L€M, have just been perturbed
using the scheme outlined in §5.

Theorem 7.1. If d = h¥ and we assume (without loss of generality) that the
set N and the scalars v, (both described in §5 ) satisfy

={1,....0landy; =i | n{j.i) | max{pd,2ne}, WeEN,

where the scalars n(j,i), 1€N, are defined as in assumption 4 of Theorem 5.1
and m = max{|7n({j.l)| "\,LEN], then for the perturbed problem,
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(1) fi(M) =0, VieN,

() N =46, VieN,

(3) |N—XN| =6, ¥,leN,i#l, and

(4) f:(\) = s, i€N, implies that f,(\) > &, L eN-{i},

where A = &/ pn(d i) (= —(ATRP)Tr:(0)/ | ATRF1 3).
Proof

Part 1[ VieN ] - See part 3 of the proof of theorem 5.1.
Part 2[ ieN ]

& v sgnn(di) _ .

i = — = o =id
M= oG ) pn(d.2)

> 4.
Part 3[ ¥i,leN,i#l ]

RN < T ¢
NN = GaY T G
Part 4 [proof by contradiction]
I fi(A\)<eand f;,(A) <s, i,leN,i#l then
i &G
n(G.i)  n@.d)

But for i,leN, i#L,

= |i-l|6=4.

- 1 1
's{ln(j.i)l TG0 ]

i ¢ .
G n(jl,l) = |i - 1| max{pd,2ne]

1 1
> 7 T :
[In(J.‘b)I InG.0)| ]
which completes the proof. =

In other words, for each of the perturbed {2n —2)-dimensional hyperplanes
the step length to the hyperplane is easily computed, satisfies the lower bound
of acceptability (as defined here), and is computationally unique' in f(A) and
with respect to possible inclusion in M (z +Ad). Each of these properties has
proven beneficial in resolving degeneracy.

8. Convergence Properties. In this section we prove that our method exhibits a
global convergence property and that, asymptotically, the method converges at
a quadratic rate.  Many of the results derived in this section follow directly from
the analysis given in [8] and [9]; however, because of our problem's special

structure, stronger results are obtained even though weaker assumptions are
made.

Global Convergence

The following lemma demonstrates that there is a neighborhood of each
minimizer in which the step ‘A + v’ is successful.

Lemma 8.1. If we assume that
(1) =z° is any strong minimizer,
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() M. (zF) = Mo(z") forall k,

(3) the matrices 4, leMq(z"), are linearly independent, and

(4) there exists positive scalars A, and A; such that
Mw|3=wTZT6(z*) 7w < Ay |w]§ Vw #0,

then there exists a positive constant A such that if |z% —z°| ;< A then

S (z*+h¥+uk) — f (z*) = 6o 1] ZTg (=) 1§ + 5112( )fz(’-"‘)(l = lulg
Lk, zk

where h* and v* are defined as they were in §4 and &g is some positive constant.

Proof. ( To simplify notation the k superscripts and subscripts are
dropped. )

Part 1 - Changes in f;, leM-M (z).

lw_Z (z)ift(z"'h""u) = fi(z) = g(z)T(h+v) + L (R+v)TG(z)(h+v) + o(|R+u |§)

But
g(z) = :ax%(z)A‘ul + Zw, for some vector w,
h = - 2Z(Z27G(z)Z)"'ZTg(z)
and
Alv = —7(z) VieH,(z).
Therefore '
lwg;l‘(z)ifz (z+htv) - fi(z)} = m{:(z)uz%’v -9(x)72(27G(z)z)2Tg (=)

+ 1 hTG(z)h + LvTG(z)v + RTG(z )
+o(|h+v]$)

== ¥ wn(z) - 19(z)72(276(z)2)" 275 (z)
Lel, (=)

+1vTG(z) + RTG(z)v + o(Jh+v|3)

Part 2 - Changes in f;, LeM (z).
m;( )ifz(x+h+v) —fian= Y Silz+v) - £i(z))

EJI,(: )

== 3 filz)

LeM, (=)
Part 3 - Changesin f
fE+h+v) —f(z)=- ¥ uln(z)-19(=)2(27G(z)2)'Z27g(z)
leM ()

+1 TGz + RTG(zw - Y fiz)
Leld,(z)



-18-
+o(|r+v |3
s -19(z)"2(27G(z)2)'27g(=z)

+10TGEw +hTGE - % fulz)(1 - |uly)
leld (=)

+o(|n+u]3)

But
= — A(ATA) r(z)
where M (z) = {,...k}, A=[4, - A)and r(z)T =[n (z)T - - - 7, (2)7]

Therefore if we define H(z) = (ATA)"'AT Hy(z) and Hy(z) = G(z)A(ATA)™! then
vTG(z)v = wy(z)Tr(z)

and
RTG(z)v = wa(z)Tr(z)

where w,(z)=H,(z)r(z) and wa(z)T=-hT Hy(z).

Thus

J(z+h+v) —f(z) <-1 g(z)T2(Z27G(z)Z)'1ZTg(z)
+§ L wy(z) + we(z) JTr(z) = 1@ - )

+o(|r+v]8).

