bARHMERT
PARTMENT
PARTMENT

CERE
CE DE

QOQ0

3 &

Y

3

Y
Y

L
11
ITY

Ve
IVERSITY OF WATERLOO C

Reassembling
Polygons
from

Edges

Richard I. Hartley

CS-85-04

April, 1985

Reassembling Polygons from Edges

Richard I. Hartley

Visitor to VLSI Group,
Department of Electrical Engineering,
University of Waterloo,
Waterloo, Cntario N2L 3Gl
CANADA

ABSTRACT

Many geometrical algorithms accept as input a set of polygons
specified by their sequence of vertices and give as output a set of
polygons which result from some operation on the input polygons.
For instance, the output may represent the contour of the union of
the polygons. In many cases a plane-sweep algorithm is used for
such a problem. Typically such an algorithm will output the edges
in the order that they would be encountered by a sweep line. Thus,
one is left with the problem of determining which polygon each edge
belongs to and ordering the edges in their matural cyclic order
around each polygon. This is the problem considered in this paper,
where it will be referred to as reassembling the set of edges.
Although it is relatively easy to reassemble a set of edges of
polygons in a single sweep, a naive approach will use O(NN} space
where N is the number of edges. This paper gives a space-efficient
algorithm for doing the reassembly. It involves a forward and a
backward sweep over the data.

1. Introduction

There have been a number of papers which have been concerned with doing
various sorts of logical operations on sets of polygons. For instance, [OW] look at
the contour problem for sets of polygons, [OWW] consider the more general prob-
lem of arbitrary boolean cperations, whereas [NP] consider intersection problems.
The output from such algorithms is typically a list of edges given in the order in
which they would encounter a sweep line, without any indication of whkether two
edges belong to the same polygon, or if they do, what the order of the edges
around the individual polygons might be. The preblem of assigning to each edge
a polygon number designating which polygon it is in and a sequence number giv-
ing its order around the perimeter of the polygon is the subject of this paper.
Such a process will be known as reassembly. If one is not too concerned by space
usage, it is indeed relatively easy to reassemble a set of polygon edges using a
plane sweep algorithm. As the plane sweep progresses, edges are chained together

2 Richard Hartley

in lists representing their sequential order around the perimeter of each polygon.
When the polygon closes on itself, completing the circle, the edges may be output
in order by running down the list. Thus, one can solve the reassembly problem by
maintaining a certain amount of past history. This will, kowever involve consid-
erable memory requirement, for in a typical application, that of VLSI design, the
power lines may be polygons with O(IV) edges where N is the total number of
edges in the entire layout.

This problem was recognised by Szymanski and Van Wyk [SvW] who were
interested in space efficient extraction and electrical connectivity algorithms.
They gave an algorithm which will take an unsorted set of edges and determine
which polygon each edge belongs to. This is half the task of reassembly. Szy-
manski and Van Wyk used a double sweep to achieve this numbering. In the first
sweep, a temporary file is built which is read backwards during a second sweep,
and the required output is generated. The point of their algorithm is that only
O(C) space is required, where C is the maximum number of edges crossed by a
sweep-line in the plane. This is achieved by keeping no past history of the sweep
in memory. All the required information is incorporated in the temporary file.
Since for a standard design, C will be O(W), this will represent a considerable
saving of space. The algorithm given here also uses a forward and a backward
sweep to achieve a complete numbering of the edges of all the polygons in a space
efficient manner.

An application in which it may be important to have the edges completely
ordered is that of producing a plot of the set of polygons (perhaps representing a
VLSI design) using a mechanical plotter. Here it is plainly wasteful to plot the
edges in the order they are encountered by a sweep line, for this means raising the
pen and moving to another part of the design after plotting each line. It is
clearly preferable to plot complete polygons at once without removing the pen
from the paper. This requires the ordering of edges which is the subject of this
paper.

