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ABSTRACT

Substantial research effort on computer networks has been invested in net-
work reliability. One measure of reliability is the probability that a network is
operating, in that each of its nodes is able to communicate with every other node.
In the graph theoretic network model which we adopt, nodes do not fail and edges
have statistically independent but equivalent probability of failure. The probability
that the graph remains connected in this environment is a standard measure of reli-
ability, often termed probabilistic connectedness. The exact calculation of proba-
bilistic connectedness is #P-complete in general. Therefore, much work has been
done on upper and lower bounds for probabilistic connectedness. These bounds are
of varying degrees of sophistication, but can 2all be evaluated in polynomial time.
The primary difficulty in their implementation is the computation of the graph
parameters which they use.

Little previous comparative work has been done on these bounds to determine
their relative merits and applicability. We first show that oce of the apparently
more promising sets of these bounds (Leggett’s bounds) is seriously in error, and
therefore cannot be employed. Most of the remaining bounds have been devised us-
ing the same general method of bounding certain subgraph counts (states in which
the graph is connected). The bounds based on subgraph counts form a strict
hierarchy with respect to accuracy; from least to most accurate, they are the Jacobs
bounds, the Bauer-Boesch-Suffel-Tindell bounds, the Kruskal-Katcna bounds, and
the Ball-Provan bounds. The final set of bounds (Lomonosov-Polesskii bounds) is
based on an entirely different approach. Although seemingly less sophisticated than
the best subgraph bounds, a surprising fact is that there are a significant number of
cases where the Lomonosov-Polesskii bounds actually improve on the Ball-Provan
bounds.

The main conclusion of the thesis is that the best set of bounds currently
available is therefore a complementary combination of the Lomoncsov-Polesskii and
Ball-Provan bounds.
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Chapter 1

Introduction and Terminology

1.1. Introduction

The last decade has seen the rapid growth of communication networks. Interconnected
mainframe computers or microprocessor based centers communicate through high speed data
transmission links. These range from local networks providing communication services within
specific offices to continent-wide networks, such as Arpanet and Telenet. This appears to be
just the beginning of a tremendous proliferation of communication networks.

As communications networks become more prevalent, more and more services and
systems depend on them. This dependence brings an ever increasing need for reliability.
Users, and society at large, will require more reliable service. The telephone and the electrical
power industries are examples of systems on which modern society has become increasingly
dependent, and in which service failures or interruptions can have serious economic and social
consequences.

There is no debate on whether the qualitative concept of developing reliable networks is
of prime importance. A problem comes, however, in defining and measuring what is meant
by “reliability”, and more specifically the “reliability of a network”. We want more than just
the subjective connotations of the adjective ‘““reliable”. It is therefore desirable to define the
reliability of a network quantitatively. Such a measure would allow the comparison of
various networks, which would be very useful in the design of networks. One method of
quantifying reliability is to equate it with a statistical probability. A common definition of
reliability is “‘the probability that a system or device operates for a given period of time when
used under the stated conditions.” Difficulty arises in determining what situations to consider
as “‘operating”. A network is designed at many different levels; failures may occur in each.
We will be looking only at the topology. Even at this level, there are many notions of
system operation. Here we consider a network is operating when each of its communication
centers is able to communicate with every other center.

The networks are modeled using a graph theoretic approach. This allows the use of the
extensive amount of graph-theoretic research. Employing a graph model still leaves us the
serious problem of computing the reliability. Unfortunately, obtaining an exact solution is
not computationally feasible in general. However, it turns out that it is possible to efficiently
obtain upper and lower bounds on the exact solution. If these are tight enough to show
relative differences between the various options a designer may be counsidering, they can be of
practical use. A number of different sets of bounds of various degrees of sophistication have
been developed. The main purpose of the thesis is to investigate these bounds. A more
formal discussion necessitates the introduction of certain graph-theoretic tools.

1.2. Graph Theoretic Deflnitions

We use graphs to model networks. Unfortunately, graph-theoretic structures and
definitions are not standardized, and this necessitates our defining terms. We only define
terms used in this thesis, and refer the reader to [H2,T3] for other definitions.

We model a network-as a graph G = (V,E). Vis a set of vertices or nodes and E is the
set of edges of the graph represented as (un)ordered pairs of vertices. Unordered pairs



represent undirected edges and indicate two way connections. Undirected edges are
represented (v,v,); v, and v, are the two nodes upoa which the edge is incident. A graph of
undirected edges is generally referred to as a non-oriented or undirected graph. The ordered
pair <u,v;> represents a directed edge indicating a one way connection between node v; and
v;. Graphs of directed edges are termed directed graphs or digraphks. We use n to denote v,
the number of nodes in the graph and b to depote |E|, the number of edges in the graph.
Multiple or parallel edges are edges between the same two nodes. A loop or self loop is an
edge originating and terminating at the same node. It is always assumed there are no loops;
unless otherwise mentioned, we consider undirected graphs with no parallel edges. Figure 1
shows a small graph for which =7 and n==5.

Figure 1

Two nodes are adjacent if there exists a common edge incident upon both of them. For an
undirected graph, the degree of node v, denoted by d, is the number of edges incident upon
v, If d,is equal for all i, G is called a reguler graph. A sequence of adjacent nodes v,v;...,v,
with no nodes repeated forms a path between v, and v,, Two paths between nodes v, and v,
are edge-disjoint if they contain no common edges. A circuit is a path with the same first and
last node. A graph G is connected il there exists at least one path between every pair of
nodes v; and v, where v, v; € V. A subgraph G, of G is a graph whose nodes and edges are
contained in G. That is, Gy = (V,E;) where V,C Vand E,CE. If V; =V, the subgraph
G, is a spanning subgraph of G. In a graph, a connected spanning subgraph consisting of n-1
edges is 2 spanning tree . The number of spanning trees in a graph is denoted as &

A set of edges of a graph whose removal disconnects the graph is termed an edge cuiset.
The minimum number of edges in any edge cutset of the graph is called the edge connectivity
or cohesion of the graph and is denoted as ¢. The cohesion of the graph in Figure 1 is equal to
two. A cutset is an i-j cut if the removal of its edges breaks all paths between nodes v; and
v, The minimum number of edges in any #-j cut is the edge connectivity between nodes v;
and v;.

As mentioned, we primarily consider undirected graphs with no multiple edges.
However, some of the algorithms examined do manipulate digraphs and utilize multiple
edges. Therefore, the following specific concepts are also required.

For a digraph, the indegree of a node is the number of edges directed into it, and its
outdegree is the number of edges originating from it. An acyclic graph is a graph in which
there are no circuits. For an undirected acyclic graph, the successors of a node v; are all
nodes v, in G for which there is a path from v; to v, A strongly connected component is a
maximal set of nodes S in which for every pair of nodes v, v,€S there exists paths from v, to v,
and v; to v, which only contain nodes in S. The operation of deleting a node v, from
G = (V,E) is the process of removing v; from V and all arcs containing v, from E. The
operation of cellapsing a set of nodes S consists of removing these nodes from V, removing all
edges between two of these nodes from E, adding a2 new node v; to V and replacing all
remaining edges into or out of nodes in S with corresponding edges into or out of v. This
process may create parallel edges.



1.3. Overview of the Thesis

The thesis is, on the whole, concerned with analyzing bounds for the reliability of
communications networks. To achieve this, we must first develop a formal model for network
reliability. Therefore, in the previous section a number of graph theoretic definitions were
given; in this study, networks are modelled using probabilistic graphs. In chapter 2, we
develop the parameters of this model and discuss the effects of, and rationale behind, the
assumptions that are embedded within it. The determination of the measure chosen involves
evaluating the probability that each network node can communicate with each other node.
We survey the research that has been done on this measure, and observe that it is not feasible
to obtain the exact value for this measure in general. This has motivated the development of
a number of methods of obtaining sets of bounds. In chapter 2, we also introduce the
available sets of bounds: Jacobs, BBST, Kruskal-Katona, Leggett, Ball-Provan, and
Lomonosov-Polesskii.

In chapter 3, we show that one of the seemingly more promising of these sets of bounds
(Leggett’s bounds) is actually incorrect. Computational evidence of errors in these bounds is
introduced. Then Leggett’s fundamental theorem is shown to be in error; this renders his
bounds useless. A number of minor errors in Leggett’s analysis are also described.

Chapter 4 looks at the implementation of the remaining sets of bounds.
Implementation is necessary to assess the relative merits of each bound, and to determine the
difficulty of implementing and evaluating each bound. It is shown that each set of bounds,
and all the values that they use, can be obtained in polynomial time; this requires the
discussion of efficient algorithms for computing the number of spanning trees, the edge
connectivity, the number of minimal edge cutsets, and a minimal cut basis. The relative
difficulty of implementing the various bounds, as well as the specifics of the actual
implementations, is discussed.

In chapter 5 the bounds are tested on a number of graphs. We develop a family of test
cases for the bounds; these test cases consist primarily of graphs for which the actual
reliability can be efficiently computed. Comparisons are made between the sets of bounds to
determine their relative merits and the absolute performance of the bounds. Finally, the effect
of various graph operations on the accuracy of the bounds is studied.

In chapter 6, a more detailed summary of the thesis is given, highlighting both the
conclusions reached, and the original contributions of the thesis. Finally, numerous
suggestions are made regarding the areas where it appears that future research would be
fruitful.



Chapter 2

Problem Description and Historical Background

2.1. Problem Definition

The different appreoaches to defining and measuring the reliability of communications
networks have been surveyed by Frank and Frisch [F1] and by Wilkov [W3]. The methods
can be divided into two fairly distinct areas: deterministic and probabilistic. Deterministic
methods [B7,E3,T1| define the reliability of a network by discrete measures, such as the
number of edges and/or nodes that must be removed to disconnect the graph. An application
of these methods is in a military environment where an intelligent enemy is attacking the
network. On the other hand, probabilistic methods gererally assume that the failure of links
and/or nodes is due to random causes. They measure the probability that the network
remains operative; for example, one probabilistic measure gives the probability that a certain
pair of nodes can communicate, given predetermined probabilities that the edges and/or
nodes are operative. In this thesis, we focus on the probabilistic approach.

Most of the work in the probabilistic area has been done on the two-terminal problem
[H4]. This is the problem of computing the probability that there will be at least one path
between a given pair of nodes. The main application for this measure has not been for
communication networks. The systems modeled often consist of such things as groups of
machines, devices or jobs which are represented by the graph edges. These are interconnected
so that success of the system occurs whenever there is at least one path between the first
given node (often referred to as the source) and the second given node (often referred to as
the sink). For most of these systems, only the links correspond to any physical entities that
may have a probability. of failure. Different links may represent completely different types of
devices with, very different probabilities of failure. Finally, the links must often be
represented as directional, to accurately model actual systems. Applying this measure to
communications networks, one obtains the probability that a certain pair of nodes can
communicate. The implication here is that the connection between these two nodes is the
only communication of importance.

However, it may often be the case that communication is essentially among peers. This
implies that nodes are to be treated as equals. Two measures that are applicable in this
situation are 1) the probability that every node is able to communicate with every other node,
and 2) the expected number of node pairs that are able to communicate. Van Slyke and
Frank [V3] note that, for networks where the probability that some node or group of nodes is
disconnected is quite high (i.e., measure 1 is low), measure 2 might be more useful, as it
measures the degree of ‘“‘partizl usefulness” of the network. In this study we look primarily at
measure 1, assuming that networks are in acceptable states only when total communication is
possible.

2.2. Model Definition

The model used is a probabdilistic graph consisting of 5 undirected edges representing the
duplex links between the comimunication centres and n nodes representing the communication
centres. Nodes are assumed to be pesfectly reliable (i.e. have no probability of failure). The
edges all have an equal but statistically independent probability p of being available.
Conversely, we define g=1-p as the statistically independent probability of an edge being in
2 failed state. The network is operative when it is connected. Hence, the measure for
reliability is the probability that all the nodes are able to communicate with each other. For



our undirected graph representation, this corresponds to the probability that the available
edges of the network contain at least a spanning tree, or conversely that the failed edges do
not contain a metwork cut. This measure is often referred to as probdabilistic connectedness.
We represernt this probability for a graph as R.

This measure does not take into account such factors as link capacities, delays, or other
service parameters of the network. It just assumes a node “can communicate” with another
as long as there is a possible physical route between them (a path consisting of available
edges).

It is also important to clarify what is meant by the “‘operating probability” of an edge.
This might be the probability that a link of the network will operate for a given period of
time. As well, it might be the steady state probability of finding a link in an operating state
in a network where links fail and are subsequently repaired. In this second case, this
probability is often referred to as the availability of the link. Qur model handles either case.
If p is the probability of a link operating for a two year period, R is taken as the probability
of the network operating for a two year period. If p is the availability of a link, R can be
referred to as the reliability of the maintained system.