If A is sufficiently small then, by assumption 1, there exists a positive constant
Az such that

g(z)T2(27G(z)2) 2T (z) = A—z-z 127g(z)12

In addition, assumption 2 and the continuity of w(z) = 1 wy(z) + we(z) guaran-

tee that w(z)-0 as z-»z". Therefore, if A is sufficiently small, there exists some
65>0 such that

f(z+h+u)—f(z) < -0 1| ZTg(z) |5 * X NiE@E(A - 1wl +o(la+v]d)

(=)
and, since 4, Z and Z7G(z)Z are bounded,
lr+vid=|n|E+ |v|E
<L ZTg)3+ Lz 3 fi{z)(1 - |wly)
Leif(z)

where L;, Lz > 0.
Therefore, for A sufficiently small,

o(Jr+v]3) = 62—0 H27g=)E+ ¥ fl@(1-lwly)]
LM (z)
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Hence, if 65 = 2’
J(z+h+v)—f(z)< - 6o t127g(z)| £ + E fz(-’c)(l = lwlq) ]

led,{z)
which completes the proof. s

The following theorem proves that the sequence of iterates {z*} converges
to a strong minimizer via the steps h* + vk.

Theorem 8.1 If we assume that

(1) the sequence of iterates {z*] is generated us'mg the method described in §4
starting from any arbitrary initial point z°

(R) the matrices 4, LeM, (z*), are linearly independent,

(3) the line search described in §7 is used and the line search condition given
by equation (7.2) is satisfied, and

(4) any minimizer is a strong minimizer

then, for all 6 sufficiently small,

(1) & A0,

(8) {z*} » z* ( a minimizer ), and

(3) for k sufficiently large the step h* + v* is successful.
Praof.

Part 1 [ We wish to prove that if there exists a positive scalar A such that
llz —z |z <A and M, (z*) = Me(z), where z is any stationary point that is not a
minimizer, then

Ju;lg > 1 for some jeMo(z)
and
(rRHTg < -6, 6>0,

where u; and hf are defined as in §4 and 7 = g{z*) — 4545/ |u;]q ]

For any particular stationary point z that is nof a minimizer let Z; be an
orthonormal matrix whose columns span the space $h | 4Th =0 W EMO(::) i}].
The definition of r guarantees the existence of vectors u;, l€My(z), and an
index j € My(z) such that

golz) = 2 A;;J,; and Jpile > 1.

leMy(z)
It
g =golz) —Api/ lule
and
h = ij,

where w is chosen so that A,-Th = —pfij, p > 0, where J; is the || | ;- dual vector of
45, then

hT ="p(“#j|q"1)
< 0.

The convexx’cy of f guarantees the existence of a positive scalar 6 such that
—hTg >3 for all stationary points that are not minimizers. By continuity it
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follows that if [z* —z[z<A and M (z*)=Mo(z) then [u;]y>1, and
(RE)Tg <=6 (5 A i).

Part 2 [ We wish to prove that the dropping step is successful only a finite
number of times. ]

( Proof by contradiction )

Without loss of generality we may assume that the droppmg step is exe-
cuted for all k. Then for all & there exists an index jeMck(z ) such that

fu;lqg > 1. But gThF < =5 for the successful execution of the dropping step.
The fact that the dlrectlon h¥ is a descent direction at the point z* along with
the line search condition implies that f (z*¥) » — =, which is contradictory.

Part 3 [ We wish to prove that the step A* + v* is successful for all k¥ sufficiently
large, & A 0, and {z*} - z*. ]
a) Assuming sk - 0 and {consequently) B - 0.

I Z7g(z ") A 0 for any subsequence ixk‘} then, for all & sufficiently large,
ZTg(z*)= Bi. Thus 8 is not reduced and, for all k¥ sufficiently large, 8¢ A 0;
which is contradictory. Therefore Z7g (zk‘) - 0 for some subsequence {z '] with
zH z But £, -0 and z* >z implies that, for k; sufliciently large,
M,k (:c ) € Mo(z). Moreover, the linear independence assumption and the fact

that ZTg(x ') > 0 forces M% (z ‘) Mo(z). Considering Parts 1 and 2, there

must be one such subsequence iz k; that converges to a minimizer z° with
(:r: ) = Mg(z*®) for k; sufficiently large. By Lemma 8.1, for k; sufficiently

large, the step R® + o™ is successful. It then follows that g A 0.

b) Assuming & A4 0.

For k sufficiently large g, =£>0 and Be = é >0 It follows that there
exists a subsequence izk‘i such that ZTg(z ‘) -+ 0,z >z and, for k; sufficiently

large, M, (z ) = Mo{z). (1£Z7g (.'r: ) A 0 for any subsequence izk‘j then, for all
ky

k suﬁiclently large, &, =&, B, = B and Z7Vf.(z*) = 8. The fact that the direc-
tion h* is a descent direction at the point z* along with the line search condition
implies that f(z*) » —=; a contradlctnon ) Therefore, we have a convergent

subsequence {z '} - z and Z7g(z ‘) » 0. Thus, for k; sufficiently large, &, = &,
Pr,=fand Z Tg (zk‘) < f. But M;k‘(xk‘) Mo(zk‘ Y for k; sufficiently large ( due
to t.he boundedness of f the step h.*" ;i-‘uk‘ must eventually be taken and
M,a‘(z Y= M (z +h™yy )- M( ) ). Thus, the linear independence
assumption and the fact that Z7g(z ‘) - 0 forces M, (z ) = Mo(z). Considering
Parts 1 and 2 it follows that at least one subsequence 2.7:  converges to a
minimizer z* and Mah‘(z ) = Mo(z®) for k; sufficiently large. But the step
R® + ™ must be successtul for k; sufficiently large { by Lemma 8.1 ). s

Asymptotic Convergence Rate.

The following theorem proves that under weak conditions the final stages of
the method described in §8 converges at a quadratic rate.

