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ABSTRACT

Efficient algorithms are developed for finding a minimum cardinality
connected dominating set and a minimum cardinality Steiner tree in
permutation graphs. This contrasts with the known NP-
completeness of both problems on comparability graphs in general.

1. Introduction

A dominating set of vertices in a graph G=(V,E) is a set S for which every
vertex of V-S has a neighbour in S. Dominating sets are sndependent if the sub-
graph induced on S is void, total if the subgraph induced on S has no isolated ver-
tices, and connected if the subgraph induced on S is connected. The size of a
minimum cardinality dominating set in a grapi is called the domsination number;
analogously, one defines the graph’s independent domination number, total domina-
tion number, and connected domination number.

Finding minimum cardinality dominating sets of these various types has at-
tracted much attention. In the following table, we summarize the current status of
these four domination problems. Note that many of the results are implied by the
inclusions:

(1) {bipartite graphs} C {comparability graphs}
(2) {split graphs} C {chordal graphs}

(3) {interval graphs} C {directed path graphs} € {undirected path graphs} C
{chordal graphs}



- ) -

(4) {interval graphs} C {strongly chordal graphs} C {chordal graphs}
(5) {cographs} C {permutation graphs} ¢ {comparability graphs}

Complexity of Domination Problems
graphs domination | independent | connected total

bipartite NP [7] | NP [5] NP-c [13] | NP-c [13]
comparability NP-c [7] NP-c [5] NP-¢ [13] | NP-c [13]
split NP-c [1} P [8] NP-c [24] | NP-c [24]
chordal NP-c (1] P [8] NP-c [24] | NP-c [23]
strongly chordal | P [9] P [8] P [21]
interval P [9] P [8] P [21]
directed path P [2] P [8]
undirected path | NP-c [2] P [8] NP-c [23]
series-parallel P [12] P [14] P [21] P [14]
cographs P [10] P [10] P [5] P [19]
permutation P [10] P [10] this paper | P [19]

Connected domination involves finding a smallest connected subgraph which
dominates the remainder of the vertices. This bears some similarity to the Steiner
tree problem, a central problem in network analysis and design. Given a graph
- G=(V,E), we identify a set T C V of target vertices. Then a Steiner tree for T in G
is a set S C V-T of vertices, such that S U T induces a connected subgraph. A
minimum cardinality Steiner tree is a set S of smallest cardinality; we call the prob-
lem of finding such a set CARDST to distinguish it from the usual edge-weighted
Steiner tree problem widely studied in the networks and graph theory literature.
White, Farber, and Pulleyblank [21] observe that whenever the complexities of
CARDST and connected domination are currently known, they are the same. In
fact, CARDST is NP-complete for bipartite and comparability graphs [11], split and
chordal graphs [21], but can be solved efficiently for strongly chordal graphs [21]
and series-parallel graphs [6,16,20].

In this paper, we examine the connected domination and CARDST problems
on permutation graphs, and develop efficient algorithms for each. The solutions
are remarkably similar; however, we develop different methods in the two cases, ex-
ploiting the structure of minimum cardinality connected dominating sets. It is
perhaps important to note that the solution for connected domination given here
differs considerably from the Farber-Keil approach used in other domination prob-
lems on permutation graphs.

The definition of the various families referred to are standard, and can be
found in many of the references; we repeat the necessary ones here. A permutation
graph is a graph for which there is a labeling {v,, ..., v,} of the vertices and a per-
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mutation 7 of {1, ..., n} for which (-5}n(¢}-n(5)) < 0 if and only if (v;,v,) is an
edge. All permutation graphs have a transitive orientation, and hence are compar-
ability graphs; in fact, a graph is a permutation graph if and only if both the graph
and its complement are comparability graphs [15]. A subclass of permutation
graphs which has been studied extensively is the class of cographs. A graph is a co-
graph if and only if it has no induced subgraph which is a 4-vertex path. Many
equivalent characterizations are known [4,18].