Two major assumptions are made about the link operation probabilities. One is that
they are equal for all the links. The assumption here is that the network is constructed of
similar links; consequently they have equivalent failure probabilities. Ideally, these values are
obtained using statistical analysis of past failures of similar links under similar circumstances.
Failure probabilities are generally quite low which means that a large number of links over a
large period of time must be used to obtain a statistically significant sample of failures.
Important factors are the actual type of link and the environment in which it is placed. It is
not generally feasible to obtain separate reliability values for each individual link in a
network. If all the links are of the same type and their environments are similar, it can be
assumed fairly accurately that the reliability (probability of being in the operating state) is
the same for all the links.

The next assumption is that of statistical independence; the probability of a link
existing in a state is independent of the states of the other links in the network. The
assumption is that the links fail due to random factors that affect them individually. For a
real communication network, this assumption is not always valid: there may be cases where
topologically separate links share a common duct for a distance, or where separate links in
the same general area fail due to common events such as major natural occurrences (such as
storms or earthquakes). Without this assumption, the calculation of network reliability is
greatly complicated as all the pertinent conditional probabilities need to be considered and
known (see for example [Z1}). Finally, it is worthwhile to note that statistical independence
has often beea assumed to model systems where it is well known that the failures are not
independent. An example of this is the classic treatment of telephone crossbar switching
networks by Lee [L1].

At first glance, the assumption that the nodes are perfectly reliable may not seem at all
valid for communication networks, as the nodes in a communication network do consist of
actual devices that can be assumed to exhibit failure rates comparable to those of the links of
the network. This point is discussed by Van Slyke and Frank [V3]. They suggest that the
problem depends on how we define our measure of the probability of being connected. They
give two options.

First, we can consider a network to be connected when all its operational nodes can
communicate. This method causes a number of problems. The failure probability of the
nodes will be different from that of the links. Thus, we no longer have the simple case where
all the components have equal availabilities. More seriously, we no longer have a problem
that is coherent. A reliability problem is cokerent if when a network is in a failed state, no
set of further component failures will retura it to an operating state. Take the graph G with



the two subgraphs G, and G in Figure 2.

If the network is in the state where the nodes and links as shown in subgraph G, are the
ones that are available, the network is considered to be disccnnected. But if nodes 4, 5, 6, and
7 all fail, the network moves into the state indicated by subgraph G;,. The network would
now be considered to be connected. It has moved back into an operating state.

4 1Y

Figure 2

However, intuitively, state G, seems to be more desirable than state G,. In fact, when the
operational probability of the nodes approaches zero, the reliability approaches one [V3]. The
counterintuitive nature of this measure leads us to adopt Frank and Van Slyke’s second
proposed measure.

In this second approach, we consider that a network is connected when all its nodes can
communicate with each other. Using this definition the network is disconnected whenever
any node or set of nodes fails. As stated in [V3] the reliability of the network for this
definition then becomes:

Reliability = (NA)(R) (1)

where NA= prob(all nodes are up), and R= the reliability when nodes are perfectly reliable.

For a designer synthesizing a network, given a set of nodes to connect, NA is a fixed
constant Therefore, the measure of interest is R. One can always trivially determine NA as

it is Hp, where p, is the cperational probability of node v, In the rest of this paper, we only

comxder R as the measure of the reliability of the network. However, it might be more
accurate to call it the link reliability of the network.

2.3. Probabilistic Connectedness

The basic pioneering work in probabilistic connectedness is by Moore and Shannon [M3].
They investigate the problem of constructing arbitrarily reliable metworks from arbitrarily
poor componenis. They actually consider a somewhat different type of model than the one
just developed, but their results can be modified to apply to it. They model circuits of
electromechanical relays using graphs consisting of undirected edges with independent and
equal operating ‘probabilities representing the relay conmtacts, and perfectly reliable modes
corresponding to the interconnections between the relays. They assume that the relays are in
their useful life period and failures occur because of random events such as dust getting
between the contacts, and are therefore constant with respect to time. Since the failures are
random, they are statistically independent. The nodes do ot fail since they are only looking
at the fzilures of the contacts after the circuit has been correctly wired. From this, they
develop ihe following important polynomial:



Mp) = 3 A (2)
=0

where h(p)= probability of the network being closed, p== the probability of a contact being
closed, g=1-p= the probability of a contact being open, and A, = the number of ways one
can select a subset of n of the m contacts in the network such that if these n contacts are
closed, and the remaining contacts open, then the network will be closed. This can similarly
be written as:

h(p) =1 - ganq"p""" 3)

where B,= the number of subsets cf n contacts such that, if all contacts in a subset are open
and the other contacts closed, the network is open.

Kel'mans [K4] investigates the probabilistic connectedness of communications networks.
He modified these polynomials to apply to this problem, to obtain the relighility polynomial:

b L
R = ZNx‘P’qH (4)
=0

or

b L
R=1-Y Cqp*™ (5)

N is the number of selection of exactly ¢ of the b edges that connect the graph (the number of
spanning subgraphs containing ¢ edges). C; is the number of selections of exactly ¢ of the 5
edges which form an edge cutset or metwork cut. The relationship between these two
equations is illustrated by the fact that:

N; + Cb-s=[l:-]

Therefore, from any N, value we can easily determine the corresponding C,_; value and vice
versa. Another important observation is:
0<N<(8) ad 0<a<(?)
Although the reliability polynomial forms a clean and concise representation, the actual
calculation of R is quite difficuit. The ideal situaticn would be to easily calculate the exact
reliability of any given network. A problem arises in calculating the reliability of general
graphs. The brute force method of performing this calculation is to enumerate all the
possible subgraphs of the given graph and sum up the probabilities of those which are
connected (that is, to use the reliability polynomial). However, since there are b edges, each
either working or failed, there are 2° possible states that the network can be in; hence this
method is of exponential complexity.

A lot of work has been put into improving on this. Important work appears in Mine
[M2] and Moskowitz [M4]. They exploit what is usually referred to as the “factoring
theorem”:

R(G) = ¢R(G-b;)] + p[R(Geb,)] (6)



R(G)=R for the original graph G. R(G-b;)=R for the graph in which the edge b, has been
removed from graph G. This corresponds to the case where edge b, is failed. R{Geb,)=R for
the graph in which the nodes v, and v; of graph G have been collapsed. This corresponds to
the case where the edge b, is operating.

This formula factors out an edge of the network, and subsequently examines the
reliability of the resulting smaller subnetworks. Although this yields an improvement over
the case enumeration method, the use of this theorem still requires an exponential
enumeration for general graphs. A number of algorithms with further refinements exist for
computing the reliability of general graphs [B1,B8,H1,R2,51,52]. The orders of computation
time required by them are significantly lower than the complete case enumeration method.
However, even the fastest [B8] is still O(3™). In order to obtain this, the algorithm has
storage requirements of O(2"!). In fact, it has been shown that the exact calculation for
general graphs is almost certainly intractable.

Valiant [V1] proved that computing the probability that a specific pair of nodes can
communicate is #P-complete. Ball [B2] showed that finding either a rational value or a
generating function for probabilistic connectedness is NP-hard. Finally, Provan and Ball [P4]
and Jerrum [J2] showed that probabilistic connectedness is #P-complete. Therefore, it
appears that computing R exactly is not practical for general graphs.

There have been formulae or algorithms developed for calculating the exact reliability of
certain special types of graphs in polynomial time. Gilbert [G1| develops the following
recurrence for calculating the reliability of a complete graph:

R(r)=1- i’l( 1 p(i)g o)

R(3)=R for a complete graph on i nodes. R(1) with no edges will, of course, equal one. Wald
and Colbourn [W1,W2] develop algorithms which can be used to calculate R for 2-trees or any
graph that is a subgraph of a 2-tree. As well, Neufeld and Colbourn |[N2,N3] gives
recurrences for the most reliable 2-trees and closely related graphs.

Unfortunately, most actual networks do not fall into these categories. It is typically not
possible to obtain the exact solution of R during the topological design of medium and large-
scale networks. Therefore, some method of determining approximations for B is desirable.
There are two routes that can be taken here. The first option is to use simulation. A number
of simulation methods are discussed in [F1,V2,V3]. The desired result of a simulation is an
approximate value and a confidence interval. Nevertheless, there is no absolute guarantee
that the actual reliability will fall into this interval. The second option is to use analytic
methods to approximate R, or more ideally to obtain a pair of bounds (upper and lower) on
R. A set of analytic bounds guarantees (given the validity of the assumptions) that the
actual reliability will fall between them. In order to be of practical use, these bounds should
be obtainable in polynomial time. It is desirable as well that they be senmsitive enough to
discriminate between the reliabilities of relatively similar alternatives that a designer may be
considering.

Assumptions about the value of p camn be an important parameter of these
approximations or bounds. Their importance is illustrated by Kel’'mans’ [K4] result that it is
possible to find two graphs, one of which has a hlgher R than the other for certain values of p
but lower R for other values of p.

2.4. Analytic Approximation
The essential problem is to develop bounds on the reliability polynomial:



b L
R = ZN;'P'QH (8)
=0
or
b i
R=1-3 Cqgp" (9)
=0

For any network of n vertices, at least n-1 edges are needed to commect them.
Therefore, for i<n-1, N=0 and Cb.,v=[ f} . If ¢ is the minimum number of edges that must

be removed to disconnect a network (edge connectivity or cohesion) then for i>b-¢, N=( f)
and €y ,=0. The reliability polynomial becomes:

bc o b S
R = Z ng’qb_“l' 2 [g)poqb-a (10)
===n-1 g==beodl
or
b-nd-l . i b ) R
R=1- 3 Cgp™'- 3, (2)4’1)“ (11)
= =bi2

The relative importance of particular N; (or C,) terms depends on the value of p. For
=0.5 all the N, (or C}) are of equal importance and the formulae become:

R= (o.s)’é 1N,- (12)

or

R=1- (0.5)’2‘2 C (13)

For values of p>0.5 the N, (or C, ) for large values of i are the more dominant in the
polynomial with Ny, (or C;) being the most important. Kel’'mans [K4] used this fact and
observed that for p close to one this term dominates the polynomial, and can therefore be
used to approximate it:

R=~1-Cp>¢ (14)

Similarly, for values of p<0.5, the N; (or C,,) for small values of i are the more
dominant with N, {or C} ,,,) being the most important. Kel'mans observed that for p close
to zero the polynomial can be approximated by:

R = N, p™'¢™H (15)

In order to calculate these approximations, the values for N,,, ¢, and C, must be
obtained. N, ,; is equal to ¢ the number of spanning trees of the given graph. ¢ is the
previously defined edge-connectivity or cohesion of the graph. C, is the number of minimum
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cardinality cuis {number of edge cutsets containing exactly ¢ edges) of the graph. For

example for the graph in Figure 3 where ¢==2, as shown with the dotted lines there are
exactly three combinations of two edges which if removed will disconnect the graph. Thus
C.=3.

Figure 3

To be of practical use these graph theoretic values (¢, ¢, and C,) must of course be
obtainable in pelynomial time. In Chapter 4 we show that all three of these values can in
fact be calculated in polynomial time.

2.5. A Survey of the Avalilable Bounds

Kel’'mans’ approximations (equations 14 and 15) are only close for the extreme values of
p. The approximations are only using the first terms in the respective summations; the next
two terms in the summations are only one and two degrees higher. Therefore, the
approximations are only fairly accurate for values of p quite close to zero and one
respectively Actually (14) gives an overapproximation or “‘upper bound” on R, while (15)
gives an underapproximation or “lower bound” on R and therefore they can be combined to
form a set of bounds on R:

N lpn-lqb-mi-l >R 2 i- Ccpb-cqc (16)

This set of bounds is, of course, very weak as the lower and upper bounds are each only clgse
for p values at opposite extremes. For any other p values neither of them is close. Obtaining
improved bounds on R is quite desirable as they guarantee that the actual valee of R falls in
the range between them. Krowing the lower bound on R is particularly valuable, when
designing systems where certain minimum objectives have to be met. A tight set of bounds
would show a designer the relative effects of different options.

A considerable amount of effort is needed to obtain the values for ¢ and N, ; and
especially C.. Therefore, it might be worthwhile to invest a little more work to obtain 2
tighter set of bounds. A number of sets of bounds on R have been developed, and one
purpose of this thesis is to investigate them.

From equation 10, it can be seen that once the values of N,; and N, have been
determined, what is left unknown are the N, values for (n-1)>3>(b-c). Similarly, looking at
equation 11, calculating C,,4; and C, leaves the C, values for (b-n+1)>i>(¢).
Unfortunately, it does not appear to be feasible to determine any of these values directly in
polynomisl time for general graphs. The basic idea behind almost all of the sets of bounds in
the literature is to approximate these unknown values. If a set of overapproximations can be
determined for NV, in this range (or underapproximations for C; ), summing these delivers an
overapproximation or upper bound for R. Similarly, if a set of underapproximations can be
determined for N, in this range {or overapproximations for C; ), summing these delivers an
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underapproximation or lower bound for R.