Theorem 8.2. /f we assume that
(1) the matrices 4, LM, (z*), are linearly independent,
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(2) there ezists scalars Ay and Ay ( 0 < A; < A; ) such that
Mwl|fsw’ (ZT6(z")Z )w <A |w]f W W,

(3) the sequence of iterates iz } » z°*, where z¥*' = z*¥ + ¥ + 'v" (h" and v*
are defined as they were in §3 ), M%(x ) = Mo(z®) Yk and z° is a strong

minimizer,
then

|zk+1 "

lim sup 2"2 <L, L>0.

kow® |zF —
Proof. Without loss of generality assume that M, (z*) = {{,,...,l}, s<n,
andlet A =[4, - A Jandr(z*)T = [ri (=*)T - - r;’(z")i'] Vk.
Since the columns of 4 and Z span R?" let the vectors ¥} and v} satisfy
zk -z = Ayk + Z y% (8.1)
for all k.

Part 1 [ We wish to prove that ¥y =0 ¥ . ]

Using assumption 3 and the definitions of v* and r(z*)
zk+l = 2k 4 ok 4 Rk
=zF — A (ATA) r(z*) + ¥
-2k — A (ATA) P AT (2% —2°) + K¥
Subtracting z* from both sides and premultiplying by AT yields
AT (zk+1 —z') = AT (z" -z% - AT (z" -z%
=0

and thus, using (8.1) and assumption 1 we obtain the desired result.
Part 2

Using assumption 3 and the definition of i*
zEH = gk 4 pE 4k
=zk — Z (ZTG(z*)Z)~? ZTg(z*) + v*

Smce ZTg(z*) = ZT {g(z") + G(z) (z* —z*)} = Z7G(z) (z*¥ —z"), where z =
z* + ¥ (zF - z%), 0=<v<1, we have

gk+l=zk — 7 (ZTG(z’f)Z) -1 ZTG(z) (z* — z°*) + v*
- Z (ZTG(z*)Z)™ Z7 [G(z) - G(z*)] (z* —=z")
- Z (ZTG(z*)2)! ZT G(z*) (z* — z°) + v*

Substituting (8.1) for the second occurrence of (z* — z*) and using the result of
Part 1 yields

g+l = zk — Z (ZTG(z*)Z)™1 ZT [G(z) — G(z*)] (z* —z°) — Z y§ + v*
Subtracting z* from both sides and premultiplying by Z7 gives
27 (ak*1 ~2%) = 27 (2% - 2") - (27 G(z*)2)™ 27 [G(z) - G(=*)] (=% - =) -



-20-

and thus, using (8.1) and Part 1 again, we obtain
yEt'= - (27G(z*)2)7 Z7 [G(z) - G(z*)] (=* ~ 7).
This result, along with assumption 2, proves that
[y 2= L, | G(z) - G(z*¥)]2 |=* - =°|2
for some L; > 0 and the Lipschitz continuity of G and the definition of z guaran-
tee that for k sufficiently large
16(z) - G(z*)|2< L) |z* - z°|2
for some L; > 0.

Therefore for k sufficiently large Jy$*'|.< L |z* -z*|§ . L =L, L, >0.
Since |y%*!]z = |z**! — z°]; our result follows. =

9. Implementation

In this section the numerical aspects of our algorithm are examined. Most
of the topics discussed involve implementation procedures which could be dealt
with using classical techniques (see, for example, [21]); however, the special
structure of problem Pl can be exploited to provide much more efficient
methods. Many of these methods are described using elementary graph theory.
The reader who is unfamiliar with the associated terminology is referred to Deo
[13] and Minieka [28].

For the purpose of the discussions that follow we assume that for €M and
e; denoting the j-th column of I, (j=1,...,n), the scalars j;€{1,...,n} and
k€{l,...,n+1}—§j,] are chosen so that

ou(ej, —ex) ®J2 when o corresponds to Uik
A=ae(l) ;=
e @Iz when o; corresponds to wy

where k; is set to n +1 when o; corresponds to w;. We also assume that when ¢,
corresponds to v; then the vector e () corresponds to an edge E; joining vertex
V;, to vertex V. (This edge represents the interaction of new facility 7, with new

facility k;). Similarly, when oy corresponds to wy; the vector e (1) corresponds to
an edge F; joining vertex Vj, to vertex V41 (This edge represents the interac-

tion )of new facility j, with some (fixed) existing facility represented by vertex
Vasr)-

a) Identifying M,

Consider the digraph G(V,E) consisting of the vertex set V= {V,,..., Vi 1)
and edge set £ = {£;, leM.(z)} and let the vertex set ¥ contain all the isolated
vertices of G(V,E). [With respect to problem 4.1, the vertices in ¥ correspond
(in index) to new facilities whose movements are currently unconstrained and
the vertices in each component of G{V~V,E) correspond (in index) to new facili-

ties whose movements are currently constrained.] The following lemma suggests
one method for identifying M.(z):

Lemma 9.1. Suppose that the s edges in the set E = { £, ;B3 C E identify

a spanning forest of G(V-V,E). If A =[e(l,)-e(ls)] then Rank(4) =s and
Acspanthy A} for all leM (z).
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Proof. We can think of A as the reduced incidence matrix of the digraph
G(V—V E) having reference vertex V,,;. It is a well known fact that
Fank (A) = T—«, where T and & equal the number of vertices and components in
the digraph respectively. But a spanning forest with s edges and k¥ components
has 7 = s +k vertices. Therefore Fank(A) = s.

