BERARTMENT
DEPARTMENT
DEPARTMENT

ER SEIENGE
it

l
+
T

AERSR SRNR:

WAL
W

V&

ITY OF WATERLOO COMPUT

[terative Tree Arrays
with
Logarithmic Depth

Karel Culik 11
Oscar H. Ibarra
Sheng Yu

CS-85-03

March, 1985

ITERATIVE TREE ARRAYS
WITH

LOGARITHMIC DEPTH"

Karel Culik II', Oscar H. Ibarra'! and Sheng Yu'!

ABSTRACT

An iterative tree array (ITA) is a binary tree-connected sys-
tolic network in which each cell is a finite-state machine and the
input is applied serially at the root. We present an algorithm for
simulating a pushdown stack of size S(n) on an ITA of depth
log S(n) in real-time. Some interesting applications are the follow-
ing:

(1) Every linear iterative array operating in (simultaneous) time
T(n) and space S(n) can be simulated by an ITA in time
T(n) and depth log S(n).

(2) S(n)space bounded on-line TM’s are equivalent to logS(n)
depth bounded ITA’s.

(3) logn depth is a necessary and sufficient condition for an ITA
to recognize every context-free language.

(4) loglogn depth is a necessary condition for an ITA to recognize
a nonregular set.

(5) Every on-line nondeterministic TM with logn —bounded non-
determinism operating in linear time and space can be simu-
lated by an ITA with O(log n) depth in linear time.

KEYWORDS
iterative arrays, iterative tree arrays, bounded nondeterminism, systolic
systems, parallel computing.

* This work was supported by the Natural Sciences and Engineering Research Council of Canada
under Grant A-7403, and the National Science Foundation MCS83-04756. Research of O.H.Ibarra
was also supported by a John Simon Guggenheim Memorial Foundation Fellowship.

+ Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

4t Department of Computer Science, University of Minnesota Minneapolis, MN 55455, USA

2 Culik II, Ibarra, and Yu

1. INTRODUCTION

Linear iterative arrays (LIA's) have been studied extensively (see [2, 3, 5)).
An LIA is a linear bidirectional array of finite-state machines with serial
input/output. Recently, an interesting generalization of the LIA, called iterative
tree array (I TA), was introduced in [4]. An ITA is a tree-connected synchronous
network of finite-state machines with bidirectional data flow whose serial
input/output is at the root of the tree. An example of such a device, but one in
which the cells are not finite-state, is the dictionary (data base) machine of 1]
(see also [11]). The main result in [4] is that every nondeterministic T'(n)-time
bounded on-line TM can be simulated by a T(n)-time bounded deterministic
ITA. An ITA (even a real-time) may use exponentially many processors and,
therefore, is of little practical interest in the general form. In this paper, we study
D(n)-depth bounded ITA's. We show a number of results on the power of such
devices as related to Turing machines (TM’s) and LIA's with various time, space

and nondeterminism bounds. Our emphasis is in the case when D(n) = logn.!

As our main auxiliary result we present an algorithm for simulating a push-
down stack of size S(n) on an ITA of depth logS(n). Moreover, the simulation
is done in real-time (i.e. without time loss). Clearly; since the size of the stack is
not known in advance, the algorithm must generate the nodes that are used in
the simulation gradually, level by level, as the stack size grows. What compli-
cates matters is the restriction that each cell of the ITA, being a finite-state

machine, can only store a constant amount of information. Recently, in [1], a

1Al logarithms in this paper have base 2.

Iterative Tree Arrays ‘ 3

systolic tree implementation of a dictionary machine was given, where an algo-

rithm for storing n elements in a tree of logarithmic depth was presented. The

algorithm, which supports all the dictionary and priority queue operations as well

as some other data queries, requires each cell of the tree to store an unbounded

amount of information and to execute a program that is not finite-state comput-

able. Here , we show that for pushdown stack simulation, the cells of the tree

can be made finite-state.