2.5.1. Jacchs Bounds

The first set of bounds for R was developed by Jacobs[J1,V2] and is referred to here as
the Jacobs bounds. In his original bounds, Jacobs only used the values for b,n, and c:

R<1- Z (%) o~ (17a)

and

R>12( ] by {17b)

The unknown values of C; are overestimated as their maximum value [f) to obtain an

underestimate or lower bound on R. Similarly, they are underestimated as their minimum
value of 0 to obtain an overestimate or upper bound on R.

Frank and Van Slyke [V2] modified these bounds for the case where N, ; and C, are
known. These are referred to here as the Jacobs-II bounds:

b g
R<1- ,=§ (C)o™¢ - Crmpp™' g™ (182)
; 2
and
R>1- =§+1( ) p™d - Cotef (18b)

Although these bounds improve on (16), they still suffer from the problem that the lower
bound is best for p close to 0 and the upper bound is best when p is close to 1. The estimates
on the unkrown C, values are as weak as possible.

2.5.2. BBST Bounds

Recently, Bauer et al. [B5| proposed a set of bounds on R. They proved that for
cL< i< 1t

C;
— <

(f] (:+1]

In words, this says that the percentage of a graph’s subgraphs containing § edges which are
edge cutsets cannot decrease as i increases. This applies to any coherent system. Using this
fact the following set of bounds, which we refer to as the BBST bounds, can be stated:

R<1- %{ggh“i] Z ( ) ™' (192)

and
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. Caf & (by iy Loby pig
RZI—Ccpb'qc-—]- Y (e Q'I“:‘;;H(;)P q (19b)

where d=5-n+1.
4 . .
Bauer et al. represent these using the binomial distribution B,= Z[g]p""q’o B, can be

=0
obtained from standard tables and the bounds can be represented as:

C
R < 1- —=(Bs- B1) - (1-BJ)

[4

(20a)

and

¢
R21- Cp™q - —(B,- B) - (1-B)
d

(20b)

2.5.3. Kruskai-Kat-ona Bounds

Frank and Van Slyke [V2] showed that it is possible to apply a theorem developed by
Kruskal [K8] and Katona [K2| that applies to any coherent system to obtain a set of bounds
on the network reliability polynomial. In order to describe this theorem and subsequent
bounds derived from it, we develop a number of combinatorial concepts. For the most part
we use the notation and definitions developed in [B3]. For any non-negative integer m, the
k-canonical representation of mis given by:

™ M.y my

where my > m,; > ... > my > [ > 1. The m, are determined successively as:

e ot <o £7)]

This k-canoniczl representation is unique and always exists. For #>/>1 and any ik the
(1, kjth lower pseudopower of (my,...,my} is:

Yifk | T LCER my I
(mh.,.,mﬁ)‘ -—-l i ] +l 3-_1 ] + .. {l—-k+[
We represent (my,...,m)"* as m/*. Kruskal and Katona use F,= (:) -»»Cs:’= Ny F5 is ‘the

number of sets of ¢ edges that do not contain a network cut.
The thecrem developed by Kruskal and Katona states that:

a) F*> F, ,when i>k
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By FJI¥< F,  when i<k

Thus, knowing F, and using a), overapproximations can be determined for the F; values
where 1>c¢. Similarly if Fy ., is known, b) can be used to find underapproximations on the
F, values where i<d-n+1. The following bounds on R result:

c-1
R< (00 + Fotg + S 1 + Fait (21a)
=0 [R5 :
and
-1
R 2 Elb)pb—sqc_*_ pr-cqc_'_ 2 'n/d bt 1 (21b)
=0 =+l

where d==b-n+1. We refer to these as the Kruskal-Katona bounds.

2.5.4. Ball and Provan Bounds

Ball and Provan [B3,B4] develop 2 set of bounds that improve on the Kruskal-Katona
bounds. They use resuits due to Stanley [S3] which apply to systems that are shellable. The
set of spanning subgraphs of a graph form a construct known as a matroid. This is referred
to as the bond-matreid or co-graphic matroid. It has been shown [P6] that all matroids are
shellable. Therefore Stanley’s results apply to them.

These bounds are formed in a manner which is analogous to the Kruskal-Katona
bounds. A number of modified constructs must be defined in order to describe them. A
different form of the reliability polynomial is used. The reliability polynomial of equation (5)
can be converted to the form:

L :
R = ™'Y Hy'
=0

This conversion is performed by factoring out p™* and then recombining the product of the
remaining terms. The H, terms can also be obtained directly from the F, terms as:

H = 2( )~ (HF)
for =0,1,...,0-n+1.

As it takes at least ¢ edges to disconnect the network,
= (H:"2) for i<ec.

As it takes at least n-1 edges to connect the network,
H=0 for i>d , where d=b-n+1.
Also, when ¢ and C, are known we can use:
b4 -2 .
H = +:' ) -C., fori=c

and

d
Y=
=0
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The (i,k)th upper pseudopower of (my,...,m} is:

: m—k+1 myy~k+i mk+1
(mk,.--»,mz)<’”>=[ i I "'[ " ] + "”{ i-rlc-é-ll

Again, we represent (my,...,m)</*> as m</¥> For any non-negative integers m,d, and k the
(k,d)-factor ¢f m is the number z for which:

z2-z<H>=m

The following bounds are derived, using the notation,

&
=t~2h,'
=0

ro-—max{ Z B> < al

m = (Grl,...,drl)

where (a;,_ ) is the d-canonical vector for the {k d)-factor of a. Then:

o ) .
R< o™ qu’-«- 2 h<”"‘>q'+fa«- P hc‘"’”}q"ﬁl ] (22a)
=41 s =c1
and
R> p"'l{ Eizq + 2 m</¥>g ] (22b)
=4l

We refer to these as the Ball-Provan bounds. Ball and Provan [B3] also show that by
substituting {c-1) for ¢ in equations (22a) and (22b), a weaker bound can be obtained for the
case where the value of C, is not known. They note that this substitution can also be applied
to the Kruskal-Katona bounds (equations 21a and 21b). The possible usefuluess of these
weaker bounds is evident when the difficulty involved in the calculation of C, is considered.

Provan [P6] developed another set of bounds on R. He used the fact that the spanning
subgraphs of a graph also belong to another more general class called polyhedral systems.
Although tighter for directed graphs, these bounds are equivalent to the Ball-Provan bounds
for undirected graphs [P7].

%2.5.8. Leggett's Bounds

Leggett [L2,L3] also devised 2 set of bounds on R. Let S; = [I:] - N, = Cy. S is the

number of combinations of i of the 5 edges which do not connect the graph (the number of
disconnected subgraphs containing ¢ edges). Using S, the reliability polynomial (equation 10}
can be rewritten as:

= B (¢)rs)res 3 (e (23

His general approach was to form bounds on the S; values using graph theoretic structure.
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The Kruskal-Katona bounds and the Bail-Provan bounds are obtained by applying results
known for more general systems (coherent systems and shellable systems) of which these sets
of spanning subgraphs or network cuts are subsets. Leggett developed the following theorem
which forms the basis of his bounds:

.
S < I 51 5, (24)

where

=
fo = —————y—
[H.;-]

His actual bounds are developed from this theorem. A lower bound can be cbtained from the
following recurrence in which f, ; of the above equation is replaced by X:

b—oc—
sa < X (55, (255)
where:
1 ’
]
r
Xf'= [1+ 1 ] S
r-n+3

Starting with the known value Sy .4, = (b—r?-i-l) - t, equztion (25a8) can be successively

applied to obtain overestimates for the values of S; in the range of b-n+1>i>c. Placing
these into equation (23) provides an underestimate or lower bound for R.

By substituting r-1 for r in equation (25a) and rearranging, Leggett obtained:-

r
Sea & Xr—l[ m] S, (25b)
If the value of S, is known, equation (255) can be successively applied to obtain overestimates
for the values of §; in the range of ¢<i<b-n+1. Placing these into equation 23 provides an
overestimate or upper bound for R. We refer to these as Leggett’s bounds.

2.5.8. Lomonosov & Polesskii Bounds

There has been work reported in the Russian literature [K5,L3,L4,P3] or the
development of bourds on R. Although these bounds do not appear to be very sophisticated,
they are of interest as the general approach taken is completely different from that taken for
the bounds already developed. A lower bound on R can be obtained by exploiting the fact
that the probability of failure of a graph can be no larger than the product of the
probabilities that each member of any set of edge disjoint connected spanning subgraphs
contained in it fail. This fact follows directly from the assumption of statistical independence

of edge failures. In [P2], Pollesskii proves that a graph must contain at least % edge

-

disjoint spauning trees. This fact can also be easily shown from a stronger result
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independently proven by Tutte [T5| and Nash-Williams [¥1]. Pollesskii [P3] uses it to
develop the following simple lower bourd on R:

R>1-(1-p™) H (26)

Each of the edge disjoint spanping trees must fail befcre the graph fails. Lomonocsov and
Polesskii [L4] develop this further to obtain the following improved lower bound:

[

&
R 2 n(l-qz)"‘l - (n_l)(l_qz )n (273)
These two lower bounds only use a graph’s values for n and c.

In [L4], Lomonosov and Polesskii also develop an upper bound on R. To develop this
bound, we define a cui basis of a graph G as a set of n-1 maximal edge cutseis
L={Ly,Ly, -+ L.} such that every two nodes of G are disconnected by some L; where
1<i<n-1. Ezch of these L, cutsets must form a minimal j~k cut {or some pair of nodes
v,v,€G. It follows that for the graph G to be connected ai least one of the edges in every cut
L, must be available. Therefore:

n1
L
R < [1(1-4") (27)
=t
We refer to equations (27a) and {27b) as the Lomonosoy-Polesskii bounds.

2.8. Summary

We have developed the use of undirected probabilistic graphs with perfectly reliable
nodes and with edges which fail with equivalent but statistically independent probabilities as
a network model. Defining the reliability of the network as the probability that every node is
able to communicate with every other node correspords to the probability that the underlying
graph remains connected. This measure is often referred to as probabilistic connectedness.
The infeasibility of the exact calculation for probabilistic connectedness motivates the
development of bounds on the reliability which are computable in polynomial time. We have
introduced sets of bounds, of varying degrees of sophistication. These are the Jacobs-II,
BBST, Kruskal-Katona, Ball-Provan, Leggett and Lomonosov-Polesskii bounds.

It should be noted that other bounds have been developed with different assumptions
about the network model. For example, Zemel [Z1] investigates the case when statistical
independence of the link failures is not assumed and Kel'mans [K5| looks at the problem
when the links are allowed to have different failure probabilities.
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Chapter 3
Leggett' s Bounds are Incorrect

3.1. Introduction

In this chapter we take a closer look at the bounds developed by Leggett [L2,L3] and
show that they are not generally correct. Leggett’s general approach of using graph theoretic
structure is very promising. The Kruskal-Katona bounds {K2,K7,V2] and BBST bounds [BS)]
require that the system be “‘coherent’’. The Ball and Provan bounds [B4,P5)] are applicable to
arbitrary “shellable independence systems’’. These approaches do not exploit any information
about graph-theoretic structure other than the number of spanning trees, and the aumber of
minimal cutsets. Improvements on the Ball-Provan bounds, if any, will likely come by
cleverly exploiting some graph structure which does not hold for arbitrary shellable
independence systems.

In fact, there are cases where Leggett’s bounds are tighter than any of these other
bounds. This is true for the ten node complete graph {Kjy) for which Leggett published the
values which his bounds deliver. Unfortunately, this “improvement’ is the result of a
number of fatal errors in Leggett’s thesis [L2]. In this chapter, we develop Leggett's
approach, and devise families of counterexamples to bis bounds. The possibility of difficulties
with Leggett’s bounds was pointed out over ten years ago by Van Slyke and Frank [V2], who
noted that Leggett states bounds which are apparently stronger than the Kruskal-Katona
bounds, however “his proof seems inadequate”.

3.2. Bounds on S

The bounds developed by Leggett were introduced in chapter 2. We take a closer look
at them here. The general scheme employed in Leggett’s work [L2,L3] is to devise an upper
bound on S,y in terms of S. S, is easily computed from the number of spanning trees; this
can be used to obtain bounds on S, S,,,, and so on. This in turn provides a lower bound for
the reliability. The upper bound on §;, in terms of S; gives a lower bound on S, in terms of
Sip1. Together with S;;, the number of minimal cutsets, this provides an upper bound on the
reliability polynomial.

The key to success in Leggett’s approach is to obtain a very close bound on Sipy in
terms of S;. Leggett developed the following theorem [L2,Thm. III.2] which forms the basis of
his bounds:

e
S < o] 2575, (24)

where:
1 -1
( 1+ __n_l]
fo1 = ———g—

3

A lower bound can be obtained from the following recurrence in which f,; of the above
equatior is replaced by X
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S < X,{ b c"] S, (25a)

where:

X, = T

1
[ 1+ r-—n+3]

Starting with the knewn value S, ; = by t, equation {254} can be successively applied to
n-v

obtain overestimates for the values of S; in the range of n-1<i<b~c. Placing these into
equation {23) provides an underestimate or lower bound for R.