Since the set E _identifies a spanning forest of G(V-V,E), adding edge
E, € E — F to G(V—V,E) does not change the number of vertices or components.
In addition, the matrix [A :e(l)] is the reduced incidence matrix of the digraph
G(V-V,E+E) havmg reference vertex V,,,;. Consequently Rank([4 ie(l)]) ==
and e(l) € span e(ll) . e(l)}. Therefore since 4, = o; e(l) ® I, it follows that
Acspanid ... 43 ‘

The following figure represents the graph G(V,E) when n=8, M. (z)=
§1,2,3,4,5,6,7}, $7 1, .. 23=11,1,2.4,5,5,2}, and {ky, ... K7} =§2,4,4,7.9,6.3}:

FIGURE 9.1

@ e s @ (reference vertex)

In this example V = {Vg] and if we eliminate Vg from G(V,E) we are left with
G(V-V,E). If we then eliminate either edge E, or edge E, or edge Fg from
G(V-V.E) we are left with one of the three possible choices for G{(V—-V,E). Each
of these representatlons defines a spanning forest on G(V—V E) and the indices
of the edges remaining in G{V—V,E) identify (the corresponding) #,(z).

Lemma 9.1 demonstrates that edges in F that identify a spanning forest of
G(V~-V,E) also_identify (the indices of) M (z). A process for finding a spanning
forest of G(V—V,E) is simply stated:

At each stage a new edge K €F is examined to see if either or both of its
end vertices appear in any tree formed so far. One of the following four mutually
exclusive actions is taken:

(a) if both vertices are in the same tree then edge £ is discarded,
(b) if neither vertex is in any tree then a new tree is started with edge 7,
(c) if only one of the two vertices is in a tree, edge F is added to that tree, and

(d) if both vertices are in different trees, edge F is added and the two trees
are joined to make one.

The following algorithm finds M, (= #,(z)) and .constructs a vector
T (= T(z)) of length n+1 such that ¢,,; = -1 and

—1 if ¥ isin the same tree as V4,
t; = 0 if V; is isolated
C if V; is in the tree labeled ¢ (l=c=<k).
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Here k£ equals the number of components in G{(V-V,E) if ¥,,1€V and equals one
less than the number of components in G(V-V,E) if V,+1£2V. [The significance
of these values with respect to the constraints of subproblem 4.1 is as follows: if
t;=—1 the location of new facility © is currently fixed because of this facilities
proximity and interaction with some existing facility whereas if £;=0 the move-
ment of new facility 1 is currently unconstrained, and if £;=c (1<c¢=k) the move-
ment of new facility 1 is constrained to coincide with the movement of all new
facilities in the set {j|f;=c} due to the current proximity and interaction of
these facilities. For the example previously described and illustrated in Figure
9.1 we have T = {£,,..., tg} = {1,1,1,1,—-1,-1,1,0,-1}.]

Step 3 in the following algorithm corresponds to the four actions previously
discussed:

ALGORITHM 1

(1) Set Y « My, M, « $, 60,1 «0, ¢ «0 (j=1,....,m) and £n,, = —1.
(38) fM =¢ori=n+l-ksets «iand STOP;
otherwise,
choose any index l€M, set # « M ~{l},j « j, and k « k;.
(3a) If t; = £, # O go to 2; otherwise,
(3b) if tj =, = Osetx « k+l, t; « k, § « k£ and go to 4; otherwise,
(3c) if tjt, = Oset t; « t, if t; = O else set £, « £; and go to 4; otherwise,
(3d) if tj # £, set i « minitj.tk} and ¥ « maxft,-,t,,l.
[merge] forl=1,..,nift, =Esett «x
[relabel] forl=1,..,nift;, =ksett; « &
Set k¥ « k—1 and go to 4.
(4) Seti«i+l, L «1, M, « M,+{L;} and go to 2.

The reader should note that this is a greedy algorithm since each edge in
the set £ is examined, at most, once (step (2)). In addition, the time bound for
the execution of all steps except (3d) is proportional to the number of edges
examined. Aho et al. [1] give details of two algorithms called Union and Find
that can perform step (3d) very efficiently (in almost linear time). The reader
should also note that identifying M, (= M.(z)) in step (1) is trivial and that at
the completion of this algorithm tj‘ = t,,l # 0 forallleM,.

b) Maintaining 7, and T.

If the value of ¢ is reduced we use algorithm 1 to recompute ¥, and 7. If
the value of £ is not reduced there are three possible situations that can occur
in progressing from the point z* to the point z**:

(1) Ma(zkﬂ) = Mz(zk)-
(3) M (z**') = M (z*) + L, for some nonempty index set L,
(3) anindexis dropped from M (z*).

In the first situation we make no change to #, or 7. In the second situation
we simply repeat steps (2) through (4) of Algorithm 1 with ¥ and i initialized to
L and s respectively. In the last situation the process of dropping an index from
M, is equivalent to removing an edge from G(V-V,E) - the spanning forest of
G(V-V.E). The following algorithm updates ¥, and T assuming edge E; (index
l) is to be dropped:
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ALGORITHM 2

(1) Set M M. =L}, Mﬁ{iEﬁ,lth:tj‘}, k<g—1 when t;#—1, i«s-1, and £,=0
when tk=tj‘ (IC =1,...,‘n). .

(2) Same as (R) of Algorithm 1.

(3) Same as (3a) through (3d) of Algorithm 1.

(4) GotoZ2.

For the remainder of this section we assume that M, ={,,....4]},
A=[e(ly)...e(l)], T =[t1ta+1] and £ = maxit, €T).