Another application is in the resizing problem in mask generation. In this
case, we are given a set of polygons in various layers. Appropriate boolean opera-
tions on the layers are carried out in order to generate the mask layers. Before
lithography, however, it is often desirable to resize the mask by over or undersiz-
ing it by a small amount. This comes down to drawing a polygon slightly inside
or slightly outside each polygon in the mask. In order to do this, it is convenient
to have the edges of each polygon in order.

2. Outline of the algorithm

The input to the reassembly algorithm will consist of a set of edges of
polygons. As a first step, these will be ordered according to their maximum y-
coordinate. That is the edges will be arranged in the order in which a sweep line
sweeping upwards through the plane will encounter their higher end point. Note
that this is the natural order in which edges are output by a plane-sweeping algo-
rithm in many problems, and so no sorting is required. In fact, rather than
accepting input from a file, the algorithm to be described can be tacked immedi-
ately on to the end of a plane-sweep implementing, say a contour algorithm. It
will also be assumed that each edge is supplied with an orientation which points

Reassembling Polygons 3

one way around the perimeter of 2 polygon. If this is not the case, then minor
changes would be needed in our algorithm. For convenience, we will make the
usual assumption that the edges are in general position. By this is meant that no
two vertices have the same y-coordinate (which in turn means that there are no
horizontal edges and that no two vertices coincide). It will not be assumed, how-
ever that the polygons are non-overlapping, although this willi be a common appli-
cation.

The output of the algorithm will be the same edges in the opposite order,
each with two labels attached, the polygon number of that edge, specifying which
polygon it belongs to, and the sequence number of the edge. The sequence
number of the edge will be such that if one numbers the edges of the polygon
starting with the highest vertex and proceeding in the direction of orientation of
the edges, then each edge will receive its own sequence number. If required, a
simple sort on these two keys will sort the output file into polygons and the edges
into order.

The key concept in the reassembly algorithm is that of a derived polygon
which will now be defined. Given a polygon P, the derived polygon of P, denoted
P! is the polygon, the vertices of which are the maxima of P in the order they
occur around the perimeter of P. By a maximum is meant a vertex which lies
above its two incident edges. Figure 1 shows a polygon with its derived polygon
shown in dotted lines.

figure 1.

The sequence of edges hanging between two maxima is called a chain. This is a
pun, for on the one hand the edges in a chain hang between the two maxima like
a catenary, and on the other hand, it will be possible to assign an ordering to the
edges in the chain. The second derived polygon of P is the derived polygon of P’,
and so on. Inductively one can define the i-th derived polygon, P*). An edge of
the i{-th derived polygon is referred to as an i-edge and a chain made up of i-

4 Richard Hartley

edges will be called an i{-chain. They may also be referred to as edges or chains
of level 1. The following piece of notation will be useful. Given an i-edge, e*),
denote by De*) the (i +1)-edge which corresponds to the i-chain containing e()
We will say that e®*) belongs to the edge De*).

It is quite possible, indeed likely, that the derived polygons of a simple
polygon may not be simple (that is will have self intersections). This will concern
us not at all.

Let C denote the maximum number of 0-edges which meet any horizontal
cross-section of the plane. It is a simple observation that no cross-section can
meet more than C edges of any fixed level, . More will be said about this point
later on.

A local ordering of edges is an assignment of local sequence numbers to the
edges of a chain. These local sequence numbers are integers assigned to the edges
in the chain which increase with respect to the orientation of edges in the chain.
For the time being sequence numbers will be consecutive integers.