By substituting r~1 for r in equation (254) and rearranging, Leggett obtains:

S S Xl ) & (25b)

If the value of S, is known, equation (255) can be successively applied to obtain overestimates
for the values of S, in the range of c<i<n-1. Placing these into equation {23) will provide an
overestimate or upper bound for R.

Leggett obtains improved approximations on some of these S; values with the claim
[L2,Thm. 113} that for graphs which are not regular

-3 o ’
S, = 210’.‘ { b_b;_'t) ’ for b-c>r>b-2¢c+1 (26)
=]

where ¢, is the number of nodes of degree :.

Leggett also developed ‘“‘slightly weakened” but easily computed closed form expressions
for his bounds. Denoting the cumulative binomial distribution from j to k as

&
. k : .
Biko) = Y[ ) '
=
The reliability of the retwork may be written as

b
R = B(n-1;b,p) - 3 Sp™” (27)
r==n-1

Using the relationship between the S, values developed in (256) along with (27) it can be
determined that

) S. q‘ [ =3
R 2 B(n-tbp) - | =2 & W) re (28)

where W, = [[ X.

t==n-1

Leggett claims [L2, App. A.2] that the W, with the maximum value is
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nf 5—ec-n+1) %
W, < | 2l (29)

Using (28) and (29) the following closed form lower bound can be determined for R

1
Sarq’ [ nfb-c-n+1)) 2

R > B(n-1;b,p) - [ b_c] \ "2 B(n-1;b-c¢,p) (30)
n-¥
The following closed form upper bound can be similarly derived:
1
2(b-¢) IE
< B o) o) | . 31
R < B-1b7) - Suet| s " B-Lb-c) &)

Leggett developed a number of further weaker but simpler sets of bounds from equations (30)
and (31) [L2,L3]. These become applicable for large and dense networks.

3.3. Problems with the Bounds

In this section we first give computational results that indicate that there are problems
with the correctness of the bounds. We then show analytically that there are errors in the
theory behind the bounds.

3.3.1. Computational Results

We implemented programs to calculate the lower bound on R using equation (258), to
calculate the upper bound on R using equation (255) alone, and to calculate the upper bound
on R using equations (255) and {26) together.

We first verified our implementations by comparing with values reported by Leggett. In
[L2, pp.46] and [L3, pp.385] a table is given of the values the bounds determine for a
complete graph on ten nodes (Kjo). As well in [L2, pp. 83-88] lists are given for the N, values
calculated for boih the upper and lower bounds for K, for =6 to 10 and three other regular
graphs. These examples show that Leggett used equations (258) and (26) together for his
upper bounds. An interesting observation is that for K, these bounds are tighter than any of
the other bounds already mentioned.

We pext tested the performance of the bounds, to determine whether they are generally
correct. A problem arises here: the problem of calculating the exact reliability of a graph is
#P-complete, and therefore it is not generally feasible to obtain the exact reliability of
medium and large graphs to compare with the bounds. However, we can obtain the actual
values for complete graphs [G1] and for 2-tree and subgraphs of 2-trees [W1,W2| and hence
we can compare the bounds to the true values here. Even when the exact reliability is not
known, if we can find any types of graphs where the value delivered by the upper bound is
less than the value delivered by the lower bound we know that the bounds must be wrong for
these cases.

We found cases of graphs where Leggett’s upper bound is less than his lower bound.
We look at two of these here; fortunately, they are also 2-trees, or subgraphs of 2-trees, and it
is therefcre possible to obtain actual reliability values. First we look at the complete
bipartite graph K, ,». Figure 4 shows K, ,, for n=6:



Figure 4

This family of graphs consists ef subgraphs of 2-trces and therefore it is possible to
determine their actual reliability values efficiently. Table 1 shows the values delivered by
Leggett’s bounds for a number of graphs in this family using various values of p. Both the
value of the upper bound as calculated only using equation (25b) and the upper bound as
calculated using equation (258) and (26) together are included.

As can be seen from Table 1, the bounds are consistent when n=8 (K,,). However, for
n>9 the upper bound is less than the lower bound. The lower bound is the first to become
incorrect. However, as n increases the upper bounds also become incorrect; the tighter bound
using equations {255) and (26) together falls below the actual reliability first. ’

For the p and n values given in Table 1 for K, ,,, whenever any of the bounds are
incorrect, the upper bound is less than the lower bound. In this case, we know the bounds are
wrong even when we do not know what the actual reliability is. This is not generally the
case. If we construct a family of graphs by starting with two nodes with a single edge
incident on them and add an arbitrary number of new nodes each with exactly two edges
incident on them {one between the new node and each of the two original nodes) we have a
family of 2-trees which we will refer to as diamonds. Figure 5 shows a diamond with 6 nodes.

Table 1: Bounds on K, , , Bipartite Graphs
n p actual fower(25a) | upper{25b&26) | upper{25b)
8 { 0.3 | 0.012107 | 0.012103 0.012195 0.012430
0.5 : 0.162354 | 0.162017 0.163712 0.167803
0.7 | 0.562380 { 0.559967 0.564978 0.574825
0.9 | 0.941446 | 0.939313 0.941686 0.943526
9 1 0.3 | 0.605669 | 0.006812# 0.006674% 0.006899
0.5 | 0.123671 | 0.120041* 0.125975¢ 0.130999
0.7 | 0.514456 | 0.523070+ 0.515745t 0.527976
6.9 | 0.032059 | 0.933182* 0.932269+ 0.934346
10 | 0.3 | 0.003609 | 0.003844* 0.003382++ 0.003586+*t
0.5 | 0.096207 | 0.104083% 0.091105+%¢ 0.096832¢
0.7 | 0.469284 | 0.493957* 0.462367+% 0.476203t
0.9 | 0.922744 | 0.923660% 0.9227494 3.924958t
11 | 0.3 | 0.001927 | 0.002192# 0.001404#*% 0.001583+%
0.5 | 0.073132 | 0.085307* 0.057632++ 0.063913+%
0.7 | 0.427523 | 0.471064* 0.404841+% 0.410803+%¢
09 | 0.913517 | 0.925257#+ 0.913223% 0.915518%

* {lower bound > actual value) or
+ (upper beund < lower bound)

(upper bound < actual value)
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There is a close relationship between these diamonds and K,,,. Adding 2n edge between
nodes 0 and 1 in Figure 4 yields a graph equivalent to the one in Figure 5. Table 2 shows the
values delivered by Leggett’s bounds for various diamonds.

This table shows that when n="7 the lower bounds are incorrect. However, for this case

the upper bound is not less than the lower bound and therefore if the actual reliability value
was not known we would not know that the bounds are wrong.

The closed form bounds (equations (30) and (31}) were also implemented. Experimental

results show that graphs can be found where these bounds also deliver erroneous values.

Table 2: Bounds on Diamond Graphs

n p actual lower(25a) | upper(25b&26) | upper(25b)
6 | 0.1 | 0.600358 | 0.000358 0.000358 0.000360
0.3 | 0.045870 | 0.045642 0.045870 0.046290
0.5 | 0.285156 | 0.282061 0.285156 0.283437
0.7 |1 0.676415 | 0.671279 0.676415 0.681750
0.9 | 0.960491 0.958322 0.960491 0.961384
7 1 0.1 | 0.000078 | 0.000078+% 0.000078 0.000078
0.3 | 0.025354 | 0.025448+ 0.025483 0.025958
0.5 | 0.221680 | 0.222397= 0.222876 0.227907
0.7 | 0.620111 | 0.620151= 0.621746 0.630559
0.9 | 0.950971 0.949942* 0.951088 0.952416
8 | 0.1 | 0.000016 | 0.000017* '0.000016+% 0.000017%
0.3 | 0.013754 | 0.014158+* 0.013656*t 0.014109¢%
0.5 | 0.170166 | 0.176110% 0.169286++ 0.175455%
0.7 | 0.566223 | 0.578090* 0.565749*+ 0.576867%
0.9 | 0.941477 0.943374% 0.941545¢ 0.943123¢%
9 | 0.1 | 0.000003 | 0.000004% 0.000003++ 0.000003++
0.3 | 0.007360 | 0.007940=* 0.006756%t 0.007162%}
0.5 | 0.129578 | 0.141593+ 0.121184+¢ 0.128173*%
0.7 | 0.516069 | 0.544702+ 0.507249*t 0.519939¢
0.9 | 0.932065 | 0.938305+% 0.931969t 0.933716%
10 | 0.1 | 0.000001 0.600001=* 0.000001*t 0.000001*}
0.3 | 0.002839 | 0.004515% 0.002688*1 0.003039*}
0.5 | 0.098160 | 0.115808= 0.07624*t 0.083860*1
0.7 | 0.469962 | 0.518130=* 0.446010++ 0.450804+t
0.9 | 0.922745 | 0.934330* 0.922409++ 0.924283%

* (lower bound > actual value) or
t (upper bound < lower bound)

{(upper bound < actual value)
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They were derived from equations {25a) and (25b) by Leggett using equation (29). They
should therefore be looser than the bounds determined from equations (25a) and (258). It is
true that they ouly first become wrong for the K, , , and diamond graphs at higher values of
n. However, they also give incorrect values for some types of graphs for which the original
bounds give correct values. One such graph is the complete graph on five nodes (Kj;). For
this graph the upper closed form bound (equation (31)) is less than the lower closed form
bound (equation (30)) for all values of p.

3.3.2. Theoretical Analysis

There definitely appear to be some real problems with Leggett’s bounds. We document
a number of the minor errors first and then show there are problems with Leggett’s basic
theorems.

The closed form bounds are the easiest to compute. They are derived from the original
bounds using equation (29). Leggett claims to prove the correctness of equation (29) [L2,
App. A.2]. However in his last step where he takes the antilogarithms of both sides of the
equation, he appearslto be in error. Looking at the Kj graph, K, ==X, X X;=1.17649

-— 1
while {-’i(-b;(—";%lll 2=(—i%)2 which is not less than or equal to 1.17649. Thus the closed

form bounds are not derived correctly from the original bounds.

Many of the most serious problems are with the original bounds. A number of basic
graph-theoretical results are incorrect. Leggett assumes that S, ;=0 where ¢, is the number
of nodes in the graph of degree c¢. This is true for some graphs, such as the complete graph
where S =0 .=n. It is also true for the two types of graphs (K, and diamonds) we chose
to look at in the previous section. However, it is not generally true. S, . may be much

larger than .. As an example in a cycle o,=n while Sg,_c‘—-'-[g ] =——r;—l., It is even possible

for o, to be zero, as in the following simple graph:

c=1 s

Figure 6

o, is actually the number of S, ; cuts containing ¢ edges which disconnect exactly one node
from the rest of the metwork. It only counts a subset of the total number of minimum
cardinality cuts. So ¢,<S, .. In the previous section we chose to look at two types of graphs
{(Kzne and diamonds) for which it is true that o,=S, . For graphs where o, is quite a bit
less than S,_, the effect of this assumption is to deliver an upper bound that is looser than it
would be if the actual value of S;_. were used. So in some cases this assumption saves the
upper bound from being wrong. It can, however, cause the situation in which, although the
lower bound is larger than the actuval value, it is still less than the upper. In this situation, it
is not obvious that the bounds are not working when the actual value is unknown.

Tables 1 and 2 illustrate that there is something wrong with the bounds themselves.
The upper bound obtained using both equations {255) and (26) becomes incorrect sooner than
the one using only equation (254). This leads us to suspect that equation (26} is not correct.
In fact, this can be shown using some of the actual examples and values that Leggett
reported. Leggett states that equation (26) is to be applied for non regular graphs. This
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appears to be a mistake as he applied it to the regular graphs for which he gives the subtree
counts [L2, pp. 83-88]. Even for complete graphs equation (26) is not true for the entire
range of b-c>r>b-2c+1. This is illustrated by Table 3 which is taken from a table in [L2].

Table 3 shows that, for complete graphs, it appears that equation (26) is only true in
the range b-c>r>08-2¢+3. For the values of r where equation (26) is not true it gives
underestimates for S,. Therefore, overestimates for these N, values are obtained. This
example might lead us to suspect that equation (26) might be transformed into the following
inequality which could still be used to determine an upper bound:

1 .
S, < gla,-( b—b:i] , for b-c>r>b-2c+1 » (26)

However, even inequality (26) is not true. Leggett gave the subgraph counts calculated by
his bounds on three regular graphs {L2, pp.86-88]. Not only does equation (25) not give the
correct subgraph counts for any r in the range b—¢c>r>8-2¢c+1 but for each of these graphs
the value it delivers for r==b-c-1 is lower than the actual value.

Tables 1 and 2 show that there are also cases where the upper bound using equation
(25b) alone is incorrect. The lower bound {which uses equation {25a)) is wrong even more
often in these tables. Equations (25a) and (253) are both developed from the basic theorem
[L2,Thm. IIL.2} given as equation 3.