¢) Using Z

The next lemma demonstrates how Z, an orthonormal matrix whose
columns span the space ih]AFh 0,Yl €M (z)}, could be constructed from a
matrix Z using the information in T. This matrix Z is associated with G(V-V,E)
in the following manner:

(a) there is a zero row of Z corresponding (in index) to each vertex of
G(V-V,E) in the same tree as vertex V,,, when V, £,

(b) there is a unique column of Z for each vertex in V (other than Vp4; if
V.+1€V) and the only nonzero entry in any such _column is in the row
corresponding (in index) to the associated vertex in ¥, and

(c) there is a unique column of Z for each tree in G(V-—VE) (except the one
contammg Va+1 When VnHJEV) and the nonzero entries in any such column
are in the rows corresponding (in index) to the vertices in the associated
tree.

The actions taken in step 3 of the following lemma’s algorithm correspond to
these three cases. In the statement of this algorithm &; denotes the j** row of
I,,_ar and n, equals the cardinality of the set { % | ¢; = ¢} (the number of vertices
in the tree labeled c).

Z e
Lemma 9.2. If we construct an orthonormal matriz Z = | ; | as follows:
A Zne
ALGORITHM 3

(1) Seti<0andk««x.

(2) Ifi=n then STOP; otherwise set i«i+1.

(3a) If t;=-1, set Z;.«0 and go to 2; otherwise,

(3b) if £;=0, set k«k +1, Z;.«&; and go to 2; otherwise,
(8c) if t;=c, 1=c=k, set Z;.«\/1/n_ &, and go to 2,

then Z=Z ® I is an orthogonal matrir whase columns span the space
th| AR = 0L el (z)].
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Proof.

Part 1 [We first prove that A7Z =04x(n—s).]

. Since 4 =[e(l,)-'e(l)] we must prove that e(Z)TZ =0 for all I€M,. Now
for leM,, j=j; and k=k;, we have {;={#0 and therefore (by construction)
Z;o=Z.. Consequently, e(1)7Z = 0 for all LeH.(z). ‘

Part 2 [We now prove that Z7Z=1,_, .

Since Z has (at most) one nonzero entry per row we have Z;Z;=0
(k=1,...,n) when i#j. Therefore [Z7Z); =0 when i#j. In addition, when
c€{l,...,«} there are n, nonzero entries in column ¢ all equaling /1/n,; and,
when c€fx+1,...,5], there is one nonzero entry in column ¢ equaling 1. There-
fore [ZTZ]y = 1 fori=1,...,s.

Part 3 [We finally prove that Z=Z ® I, has the stated properties.]

It Z = Z ® I then, for L H,(z),
ATZ = (e (1) I)T(Z R I,)
=o(e(1)TZ)Q1;
=0,
and '
ZTZ =(Z"Z)® I,
=6 s®I,
= Iz(n—s)-

Therefore Z =Z ® I3 is an orthogonal matrix whose columns span the space
th|ATh =0 VleM (z)}. =

For the example previously described (and illustrated in Figure 9.1) Z7

would equal
R EERRE N
2°=lo o o oooo 1f
It should be emphasized however that the matrix Z (or, for that matter, Z;)

should never be computed (or stored) since the products ZTw and Zy are easily
computed (for any vectors w and y) without forming Z.

If wh =[wlwl] with w;eR? (i=1,...,n) and y7T = [yT--yT_,] with y,cR?
(i=1,...,n—s) then the following algorithms demonstrate how these products
are formed:

ALGORITHM 4a [forming the product w=2Zy]

(1) Seti«0andk ««x.

(2) Ifi=n then STOP; otherwise set i+i+1.

(3a) If t;=—1, set w; «0 and go to 2; otherwise,

(3b) if £;=0, set k <k +1, w <y, and go to 2; otherwise,
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(8c) if t;=c, 1<c=<k, set w;«y./ VN, and goto 2.
ALGORITHM 4b [forming the product y=ZTw]

(1) Seti«0, k«k and y«0.

() Ifi=n then STOP; otherwise set i+i+1.

(3a) If £;=—1 then go to 2; otherwise,

(3b) if £, =0, set k «k +1, Yy <y, +w; and go to 2; otherwise,
(3c) if £;=c, 1=<c=k, set Yy, «y. +w;/ Vn; and go to 2.

Both these computations require approximately 2n operations in the worst
case.

d) Computing the Lagrange vectors

Since the matrix /-ZZ T is an orthogonal projector onto the space spanned
by the columns of 4;, 1 €M,, the solution to the system

Y Ay =c, (9.1)
1,
where ¢ = (/-ZZ7) g, is unique and satisfies our requirement for the Lagrange
vectors (ie. minimizes |g - )] 4y |2).
13,

Fortunately, the solution to {9.1) can be found very efficiently. For exam-
ple, if edge E, were deleted {from Figure 9.1) in constructing G= G(V-V,E)
from G(V-V,E) we would have M.= {1,3,4,5,6,7] and {9.1) could be written as

01" cy

aylz 0 0 0
-yl aglp 0 0 oqlp 1y Ca
0 0 0 —a7fg llg Cs
-aafz C!4.Ig 0 0 0 U 4 Cyg
0 0 oasls agp 0 s Cs
0 0 0 ~agla 0O |(lug Cg
0 =—-o4fz O 0 0 [ur,. Cq
0 0 0 0 0 Cg

L L

©c O 0o

00000 O

1t is evident that this system can (for example) be solved sequentially for u, w4,
Ug, Us, Uy, and ug using row blocks 1,7,8,5,3 and 2 (or 4) respectively.. These row
blocks correspond (in index) to a pendant vertex of the edges E,, E,, Eg, Es, Es,
and Ea in the graphs Gl A G, G4 A Gl—Ell Gs A G4""E4, Gs A Ge"‘Ee.
Gy A Gs—E5 and Gs A G,—FE, respectively.