It is important to note that PG*D has at most half as many edges as P‘",
and so the length of the derived sequence is bounded by the logarithm of the
number of vertices of P. At the penultimate level, the (m —1})-st derived polygon
will have a single maximum and a single minimum and hence will consist of a sin-
gle chain. Then, at the next and final level, the m-th derived polygon will consist
of a single edge both of whose endpoints are equal (this will be called a null edge),
after which the derived sequence will terminate. The reassembly algorithm uses
this finiteness of the derived series as the basis for recursion. The procedure
reassemble given below takes as input a file P; containing the set of i-edges and
gives as output a file S; which contains the s-edges complete with polygon
numbers and sequence numbers, that is, reassembled. It makes use of a tem-
porary file I;. The outline of the complete reassembly algorithm follows.

procedure reassemble (i : integer);
begin
Assign local sequence numbers to the :-edges which are read from
the file P,; Write the edges with their local sequence numbers out
to file I;;

Produce the file P, . ,;
if P, ., is not empty then reassemble (i+1);

Combine S,,, (which gives the sequence numbers of the (i +1)-
edges, that is of the {-chains) and the local sequence numbers (giv-
ing the order within the i-chains) contained in the file 7; to produce
the reassembled file S,

end;

begin (* Main program *)
reassemble (0)
end.

Reassembling Polygons 5

Let us look a little more closely at what is happening here. The file P, is
read and two output files are produced, I, and P,. The procedure then calls itself
recursively, whereupon P, is read and I, and P, are produced. This continues for
m stages until eventually P, ., is empty. At this point we have m+1 locally
ordered files, Iy to I,,. This will be called the first phase of the algorithm. It
may be represented schematically by figure 2.

Pl P2 Pm

P, —=| stage0 stagel —2s ... —Mu stagem |

; !)

Iy I, L,
figure 2.

During the second phase of the algorithm, we work our way back up
through the levels of recursion. At the i-th stage, file I, is combined with the
reassembled file S;,, to produce S;. This may be represented schematically by
figure 3.

Sl Sz Sm

So «—| stageO stage 1 le—2— ... =2 stagem je—O

I I !

Iy I, I,
figure 3.

3. Detalls of phase 1 - an upwards sweep.

Suppose that we are considering the f-th stage of phase 1, the input edges
being f-edges. Imagine a line sweeping upwards past a polygon and that we are
trying to assign local sequence numbers to the edges as we see them. Each chain
contains just one minimum. This minimum point divides the chain into a rising
branch and a falling branch. The sweep line will first encounter a chain at the
minimum and will then sweep simultaneously up the rising branch and backwards
up the falling branch. If the two edges meeting at a minimum are numbered -1
and 0 and if the edges of the rising branch are numbered by counting upwards
from O and the edges of the falling branch are numbered by counting backwards
from -1 as they are met by the sweep line, then the edges of the chain will be
numbered in order. Figure 4 shows a chain with the local ordering of its edges.

The local sequence numbers can be assigned to each edge as soon as it is
seen and each edge can be written out immediately to the file I; along with its
local sequence number and a label representing which chain it belongs to. In
order to do this, it is necessary to maintain a data structure keeping information
about the state of each chain which currently intersects the sweep line. The
required information for each chain will be the vertex currently at the top of both
the rising and falling branches, the number of edges in each of the two branches
and a label which has been assigned to the chain. These labels must be reused
when possible but in such a way that no two chains which are simultaneously

6 , Richard Hartley

figure 4.

active have the same label. Thus, when the sweep line finishes passing over a
chain, its label becomes available for reuse. Since there can be no more than C
chains meeting the sweep line at any time, a total of C labels will be used and the
space requirement will be O(C). When a new edge is read in, it is necessary to
find which chain it belongs to by comparing its bottom vertex with the vertices at
the top of the branches of the currently active chains. If it does not match any of
these vertices, this means, of course that the edge belongs to a new chain. The
search will require O(logC) time and so there will be a total time requirement of
O(n;log C) to assign local sequence numbers and chain labels to each edge. Here,
n; is the total number of i-edges. Since n;,<n/2', summing over i gives a total
time requirement of O(NlogC) for searching.

Now, during the sweep just described, the individual chains are being built
from the bottom up. When the chain is fully built, both the rising and falling
branches being complete, the vertices at the top of each of these branches are the
two vertices of an edge of the derived polygon. This edge is written out along
with its label (that is, the label which was assigned to the completed chain) to the
output file P,,, of (i+1)-edges. Notice that the edges in this file are ordered
according to their higher end point, just as the edges in the original input file
were. At this time, the completed chain should be deleted from the chain table
and the label on the chain be made available for reassignment.