Sr+l S f»—l br—_:;’] Sr (24)
where:
Table 3: Connected Subgraph Counts from [L2 pp. 83]
Ka Graph K7 Graph

r | N{r)real Nir) upper bound | N(r) real N(r) upper bound
5 1296 1206

6 3660 745%% 16807 16807

7 5700 5715+t 68295 77818

8 6165 6165+ 156555 162170

9 4945 4945+ 258125 260115
10 2097 2097 331506 331695+t
11 1365 1365 343130 343161*+
12 455 455 290745 290745*
13 105 105 202755 202755+
14 15 15 116175 116175%
15 1 1 54257 54257
16 20349 20349
17 5985 5985
18 _ 1330 1330
19 210 210
20 21 21
21 1 1

* {terms calculated using equatioa {26}))
} (terms calculated using equation (26) but not equal to the actual value)
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n-1

n-1
for = ———————

3

We show here that there are errors in this basic theorem. In assessing equation (24), it is

[1+—1—

useful to note that (1+—:‘-)" is asymptotic to ¢ hence f,; ( as well as X, for all ) are bounded
ahove by the absolute constant 1.21.

In its published form, a simpie n-vertex cycle forms a counterexample to equation (24),

since S, = [g) ; Sps = (g ), b=n, and c=2. Hence equation (24) asserts that 3 < f(n),

which is impossible. Of course, Leggett’s claim is not required for i<<n and i>b-c in order to
obtain the bounds; hence the cycle counterexample is not completely satisfactory. We
develop here families of graphs which provide counterexamples to equation (24), even within
the range required, that is n-1<i<b-c.

Theorem 3.1: There is a graph G for which S, ; and S, do not satisfy equation (24).
Proof:

Construct a graph from a complete {-vertex graph and a cycle of length s by identifying
a single vertex on the cycle with one of the vertices of the complete graph. The resulting

graph has cchesion 2, and has b = (;) +38. Observe that any edge cutset with fewer than -1

edges must induce an edge cutset on the cycle, and cannot cut the complete graph. Hence,
for this graph, when j<¢-3,

50-2‘1=§°[ i-:ﬁ [(3%3 !

In particular, then, Sb_2=(g) and Sb_s={§)+(g](§]. Equation (24) asserts that

Sy o< —ﬁl—-—SH. One can easily verify that whenever 32(5_), this claim is false.

s+(,§)—2

Theorem 3.1 produces an infinite family of counterexamples to Leggett's major result
(equation (24)), hence invalidating his proposed bounds. It is worth noting that the
construction employed in theorem 3.1 can also be used to show that other coefficients do not
satisfy equation (24}; that is, the counterexamples do not arise simply because we examine the
coefficient corresponding to minimal cutsets.

Nevertheless, equation (24) could still be useful if we could establish that certain of the
coefficients do satisfy this bound. In particular, one might ask (in contrast to theorem 3.1)
whether the claim holds when examining S,,; the motivation is that, although
counterexamples exist for the coefficients with almost all the edges, we may be able to salvage
the claim when we consider coefficients corresponding to few edges. Unfortunately, equation
(24) is also faise here:

Theorem 3.2: There is a graph G for which S, and S, do not satisfy equation (24).
Proof:

We construct 2n infinite class of graphs for which S, and S, ; do not satisfy equation
(24). Let G,; be the graph obtained by connecting two extreme points by A vertex-disjoint
paths with 4-1 intermediate vertices. The resuit has n=~Ahk-h+2 vertices and hk edges. For
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such a graph, the edge cennectivity c=2. The complete bipartite K, , , graphs locked at in a
previous section were examples of G ; graphs where ==n-2 and &==1. Figure 7 shows a small
G ; graph where A=4 and /=3.

Figure 7

Whenever 5<A<12 and k is sufficiently large, G, forms ome of the desired
counterexamples. Thls can be seen 2s follows. The number of bpannmg trees of G, is R,

and hence S, is { Ehh +1] -k, Similarly, S, is ( Icl' 2)—{ ) B2, Equation (24) asserts

- hk-h+2
that S, < I.QIbc—I?HS,..l. Rewriting, this is equivalent to —————— 5 —_—<1.21.

Sp1h-3
As k—o0 and his held fixed, the numerator above is dominated by the coefficient of
¥, which is
(l. )

P, which is A% h—l)' k(h~3) When 5< A< 12, this ratio ezceeds 1.21; in fact, for k=5, the

limit as k—co is approximately 1.278. This is in contradiction to equation (24); hence, for
sufficiently large k, G} forms a counterexample of the form desired, when 5<4<12. o

Similarly, the denominator is dominated by the coefficient of

3.4. Conclusion

Theorems 3.1 and 3.2, along with the numerous more minor errors documented earlier,
suggest that there is po reasonable expectation of applying Leggett’s bounds to general
networks. Nevertheless, the basic idea of exploiting graph-theoretical structure to cbtain
bounds is sound; in fact, it appears to be the most promising method of improving on the
current best, the Ball-Provan bounds.

We have shown that despite the soundness of Leggett’s underlying approach, the bounds
developed in [L2,L3] are seriously in error. The problems extend back to the basic theorem
upon which they are developed. In view of the fatal difficulties with equation 24, and the
other severe problems noted, Leggett’s bounds must be abandoned. We do not consider them
in the discussions and testing in the rest ¢f this document.



Chapter 4

Implementation Considerations

In this chapter, we lcok at algorithms to calculate the graph theoretic values used by
the bounds introduced in chapter 2, as well as the calculation of the actual bounds
themselves. We implemented cach bound, to obtain reliability values for the purposes of
comparison. To be of practical use, any graph theoretic values used in the bounds must be
cbtainable in polynomial time. In the sections which follow, we therefore describe efficient
algorithms to evaluate the bounds.

4.1. Graph Thecretic Values

The most complicated part of the implementation of these bounds is the
implementation of the algorithms for determining the required graph theoretic values. The
Jacobs-II, BBST, Kruskal-Katona, and Bali-Provan bounds all use the values for the graph’s
number of spanning trees (¢}, its edge connectivity (c) and the number of minimum
cardinality network cuts {C,). The Lomonosov-Polesskii bounds use the value for the graph’s
edge connectivity, and the cardinality of the cuts in a cut basis of the graph.

4.1.1. Calculation of Number of Spanning Trees in a Graph

N, is equal to ¢, the number of spabning trees for the graph. The original theory
behind counting spanning trees in a graph was developed by Kirchoff [K6]. Later, Tutte [T4]
put it into a form which is more appropriate for computation. His work applies to the more
general case of directed graphs. It also allows for multiple edges. For undirected graphs with
no multiple edges, the number of spanning trees can be determined by:

1.  First forming the degree matrix D for the graph.
The degree matriz is the matrix defined by:

D(i,j) = d; fi=j
D(i,j) = -1 if i£f and there is an edyge (i,5)
D(ij)=20 if i£7 and there i8 no edge {i,5)

2.  The determinant of D minus its ‘n’th row and column is equal to the mumber of
spanning trees in the graph.

The degree matrix can be created in O(r?) time and there are well-known algorithms
for calculating the determinant of a matrix in O(n®) time (see for example, [A1]). It should be
noted that algerithms have been developed which improve on this running time (for example,
Strassen’s algorithm [S4]). For our purpeses, however, the O{n®) classical method suffices.

4.1.2. Calculation of Edge Connectivity

The calculation of the edge connectivity of a graph is based on the classical theorem by
Menger [M1], which states that the edge connectivity between any two nodes is equal to the
pumber of edge disjoint paths between the two nodes. The number of edge disjoint paths
between any two nodes can be determined by the use of Ford and Fulkerson’s well-known
Maximum Flow, Minimum Cut theorem [F3]. Their labeling algorithm determines the
maximum flow between any two nodes in a directed graph where each edge has a
predetermined capacity. An undirected graph must first be converted to a directed graph by
replacing each of its undirected edges (4,7) with the two directed edges <i,j> and <j,i>.
The number of edge disjoint paths between any two nodes can be determined by applying the
labeling 2lgorithm with each edge given a capacity of one. This is often referred to as a 0f1-
flow problem. The overall edge connectivity ¢ can be determined [E2] by choosing some
arbitrary node v; and successively solving the 0/l-flow prcblem between s and every other
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node v; € V. The minimum of the values obtained in these r-1 iterations is equal to ¢. A
single 0/1-flow problem can be performed in O(bn) time [E2]. Therefore, the edge
connectivity of a graph can be determined in O(bn®) time.

4.1.3. Calculation of the Number of Minimum Cardinality Cuts

C, is equal to the number of minimum cardinality cuts (number of edge cutsets
containing exactly ¢ edges) in the graph. Its calculation is more complicated than that of the
edge connectivity or that of the number of spanning trees in a graph. It has been shown that
its calculation is NP-hard for directed graphs [P3]. However, Ball and Provan [B3], using a
result due to Bixby [B6], have recently developed an algorithm for calculating it in
polynomial time for undirected graphs. The algorithm takes as input the set of nodes and
edges of the graph (V and E), the edge connectivity of the graph (c), and again some
arbitrarily chosen original node (v} and returns the number of minimum cardinality cuts in
the graph (C}.

NUMCUTS ( V,E,c,v,)

1) mincuts= 0
2) for each v, € V~ug

a) find k, the 0/1-low between v, and v;

b) if £ = ¢ then:

i) find minstcuts, the number of minimum cardinality
cuts between v, and v,
ii) mincuts= mincuts + minstcuts

c) collapse v, and v, into single node v,

3) return{mincuts)

Step 2a is the O(bn) 0/1-flow problem discussed in the previous section. That leaves
2b(s) as the only other substantial step. Ball and Provan show that minstcuts can be
calculated using the following algorithm:

STCUT (V,E)
1) find and delete from the graph G= (V,E) all nodes
not on 2 path from v, to v,
2) find a maximum 0/1-flow F,
3) generate the flow induced network G;=(V,E;) with E,
defined as follows: for each <ij> € E
if Fiy=0 then
add <j,i> to E;
if F,=1 then
- add <ij> to E;
4) collapse all strongly connected components in G into
single nodes to obtain the reduced graph Gy=(V,E,)
5) find m, the number of antichains in Gyv;
6) return (m)

Step 1 employs the well-known algorithm for finding biconnected components in a graph [T2].
If this algorithm is started at node v,, all nodes on a path from v, to v; must be in the same
biconnected component as v; and v, This step can be executed in O(}) time. Step 2 is
again the 0/1-flow problem described in the previous section. It leaves the edges of the graph
with 2 maximum flow indicated on its edges. That is, F; = 1 if there is flow on the edge
<14,7> in this maximum flow, and F,; = 0 if there is no flow on the edge <#;>. It is of
O(bn). In step 3, the flow indicators left by step 2 are used to create the graph G,. This is of
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O(%). Tarjan [T2] developed an O(}) algorithm that can be used to find the strongly
connected components of G for step 4 where these are collapsed to leave the reduced graph
G,. Step 4 will always leave G, as an acyclic graph which will be a compact representation of
all the minimum cardinality cuts between v, and v, An antichain in an acyclic network is
any subset of nodes M such that for all pairs of nodes ¢ and j in M, i is not a predecessor or 3
successor of j. Ball and Provan [B3] show that there is a one-to-one correspondence between
the minimum cardinality cuts between v; and v, in G and the antichains in Gy~v, Therefore,
counting antichains in Gy-v; gives the desired result. The following recursive algorithm
returns the number of antichains in 2 given graph:

ANTICHAIN (V,E)
1) choose v; € V of in-degree 0
2) set num=0
3) if V-v, is an empty set then
return(num)
4) num= num + ANTICHAIN (V-y, E)
5) find S, the set of successors of v,
6) if V-S-v, is an empty set then
return{num)
7) num= num + ANTICHAIN (V-5-v, E)
8) return(num)

Each call to ANTICHAIN counts at least one antichain and the steps in it can be
performed in O{5) time. So, step 5 of STCUTS can be executed in O(bm) time where m is the
number of minimum cardinality cuts between v, and v, Therefore STCUTS can be executed
in O(maz|bn,bm]). This means that the overall calculation of the number of minimum
cardinality cuts in the graph as calculated by NUMCUTS is of O(maz[bn®5C]). In an

important result, Bixby [B6] determined that for undirected graphs C, < (g] . Therefore for
undirected graphs the number of minimum cardinality network cuts can be calculated in
O(bn?) time.

An important fact to note is that no polynomial-time-bounded algorithms have been
developed to calculate any of the spanning subgraph counts N; for n-1 < i <b-¢ {or edge
cutset counts C, for ¢ < & < b-n+1 ) for general graphs.

4.1.4. Calculation of Cut Basis

As introduced in chapter 2, Lomonosov and Polesskii’s upper bound (equation 25b) is
determined using a cut basis L={L;,Ly, - - - ,L,,} of the graph. Actually, to calculate the
bound, we only need to know the cardinality of {number of edges in) each of these n-1 cuts.
A set of values corresponding to the cardinality of the cuts in a cut basis can be calculated
using the following method.

1. Solve the 0/1-flow problem between every pair of nodes v, €V and order these (g]

values in decreasing order. This creates a complete graph on the nodes in V with a
weight on each edge corresponding to the cardinality of the minimum cut {j.e. the 0/1-
fiow) between the two nodes upon which the edge is incident.

