TRANSLATION OF SYSTOLIC ALGORITHMS
BETWEEN
SYSTEMS OF DIFFERENT TOPOLOGY

K. Culik IT
Sheng Yu

Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada

CS-85-06
May 1985



TRANSLATION OF SYSTOLIC ALGORITHMS
BETWEEN
SYSTEMS OF DIFFERENT TOPOLOGY®@

K. Culik IT and S. Yu

Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1

Canada

Abstract. The concept of topological transfor-
mations of algorithms between different systolic sys-
tems has been introduced by the first author and Fris
in [1]. Here we will show some interesting applica-
tions of this technique. For example, we will show
that any algorithm for a linear systolic array can be
transformed to a computationally equivalent twice
slower algorithm for a unidirectional systolic ring with
the same number of processors and that any algorithm
for a bidirectional 2-dim array can be transformed to
three times slower one for a unidirectional toroid.
These translations of algorithms are very simple and
can be mechanically performed. Therefore, it is easy to
design software which, for example, accepts high level
programs for bidirectional linear arrays and produces
low level programs for a systolic ring. The former are
easy to write while the latter are easy to implement
and make fault-tolerant.

1. INTRODUCTION

The concept of topological transformations of
algorithms between different systolic systems has been
introduced in [1]. In this paper, we will show that
algorithms for linear or multi-dimensional iterative
arrays can be transformed to algorithms for one-way
systolic rings or toroids by the means of topological
transformation. We will also use this tool to show that
a cellular automaton can be simulated by an iterative
array or a one-way systolic ring. In this section, we will
illustrate the concept of topological transformation by
an example. A formal definition will be given in Sec-
tion 3.

We need a suitable notion of simulation for sys-
tolic networks. This notion of simulation should be
strong enough to require that two networks not only
compute essentially the same input-output function,
but that they do it by using essentially the same algo-
rithm. On the other hand, this simulation should be
weak enough to allow that certain elementary compu-

(a) This work was supported by the Natural Sciences and Engineering
Research Council of Canada under Grant A-7403.

This paper will be appeared in the Proceeding of 1985 Inter-
national Conference on Parallel Processing, August 1985.

tation steps have different locality and timing. We
study the similarity between systolic networks by com-
paring their space-time diagrams which we call unrol-
lings, see [S]. The concept of the topological simula-
tion is based on the similarity of the unrollings of dif-
ferent systolic networks.

We start with an example which, we hope, will
give readers an intuitive view of our main tool. Our
goal in this example is to design a sorting algorithm
for a systolic ring using the well known odd-even tran-
sportation sorting method [17]. Since this method can
be easily implemented on the systolic network N
shown in Figure 1.1, we will give an algorithm for N
first, and then transform it into an algorithm for a sys-
tolic ring by using our tool of topological transforma-
tion. Note that the unrolling of N is shown in Figure
1.2 and is called a trellis [2,3,7].

Figure 1.1

Let LI(RI) and LO(RO) denote the left (right)
input and left (right) output respectively. A simple
sorting algorithm (for each cell of N) is as follows.

if LI = B or RI = B then
LO = LI,
RO := RI;

else

[LO .= min(LI,RI);
RO := max(LI,RI);

Observe that the graph in Figure 1.3 shows a
different geometrical representation of the same
directed graph of Figure 1.2. Clearly, these two



Figure 1.2

Figure 1.3

graphs are topologically equivalent. However, we now
observe that Figure 1.3 is also an unrolling of a systolic
network, namely the unrolling of a one-way linear
array A shown in Figure 1.4. Since their unrollings
are topological equivalent, the sorting algorithm for
network N can be directly transformed to one for net-
work A, which requires simpler communication but
more processors. To further improve this, we observe
that instead of using a new processor on the right hand
side at every even step in Figure 1.3, we can actually
re-use the “abandoned” processor on the left hand side.
The graph rolls back to the left instead of stretching to
the right. Thus, Figure 1.3 can be further topologi-
cally transformed to obtain Figure 1.5. We notice that
the Figure 1.5 is the unrolling of a one-way systolic
ring shown in Figure 1.6. So, we can now write down
the sorting algorithm for this one-way systolic ring by