At the end of the first phase we will have files I; for 0=i=<m. The file I
will contain along with each i-edge, () the following information : label of e(‘);
label of De(*); local sequence number of (). The formal description of this first
phase algorithm as just described will be the same as that given in section 7 with
the following exceptions: there will be no reference to level, falling length or
rising_length; where falling_length appears on the right hand side of an assign-
ment, replace it by 0 and replace rising_length by 1; replace the recursive call to
treatedge by a write to the file P,,;.

Reassembling Polygons | 7

4. Detalls of the second phase - & downward sweep.

During stage i of the second phase of the algorithm, the file S, containing
the reassembled (i +1)-edges is combined with I; contzining the locally ordered
i-edges to produce the file S;. We think of this step in terms of a downwards
plane sweep. At all times during the sweep we maintain a look-up table contain-
ing information about all (i +1)-edges currently meeting the sweep line. This
table will be an array indexed by the label of the (i +1)-edge and as data it will
contain the polygon number and the sequence number of that edge as read from
the file S;.,. The edges in the file S;., will be arranged in the order that the
downward sweep will first encounter them. Thus, when the sweep encounters a
new (i +1)-edge, that edge is read from the file and placed in the look-up table.
Since there are a maximum of C labels in use, this table will require O(C) space.
Edges will be read one by one from the file I; and the (i+1)edge which they
belong to will be looked up in the table. (Remember that I, contains for each
edge ¢*), the label of the (i +1)-edge it belongs to.)

Notice that the i-edges are arranged in I; in such a way that by reading the
file backwards, we will encounter them in the order they will be met by the down-
ward sweep. Suppose then we have read a new i-edge, e) from I, and that we
have found the (i+1)-edge, De® to which e®) belongs, by looking it up in the
table. The following information is now known about the edge e®) : label of 0
polygon number of De® (and hence of e(‘)); sequence number of De(‘); local
sequence number of e(‘); This may be written out to a temporary file. The pairs
(sequence number of De®, local sequence number of e(')) may subsequently be
lexicographically ordered within each polygon to give the sequence numbers of the
i-edges. In other words, these pairs may be compressed to single sequence
numbers. This may require sorting, but it can be done in O(nlogn) time and
constant space, so it will be ignored. Besides, in the next section, it will be seen
how to get the sequence numbers directly without any such sorting.

During the sweep it will often occur that an ¢-edge, the next edge in I, and
an (i +1)-edge, the next edge in S,,, are both met by the sweep line at the same
time. In order for the look-up to succeed, the (i +1)-edge must be read into the
look-up table before the i-edge is processed.

Sometimes, we will come across a null edge in the file /;. This means that a
polygon disappeared at this stage in phase 1 and hence the null edge belongs to
no (i +1)-edge. Correspondingly, in our backwards traversal of the files I, during
phase 2, we are meeting this new polygon for the first time. The appropriate
action is to assign a new polygon number to this edge and call it edge number 1
in chain number 1.

With n; defined as before, the i-th stage of this sweep will take time O(n;).
Summing over i we get a total time requirement of Ofn), ignorixg the time
required for compressing sequence numbers.

The algorithm just described is much the same as that formally presented
in section 7, except that instead of the assignment statements updating the table,
the records are written out to the file S,,; and read in again at the next stage.

8 Richard Hartley

5. First improvement - obtalning sequence numbers directly.

The algorithm as presented is in fairly rough form, though fine for theoreti-
cal purposes. However it is amenable to a number of aesthetic and practical
improvements.