2 Create a maximum weight spanning tree for the nodes in V with a weight on each edge
corresponding to the cardinality of the minimum cut (i.e. the 0/1-flow determined in
step 1) between the two nodes the edge is incident upon. This is done by:

a. starting the tree with the edge corresponding to the largest value as determined in
step 1.
b. adding the edge corresponding to the next value from this list if it does not form a
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¢. successively considering edges corresponding to the values from the list adding
them to the tree if they do not form a circuit until n-1 edges have been placed in the
tree.

The n-1 weights on the edges selected for the tree created in step 2 correspond to the
cardinality of the n-1 cuts in a cut basis for the original graph. The circuit detection in step
2 can be done efficiently using depth first search. In step 1 the O(bn) 0/1-flow problem is
solved (;) times and therefore the cardinality of the cuts in a cut basis of a graph can be

determined in O(bn®) time. It should be noted that step 2 is essentially Kruskal's spanning
tree algorithm [K7].

4.2. Implementation of the Bounds

In this section we look at the calculation of the actual bounds themselves These can all
be calculated in linear time, given the graph theoretic values computed earlier.

4.2.1. Jacobs and BBST Bounds

After the values for ¢, {, and C, have been determined the calculation of the Jacobs-II
or BBST bounds is almost trivial. They both consist of the summation of the e,—( b) el
values for certain ranges of 3. These summations can be done quite efficiently using the fact

that e, = ¢ ; (p) After the first e; value in a summation has been calculated this

relationship can be used to successively determine the rest. As well, as mentioned by Bauer
et al. [B5|, these summations correspond to the binomial distribution and can also be found
using table look ups.

In the Jacobs-II bounds the actual value of Cj py; is only used in the upper bound and
is overapproximated as [ ] in the lower bound. Similarly, the actual value of C, is only

used in the lower bound a.nd is underapproximated as O in the upper bound. In the BBST
bounds the actual values of both C, ,y; and C; are used in the lower bound but only the
actual value of C, is used in the upper bound where the value of C,_,,, is overapproximated.
In cases where both the upper and lower bounds are going to be used both C. and C, .y
have to be calculated anyway and therefore they might as well be used in both the upper and
lower bounds tc make them as tight as possible. When this is done for the Jacobs bounds we
obtain:

R..<. l_Ccpb-cqc b—dd Z[ ]pb—cn (323)
s==d+41
and
bee SR by puy bdgd _ bei i
R>1-Co¢- Y (})o™¢ - Co E()p (32b)
=c+41

where d=b-n+1
Similarly the BBST bounds become:

Co (E2by pis dd__ b-i
351-@-(2[5);, 7| - cat §+1( o (33a)



and

R>1- Cptog - C’[ 3 [’;)p‘“’q‘] —glif)p“q‘ (33b)

where again d = b-n+1
For the representation using the binomial distributions B,, they become:

R<1- —-'(34.1 - B.y) - Cp™%’ - (1-B))

¢

(34a)

and

R>1-Cp>¢ - -——-(B,,— B,) - (1-By
d

(34b)

To avoid confusion we refer to the bounds obtained from equations (32a) and (32b) as the
Jacobs-1II bounds and the bounds obtained from equations {33a) and (33b) (or equations (34a)
and (34b)) as the BBST-II bounds. These are the bounds for which we report results in the
next chapter.

4.2.2. Kruskal-Katona and Ball-Provan Bounds

These are more sophisticated sets of bounds and consequently their implementation is
somewhat more complicated. In [B3]|, Ball and Provan give a thorough discussion of
implementation considerations that applies to both the Kruskal-Katona and the Ball-Provan
bounds. The major new feature in their calculation is the need to determme k-canonical
representations and calculate pseundopowers.

Once the k-canonical representations have been determined, the calculation of the
pseudopowers consists of the simple summation of the appropriate (J‘ ] values. The only
complication here is that for the lower pseudopower (Kruskal-Katona bounds) we are to take

[J ) == 0 whenever i<0 and j<i. For the upper pseudopower (Ball-Provan bounds), we take
the cases [(J)] =] for j2>-1.

In the Kruskal-Katona bounds the c-canomical representation of F, and the d-canonical
representation of F; are needed, while the c-canonical representation of H, is needed for the

Ball-Provan bounds. For the Ball-Provan bounds the (k,d)-factor of ¢ = ¢ - Zh must - also

be calculated. In [B3|, Ball and Provan give the followmg algorithm for thls (lc d)-factor
calculation:

KDCALC (&,d,z,numM )
1)i=d
2) while num>0 Lok
: —d+
a) lf[f] "(:g—d-i-k] > num
z=z-1
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b) else
i) Mli] = = d+k
ii) num = num - ((f) “[:;:d-i-lc])
i) z = 2-1 ’
iv)i= i1

If the value @ is placed in num and z is initialized to 5-+1 the algorithm places the d-canonical
representation of the (k,d)-factor of 4 in the vector M. This algorithm can also be used to
determine the r-canomical representations needed for both the Kruskal-Katona and Ball-
Provan bounds since the r-canonical representation of a number z is the (0,r}-factor of z. The
c-canonical representation of either H, or F, can be found using KDCALC with % set to 0, d
set to ¢ and z initialized to b+c-2. We had a small problem here: the first time through we

have [i) - [g] and if we take ( 3 ) as equal to 1 we end up with the c-canonical
representation of (num+1). For example, in [B4,pp. 172] the 2-canonical form of 24 is given
as [g } +(i) which is actually the 2-canonmical form of 25. One way to fix this is to initialize
num to one less than the value desired. For example to obtain the c-canonical representation

of H,, set num=(H~1). Communication with Provan verifies his awareness of this problem in
the published version of the paper.

In [B3], Ball and Provan show that the calculation of these two sets of bounds can be

performed in linear time. In KDCALC the successive recalculation of [':'] -—[f:ji,":] can be
performed using only four arithmetic steps by the use of the following two identities.

1y _ j-mgj .

( i ) = ‘—J“[,) for j>m2>0
and

(ti} = ‘?H) for j=2m>0

These two identities can also be used to determine the successive lower or upper
pseudopowers {i.e. 2/ from 2/ or 2<"*/*> from z<Y*>) by keeping track of the previous

»

value for each of the [":’] calculations.

The number of trees in a graph can be as large as n™? (for complete graphs) [B3]. In
both the Kruskal-Katona and the Ball-Provan bounds, -cancmical representations are
determined and pseudopowers are calculated for values that are of the same order of
magnitude as ¢ (F; and g). Ball and Provan [B3| state that the limiting factor in their
implementation is the size of the numbers that had to be manipulated.

4.2.3. Lomonosov-Pclesskii Bounds

Once the cardinality of the cuts in a cut basis and the edge connectivity ¢ have been
calculated, computing Lomonosov and Polesskii’s bounds is trivial. Both the calculation of ¢
and the calculation of the cut cardinalities are based on the same 0/1-flow problem. These
bounds do not need the values for C, or ¢.

4.3. Veriflcation of Implementations

It is (of course) very important to verify the correctness of any implementation,
especially if it is to be used for testing purpose. Some simple checks on the correctness of
the values obtained from the algorithms that determine the values of ¢, ¢, and C, can be
carried out on families of graphs where these values are known. For example for a complete

graph ¢ = n-1, C, = n and, as aiready mentioned, { = n™2 In all cases, our bounds
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delivered the correct values. The correctness of the implementation of the algorithm to
calculate the cardinality of the cuts in a cut basis was verified on a2 number of small
examples.

Checking the correctness of the values obtained for the actual bounds is more difficult.
The major problem here is that the original developers have not always reported examples.
Ball-Provan [B3] develop a section describing the tests they performed using their bounds as
well as the Kruskal-Katona b::unds, and even include a table of their results. Unfortunately,
they do not report any of the actual values delivered by the bounds and only report the value
they describe as the l-norm of the difference between the upper and lower bounds (this l-norm
is described in the next chapter). However, in [B4|, Ball and Provan did report the actual
values delivered by their bounds as well as by the Kruskal-Katona bounds on a small graph.
Our implementation delivered these values for both sets of bounds. In [BS|, Bauer et al.
reported the values obtained by their bounds as well as the bounds delivered by the
Kruskal-Katona bounds for a single six node graph. Our implementation of the BBST bounds
delivered the same values that they reported. However, our implementation does not deliver
the exact values they reported for the upper bound of the Kruskal-Katona bounds. Working
this example through by hand, we obtain the same values as delivered by our program and
therefore feel cur implementation is correct for this example.

We found no other examples in the literature reporting actual values delivered by these
or any of the cther bounds we are considering. We worked through the calculation of each of
the bounds for a number of small example graphs by hand and found no inconsistencies.
However, it would still be desirable to have more examples on which to test the resuits,
especially for the more sophisticated Kruskal-Katona and Ball-Provan bounds.

As already mentioned, some of the numbers involved in the calculations can be very
large. At the same time, for dense graphs and values of p close to one, the difference between
the values delivered by the bounds may be very small. For large graphs a large number of
mathematical manipulations may be performed, especially by the more sophisticated bounds.
Therefore, consideration must be given to the precision of the number representations.

Our implementations are on a VAX 11/750 running UNIX 4.1BSD. The main
implementation is in the C language. This includes algorithms for calculating ¢, ¢, C,, the
cardinality of the cutsets in 2 cut basis and programs to calculate each of the sets of bounds
that have been discussed. As well, algorithms for genmerating and calculating the exact
reliability of special subclasses of graphs used for test purposes and described in chapter 5 are
also included.

Like Ball and Provan, we use double precision-floating point numbers (64 bits) for our
calculations. "With this implementation, we are able to calculate the Jacobs-IIl and BBST-II
bounds for networks with up to 10% trees. Calculation of the more sophisticated Kruskal-
Katona and Ball-Provan bounds is restricted to networks with less than 10'® trees. The
Lomonosov-Polesskii bounds do not use the value for ¢ or any values of this magnitude, and
thus their calculation does not suffer from these limitations.

In order to test larger graphs as well as to be sure of the accuracy of the precision of the
values reported, we also implemented a number of the actual bounds in BC. BC is a C-like
language and compiler in which arbitrary precision computations can be performed. The BC
language is unfortunately less flexible than C, and thus harder to work with. Using our BC
implementation we were able to verify the precision of our C implementation results as being
correct, at least up to the eighth decimal place. Unless otherwise stated the results we report
are from the C implementation rounded to the first. six digits to the right of the decimal.
Most of the time this is adequate for our purposes. However, if what we are trying to show
necessitates more precision we use the results frem our BC implementation.



Chapter 5
Testing the Bounds

A number of different methods for obtaining bounds on the reliability polynomial have
been described in the preceding chapters. However, little work has been done in testing them
to determine their actual performance. Even the original developers of the various bounds
have not typically given many results showing the performance of their bounds. In fact, as
mentioned in Chapter 4, we had trouble finding enough examples in the literature to verify
our implementations.

Ball and Provan are a notable exception to this, however. In [B3], they compare their
bounds with the Kruskal-Katona bounds. They tested both sets of bounds on a2 number of
different types of graphs. These were: the Arpanet topology for 1979, a number of
“complete”, “‘street” and ‘‘ladder’ networks, as well as a number of undirected and directed
graphs which were randomly generated (see [B3] for a descriptions of these graphs). They
measured what they termed the l-norm of the difference between the upper and lower
bounds. Let r{p) be this range between the s;alues delivered by the upper and lower beund for

a given value of p. Then the l-norm is f r{p)dp. They use the ratio of the respective I-

=0
norms 2as the means of showing the improvement of their bounds (the Ball-Provan bounds)
over the Kruskal-Katona bounds.

5.1. Testing Philosophy

In testing the performance of bounds, the first problem is to determine exactly what to
test. The fact that very little work has been done with regards to testing means that
accepted standards or metheds are lacking. Actually, the nature of the problem makes it
very hard to set any standards for testing a set of bounds.

Difficulty arises due to the fact that there an infinite variety of graphs and it is
therefore feasible to test only a small portion of them. The approach Ball and Provan chose
was to randomly generate graphs to be tested. The idea is to obtain a representative sample
of general graphs, but this is very difficult. Moreover, it does not allow us to assess the worst
case performance of the bounds. Another approach is to test the bounds on graphs which
constitute a representative sample for graphs to which the bounds will actually be applied.
This necessitates making some strong assumptions about the type of graphs involved, and
therefore restricts the applicability of any results. Hence, one must avoid being too
constrictive with these assumptions.

One intended application for this reliability measure is computer communication
networks. Typical computer communications networks have very sparse topologies; for
example, local area networks are often set up in simple configurations such as trees or cycles.
Even a large network like the Arpanet only has a cohesion of two {see Figure 8). Sparse
configurations have often been dictated by factors such as the complexity of routing and flow
control that arises as networks become denser. Therefore, the performance delivered by the
diflerent sets of bounds for sparse networks is of the most interest. Nonetheless, we cannot
restrict our attention to just these sparse topologies. Very sparse configurations are known to
be unreliable. This fact is the motivation for a good deal of research on determining more
reliable topologies. Therefore denser configurations should 2lso be examined, and obtaining a
quantitative measure of their reliability is of interest. Consequently, determining the
performance delivered by the bounds on denser graphs is also worthwhile.