Stated more generally, consider the spanning forest described by
G A G(V-V,E) where the edges E = {E,, ..., By} are directly associated with the
vectors e (1), L€fl,, ...y} (= M,). Since G describes a spanning forest there are
at least two pendant vertices in G. Suppose edge £;€F is incident on a pendant
vertex other than V,,;. Then (by definition) vertex V;, or vertex ¥, is a pendant

vertex. Now, without loss of generality, suppose vertex Vj (# Vn+1) is the pen-
dant vertex. Since edge E; is the only edge in E incident on vertex V;, the
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vector e(i) is the only vector in the set {e(l),l€M,} with a nonzero in row j;.
Consequently 4 (= oe(i) ® I3) is the only matrix in the set {4,l€M.] with
nonzero entries in Tow block j; (where each block consists of 2 rows). Since
these nonzeros occur as diagonal entries (of row block j;) we can easily compute
the vector w;. This leaves the following reduced system to solve:

Y Aw =c - Au. (9.2)
A be X, ~fif
Now if we delete vertex V;, (and edge E;) from G we are left with a graph that
describes a (reduced) spanning forest. In other words, this process can be
repeated to compute all of the Lagrange vectors.
If we assume, without loss of generality, that the indices I;,...,¢ of M, are
ordered so that d(E’;l)s d(E&,) < - <d(£,), where the degree of edge £,
denoted d(£;), is defined as follows:

d(‘{i‘) if Wcl=v;‘+l
d(£) = min {2(¥;,).d(%,) } otherwise,

with d(V},) and d(V,) equaling the degree of vertices

, and V;, respectively,
then the following algorithm can be used to solve (9.1):

ALGORITHM 5

(1) Seti«Oandc « (J=ZZT) g witheT =[cT---¢T] and c;eR? (i=1,...,n).
() 1fi = s then STOP;
otherwise,
seti «i+l,l «,j«jiandk « k. .
(3) Itk =n+lord(V;)<d(%)setwy + c;/ oy, Cp « Cp+c; and go to 2;
otherwise,
sety « —ci/ oy, ¢ « cj+c; and go to 2.

This algorithri corresponds to a (leaf-by-leaf) traversal of the spanning forest
described by G. The number of operations used in this algorithm is, in the worst
case, equal to 2(s +2n).

e) Computing the refinement step

In our minimization algorithm we sometimes take a refinement step z+v
where v is the minimal norm solution to

ri{(z+v) =0, WVl eM,(z). (9.3)

Fortunately, this solution can be found very easily. For example, if edge E»
were deleted (from Figure 9.1) in constructing G=G{V-V,E) from G(V-7.E) we
would have M,= {1,3,4,5,6,7} and (9.3) could be written as



0 (z+v), i
(z+v)2 b,
—oyla| [(z+v)s| |bs
—agly; o4z O 0 0 (z+v), by
0 0 a512 (Xsfz -0 (.’I’.‘ +v )5
0 0 0 —(1312 0 (2+'U )8 bﬂ
0 -aJd; O 0 0 (z+v)y by
0 0 0 0 0 ||=ztu)g

rx112 0 0 0
—alfz aafg 0 0
0 0 0 0

c O O
2]
)
o

o
]
|
000000

0
0
0
0
0

where b;=b3=b,=bg=b,=0. Since vg is completely unconstrained in this system
we would clearly set (v+z)g = z5. This component corresponds (in index) to the
only vertex in V. In addition, the equations involving vs and vg yield {(z+v)s =
(z+v)g = bs/ as. These components correspond (in index) to the vertices in the
component (tree) of G that includes vertex V;,;. Finally, the equations involving
the remaining components can be written as (z+v); = (z+v)e= (z+v)s=
(z+v)s= (= +'v)7 But the solution to these equations, that produces the
minimal norm in v, is obtained by minimizing Y,{c —z;)? where L={1,2,3,4,7] and

)
(z=v);= ¢ VlcL. We therefore set (z+v), = 1 Zz; for al_l leL. These com-

ponents correspond (in mdex) to the vertices in ’t.he remaining component (tree)
of G. The ideas illustrated by this example are now made formal.
The following lemma shows that the refinement step z+v can be written as
z+v =z - (I-ZZT)(z—w)
=w + 227 (z—w)
where wE€R? is any solution to the full-rank system
Alw = b, Vel (z). (9.4)
Lemma 9.3. If weR?® satisfies (9.4) then the minimal norm solution fo
(9.3)is given by v = —(I-2Z7)(z —w).
Proof. Forv = —(J-2ZT){(z —w) and l €#,(z) we have
r{z+v) = Af(z+v)-b,

= Alw-b
= 0.