Figure 1.4

Figure 1.5

88

Figure 1.6

simply changing the names of the variables of the pre-
vious algorithm. Here we use IN,OUT and R to
denote the input, output and the register of a cell,
respectively. For simplicity, we omit the accesses of
external input and output.



if IN = B or R = B then

OUT := R;
R = IN;
else
[OUT := max(IN,R);
R = min(IN,R),

In the above example, the resulting algorithm for a
systolic ring uses the same number of processors and
the same number of steps as the one for network N
but simpler communication. Assuming that the origi-
nal algorithm is correct, we have also proved the
correctness of the new algorithm for a different sys-
tolic network.

2. SYSTOLIC NETWORKS AND THEIR
UNROLLINGS

Recently, systolic networks or algorithms have
been studied extensively. See, for example,
[5,7,9,11,12]. Here we use a similar definition of sys-
tolic networks as given in [12]. Informally, a systolic
network is a directed graph, finite or infinite, with a
function associated with each node and positive delay
with each directed edge. There is one distinct node,
called the “host”, which is the “I/O interface” of the
network to the external world. At each time step, every
processor gets the inputs from all its incoming edges
and produces outputs to its outgoing edges. For for-
mal definition see [1].

In this paper, we mainly restrict our interest to
the systolic networks with single serial input stream
from the host and single serial output stream to the
host.

An unrolling of a network is essentially a space-
time diagram. It is an infinite digraph obtained by
redrawing a new copy of the whole network at each
time step and changing the destination of every com-
munication line to the one described as follows. Let ¢/
denote the node ¢; of network N at time . If (¢;.¢;)
is a directed edge of NV and k is the delay of this
edge, then in the unrolling of N, there should be a
directed edge (c,-’,c]‘-+k) rather than (cf,cj), for any
t = 0. Since we assume that all the delays are posi-
tive, there are no cycles in any unrolling. We usually
use IV to denote the unrolling of N.

The delays associated with the edges of N are
important in the formation of the unrolling N, but
they are no longer meaningful in the unrolling which
has been formed. Each edge in N simply represents a
relation of data dependency. The whole unrolling is a
dataflow diagram.

3. SIMULATION OF SYSTOLIC NETWORKS

Two systolic networks N, and N,, which pro-
duce the same output for the same input, are naturally
considered equivalent. Similarly, if any input string of
N, is translated into an input string of N, by a finite
transduction and the output of N, is translated back
to the output of NV, by another finite transduction, see
Figure 3.1, then we say that N, simulates N;.

Figure 3.1

This input-output simulation is too general for
our purpose since we are interested in a systolic imple-
mentation of a given algorithm. Thus, we are free to
choose a time and location to perform its elementary
steps but we want to preserve the structure of the algo-
rithm. We introduce a stronger concept of simulation
for systolic networks, called topological simulation.

In an unrolling N of a systolic network N, the
output value of a node depends on the output values of
certain other nodes. Since the edges of the unrolling
N have no delays attached to them and they simply
represent the data dependency, the shape of a unrol-
ling, either skewed or straight, is not important to the
computation. An unrolling N of a systolic network N
is actually a “Hasse diagram” of a partially ordered
set (poset) [6]. All the nodes of N constitute the
poset and the edges of N show the relation. The ele-
ments are distinguished by their assigned functions.
Two unrollings, whatever shapes they have, will be
considered to be equivalent if they specify the same
partial order of elementary computation steps. A par-
tial ordering still can be preserved when the poser is
enlarged by adding new elments or is projected to a
smaller set, etc. Consequently, if we reshape an unrol-
ling without changing the existing partial ordering, or
we insert new nodes between the original ones or group
several nodes into one in some regular way etc, and if
the newly formed “Hasse diagram” is an unrolling of



another network N’, then the computations of N can
be recovered step by step from the computations of
N’. Then we say that N’ topologically simulates V.
This is an intuitive explanation of the concept of topo-
logical simulation.