2. Connected Domination

In this section, we develop a simple algorithm for finding a minimum cardinali-
ty connected dominating set (MCCDS) in a permutation graph. Connected domina-
tion is NP-complete for comparability graphs. However, it is not hard to see that
connected domination has a trivial solution for cographs [5]. In fact, a cograph
which does not have a single dominating vertex must have a pair of adjacent ver-
tices which forms a dominating set; otherwise, a four vertex path would be induced.
This is of interest here, since {cographs} C {permutation graphs} € {comparability
graphs}.

The algorithm for finding a MCCDS in a permutation graph employs a
geometric representation. Consider two columns, each consisting of the integers {1,
..., n} in order, and a permutation 7. A line connects ¢ in the left column with #(s)

in the right. A permutation graph is obtained by taking the n lines as vertices;
edges are denoted by crossings of the lines.

Each line ¢ has endpoints in the left and right columns; left(e) and right(e)
denote the indices of these endpoints. Then the left-span of a set L = {e, ..., ¢}
of lines is a set LEFT(L) = {i | i=min(left(e)] e€L) and ¢t smaz(left(e)| e€L)}.
The right-span  of L, RIGHT(L) is defined analogously. The pair
(LEFT(L),RIGHT(L)) is the span of L. Two spans (L,R)and(L’,R’) are said to in-
tersect if one of the following holds:

WMLNL # ¢,

(2)RN R # ¢,0r

(3) max(L') > max(L) and min(R') < min(R).

Two sets of lines L; and L, are said to sntersect if their spans intersect. A set of

lines is connected if there is no nontrivial partition into two sets of non-intersecting
lines.

Given any permutation graph, Spinrad’s algorithm will produce this geometric
representation in O(n?) time [17], an improvement on the earlier O(n®) algorithm
[15]. Hence, it suffices to determine dominating sets in this geometric setting.

Lemma 2.1: A connected dominating set is a connected set of lines which each oth-
er line intersects.
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Proof: A connected dominating set induces a connected subgraph, and therefore the
set of lines in the dominating set must be connected. Moreover, any line not in the
dominating set which does not intersect a line in the dominating set is not dom-
inated in the corresponding permutation graph. ®

The structure of MCCDS is somewhat special; we explore this in a sequence of prel-
iminary lemmas.

Lemma 2.2: Let M be an MCCDS. Then M contains no three lines all intersecting.

Proof: Let e,, ¢,, and e; be the three lines, with left(e;) < left(e,) < left(e,).
Since all three cross, right(e,) > right(e,) > right(e;). But then any line crossing
¢, must cross either e¢; or e; as well. Then M - ¢, is a connected dominating set,
which is a contradiction. ®

Lemma 2.3: Let M be an MCCDS. Then there is an MCCDS of the same cardinali-
ty in which there are no four lines which induce a four-vertex cycle.

Proc{: Suppose there are four lines which induce a four-vertex cycle. Geometrical-
ly, they appear as two nonintersecting pairs e, and e,, f, and f,, with each ¢;
crossing each f,. This is illustrated here:

¢
D)
fi

Sz

Suppose there is a line A € M crossing e¢;. Without loss of generality, using lemma
2.2 and symmetries, we obtain

€
J1

f

Then any line crossing f, also crosses another line in M, and hence M- f, is a con-
nected dominating set contradicting mirimality of M. Thus the only possibility is
that M={e,,e,,f,,f,}. Then there must be a line which crosses ¢, but not f,, for
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otherwise e, is redundant in M, contradicting the assumpticu that M is minimal.
Consider such a line h and replace f, by A in M; this produces a connected dom-
inating set of the same cardinality which does not induce a four-vertex cycle. ®

Since induced subgraphs of permutation graphs are themselves permutation graphs,
and since permutation graphs have no induced cycles of lengths five and greater
[22], lemmas 2.2 and 2.3 establish that a MCCDS induces a tree. In fact, we can es-
tablish an even stronger result:

Theorem 2.4: An MCCDS in a permutation graph induces a path.

Proof: In view of lemmas 2.2 and 2.3 we need only exclude stars on three edges.
Such a star, giometrically, is a triple of three pairwise nonintersecting lines e, e,,
and e; and a fourth line f crossing all three. Supposing that left(e,) < left(e,) <
left(es), it is immediate that e, can be removed from the set. @

The algorithmic importance of theorem 2.4 is that, in order to find a MCCDS in a
permutation graph, we need only find the minimum cardinality dominating induced
path. An algorithm to do this for a connected permutation graph is quite straight-
forward, and is outlined here. A line e for which there is no line f having both
left(f)<left(e) and right(f)<right(e) is termed ¢nitial.