The first troublesome feature is the fact that the sequence numbers we get
are in fact ordered pairs which need to be compressed either at the end of the
pass, or between consecutive stages. It would be nice if we could avoid having to
do this by assigning integer sequence numbers at once. This is indeed possible
using a different definition of sequence number. Define the reference vertez for
an edge as follows. For a 0-edge (an edge of the original set of polygons), the
reference vertex is the vertex at the tail of the edge with respect to its orienta-
tion. An i-edge, (), corresponds to a chain of (f —1)-edges. The reference vertex
for €) is the minimum vertex on that chain. Note that the reference vertex is
not in fact one of the two vertices of the edge, but rather a vertex of the original
polygon. Next define the sequence number of an edge to be the number of 0-
edges lying between the highest point on the polygon and the reference vertex of
the edge counting around the perimeter in the direction of orientation. Denote
this by o). Note that it is the sequence numbers of the O-edges that we ulti-
mately wish to calculate.

_ Define the local offset of an edge e*) to be the integer Ae(*) defined to equal
0e®)—oDe™). In the case where €*) is a null edge, define Ae) = oe(). Rearrang-
ing this definition, we get

oet) = gDel)+ xe(*) (5.1)

if ¢®) is not a null edge. This suggests that the sequence number of e®) can be
determined by adding the sequence number of De(*) (which may be found by
induction) to its local offset.

We would like to calculate local offsets of i-edges during an upwards plane
sweep, just as we calculated the local sequence numbers in the original algorithm.
This is possible without any great alteration as long as we carry two pieces of
extra information around with each edge, namely its rising length and its falling
length. The falling (or descending) length of an edge e®), denoted by 8¢t is the
number of 0-edges which lie between the starting vertex of the edge and its refer-
ence vertex. Similarly, the rising length, pe(*) is the number of 0-edges between
the reference vertex and the final vertex of the edge. Clearly,)+ pe() gives a
measure of the length of the edge. Notice that for a null edge, we have

ae® = §el) = e (5.2)

It should be clear now how local offsets are assigned to edges during the
first phase of the algorithm instead of the local order numbers previously dis-
cussed. On the backward sweep, the sequence numbers are determined using (5.1)
or (5.2). The full algorithm is given later.

Reassembling Polygons 9

6. Simplifying flle accesses.

It may be thought unpleasant that the number of files required is O(log N).
This can be avoided by noting that no more than two of the files P; need exist at
one time, and the same is true for the files S;. Furthermore, the files I; are read
in backwards order and each file is read backwards. Thus, it is possible to string
them all together with markers between the separate stages. In this way, we can
get away with three files only.

There is still excessive reading and writing of files, since files P; are written
and then read in the same order. It would be possible to pipe the output from
stage ¢ to the input of stage ¢ +1. A similar thing could be done during phase 2.
Unfortunately, it would no longer be possible to string the files I; end to end as
just suggested since they are created simultaneously. It turns out, however that
the output from all the stages of phase 1 may be combined, all mixed up
together. This turns out to be not only possible, but advantageous, as it simpli-
fies the algorithm. Instead of thinking of piping the various stages of the phase 1
forward sweep together, however, we will have them call each other recursively.

Consider the forward sweep. This will be implemented as a single pro-
cedure treatedge which will be passed each of the input edges in turn. As before,
edges will be provided with local offsets and chain labels and written out to a file
I. When a chain is completed and an edge of the derived polygon is thereby
found, instead of writing it to a file as before, it is passed recursively to the pro-
cedure treatedge. Thus the file, I will contain edges of all levels mixed together.
Note, however that an (i +1)-edge, eC*1 i3 not written out until all the i-edges
making up the corresponding f-chain have been written. Conversely, reading the
file backwards, we will come across the entry representing the edge ¢'**?) before
encountering any of the i-edges which go to make it up. Because of this, the
table look-up will always find the correct (s +1)-edge.

The edges of all levels are labelled with one series of labels. In general there
will be log N stages running at once, and so O(ClogN) labels used and that
amount of storage required for the chain tables. Thus we pay a log/N space
penalty for simultaneous execution. In fact, the number of levels can not be
greater than the logarithm of the number of edges in the largest polygon and so
the penalty may not be great. In the forward sweep, the chain tables for chains
of different levels must be kept separate, and so each edge must have its level
recorded with it. In the backwards sweep (phase 2), this is not necessary, since
lookup is by chain label.