Let N; and N, be two systolic networks. We
say, more formally, that N, topologically simulates
N, if there is a mapping p from unrolling N to N 2
and a function T such that for any node v in N,
there is a node v/ = p(¥) in N, which satisfies
6,(¥) = t1(0,(¥"),¥), for any computation &, 6, of
N, and N,, respectively. A computation ¢ on a sys-
tolic network N is formally defined as an assignment
of values to the edges of the unrolling of N which
satisfies all the functions at the nodes.

It is easy to see that if systolic network N,
topologically simulates N, then N; with minor
changes input-output simulates N,. The changes will
only involve adding the data paths for input and out-
put symbols from or to the host.

4. THE SIMULATION OF ITERATIVE ARRAYS
BY SYSTOLIC RINGS AND TOROIDS

Linear or multi-dimensional arrays are simple
and powerful models for systolic systems. Many
theoretical properties as well as application algorithms
for them are known [9,11]. One-way systolic ring is an
even simpler structure which has less communication
lines and is easier to implement and to make fault-
tolerant. See [4,10,13]. But in many cases, it appears
to be more convenient to design an algorithm for the
linear array rather than for the ring. Thus, it might be
advantageous to design an algorithm for the former
and then transform it to the one for the latter. In this
section, we show that such transformation is always
possible and can be performed mechanically.

Observe that, one step operation of a bidirec-
tional array can be simulated by two steps of a uni-
directional array, see Figure 4.1. After two steps of
simulation, the corresponding node in the simulation
migrates to the next node. A more general view of this
simulation is shown in Figure 4.2.

Let LI, RI, LO, RO and REG represent the
left and right input, left and right output and the regis-
ter of a cell of a linear iterative array. In each time
step the following functions are computed.

LO := f|(LI,REG,RI);
RO := f4(LI,REG,RI);
REG := fo(LI,REG,RI);

To simulate the same computation on a uni-
directional linear array, we need two time steps and
two registers in a cell for storing the intermediate

(@) (&)
Figure 4.1

Figure 4.2(b)

results. Let IN, OUT, R1 and R2 denote the input,
output, register 1 and register 2 of a cell, respectively.
Then the first step of the two step operation is

OUT := f'(IN,R2);

and the second step is



OUT := f%IN,R1);
R2:= f%(IN,R1);
R1:= fi{(IN,R1);

where fi(f'(a,b).c) = filabyc) for i=1, 2, 3.
The input symbols are read by the first cell of the uni-
directional linear array and passed to the cell which is
currently simulating the first cell of the bidirectional
array. Since the input symbols are passed at full
speed from left to the right and the image of the simu-
lated first cell is moving at half speed in the same
direction, the input arrive at the simulated first cell
one symbol every two steps, which is just the speed of
the simulation.

By the same observation as in the example of
the sorting algorithm given in Section 1, we obtain an
algorithm for the unidirectional systolic ring. The
image of every simulated cell actually moves along the
ring once every the other step. We assume that the
reading and writing of external inputs and outputs is
always done by a special cell. So, we need a marker to
show the location of the simulated first cell and a
channel to pass the input symbols to the image of the
first cell. The output is passed in the same direction
and reaches the special cell from the other end of the
ring. Since the output is produced every the other
step and transported at full speed, one output symbols
will be communicated to the host at each time step.

Notice that in the first step of the two step
simulation, the intermediate result f'(IN,R2) has to
be passed to the next cell. This does not necessarily
increase the size of the alphabet of the working sym-
bols. In many algorithms, such intermediate values
are already available.