Once it has been determined which graphs are to be tested, one must determine the
possible values for the edge reliability, p. Ball and Provan’s approach [B3] to this is to use
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the l-norm, and thereby avoid reporting results for any specific edge availability. The l-norm
gives an indication of the overall performance of the bounds for all values of p.
Unfortunately, for any single graph, this range between the upper and lower bound r{p) may
vary quite dramatically for different values of p.

Arpanet Configuration for September 1979 {from [B3])

B

LINCOLN

Figure 8

The large variation exhibited by r(p) for 0<p<1 limits the usefulness of any single
measure that attempts to give an indication of the overall performance of the bounds, on
even a single network. Therefore it may be preferable to consider specific values of p. In
fact, a useful feature of these bounds is the ability to use them to perform sensitivity analysis
on the effects of varying the value of p. An example where this might be applied is for
determining the relative benefits obtained by the construction of a given network using one of
a number of different types of links with correspondingly different values of p.

If we consider the possible applications of the bounds, we can narrow down the range of
values of p to emphasize in our testing. Again, we should be careful not to be overly
constrictive and hence severely limit the generality of any result we might obtain. This is
particularly important when one recalls that the model from which the bounds have been
developed allows much latitude in what p represents. If p represents the availability of a link,
it may be quite high. In military applications, link availabilities are often required to be very
close to 1. In [F2], Frank and Chou study the Arpanet using the same assumptions of
equivalent and statistically independent link failures and give a value of 0.98 for p. On the
other hand, if p represents the probability that a link fails in s given period of time, the value
for p might be quite a bit lower, particularly if the “given period of time” is quite large. It
should be remembered, however, that probabilistic ccnnectedness is most applicable for high
values of R. If the network is only fully connected for a small fraction of the time (say,
R<0.5) it would typically be more useful to use a measure such as the expected number of
node pairs which are able to communicate. This would give information concerning the
partial usefulness of the network for the time when it is not connected. We therefore restrict
our emphasis to values of p large enough so that R is reasonably high.
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The size of the range r{p) between an upper and lower bound gives one good indication
of the performance of the bounds. IHowever, it is more desirable to compare the values
delivered by the bounds to the actual reliability of the graphs on which we are testing them.
Where this actual value falls between the upper and lower bound shows their relative
performance. In particular, it would be very valuable to ascertain whether or not cne or both
of the bounds is tight. A bound is tight if we can find a graph whose actual reliability is equal
to the bound. Therefore, a bound is tight if it delivers the closest possible bound on the actual
reliability given the information which it uses. Van Slyke and Frank [V2] have shown that
while the Kruskal-Katona bounds are tight for coherent systems they are not tight for
networks. Ball and Provan [B4] show that their bounds are tight for “‘shellable independence
systems’’ but it is still open as to whether they are tight for networks. If one can establish
that a bound is tight, it proves that one carnot improve the values delivered by the bound
without employing new graph theoretic information.

When ore cannot establish that a particular bound is tight, it is still desirable to
determine which bound gives the best performance. It is essential also to, 2t least
qualitatively, determine when the performance of a bound is relatively poor.

In the remaining sections, we first identify suitable test cases, then determine the
relative merits of each bound, and finally study the effects of variocus graph transformations.

5.2. Basle Test Results

We must now determine which graphs to test, and what values of p on which to test
them. We chose to restrict our tests mainly to graphs for which we can obtain the exact
value of R. This provides the necessary basis for comparison.

Unfortunately, it is not geverally feasible to obtain the actual reliability for medium and
large scale networks. If we could, there would be no need for bounds in the first place.
However, there are some classes of graphs for which the actual reliability can be obtained in
polynomiai time. As previously menticned, we can obtain the exact reliability for complete
graphs (K,) [G1] as well as for 2-trees and subgraphs of 2-trees (partial 2-trees) [W1,W2].
The exact reliability of the family of graphs G, introduced in Chapter 3 (section 3.3,
Theorem 3.2) can also be determined exactly. For this family of graphs,

N;= HH) P tor n—lﬁiﬁb——cv (35)

With equation (35), the N, values needed by equation (11) can all be calculated for this family
of graphs. An infinite number of other graphs for which it is also possible to determine the
exact reliability can be created by properly “combining” two grapks of the above types as
edge disjoint subgraphs of a larger graph. This process of combining the subgraphs simply
consists of identifying a single node in the first graph with a single rede in the second graph.
The reliability of the new graph is equal to the product of the reliabilities of the two edge
disjoint subgraphs. This procedure car be repeated to combine ary number of graphs. As
well as being one of the above types of graphs, the subgraphs may also be any trivial graph.
We define a trivial graph to be any graph for which b-c<n-1. For 2 trivial graph, once C,
and ¢ are known there are no unknown N, values, and therefore any of the bounds (other than
the Lomonosov-Polesskii bounds) delivers an exact value for their reliability. An example of a
trivial graph is the complete graph on four nodes (K). Any cyele is a trivial graph.
Therefore, the other family of graphs introduced in Chapter 3 (section 3.3., Thm 3.1),
consisting of a complete graph combined with a cycle, are examples of combinatioa graphs for
wkich reliability can be easily computed.

We focus on two types of 2-trees: ladders (see Figure 9) and the diamcads defined in
Chapter 3. Ladders have only two ncdes of degree two and have been shown to be instances
of the most reliable series-paralle! networks [N2,N3]. Diamonds, on the other hand, have the
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maximum number of nodes of degree two; they are the least reliable 2-trees that we can find.
Of course, partial 2-trees are less reliable.

Figure 9

2-trees and G} ; graphs, like actual computer networks, are sparse. Complete graphs, on the
other hand, are the densest family of graphs. Combination graphs can be combinations of
very reliable and very unrelizble graphs. [or example, the family of graphs constructed by
connecting a complete subgraph and a cycle contains a combination of the most reliable type
of graph with a very uareliable graph. We also include one other dense graph (which is 6-
cohesive) and the Arpanet configuration for 1979 (figure 8) for which the exact reliability is
not kpown. In total, this forms a large collection of sample graphs on which to test these
bounds. To our knowledge, this is the first substantial set of data tested which gives the
actual values delivered by these bounds,

We must also determine values for p to be employed in the analysis. The values of p
used vary as to the type of graphs tested. For the sparse graphs, we show representative
samples of p below 0.9, and then concentrate on the region between 0.9 and 0.99. For the
very dense complete graphs we use values below 0.9.

Our main interest is to perform a comparative test on these bounds to determine when
each of them might be appropriate. In the appendix, we provide tables which report a large
number of computational results. Small portions of these tables are excerpted in the analysis
of the bounds, which follows. A “*” beside the value of a bound indicates that bound
improves on the corresponding Ball-Provan bound. In all other cases the Ball-Provan bounds
deliver the best values. All values are rounded off to six digits to the right of the decimal
place. In section 5.2.1 we compare the Jacobs-Ill, BBST-II, Kruskal-Katona and Ball-Provan
bounds and in section 5.2.2 we investigate the Lomonosov-Polesskii bounds.

5.2.1. Subgraph Bounds

The Jacobs-III, BBST-II, Kruskal-Katona and Ball-Provan bounds are all based on the
approach of bounding R by finding both 2 set of overapproximations and a set of
underapproximations on the subgraph ccunts of the relizbility polynomial. They therefore
exhibit similar general behaviour. For values of p near 0 and near 1 the value of r{p) is quite
small. However, for values of p near .5, the value of r{p) for each of these bounds czn become
as large as 0.8 [B3]. Intuitively, this trend mzkes sense. We noted earlier that varying the
value of p effectively varies the “weight” or the contribution which each of the subgraph
counts N; makes towards the total value of the reliability. Recall from Chapter 2 that for
values of p near zero, the number of trees {V, ;) becomes dominant. Since the bounds employ
the value of ¢, it is to be expected that r{p} will therefore be small for p close to 0. Similarly,
since the term using C, is dominant for p near 1, it is to be expected that r{p) will also be
small for p near 1. If p==0.5, all the N, terms are of equal importance in R and therefore r(p)
is quite large as all these N, values {for n-1<i<b-c) are cnly approximated by the bounds.
In view of the intended applications of the bourds, we are most interested in values of p near -
1.



37

We found that we can rank these bounds into a definite hierarchy. For the graphs
tested, the value obtained from the Jacobs-IIl lower bound is never greater than the value
obtained from the BBST-II lower bounds. At the same time the value obtained for the
Jacobs-III upper bound is never less than the value obtained for the BBST-II upper bound.
The improvemert delivered by the BBST-II bounds is not always very large. This is
illustrated in Table 4. However, we found cases in which the ratio between the r{p) of the
Jacobs-III bounds and the r{p) of the BBST-II bounds is about 1.7, as shown in Table 5. It
comes as no surprise that the BBST-II bounds improve on the Jacobs-III bounds; recall that
the Jacobs-III bounds make the loosest possible assumptions about the subgraph counts (0 or

(f] ). In Chapter 4, we saw that the calculation of the BBST-II bounds is essentially no more

complicated than that of the Jacobs-IIl bounds. Since the BBST-II bounds always provide an
improvement, the BBST-II bounds should be used in preference to the Jacobs-III bounds.

Table 4 15-Node Diamond
n=15 b=27 c=2 C,=13 t=561440 '

Bounds ? lower Alower upper Aupper r{p) actual
Jeb-111 G.9 0.475249 | 0.402272 | 0.990667 | 0.113146 | 0.515418 | 0.877521
BBST-II 0.476827 | 0.400694 | 0.971577 | 0.094056 | 0.494750

Jeb-II1 | 0.92 | 0.621424 | 0.298497 | 0.989653 | 0.069732 | 0.368229 | 0.919921
BBST-1I 0.622552 | 0.297369 | 0.976015 | 0.056094 | 0.353463

Jeb-111 0.94 | 0.771416 | 0.182782 | 0.990036 | 0.035838 | 0.218620 | 0.954198
BBST-II 0.772086 | 0.182112 | 0.981939 | 0.027741 | 0.209853

Jeb-IH 0.96 | 0.900704 | 0.078695 | 0.992504 | 0.013105 | 0.091300 | 0.979399
BBST-II 0.900085 | 0.078414 | 0.989104 | 0.009705 | 0.088119

Jeb-1l1 0.98 | 0.9806510 | 0.014302 | 0.996862 | 0.002050 | 0.016352 | 0.994812
BBST-HI 0.980560 | 0.014252 | 0.996256 | 0.001444 | 0.015697

Jeb-III | 0.99 | 0.996545 | 0.002156 | 0.998989 | 0.000288 | 0.002444 | 0.998701
BBST-II 0.996552 | 0.002149 | 0.998898 | 0.000197 | 0.002346

Table 5 (5.2) G;; Graph
=7 b=10 ¢=2 C,=>5 {==80 k=5 k=2

Bounds ) lower Alower upper Aupper A p) actual

Jeb-111 0.9 0.912537 | 0.038264 | 0.969933 | 0.019132 | 0.057396 | 0.950801
BBST-II 0.934402 | 0.016399 | 0.963556 | 0.012755 | 0.029153

Jeb-111 0.92 | 0.945489 | 0.022849 | 0.979763 | 0.011425 | 0.034274 | 0.968338
BBST-II 0.958545 | 0.009793 | 0.975954 | 0.007616 | 0.017409

Jeb-I11 0.94 | 0.970905 | 0.011206 | 0.987714 | 0.005603 | 0.016809 | 0.982111
BBST-II 0.977308 | 0.004803 | 0.985846 | 0.003735 | 0.008538

Jeb-111 0.96 | 0.988175 | 0.003848 | 0.993947 { 0.001924 | 0.005771 | 0.992023
BBST-lI ' 0.990374 | 0.001649 | 0.993305 | 0.001282 | 0.002931

Jeb-ITT 0.98 | 0.997446 | 0.000556 | 0.998279 | 0.000277 | 0.000833 | 0.998002
BBST-II 0.997763 | 0.000239 | 0.998187 | 0.000185 | 0.000423

Jeb-111 0.99 | 0.999426 | 0.6C0074 | 0.999537 | 0.00C037 | 0.000112 | 0.999500
BBST-II 0.999468 | 0.000032 ! 0.999525 | 0.000025 | 0.000057

S
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Considering the two more sophisticated bounds (Kruskal-Katona and Ball-Provan), we
found in all cases that we tested, that the values delivered by both the Ball-Provan upper
and lower bounds were never worse than the values delivered by the Kruskal-Katora upper
and lower bounds. Again, the improvement can be relatively small (see, for example the
upper bounds in Table 6). On the other hand, this improvement is sometimes quite large, as
the ratio of their respective r{p) values can be quite high (as in Table 7). The fact that the
Ball-Provan bounds improve or the Kruskal-Katona bounds is also not surprising; in [B3],
Ball and Provan perform an extensive comparison to show that their bounds conmsistently
improve on the Kruskal-Katona bounds.