7. Formal description of the algorithm.

A formal description of the algorithm is given next in some sort of quasi-
Pascal. For convenience, values of records are specified by listing their fields
inside braces. We start with the format of the input, intermediate and output
files.

10 Richard Hartley

type
edge_type = record
top_vertex : point;
bottom_vertex: point;
orientation : (up, down);

label : integer;
level : integer
end;

P_record = record
edge : edge_type;
falling length : integer;
rising_length : integer;
end;

I_record = record
edge edge_type;
chain_label : integer;
local_offset : integer;
end;

S_record = record

edge : edge_type;

polygon_number : integer;

sequence_number : integer;
end;

During the first phase, we will keep an array of chain tables, one for each
level. The data contained in these table is described by the following statements.

type
branch = record
length : integer;
top : point;
is_complete : boolean;
end;

table_entry = record
chain_label : integer;

rising_branch : branch;
falling branch : branch
end;

The following functions and procedures will be used to access this table.

Reassembling Polygons 11

function Insert (vertex : point) returns “table_entry;

function find_in_rising branch (vertex : point)
returns “table_entry;

function find_in_falling branch (vertex : point)
returns “table_entry;

procedure delete (node : “table_entry);

The function find_in_rising_branch will look in the table associated with
the level in question for a table_entry, T, with T.rising_branch.top = vertex and
will return its location if found. Otherwise it will return a NULL pointer. Simi-
larly, find_in_falling_branch will search for the vertex in the falling branch.

Insert will generate a new label, lab, and insert the record

{ chain_label : = lab,
rising_branch :=
{ length : = 0, top : = vertex, is_complete : = false },
falling branch : =
{ length : = 0, top : = vertex, is_complete : = false }}

in the table for the appropriate level.

Finally, delete will delete the node pointed to. It is now possible to give the
main routine of the first sweep.

procedure treatedge (input : P_record);
var T1, T2 : “table_entry;
begin

(* Check whether this is a null edge *)
if input.edge. top_vertex = input.edge.bottom_vertex then
begin (* See (5.2) *)
write ({ edge : = input.edge,
chain_label : = NULL,
local_offset : = input.edge.falling length}) tofile I ;
return
end;

(* Consider first the case where the edge is oriented upwards. *)
if input. edge. orientation = up then
begin

(* Find which chain the input edge belongs to *)
T1 := find_in_rising_branch
(input. edge. bottom_vertex, input.edge.level);
if T1 = NULL then
T1 : = Insert (input.edge. bottom_vertex, input.edge.level);

12 Richard Hartley

(* Write out a new record to fiie I *)
write ({ edge : = input.edge,
chain_label : = T1" chain_label;
local_offset : = T1".rising branch.length
+ input.edge. falling length}) tofile I ;

(* Update the chain *)

T1%. rising_branch. top : = input. edge. top_vertex;

T1".rising_branch.length : = T1" rising branch.length +
input.edge.falling_length + input.edge.rising length;

(* Now determine whether we are at a maximum. *)
T2 := find_in_falling branch

(input. edge. top_vertex, input.edge.level);
if T2 = NULL then return;

(* We are at a maximum. Qutput (i+ 1)-edges as necessary. *)
T2".falling_branch.is_complete : = true;
if T2 . rising branch.is_complete then

begin
treatedge ({ edge : = {
top_vertex : = T2".falling branch. top,
bottom_vertex : = T2".rising_branch. top,
orientation : = down,
label : = T2". chain_label,
level : = input.edge.level + 1},
falling length := T2".falling_branch. length,
rising_length : = T2".rising branch.length });
delete (T2);
end;

T1%. rising_branch.is_complete : = true;
if T1%.falling_branch.is_complete then

begin
< similar to the treatment of T2 >

end;
end; (* Of the case where edge.orientation = up *)
if input. edge. orientation = down then
begin
<similar to the up case >
end;

end;

Reassembling Polygons 13

This procedure should be passed each of the 0O-edges in turn specifying
edge.level := 0, edge.label := anything (since labels on O-edges are never used),
falling_length := O, rising_length := 1.