In addition, the minimal norm solution of (9.3) is also the minimal norm solution
of the following full-rank system:

Alv = =4Af(z —w), VieM (z), (9.5)

where w satisfies {9.4). But any solution ¥ to (9.3) can be written as v = vz+v,
where vz lies entirely in the space spanned by the columns of Z and ¥ 7‘4 lies
entirely in the space spanned by the columns of 4, WM (z). Since J-ZZ7T is an
orthogonal projector onto the space spanned by the columns of 4, LeM (z), the
minimal norm solution to (9.5), and consequently (9.3), is given by v = v, =
—(I-ZZT)(z —w) where w satisfies (9.4). =
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In the next lemma we prove that there exists a unique solution to (9.4),
WeR?* with ZT@w = 0, which allows us to compute the refinement step as

zZ+UV =W+ T

where £ = ZZTz. In the statement of this lemma 7T; denotes the set {i|t; =1}
(t=-1,...,k), n; denotes the cardinality of T, {¢=1,...,x) and [; is chosen from
M (z) so that Ey, is the edge of G incident on vertex V4, in the (unique) path

from vertex V] to ¥,;; whenieT_,;.

Lemma 9.4. If we construct the vector W, having components ;<k?
(i=1,...,n), and the vector Z, having components T;€R;, (i=1,...,n), using the
Jollowing algorithm.

ALGORITHH 6

(1) Set@W «0andZ « 0.

() If Vo€V goto 3;
olherwise,
set w; « bp/ ag for alli€T_,.

(3) Forc =1,..,Kk setE « ng! ) z; for allicT,.
i€t

(4) Setz; ==z; for all i€T,.

then the vector W _satisfies (9.4) and lies entirely in the space spanned by the
columns of 4, leM (z), the vector ¥ equals ZZTz, and

w; i€,
z;

(z tv) = otherwise.

Proof.

Part 1 [We first show that @ satisfies (9.4).]

Assume that edge K}, L€#,(z), is nof incident on vertex V,,, in G. Then, by
construction, k;#n+1, =0 and W;=W,. Consequently, Al = oy(e(l) ®
LY@ = o (W —W,) = b (=0). On the other hand, if edge 5, 1M (z), is
incident on vertex Vi4; in G then, by construction, k;=n+1, 'ITJJ"=b;/ o; and
A;Tm = al(e(l)®fg)rw = a;‘t_vj‘ = bg.

Part 2 [We prove the second proposition by showing that @7 Z=0.]

Using the representation of Z given in lemma 9.2 we have
n
w'Z = Y wl(z.’ 1) =0,
=1

since W; =0 wheni£7T_; and Z;» = O whenicT.,.
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Part 3 [We now prove that £=227z.]

The construction of Z given in lemma 9.2 guarantees that
1 ifi€Tgand j=1
2.2} = { n;! ifi€T, and j€T, with 1sc=<k
0 otherwise.

Consequently, if [ZZTz};<R? represents the i-th component vector of ZZ7z
(i=1,...,n), then

x; ift€Ty

[2272), =2.(2T® )z = | ny ' ¥, z; ifi€T, with 1<c=<k
JET,
0  ifieT.,

Therefore [ZZTz]); = Z; (i=1,...,n).

Part 4

For w = @ and £ = ZZTz we have (as a consequence of lemma 9.3)
z+v =W + ZZT(z —w)
=w+Zz

and the final proposition follows from the disjoint propérty of the sets T
(I=-1,...,k). =

The construction of W and T given in algorithm 86 can be carried out using a
(preorder or depth-first) traversal of G (using root V,4; if V+1£7V). Since this
traversal involves visiting each vertex in V-V once, computing z+v requires
approximately 2n operations.

f) Computing the projected Newton direction
The direction h = Zh, where h, = k. satisfies
zZ7GZ = =27y,

is sometimes required in solving problem P1. Unfortunately, this system of
equations may be ill-conditioned even when the projected Hessian, Z7GZ, is
positive definite. (The convexity of f guarantees positive semidefiniteness.) We
therefore use a numerically stable modified Cholesky factorization (see [21]) of
the projected Hessian and solve (via forward and backward substitution)

LDLTh, = -Z7g

where LDLT=ZTGZ +D, L is a lower-triangular matrix, D is a diagonal matrix and
D is a diagonal matrix with diagonal elements equaling zero if the projected Hes-
sian is sufficiently positive definite.

The solution of these equations is the major computational expense in our
algorithm. Properties of the projected Hessian suggest that it may be possible
to improve this situation by solving the original system of equations via a trun-
cated linear preconditioned conjugate-gradient technique.
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10. Numerical Results

This algorithm has been implemen{'.ed in ANSI FORTRAN on a Vax - 11/780
using single precision arithmetic throughout. The following values were used:

machine constants - ey = 7.45%x107°

activity and stationarity - g =10"! ¥ = 1072
descent - 6 =10"° 8= 107°
line search - n = 9x107! u=1x1078
termination - Tp = 5x1078 T, = 5x1078

The results of fourteen test problems are presented here. The data for
these problems appears in Tables la and 1b. (The reader should examine the
given references for further information on these problems.)

Table 1a : Data for test problems 1 through 8.

$| Sowce |n|m|p| =?! y [v] [wy]
(0,0) [ 2 22 2 10 0 0l
[18] E0.0; EI,O; 201 O 4 1 4
1 s{3|2]| (00 2,0 0 o 414
Ex 523 0.0 .1 (30 40 454
(0,0) 454
[19] ©0) | 19 [g 3 5]
2 232 (10,20) 8
Ex. 5.7 ©9 | Goro 72
[19] o) | @4 bso
3 2|3z 6.7 3
Ex. 5.8 ©o | &7 fa 5 1
: (0,0)
[4] ©0) | @4 2300
4| problems [ 2| 5 | ®| (0,0 ((;'123) 2 02132
88
0.0
0,0
6.10) | (0,0)
41 | s) | @4 _ 1559
5 | Problems | ® | 3 | 2 ((eég) ((g.fg) 1, 1=j <k=9  lores
(R4) | (BB
(2.4)
(6,10)
[4] .15y | (39 0.16 0.58 0.18
8 | problems | 2| 3 | R | (5.15) 88'?8; 15 0.18 0.58 0.18
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Table 1b : Data for test problems 7 through 14.