The stack simulation result has a number of interesting applications some of

which are listed as follows.

(1)

(@)

(3)

(4)

()

(6)

Every linear iterative array operating in (simultaneous) time T'(n) and space
S(n) can be simulated by an ITA in time T(n) and depth logS(n).
S(n)-space bounded on-line TM’s are equivalent to log S(n)-depth bounded

ITA’s.

logn depth is a necessary and sufficient condition for an /TA to recognize

every context-free language.

loglogn depth is a necessary condition for an ITA to recognize a nonregular
set.

Every on-line nonderministic TM with logn-bounded nondeterminism
operating in linear time and space can be simulated by an ITA with O(log n)

depth in linear time.

If the nodes of the ITA are TM's rather than finite-state machines, its

power is not increased.

The paper consists of four sections in addition to this section. Section 2

4 Culik II, Ibarra, and Yu

recalls the definitions of linear iterative arrays and iterative tree arrays. Section
3 presents the stack simulation algorithm. Section 4 modifies the algorithm so
that it can be used to simulate a linear iterative array of size S(n) on an itera-

tive tree array of depth logS{(n) in real-time. Finally, Section 5 discusses some

applications.

2. PRELIMINARIES

A linear iterative array or automaton (LIA) is a one-dimensional one-way
infinite sequence of finite-state machines called cells, see Figure 1. Each of the
cells, except for the leftmost cell, communicates with its left and right neighbors.
The leftmost cell (the special cell) communicates with the external world and its
right neighbor. The device works synchronously. At the beginning (time 0), all
the cells are in a quiescent state. The next state of a cell is a function of its
current state, the current state of its left neighbor (or possibly an external input
for the special cell) and the current state of the right neighbor. The input to the
LIA is read on-line as follows. The states of the special cell are partitioned into
two classes: reading states and nonreading states, with the initial state being a
reading state. An input string is of the form a0, - - a,$,n = 0, each g, in L.
The special cell can only read an input symbol a; (or $) when it is in a reading
state. Thus a, is read at time 0. After reading $, the special cell can no longer
enter a reading state. The input a, - - - @, is accepted if the LIA when given
a)---a,$ eventually enters an accepting state after reading $. (Note that an
accepting state must be a nonreading state.) The language accepted by the LIA is

the set of all accepted strings. The LIA has time complexity T'(rn) (or is T(n)-

Iterative Tree Arrays 5

time bounded) if any string of length n that is accepted requires no more than
T(n) time to accept. Clearly, T(n) = n+1. If T(n) = n+1, the LIA is said to
operate in real-time. Similarly, we say that the LIA is S(n)-space bounded if any

string of length n that is accepted uses no more than S(n) cells.

input
—(

special cell

Figure 1. An LIA

LIA’s in general and real-time LIA's in particular have been studied quite

extensively, see, e.g., [2,3,5].

An interesting generalization of the LIA, called steratsve tree array or auto-
maton (ITA), was introduced and studied in [4]. The cells of the ITA are con-
nected as an infinite full binary tree (see Figure 2). The root of the tree (the spe-
cial cell), like the leftmost cell in an LIA, éommunicates with the external world.
As in an LIA, the input a, - --a,$ is applied at the root on-line. The ITA
operates like an LIA except now each nonroot cell has three neighbors. The
notions of acceptance, time complexity, and space complexity are similar to those
for an LIA. In addition, we have another complexity measure — depth complex-
ity. An ITA is D(n)-depth bounded or operates in depth D(n) if any string of
length n that is accepted uses no more than D(n) levels of the tree, the root

being at level 0.

Culik II, Ibarra, and Yu

Figure 2. An ITA

3. IMPLEMENTATION OF A STACK ON AN ITA

In [4], an algorithm for simulating a (pushdown) stack on an LIA was
briefly described. The algorithm uses three “registers’” in each cell. Hence, up to
three stack elements can be stored in a cell. The leftmost cell is the top of stack.