Let n be the number of cells used by the simu-
lated array, and s be the number of cells in the uni-
directional ring. The ideal case is n = s. If s is
much bigger than n, the output will go through a long
path and will be unnecessarily delayed. Some
hardware designs provide the devices which allow half
or a quarter of the total cells to be used as a ring, €.g.,
the WATERLOOP project. This flexibility avoids the
unnecessary waste of the resources. If »n > s, there
are mainly two solutions. First, we can use the “group-
ing” technique. Chose a suitable k (k = [n/s1)
and simulate & cells by one cell. The other solution is
to logically divide every cell into k tracks and the
whole ring is formed by going around the physical ring
k times.

Multi-dimensional bidirectional arrays are very
useful for matrix computations. Using the same idea
as the one for linear arrays, any n-dimensional bidirec-
tional array can be simulated by a n-dimensional uni-
directional toroid, shown for n = 2 in Figure 4.3(b),
with n+1 steps simulating 1 step. We show this for
n =2

i
i)
ini
Uil

e

i
=

(@)

(b)
Figure 4.3

Let I; and O;, i = 1,2,3,4, be the four inputs
and four outputs of a node as shown in Figure 4.4(a),
and R be the register. Then one step computation on
the bidirectional array can be described as follows.

(@)

%)
Figure 4.4

0 := f11,I3,13.14R);
0, = fo(I1.0513.14R);
03 := f3U 02131 4R);
04 := f4(I1,12,03,14,R);
R := fs(I,,I3,03,14R);

Now, we use three steps of a toroid to simulate the
above computation.

Step I
01 = Il;
0, = f'(I,R);



Step 1I:
Ol = f”(129R2);
02 = fM(IlyR]);

Step III:
0, = 3.1y
0, = fil.1y);
R = fi1,.1y);
Ry = fill 1)
R, = fill 1)

where f;(f"(f(a,b),c).f"(d,e)) = fi(d,a,e,c,b), for
i=1,23,4,5.

:'I.‘\' ”-‘\ (I‘liI ) "-\\

[t 7 = ; ]

s N’ N
.‘ "

I :: : 1 (I214.R)
I, (InR) -~ <t (LR)
G O%E
Step I Step IT

O3
Ol
\ e %/ O,
N 4
i
R 1]
i '
] [
S S
R
Step III
Figure 4.5

Figure 4.5 gives an intuition of this 3-step simulation.
The image of a simulated cell moves along a diagonal
line to the upper right direction at speed of three steps
a shift. There are various ways to define the inter-
mediate functions f’, f” and f”. The best way of
defining them is the one which needs minimal com-
munication between the cells.

5. SIMULATION OF REAL-TIME CELLULAR
AUTOMATA BY ITERATIVE ARRAYS IN 2N
STEPS

This topic has been studied in [14,16]. The
simulation in [16] takes 6n-2 steps (but can be done in
3n—1 steps if Systolic Conversion Theorem [12] had
been used). Here we show that a cellular automaton as
a language acceptor can be simulated by an iterative
array in 2n—1 steps. Recently, this result was also
obtained independently by Ibarra, Palis and Kim ([8])
using a different technique. Here, we use the tool of
topological transformation. This example suggests that
using this technique, we can transform any algorithm
for a systolic network with parallel input to an algo-
rithm for a network with serial input.

Figure 5.1 shows a real-time computation of a
cellular automaton. To transform it into a computa-
tion with serial input, we first turn the unrolling of it
anticlockwise a right angle. It becomes a digraph
shown in Figure 5.2(a).

R0
X

3 1 15

18 19 20

4 1
25

1 2 23 24

<

><

.
.
-
-3

<
<

Mg

Figure 5.1



: ><19°><:><19><24
3 >< 8 ><13><18><23
2 >< 7 ><12><17><2
> XXX

Figure 5.2
5
4
3 10
2 9
1 8 15
7 14
6 13 20
12 19
1 18 25
17 24
16 23
22
21
Figure 5.3

But it is not an unrolling of any network. However, by
shifting every next column two time steps down, we get
the diagram in Figure 5.2(b) which is the unrolling of

the network in Figure 5.4. Now this network can be
easily simulated by the network shown in Figure 5.5.
By using the Systolic Conversion Theorem, the collect-
ing of an output symbol from any cell at any step can
be changed to the collecting at the first cell at the
same step. So, the result is easily obtained. The
details of the transformations of the state transition
functions are omitted.