{locate set I of initial lines}
let ! be the line with left(lz = 1.
let r be the line with right(r) = 1.
I={lr}
minr = right(l
fori=1to left(r) do
let g be the line with left(q) =i
if right(¢) < minr then
I=1U {q}
minr = right(q)

{I now contains all initial lines}

minsize = n {all n lines form a connected dominating set}

for each line ¢ in turn do
{try e as the first line of the path, i.e. the line with lowest left() in the path}
ife €1
then

Ly ={1, .., lcft(cz}

R, = {1, ..., right(e)}
L,=R,=
i=1

else

let f be an initial line not crossing e for which
right(f) is minimal

let g be a line crossing both e and f for which
left(g) is maximum; if no such line exists or left(g) <left(e),
abandon e as a possible first line

L, =L, ={left(e)+1, ..., left(g)}

R, = R, = {right(g)+1, ..., right(e)}

1 ==

{now the first two lines are ¢ and ¢, in that order}

endif

done = false
while not done
if either every line { has left({)<max(L,_,) or right({)smax(R;)
or  every line | has left(l)<max(L;) or right({)smax(R; _,
then
done = true
minsize = min(i,minsize)
else
=i+l
maxleft = max{j | some ! has left(!)= 7 and right({)€R; _;}
(undefined when R; _,=¢)
L; = {maz(L;_,)+1, ..., maxleft}
(empty when L; _,= ¢ or maxleft undefined)
maxright = max{j | some ! has right(l)=j and left(I)€L; _}
R; = {maz(R;_,)+1, ..., maxright}
endif
endwhile
endfor

{result is minsize}

Minsize gives the connected domination number; it is a simple matter to retain the
lines themselves and produce the MCCDS.



This algorithm demonstrates that

Theorem 2.5: A MCCDS in an n-vertex permutation graph: can be found in O(n?)
time.
Proof:

The geometric representation can be produced in O(n?) time [17]. Once done,
initial lines can be classified in O(n) time. Each of the n lines is selected as the
first line; we must show that O(n) time is spent per selection. When the first line
is initial, the sets are constructed in O(1) time by retaining only the smallest and
largest members of each set. The update operation requires time linear in the size
of the set; O(n) operations are required in total, since each line is considered in at
most four sets (two left, two right). When the first line is not initial, the only im-
portant note is that there is a unique second line which can be located in O(n)
time.

To verify correctness, observe that any MCCDS {e,, ..., ¢;} induces sets L’
and R'; L, = {1, ..., max{left(e;) | 7>¢{}. But at each step of the algorithm,
these sets are maximized in size, and hence k= minsize. ®

3. Steiner trees

We again employ the geometric representation of a permutation graph in solv-
ing the CARDST problem. Initially, we have a classification of lines into two types:
target lines and non-target lines. The CARDST problem can be formulated as re-
quiring the selection of the minimum number of non-target lines, which when in-
cluded with all of the target lines induces a connected set.

We can recast this problem as follows. We are to determine the minimum
number of non-target lines required to connect all target lines intersecting the span
({1,...,n},{1,...,n}). To do this, we determine the minimum number of non-target
lines required to connect all target lines intersecting the span ({1,...,6},{1,...,7}), the
3,5-span. Whenever there is a target line not intersecting the ¢,j-span, we further
insist that the non-target lines chosen, together with the target lines intersecting
the ¢,j-span, intersect all lines having exactly one end in the ¢,j-span. This
minimum number is then denoted ¢(i,7). We develop some simple constraints on
¢(4,7)-

Lemma 3.1: ¢(1,5) satisfies the following inequalities:

(a) ¢(1,1)=0.

(b) ¢(s,5)=¢(i +1,5) and 4(¢,5)= ¢(i,5+1).

(c) suppose there is a target line from k to ! intersecting the $,j-span; then
$(maz(i,k),maz(5,1))= (i ,j).