The following are the two basic operations of each cell of the iterative array:

(1) If there are three elements in the cell, the rightmost element will be sent to

the right neighbor.

(2) If there is only one element in the cell, it will get one element from the right

neighbor.

An example of a sequence of stack pushings and poppings is shown in Figure 3.

In [4], the simulation of a stack by an ITA is implemented in such a way
that a path of the tree is used to function as an LIA. Hence, for a stack of size
S(n), the tree will have depth S(n). Thus exponential storage is used. We now

show a technique, called “‘snaking technique”, in which only log S(n) depth of the

Iterative Tree Arrays 7

m e [—
(2) c | b | a :
(3) d el a —
4 c o f—
(5) b N —

Figure 3.
tree is used to simulate a stack of size S (n). Moreover, the simulation is done in

real-time (i.e. without time loss).

The basic idea is to snake the stack on the tree along the in-order traversal

route. Figure 4 shows the outline of the sequence of the stack cells. The detailed

picture is given in Figure 5.

Figure 4.

Culik II, Ibarra, and Yu

Figure 5.

In this scheme, each node of the tree simulates three cells of the LIA imple-
mentation of the stack. We call them Cell 1, Cell 2 and Cell 3, respectively, as

labeled in Figure 6.

Figure 6.

Since the size of the stack is not known until the end of the input, the depth
of the tree to be used cannot be decided in advance. Therefore, the depth cannot
be of a static size during the computation. It must be dynamic and expanded
gradually level by level as the size of the stack grows. The following points

should be noted when considering the correctness of the algorithm.

(A) The stack tree (the part of the tree which is being used for the

(B)
(©)

(1)

(2)

Iterative Tree Arrays 9

implementation of the stack) should be balanced so as to guarantee loga-

rithmic depth.
The stack should never be broken at any time.

There should always be enough space in the stack.

We now describe the algorithm.

Initially, there is only one node, the root, in the stack tree and this node is
marked ‘bottom’. Cells 1 and 3 of this node are marked ‘EP’ (Expansion

Point) and ‘EE’ (Expansion End), respectively. See Figure 7.

Figure 7.

Whenever a symbol is pushed into Cell 1 of the node with the ‘bottom’
mark, it gives the ‘bottom’ mark to its right son and sends an expansion sig-
nal ‘EXP’ along the path up to the root. Every node on this path, in turn,
sends the expansion signal ‘EXP’ down the left subtree after receiving th

signal. To be precise, there are three cases:

Case 1. When the root or an internal node receives the signal ‘EXP’, it

just sends ‘EXP’ signals to its left and right sons.

10 Culik 11, Ibarra, and Yu

Case 2. When a node on the new level (of the tree) receives the signal
‘EXP’, the node is marked ‘leaf’, and ‘EXP’ is no longer sent down.
Figure 8 shows three successive configurations of the tree after an ele-

ment is pushed into Cell 1 of Figure 8(a).

(a) (®) (¢)

Figure 8.

Case 3. When a node marked ‘leaf’ receives the signal ‘EXP’, Cells 1 and 3
of this node are marked ‘EP’ and ‘EE’, respectively, the ‘leaf’ mark is
removed, and ‘EXP’ signals are sent to its left and right sons. Figure
9 shows the configurations that the tree assumes when an element is

pushed into Cell 1 of the bottom node (Figure 9(a)).

(3) The rules for linking the cells (local expansion) are as follows. With one
exception, when an ‘EP’ cell holds three symbols, a new cell will be inserted
into the stack, and the ‘EP’ mark will be given to it. The choice for the

new cell depends on the case.

Iterative Tree Arrays 11

root

leaf bottom
bottom

(a) (®) ()

leaf boftom leaf leaf |eaf bottom

(4) ()
Figure 9.

Case 1. If the ‘EP’ cell is Cell 1 of a non-leaf node, then the new cell is

Cell I of its left son.

Case 2. If the ‘EP’ cell is Cell 1 of a leaf-node, then the new cell is Cell 3

of the same node.