Figure 5.4

g 8 8 8.

Figure 5.5

References

[11 K. Culik II, and I. Fris, Topological Transforma-
tions as a Tool in the Design of Systolic Net-
works, Department of Computer Science, Univer-
sity of Waterloo, Research Report, CS-84-11,
(April 1984).

[2] K. Culik II, J. Gruska, and A. Salomaa, “Systolic
Trellis Automata, Part 1,” Inter. J. Computer
Math., 15, (1984), 195-212.

[31 K. Culik II, J. Gruska, and A. Salomaa, “Systolic
Trellis Automata, Part II,” Inter. J. Computer
Math., 16, (1984), 3-22.

[4] K. Culik II, and S. Yu, Fault-Tolerant Schemes
for Some Systolic Systems, Department of Com-
puter Science, University of Waterloo, Research
Report CS-82-39, (Oct. 1984).

[5] K. Culik, and J. Pachl, “Folding and Unrolling
Systolic Arrays,” ACM SIGACT-SIGOPS Sym-
posium on Principles of Distributed Computing,
Ottawa, (August 1982).

[6] B. Dushnik, and E.W. Miller, “Partially Ordered
Sets,” Amer. J. Math. 63, (1941), 600-610.



[71 O.H. Ibarra, M.A. Palis, and S.M. Kim, “Design
Systolic Algorithms Using Sequential Machines,”
25 Annual Symposium on Foundation of Com-
puter Science, Singer Island, Florida, (Oct. 1984),
46-55.

[8] O.H. Ibarra, M.A. Palis, and S.M. Kim, Some
Results Concerning Linear Iterative (Systolic)
Arrays, Computer Science Department, Univer-
sity of Minnesota, Technical Report 84-16, also to
appear in J. of Parallel and distributed Comput-
ing.

[9] H.T. Kung, “Why Systolic Architecture?”
Computer, 15, 1(1982), 37-46.

[10] H.T. Kung, and M.S. Lam, “Fault-Tolerant and
Two-Level Pipelining in VLSI Systolic Arrays,”
MIT Conf. on Advanced Research in VLSI, (Jan.
1984).

[11] H.T. Kung, and C.E. Leiserson, “Systolic Arrays
(for VLSI),” Proc. Sparse Matrix, 1. S. Duff and
G. W. Stewart, ed., Society for Industrial and
Applied Mathematics (1979), 256-282.

[12] C.E. Leiserson, and J.B. Saxe, “Optimizing Syn-
chronous Systems,” Proc. 22nd Annual Sympo-
sium on Foundations of Computer Science, Nash-
ville, Tennessee, (1981), 23-36.

[13] N.S. Ostlund, WATERLOOP V2/64: A Highly
Parallel Machine for Numerical Computation,
presented at Vector and Parallel Processors 11,
Oxford, (1984).

[14] A.R. Smith III, “Real-Time Language Recogni-
tion by One-Dimensional Cellular Automata,” J.
of Computer and System Science, 6, (1972), 233-
253.

[15] H. Umeo, and K. Sugata, “Linear-Time Simula-
tion of Synchronous Cellular Computers,” Tec.
Rep., TIECE of Japan, EC82-1, (1982), 1-14.

[16] H. Umeo, K. Morita, and K. Sugata, “Determinis-
tic One-Way Simulation of Two-Way Real-Time
Cellular Automata and Its Related Problems,”
Information Proc Letters, 14, (1982), 158-161.

[17] J.D. Ullman, Computational Aspects of VLSI,
Computer Science Press, (1984)



	
	
	
	
	
	
	
	
	
	
	