Next consider the second sweep of the algorithm.

var table = array [1..C] of record
polygon_number : integer;
sequence_number : integer;
end;
newpolygon : integer;
input : I_record;
D_edge : S_record;

begin
newpolygon : = 1;
while records still left in file I do
begin
read (input) from file I (reading the file backwards);

if input.chain_label = NULL then (* This is a null edge *)
begin (* See (5.2) *)
table [input. edge.label] : =
{ polygon_number : = newpolygon,
sequence_number : = input.edge.local_offset };
newpolygon : = newpolygon + 1
end

else

begin
D_edge : = table [input.chain_label];

if input. edge.level = O then
write ({ edge : = input.edge,
polygon_number : = D_edge. polygon_number,
sequence_number : = input.local_offset +
D_edge.sequence_number
}) to output (* See (5.1) *)

else table [input.edge.label] : =
{ polygon_number : = D_edge. polygon_number,
sequence_number : = <same as above> };
end
end
end.

14 Richard Hartley

The algorithm as presented assumed that the edges were oriented. In the
case where we are presented with unoriented edges, certain changes need to be
made. One can assign arbitrarily an orientation to each edge. The orientations
will not be consistent around the perimeters of polygons. When an edge is read
in, it will be necessary to search for its lower vertex in both branches of each
chain. The exact details of computing offsets will depend on whether the orienta-
tion of the edge is consistent with the orientation of the chain or not. The reader
is invited to fill in the details.

8. Avolding logarithmic time searches.

The part of this algorithm which forces it to have time bound of O(nlogn)
instead of linear time is in the searching of the chain tables. As each i-edge is
considered, a search is made to determine which ¢-chain it belongs to. Further, if
it happens to adjoin a maximum, then another search is necessary to determine
the other i-chain which meets it at that maximum. At levels higher than O this is
in fact wasted effort, for this information may be deduced at the moment that
the i-edge is generated in stage i —1 and can be passed along with the edge to
the next stage. The i-chains may then be kept in an array indexed by their chain
number, and search time will be constant instead of logarithmic.

More explicitly, suppose two i-chains, c?) and c&‘) meet at a point p. Sup-
pose, however, that when the sweep passes p, neither of the two chains is yet
complete. This will mean that the two corresponding (i +1)-edges, ef‘*l) and
e§*) must form a minimum at p. In other words, a new (i +1)-chain will start
at that point. A new label should be generated for this new chain and recorded in
the nodes which service the ¢-chains cﬁ‘) and cg) (let us say in a new field called
next_level_chain_label). Later, when the i-chains are complete, and the
corresponding (i +1)-edges are passed on to the next level, the label for the chain
they belong to can be passed as well. Figure 5 a shows the situation described
here.

RN i+1 I 1+1
.-. S e‘) PN P+1)
~

~

€
~

; Ll . ~
egﬂ;l},’ : H

figure 5a. figure 5b.

Similarly, suppose that c{?) is completed at point p, whereas c§’ is not.
This means that p will be an elbow at the next level. In other words, ef'*V and
e$*1 belong to the same (i+1)-chain. The appropriate action is to copy the
field next_level_chain_label from the node for c{‘) to that of c§). The edge
ef**Y is then passed to the next level as before. This is illustrated in figure 5 b.

Reassembling Polygons 15

The case where both the i-chains are complete at p corresponds to a max-
imum at the next level. Details are omitted.

Thus, searches at levels greater than 0 can be done in constant time. At
level O the information required to avoid a logarithmic search may not be avail-
able. If, however, the input to the reassembly algorithm comes from a prelim-
inary plane-sweep, for instance a contour or boolean operations algorithm, then
by a minor adjustment, it is often possible that the required information can be
supplied in additional time linear in the size of the output. In such a case, the
reassembly algorithm can be tacked on to the end of the preliminary algorithm at
the cost only of a time increase linear in the size of the output.