Case 3. If the ‘EP’ cell is Cell 3 of a leaf-node which is a left son, then the

new cell is Cell 2 of its parent node.

Case 4. If the ‘EP’ cell is Cell 2, then the new cell is Cell 1 of its right son.

The case when the ‘EP’ cell is Cell 3 of a leaf-node which is a right son is an

12 Culik II, Ibarra, and Yu

exception. In this case, no new cell is inserted since it must be the case that
the ‘EP’ mark has met ‘EE’. When this happens, we say that the local

expansion is finished.

In order to show that the algorithm is correct, it is essential to prove that
the next level of expansion will never occur until the current expansion has been
finished. That is, a stack symbol is pushed into the new bottom node only if

every cell marked ‘EE’ has been passed through by some stack symbol.

Now let us consider the ‘EE’ markers which are in the rightmost node of the
maximum sub-stack-tree whose roots are directly connected to the rightmost path
of the tree. These nodes are shown in Figure 10 for a stack tree of four levels.
The proof for other ‘EE’ markers is easily derived from the proof of these cases.
We name the selected nodes as C,,C,, ..., C,, where n is the depth of the
stack tree. For the ‘EE’ cell in cell C;, there are 5*2'~'=4 cells from the ‘EE’
cell to the bottom node (exclude the cells in the bottom node). Each cell has at
most three symbols. So, there are at most 3*(5*2'~1—4) = 15*2'"1—12 sym-
bols stored starting from this cell. It takes 2i steps for the ‘expansion’ signal to
reach this node. Thus, there are at most 2i symbols pushed through during the
signal propagation. Therefore at most 15*2'~!+2;{—12 symbols are possibly
stored. But 2'*!—2 (except the rightmost one) new cells can be expanded beyond
this ‘EE’ cell. There are alltogether 9*2°~'—6 old and new cells and hence
more than 18*2'~1—12 symbols must be stored at some time step in order to
reach the next cell. Since 15%2'~'+2{—12 < 18%2'"'—12 for any i = 1, the
bottom cell can be reached only if some symbol(s) pushed through the ‘EE’ fence,

i.e., the expansion at that local point has been finished. The special case when

Iterative Tree Arrays i3

the root is initially the only node in the stack tree is clearly also correct.

The balance and non-overflow properties of the stack tree can be easily veri-
fied by the above result. It is also easy to see that the stack is never broken

directly from the expé.nsion technique.

Figure 10.

4. SIMULATION OF AN LIA ON AN ITA

We know that an LIA can be simulated by an ITA. The ITA can simply
use one path, say the leftmost path. However, this takes O(n) depth (of the
ITA) and, hence, exponential space (i.e. number of cells). We can reduce the

number of cells used by the ITA by using 2 modified snaking technique.

An LJIA is different from a stack in that it grows regularly at the right end
instead of pushing and popping at the top. Moreover, every element of the LIA
enters a new state at each time step rather than being simply stored as a memory

symbol. In order to use the snaking algorithm, the following modifications are

14 Culik II, Ibarra, and Yu

necessary:

(a) If a cell has one or two simulated LIA elements in it, it should get one ele-

ment from the next cell, provided there is one.

(b) In the local expansion, the new expanded cells get elements from the ‘EE’

marked cell rather than the ‘EP’ marked cell.

We leave the details to the reader.

From the above discussion, we have

Theorem 1. Every LIA operating in (simultaneous) time T(n) and space

S(n) can be simulated by an ITA in time T(n) and depth log S(n).

The next result shows that ITA’s are considerably more powerful than

LIA’s.

Corollary 1. The class of languages accepted by LIA’s in real-time is properly
contained in the class of languages accepted by ITA s in real-time and depth

logn.