(d) suppose there is a non-target line from k to ! intersecting the ¢,j-span; then
#(maz(i,k),maz(s,1))=é(¢,7)+1.
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(e) if every target line intersects the ¢,5-span then ¢(n,n)=¢(i,j).

(f) when there is a target line from ¢ to j which is initial among the target lines,
¢(i,5) = 8(1,1).

Proof: All follow easily from the definition. @

Theorem 3.2: ¢ is the maximum function satisfying inequalities (a)-(f).

Proof:

Any selection of non-target lines which produce a solution to CARDST appears
as a sequence of inequalities in the list (a)(f). @

It is now a simple matter to compute ¢(n,n) using dynamic programming
techniques; we present a somewhat different technique here. Construct a directed
graph with n? vertices {(¢,5) | 1si=<n, 1sjsn}. Directed edges from (i +1,5) to
(#,7) and from (s,7+1) to (s,7) appear with cost 0. A directed edge from (1,1) to
(1,7) of cost 0 appears whenever there is an initial target line from ¢ to 5. A direct-
ed edge from (1,7) to (n,n) of cost 0 appears whenever every target line intersects
the 1,7-span. Whenever there is a target line from § to j, an edge of cost 0 from
(¢,k) to (1,5) is added for each k= j and I=1; symmetrically, an edge of cost 0 from
(k,7) to (1,1) is added for each k=i and {=j. Finally, for any non-target line from
t to j, the same edges are added, but each with cost 1. The Steiner tree is now
easy to find; one simply finds a minimum cost path from (1,1) to (n,n) in this di-
graph. The cost of the path is the number of non-target lines chosen. Moreover,
from the edges of cost 1 chosen, one can produce an actual selection of non-target
lines.

Theorem 3.3: A minimum cardinality Steiner tree in an n-vertex permutation
graph can be found in O(n®) time.

Proof: The required digraph can easily be constructed in O(n?%) time. By theorem
3.2, any Steiner tree induces a directed path from (1,1) to (n,n) and vice versa.
Minimum cost paths can be found using breadth-first search, for example, in time
proportional to the number of edges in the digraph. ®

4. Weighted Connected Domination

In many practical applications, there is a cost, or weight, associated with the
inclusion of a particular vertex in the dominating set. Thus much consideration
has been given to the solution of weighted domination problems. Here each vertex
has a weight, and the objective is to find a dominating set with minimum weight.
The ideas of sections 2 and 3 combine nicely to yield an O(n®) algorithm for
weighted connected domination in permutation graphs. We develop such an algo-
rithm in this section. In (cardinality) connected domination, one could assume that
the next line selected caused the largest increase in the span covered so far; in the
weighted case, this need not be true. This consideration of all lines, rather than

just those which maximize increase in covered span, is easily handled using ideas
from the CARDST algorithm.
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We define §(s,5) to be the weight of a mirimum weight connected dominating
set covering all lines intersecting the ¢,5-span. Then we have the following inequal-
ities for {:

Lemma 4.1:

(a) ¥(0,0)=0.

(b) if there is an initial line from s to j of weight k, ¢(¢,7)s k.

(c) if there is a pair of lines, one from ¢ to j of cost k, and another from i’ to 5’ of
cost k' which together intersect all initial lines, Y(s,5°)s k+ k'.

(d) if there is a line from s to j of cost k which intersects the s’ ,5"-span,
Y(maz(i,i'),maz(7,7")))=s¥(s",5)+ k.

(e) if there is no line not intersecting the 1,j-span, Y(n,n) = ¥(i,7).

Proof: All follow directly from the definition. ®

The details from this point on parallel the method for CARDST very closely and

are omitted here. The same ‘‘shortest paths” approach leads to an O(n®) algo-
rithm for weighted connected domination.

5. Conclusions

The methods in this paper extend the research of Farber and Keil [10] to in-
clude a further domination problem which has been widely studied, and they also
support the contention of White, Farber and Pulleyblank [21] that cardinality
Steiner tree and connected domination are algorithmically closely related problems.
The topic which we believe is of most significance for future research is to account
for the remarkably similar behaviour of CARDST and connected domination algo-
rithmically.
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