9. Examples and Counter-examples

In this final section an attempt is made to anticipate certain questions
which may occur to the reader concerning the properties of derived polygons.
Suppose that we have a polygon with n edges. Is it not possible to find a better
bound than O(logn) for its derived length? The answer to this is no. In fact,
given any polygon, P, it is easy to construct another polygon P, which has twice
as many vertices as P, and such that Py=P,". This is done simply by attaching a
small “V“ between each pair of consecutive vertices of P,. Starting with P, hav-
ing a single null edge, we can construct, inductively, a polygon P,, which has 2™
edges and derived length m.

The next example is meant to approximate the power distribution (Vdd) net
of a VLSI chip. Fix a constant c. Define a I-comb to be a thin vertical rectan-
gle. Now define inductively an i-comb to be the polygon obtained by taking ¢
(i =1)-combs, rotating them 90 degrees clockwise and attaching them to the right
of a vertical stem. Figure 6 shows a 3-comb with ¢=3.

figure 6.

16 Richard Hartley

Now an m-comb has O(c™) edges. Rotate it slightly to put it in general position.
It can be seen that it has derived length m which is O(logn) where n is the
number of vertices.

It was remarked earlier that if C; is the maximum number of :-edges which
meet any sweep line, then for all i, C;=<Cy=C. For this reason, when we run all
stages at once, as discussed above, the total space requirement is not larger than
O(Clogn). The question naturally occurs whether any relation such as
Ci+1<k.C; may not hold with & a constant less than one. If this were the case,
then summing over i, we would get a space requirement of O(C) instead of
O(Clogn). In fact, this is not the case. The following example shows that, indeed
the space requirement can be O(Clogn).

Define an order 1 saw-tooth, denoted s,, to be a simple minimum. We will
enclose it in a box to show how important it is. Now, the order s saw-tooth, g,
is defined inductively by taking two copies of s;_,, placing one above and to the
right of the other, joining them as shown in figure 7 and enclosing in a box.

=

81 S;

figure 7.

An important thing to note about saw-teeth is that a cross-section meets at
most 2¢ edges of 8; and in fact this maximum is achieved. The proof is a simple
induction. Now define an m-saw to be the polygon made up of saw teeth of ord-
ers 1 to m placed and connected as shown in figure 8. (Presumably a saw with
teeth of orders 1 to ¢ would be called a c-saw.) Note that the cross-section shown
in the figure meets P, in 2m points, and that is the maximum possible. Count-
ing edges reveals that an m-saw has n = 2™ *!—1 edges. Now, the decisive pro-
perty of saws is that the derived polygon of P, is simply P;.,. Each saw tooth, s,
becomes a tooth &;.,, and s, disappears. The cross-section in figure 8 will meet
2(m—1) edges of the derived polygon and so on. In fact, counting edges of all the
derived polygons, the cross-section meets a total of m(m-+1) edges. Since
m=%C and m+1=[logn], this equals %C[logn] which is O(Clogn) as
required.

Reassembling Polygons 17

cross-section

el Uil £ T T e I — me— —

3m

figure 8.

References

[NP] Nievergelt, J. and Preparata, F.P., Plane sweeping algorithms for intersect-
ing geometric figures. Communications of the ACM 25, (1982), 739-747.

[OW] Ottmann, T. and Wood, D., The contour problem for polygons. University
of Waterloo Technical Report CS-84-88, (1984)

[OWW]
Ottmann, T., Widmayer, P. and Wood, D., A fast algorithm for the
Boolean masking problem. University of Waterloo, Computer Science
Technical Report CS-82-87, (1982).

[SvW]
Szymanski, T.G. and Van Wyk, C.J., Space efficient algorithms for VLSI

artwork analysis, Proceedings of the 20th IEEE Design Automation
Con ference (1983), 734-739.

	