Proof: Let

L={31#32# "'*%“!I‘mﬂl |31| = lle == |3z'| = |1l| =t,

Z1,Zg ... ,2y € {0,1}",y = z, for some 1 s i =< 2}

Using the same approach as in [4], it is easy to prove that L is accepted by
an ITA in real-time and depth logn. The fact that L is not accepted by any

real-time LIA can be easily verified by using Cole’s Theorem [3]. O

Iterative Tree Arrays 15

8. APPLICATIONS

In this section, we investigate the relationship between time- and depth-
bounded ITA’s and time- and space-bounded on-line multitape Turing machines
(or simply on-line TM’s). See [8] for the definitions of on-line and off-line TMs.
We also look at recognition of context-free languages by ITA’s. We begin with

the following theorem.

Theorem 2. An on-line TM operating in time T(n) and space S(n) can be

simulated by an ITA in time T(n) and depth log S(n).

Proof: Clearly, each S(n)-space bounded worktape of the on-line TM can be
replaced by two S(n)-space bounded pushdown stacks. The theorem now follows
from the stack-implementation algorithm (described in Section 2) by using several
channels at each node of the ITA, each channel corresponding to a pushdown

stack. O

Conversely, we have

Theorem 3. An ITA operating in time T(n) and depth D(n) can be simu-

lated by an on-line TM in time T(n)2P®) and space 2P0,

Proof: The cells of the ITA are stored sequentially on a worktape of the on-

line TM according to the following labeling:

16 Culik II, Ibarra, and Yu

.

.

It follows that the on-line TM needs at most 2°®*) steps to update the states of

the cells of the ITA for each move of the ITA. O

From Theorems 2 and 3, we get the following corollary.

Corollary 2. S(n)-space bounded on-line TM’s are equivalent to logS(n)-

depth bounded ITA's.

Corollary 3. logn-depth bounded ITA's are equivalent to deterministic

linear-bounded automata.

Corollary 4. Oflogn)-depth bounded ITA's are equivalent to polynomial

space-bounded TM 's.

The next corollary shows that an additive constant in the depth complexity
does not change the computing power of the ITA. However, a multiplicative

constant increases the power.

Corollary §.

(1) For any rational constant ¢ = 1, (logn +c)-depth bounded ITA's can be

converted into logn-depth bounded ITA 's.

Iterative Tree Arrays 17

(2) For any rational constants 1< c¢ < d, dlogn-depth bounded ITA's are
strictly more powerful (i.e. accept more languages) than clogn-depth

bounded ITA ’s.

Proof: This follows from Corollary 2 and the tape-reduction and tape-

hierarchy theorems for TM's [8]. O

Next, we show that an ITA needs loglogn depth to accept a nonregular

language.

Theorem 4.
(1) There are nonregular languages accepted by ITA s in loglogn depth.

(2) If L is accepted by an ITA in D(n) depth and L is nonregular, then

D) o,

in
. -{- loglogn

Proof:

(1) The nonregular language L = {0"1* | n = 1} can be accepted by an on-
line TM in logn space and, hence, by Corollary 2 can be accepted by an

ITA in loglogn depth.
(2) This follows from Corollary 2 and the fact that if L is a nonregular
language accepted by an on-line TM in space S(n), then inf %)%;} >0
N -

[8]. o

Corollary 8. Every (one-way) deterministic counter language can be accepted

by an ITA in linear time and loglogn depth.

18 Culik II, Ibarra, and Yu

Proof: It is obvious that every deterministic counter language can be accepted
by an on-line TM in linear time and logn space. The result follows from

Theorem 2. O

The next result concerns context-free languages (CFL's).

Theorem 8. logn depth is a neceseary and sufficient condition for an ITA

to recognize every CFL.

Proof: Every CFL can be accepted by an off-line TM in space log?n and,
therefore, by an on-line TM in space n. Hence, by Corollary 2, every CFL can
be accepted by an ITA in depth logn. The necessity follows from Corollary 2

and the observation that the CFL L = {z#zF% | z in {0,1}*} requires

inf S(n) > 0 for recognition by an on-line S(n)-space bounded TM. O
n

It can be shown that every CFL can be accepted by an LIA in quadratic

time and space (see, e.g., [9,10]). Hence, from Theorem 1 we have

Corollary 7. Every CFL can be accepted by an ITA in quadratic time and

2logn depth.