# | Source z! y [v] Twsl
(0,0)
(2.4)
(0,0 6.2) 11 1 1 21 111 111
[32] (2.-1) (6.10) 110210 1 h12 211 111
7 | Problem5 (3,-1) (8.8) 102101111 122 111
(4,-1) (7.7) 10t | jt11 111 221
(5,~1) (0,1) 111 111 112
(0.2)
(©3)
(-1,0)
8 Proll)?ezz]n 1a (3.2) ?13-8 NA [121]
(-1,0)
9 Progfgx 1b (1,107 E?cl); NA [121]
10 | problem 1c (1.000001,-107%) 22’3 NA [121]
(“1,0)
1 ProlE?eZL]n 1d (1.001,-1079) 88 NA [121]
(-1.0)
12 Pro[halzelmz (3.2 E‘:g NA [111]
: ' (-1.0)
13 Prcft?lzelms - (3.2) E?g NA [11.4141]
("110)
14 pm[1,31i]m4 (3.2 83 NA [11.415 1]

The results of the test runs are summmarized in Tables 2a and 2b. The
figures in these tables refer to the number of iterations required to reach the
solution.

Table 2a compares the performance, on problems 1 through 6, of: this algo-

rithm (NEW), the hyperboloid approximation procedure (HAP) proposed by
Eyster, White and Wierwille [17], a modified HAP (MHAP) that results when
alterations suggested by Ostresh [31] are applied to HAP, and the projected
Newton method (PNM) proposed by Calamai and Conn [6]. Table 2b compares
the performance, on problems 7 through 14, of: this algorithm (NEW), the pro-
jected Newton method (PNM), and a method described by Overton [32] that is
closely related to the method outlined here. '
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The effectiveness of the proposed degeneracy handling scheme is illus-
trated by comparing the performance of PNM and NEW on problems 1 through 7.
(No degenerate iterates are encountered in solving problems 8 through 14 since

=1.) The former algorithm uses random perturbations to resolve degenera-
cies but is much like the latter in all other respects.

Table 2a : Test results for problems 1 through 8.

gp=1
P A PNM NEW
HAP MHAP
e e e e e et

1 1681 1381 17 12

2 647 548 8 3

3 87 70 4 4

4 45 45 12 9

5 142 114 20 27

8 242 184 8 3
TOTAL 2824 2320 74 58
Key:

HAP refars to the Hyperbolold Appraximation Procedure devsloped by Eyster, Whits and Wiermills [17].
MHAP refers to a modified HAP suggested by Ostresh [31].

PNH refers to the Projected Newton Method outlined by Calamat and Conn [8].

NEW refers to the method proposed here.

&, refers to thas initial hyperbolie constant used in HAP and MHAP.

Table 2b : Test results for problems 7 through 14.

# Overton PNM NEW
m
7 20 49 27
8 8 8 8
8 7 4 4
10 7 5 5
11 4 5 5
12 7 9 ]
13 12 8 10
14 8 8 7
TOTAL 80 B4 73
Kay:

OVERTON refers to the method proposed by Overton [32] for minimizing a sum of Euclidean narms.
PNM refars to the Projectad Newton Mathod outlined by Calamai and Conn [8).
NEW refers to the method proposed here.

Tables 3a, 3b and 3c give further details on the performance of our pertur-
bation scheme on problems 1, 5 and 7. Each row in these tables, except the last
row of Table 3c, presents the situation at a degenerate iterate. One important
feature illustrated by these results is that the cardinality of N is always (much)
smaller than the cardinality of M, — #,. This means that, compared with the
random perturbatxon scheme outlined in [6], only a few dependent terms need
be perturbed using our scheme. Another feature illustrated by these results is
that the number of degenerate points encountered is not directly related to the
presence or degree of degeneracy at the solution z*
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Teble 3a : Performance of perturbation scheme (Problem 1)

Iteration # | M, [H,| [N ty
1 12 5 4 5
2 8 5 0 4
4 11 5 4 2
6 7 5 1 4
7 7 5 2 2
8 5 5 0 1
9 5 5 0 1
10 5 5 0 1
12 9 5
Key:

| S| retersto the cardinality of set S.
t 2 equals the number of out-of-kilter Lagrange multipliers.
Note: This problem is degenerate at zWenaz®.

Table 3b : Performance of perturbation scheme (Problem 5)

Iteration # | M) | ®e] |N| ty
-
4 13 ’ 8 2 8
11 18 8 1 8
18 37 8 7 9
18 29 8 0 1
28 38 8 0 0
27 38 8
Kay: (see Table 3a) .

Note: This problem is highly degenerate at T ‘.

Table 3¢ : Performance of perturbation scheme (Problem 7)

Iteration # | M, |, | |N| t,
1 11 5 3 5]
2 B 5 0 5
S 7 4 0 4

14 10 4 3 3
17 7 4 2 3
18 5 4 0 3
19 5 4 1 2
20 5 4 1 1
21 4 4 0 2
x2 3 3 0 1
4 4 4 ] 1
14 2 2

Key: (see Table 3a)
Note: This problem is degenarate at = m,
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The reader should be made aware that there is little difficulty in modifying
the approach presented here to solve linearly constrained location problems
and mixed norm location problems. Details of these extensions can be found in

(sl
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