For the case of deterministic CFL’s, the simulation is more efficient.

Corollary 8. Every deterministic CFL can be accepted by an ITA in linear

time and logn depth. Moreover, the logn depth is necessary.

Proof: This follows from Theorem 2 and the observation that a deterministic

pushdown automaton can be simulated by an on-line TM in linear time and n

Iterative Tree Arrays 19

space. That logn is necessary follows from the proof of Theorem 5 since L is a

deterministic CFL. O

We can define nondeterministic LIA’s and ITA’s in the obvious way (i.e.,
each cell is a nondeterministic finite-state machine), and our results carry over to

the nondeterministic case. For example, Corollary 3 becomes

Corollary 9. logn-depth bounded nondeterministic ITA's accept ezxactly the

context-sensitive languages.

Since every CFL can be accepted by a real-time pushdown automaton {7],

we have

Corollary 10. Every CFL can be accepted by a real-time nondeterministic

ITA in depth logn.

Finally, we show that an ITA can efficiently simulate an on-line nondeter-
ministic TM (on-line NTM). In [4] it was shown that every T(n)-time bounded
on-line NTM can be simulated by a deterministic ITA in O(T(n)) time. Here we
determine the depth that the tree needs for the simulation in relation to the
bounds on space and nondeterminism of the simulated NTM. We use the notion

of N(n)-bounded nondeterminism from [6].

Theorem 8. Let M be an on-line NTM with N{(n)-bounded nondeterminism
operating in time T(n) and space S(n). If N(n) is computable by an ITA with
D(n) depth in time O(T(n)), then M can be simulated by an ITA with

O(max(N(n)+log S(n),logn,D(n))) depth operating in O(T(n)) time.

20

Culik II, Ibarra, and Yu

Proof: We may assume that the on-line NTM M has pushdown stacks for its

worktapes and that it has at most two choices for each move. The idea of the

proof follows that of Theorem 5.2 in [4]. M is simulated by the ITA as follows.

(1)

(2)

3)

(4)

(5)

First, the entire input string is read and stored (in the snaking way, if neces-
sary) and the function N(n) is computed. The computation of N(n) is
such that at the end of the process, all nodes in level N(n) of the ITA are

tagged.

At the beginning of the simulation, the root of the 7 TA functions as the fin-
ite control of M, and every path starting from the root and ending at a

tagged node simulates the stacks of M.

To simulate a move with two choices, the node which is currently simulat-
ing the finite control pushes all its stacks one level down, and passes the
current state to its two soms. Its two sons then simulate two different

choices, respectively.

When a path is not long enough for simulating the stacks, it extends from
the tagged node, and the extension follows the rules of the snaking tech-

nigue.

The computed results from all branches ar ORed and sent back to the root.

Since N(n) levels are reserved for branching in order to simulate N(n)

nondeterministic moves and logS(n) levels are necessary for the simulation of

the stacks, we need O(N(n)+log(S(r)) depth of the ITA to implement the

simulation, provided log(n) and D(n) are “small“, where log(n) is the depth

Iterative Tree Arrays 21

needed for storing the input and D(n) for calculating N(n). O

Corollary 11. Any on-line NTM with logn-bounded nondeterminism operat-
ing in linear time and space can be simulated by a deterministic ITA with

O(log n) depth in linear time.

Every node (cell) of an ITA, as defined above, is a finite-state machine. We
now consider a generalization when every node is a TM, performing one computa-
tional step at every time step of the whole /TA. We call this generalized device
an iterative tree machine (JTM). The major difference between these two sys-
tems is that the storage in each node is finite in the former but infinite in the
latter. We will show that, surprisingly, these two kinds of systems have the
same power if time is the only concern. Then we will show how much more depth

is needed for an ITA to simulate an JTM.

Theorem 7. Any ITM can be simulated by an ITA in real time (i.e., without

time loss).

Proof: Let us label the nodes of a tree by the following rules:

(i) The root is labeled “1”.

(ii) If a node is labeled “z”, then its left and right sons are labeled “z0” and

“z1”, respectively.

Each node of the ITA simulates the corresponding node of the ITM with
the same label. The node uses a path starting from it to simulate the stacks of

the TM as described in the proof of Theorem 6. The node labeled *“z" uses the

22 Culik II, Ibarra, and Yu

path z1%*ie 2,21,z11,... if z = 2’0, or the path z0%*i.e. z,20,200,... if
z = z'1. It is clear that every node of the ITA has only one such path passing
through it and, therefore, each node can be implemented as a finite-state

machine. It is also clear that the simulation can be done in real time. O

Obviously an ITA can be simulated by an ITM in real time. So, we have

the following corollary.

Corollary 12. A language L is accepted by an ITA in T(n) time if and only

if it is accepted by an ITM in T(n) time.

Although no time is lost in the simulation of an ITM by an ITA, more pro-
cessors might be needed. If only D(n) depth of the ITM is used in the computa-
tion and D(n) is computable by an ITA, then we can optimize the space used in
the simulation by first marking the D(n) depth and then forcing all the stacks to

follow the rules of the snaking technique when they reach the marked level.

Corollary 13. A D(n)-depth bounded ITM with each node being an S(n)-

space bounded TM can be simulated by an ITA with O(D(n)+logS(n)) depth.

If the marking of D{n) depth takes the same order of magnitude of time as
the computation of the simulated ITM, then the total simulation time will still be

in the same order of magnitude,

Corollary 14, If L is accepted by an ITM with log(n) depth in linear time,

then L is also accepted by an ITA with O(log(n)) depth in linear time.

Proof: This follows from the fact that the marking of the logn depth takes

Iterative Tree Arrays 23

linear time, and each node of the ITM cannot use more than linear space. O

REFERENCES

[1]

(2]

[3]

[4]

[5]

[6]

7]

(8]

[9]

Atallah, M., and Kosaraju, S., A Generalized Dictionary Machine for VLSI,

IEEE Trans. Comp. 34(2), (1985), 151-155.
Choffrut, C., and Culik II, K., On RealTime Cellular Automata and

Trellis Automata, Acta Informatica, 21(1984), 393-407.

Cole, S.N., Real-Time Compﬁtation by n-Dimensional Iterative Arrays of

Finite-State Machines, IEEE Trans. Comp. 18, (1969), 349-365.

Culik I, K., and Yu, S., Iterative Tree Automata, Theoretical Computer

Science 82, (1984), 227-247.

Fischer, P.C., Generation of Primes by a One-Dimensional Real-Time

Iterative Array, JACM 12, (1965), 388-394.

Fischer P.C. and Kintala C.M.R., Computations With a Restricted Number
of Nondeterministic Steps, Ninth ACM Symposium on Theory of Comput-

ing, May 1977.

Harrison, M., Introduction to Formal Language Theory, Addison-Wesley,

1978.

Hopcroft, J., and Ullman, J., Formal Languages and Their Relation to

Automata, Addison-Wesley, 1969.

Ibarra, O.H., Palis M.A. and Kim,S.M., Designing Systolic Algorithms

Using Sequential Machines, University of Minnesota, Department of

24 Culik II, Ibarra, and Yu

Computer Science Technical Report, 1984, submitted for publication.

[10] Kosaraju,S., Speed of Recognition of Context Free Languages by Array

Automata, SIAM J. of Comp. 4(1975) 331-340.

[11] Ottmann, T.A., Rosenberg, A.L., and Stockmeyer, L.J.,, A Dictionary

Machine (for VLSI), IEEE Trans. Comp. 81(9), (1982), 892-897.

	