The implementations described in Chapter 4 suggest that the calculations of the
Kruskal-Katona and Ball-Provan bounds are about equally complicated. Thus, in any
situation where the Kruskal-Katona bounds are being considered, the Ball-Provan bounds
would be preferred.

Thus we can, for most purposes, narrow the choice down to the BBST-II bounds or the
Ball-Provan bounds. We found that both the Kruskal-Katona and Ball-Provan bounds

Table 6 10-node Ladder Graph
n=10 =17 ¢=2 C =2 t==2584
Bounds P lower ‘Alower upper Aupper {p) actual
B-P 0.9 0.930207 | 0.040811 | 0.980324 | 0.009306 | 0.050117 | 0.971018
K-K 0.872668 | 0.098350 | 0.980940 | 0.009922 | 0.108272
B-P 0.92 | 0.958374 | 0.024197 | 0.987511 | 0.004940 | 0.029138 | 0.982571
K-K 0.920429 | 0.062142 | 0.987700 | 0.005129 | 0.067272
B-P 0.94 | 0.979065 | 0.011775 | 0.992976 | 0.002136 | 0.013911 | 0.990840
K-K 0.958531 | 0.032309 | 0.993015 | 0.002175 | 0.034483
B-P 0.96 | 0.992209 | 0.004010 | 0.996860 | 0.000641 | 0.004651 | 0.996219
K-K 0.984436 | 0.011783 | 0.996864 | 0.000645 | 0.012428
B-P 0.98 | 0.998553 | 0.000575 | 0.999208 | 0.000080 | 0.000655 | 0.999128
K-K 0.997317 | 0.001811 | 0.999208 | 0.000080 | 0.001891
B-P 0.99 | 0.999714 | 0.000077 | 0.999801 | 0.000010 { 0.000087 | 0.999791
K-K 0.999540 | 0.060251 { 0.999801 | 0.000010 | 0.000261
Table 7 8-node Complete Graph
n=8 h==28 c=7 (C =8 t=262144
Bounds P lower Alower upper Aupper r{p) actual
B-P 0.5 | 0.746441 | 0.190651 | 0.968901 | 0.031809 | 0.222461 | 0.937092
K-K 0.498721 | 0.438371 | 0.980187 | 0.043095 | 0.481467
B-P 0.6 | 0.907526 | 0.079243 | 0.994386 | 0.007517 | 0.086859 | 0.986769
K-K 0.616341 | 0.370428 | 0.995851 | 0.009082 | 0.379510
B-P 0.7 | 0.981079 | 0.017165 { 0.999167 | 0.000923 | 0.018088 | 0.998244
K-K 0.776842 | 0.221402 | 0.999312 | 0.001068 | 0.222470
B-P 0.8 | 0.998575 | 0.001323 | 0.990939 | 0.000041 | 0.001364 | 0.999898
K-K 0.942675 | 0.057223 | 0.999947 | 0.000049 | 0.057272
B-P 0.9 | 0.999990 | 0.000009 | 0.999999 | 0.000000 | 0.000010 | 0.99999%9
K-K 0.998533 | 0.001466 | 0.999999 | 0.000000 | 0.001466
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always delivered better upper and lower bounds than the upper and lower BBST-II bounds.
In [B5], Bauer et al. indicate that their bounds are weaker than the Kruskal-Katona bounds;
in fact, Table 8 illustrates that they may be substantially worse.

Nonetheless, the calculation of the BBST-II bounds is definitely simpler than the
calculation of the Ball-Provan bounds. Once the values for ¢, ¢, and C, have been
determined, the BBST-II bounds can be determined using only some simple summations, or
by just a few table lookups. They also do not manipulate numbers as large as the Ball-
Provan bounds do. However, it must be remembered that the implementation of algorithms
for calculating ¢, ¢, and C, required a substantial effort. If this amount of effort is to be
expended, it appears worthwhile to implement the Ball-Provan bounds.

5.2.2. Lomonosov-Polesskii Bounds

The Lomonosov-Polesskii bounds do not form bounds on the subgraph counts of the
reliability polynomial. Hence, they exhibit quite different behaviour than the other bounds.
The subgraph bounds generally apply the same principle in obtaining both their upper and
lower bound. We have found therefore that when comparing any two sets of these subgraph
bounds both the lower and upper bound of one of them is better in all cases. They can
therefore be ordered in a definite hierarchy. For the Lomonosov-Polesskii bounds, this is not
the case. They are not developed using the approach of bounding the subgraph counts, and
hence they cannot be placed in this hierarchy. It is possible for them to be better than one of
the subgraph bounds in one case, and worse in another. Also, since the lower and upper
bounds are not developed using the same principle, these two bounds may exhibit quite
different behaviour. We therefore treat the upper and lower bounds separately.

The Lomoncsov-Polesskili bounds do not appear to be very sophisticated. The lower
bound uses only the value of n and ¢ along with ¢ in its calculation. It is very surprising
therefore that there are cases where this lower bound actually improves on the Ball-Provan
lower bound. In most of the cases tested this bound is worse than all of the subgraph lower
bounds (as one might expect). However, for some values of p for the complete graphs (K,)
with n>6 this bound delivers a higher value and therefore is better than any of the other sets
of bounds. Table 9 shows that for Kjg, one obtains a better bound than the Ball-Provan
lower bound for 0.3<p<0.9. In testing higher values of p we encounter precision problems;
therefore for Table 10 we use our BC implementation.

Table 8 10-node Complete Graph
n=10 b=45 c=9 C,=10 {=1e+08
Bounds P lower Alower upper Aupper r{p) actual
B-P 0.5 | 0.727790 | 0.252659 | 0.994716 | 0.014267 | 0.266927 | 0.980449
BBST-II 0.112874 | 0.867575 | 0.999970 | 0.019521 | 0.887096
B-P 0.6 | 0.913862 | 0.083512 | 0.999191 | 0.001817 | 0.085329 | 0.997374
BBST-II 0.116076 | 0.881298 | 1.000000 | 0.002626 | 0.883924
B-P 0.7 | 0.986971 | 0.012832 | 0.999923 | 0.000120 { 0.012952 | 0.999803
BBST-II 0.195679 | 0.804124 | 1.000000 | 0.000197 { 0.804321
B-P 0.8 | 0.999445 | 0.000550 | 0.999997 | 0.000002 | 0.000553 | 0.999995
BBST-II 0.634453 | 0.365542 | 1.000000 | 0.000005 | 0.365547
B-P 0.9 | 0.999999 | 0.000001 | 1.000000 | 0.000000 |} 0.000001 | 1.000C00
BBST-1I 0.989327 | 0.010673 | 1.000000 | 0.000000 | 0.010673




Table 9 8-node Complete Graph
n=_8 =28 ¢=7 (=8 1=262144
Bourds | »p lower Alower upper Aupper {p) actual
B-P 0.3 | 0.290388 0.189481 | 0.547838 0.067969 | 0.257450 | 0.479369
L-P 0.281924 0.197945 | 0.547930 0.068061 | 0.266006
B-P 0.4 | 0.522905 0.263366 | 0.855168 0.068897 | 0.332262 | 0.786271
L-P 0.602658¢ | 0.183613 | 0.819755% | 0.033484 | 0.217097
B-P 0.5 | 0.746441 0.190651 | 0.968901 0.031809 | 0.222461 | 0.937092
L-P 0.846916* | 0.090176 | 0.946578= | 0.009486 | 0.099662
B-P 0.7 | 0.981079 0.017165 | 0.999167 0.000923 | 0.018088 | 0.998244
L-P 0.994229% | 0.004015 | 0.99847C+ | 0.000226 | 0.004241
B-P 0.9 | 0.999990 0.000009 | 0.999999 0.000000 | 0.000010 | 0.999999
L-P 0.999997% | 0.000002 | 0.999999 (0.000000 | 0.000002
Table 10 8-node Complete _Graph {BC Implementation)
=8 p=28 c=7 C,=8 (=262144
Bounds p lower upper "{p)
B-P 09 999989678198 999996388297 000009710099
L-P .999997203540% | .999999300000* | .000002096461
B-P 0.91 | .999995274024 .999999699662 000004425638
L-P .699998661940* | .999999665192% | .000001003252
B-P 0.92 | .999998039416 990999864798 000001825382
L-P 999999413137+ | .999999853199+¢ | .C00000440062
B-P 0.93 | .999999282036 999999945482 000000663446
L-P 999999760492+« | 999999942352+ | .000000172860
B-P 0.94 | .999999776601 999699980968 000000204367
1-P .999999921634* | .999999980404* | .000000058770
B-P 0.95 | .999999944318 999999994544 000000050226
L-P 999999978127+ | .999999994531* | .000000016404
B-P 0.96 | .999999989924 .599999998825 .000000008901
L-P 999999695413 | .999999998853 .000000003440
B-P 0.97 | .999999998898 999999999839 .000600000941
L-P .999999999388+* | .999999999847 .000000000459
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Most of the graphs tested have cohesions of at most two. The reason for this emphasis
is that actual networks are generally quite sparse. Other than the complete graphs, the only
other graph employed for testing with a cohesion greater than 2 is a 6-cohesive graph
(Appendix Table A6.2). For this graph, the Lomoncsov-Polesskii lower bound is the best for
values of p=>0.38. This is {of course) only a very small set of tests. Nevertheless, it appears
that this bound is very useful for graphs with high cohesion.

The fact that their are cases where the Lomonosov-Polesskii lower bound improves on
the Bail-Provan lower bound while using less graph theoretic information shows that the
Ball-Provan upper bound is not tight for networks in general.

The Lomonosov-Polesskii upper bound appears to deliver even better results. It uses
the values of the cardinalities of the cuts in a cut basis; this information is not used by the



41

subgraph bounds. Its calculation is very easy once these cardinalities are determined; also, it
does not use the values for ¢ or €, Typically, the upper bound is tightest whenever the
Lomonosov-Polesskii lower bound is also tightest. However, Table 10 shows that this need
not be the case. But this upper bound does delivers an improvement in many more cases
than the lower bound. It is the tightest upper bound for a wide range of p values in K; Of
even more interest is the fact that it improves on the Ball-Provan bounds in a number of the
sparse networks tested. It gives the tightest results (for some ranges of p) for the G graphs
in which the number of paths 4 is large compared to the number of edges on a path £ It also
delivers the lowest value for the 1979 version of the Arpanet (figure 8) which we tested for
0.7<p<0.98 (Table 11). Recall that Frank and Chou [F2] give 0.98 as the value of p for the
Arpanet, and hence this bound has practical import. But it is its performance on the 2-trees
tested that is most impressive. It delivers the most accurate bound for some values of p in
each of the 2-trees on which we tested it. It gives its best performance for the 2-tree diamond
class of networks where it delivers a very large improvement over the Ball-Provan bounds (see
Table 12).

There are, however, many cases in which the Lomonosov-Polesskii upper bound delivers
much worse values than the Ball-Provan upper bound. One case is the networks that are a
combination of a cycle and a complete graph (see Table 13). Even in the cases where they
are better this is generally only for a subrange of values of p. It usually delivers better values
than the Ball-Provan upper bound for a middle range of p (see Tables 9,10,11 and 12). This
is where the subgraph bounds are at their worst.

5.3. Behaviour of Bounds

The performance of each bound is highly dependent on the graph parameters employed.
In order to examine the behaviour of the bounds in more detail, in this section we study the
effects of various graph operations on the accuracy of the bounds obtained.

Table 11 Arpanet (figure 8)
n=>59 b==T1 ¢=2 C, =57 {==2.72817e+11
Bounds p lower upper r{p)
B-P 0.7 0.000148 | 0.002433 0.002335
L-P 0.000000 | 0.017175 0.017175
B-P 0.9 0.129562 | 0.839673 0.710111
L-P 0.015086 | 0.675115% | 0.660029
B-P 0.92 | 0.229425 | 0.905370 0.675945
L-P 0.044769 | 0.780114* | 0.735345
B-P 0.94 | 0.397043 | 0.939865 0.542822
L-P 0.123792 | 0.871119% | 0.747327
B-P 6.96 | 0.642423 | 0.963840 0.321417
L-P 0.311079 | 0.941208+ { 0.630129
B-P 0.97 | 0.779467 | 0.975281 0.195815
L-P 0.468286 | 0.966686* | 0.498399
B-P 0.98 | 0.801379 | 0.986323 0.084944
L-P 0.669216 | 0.985141* | 0.315924
B-P 0.99 | 0.979896 | 0.995639 0.015743
L-P 0.882061 | 0.996286 0.114225




Table 12 15-node Diamond
=15 b==27 ¢=2 C =13 1=61440

Bounds ) lower Alower upper Aupper r{p) actual

B-P 0.3 0.000074 { 0.600075 | 0.000320 0.000171 ] 0.000246 | 0.000149

L-P 0.000001 | 0.000149 | 0.000157* | 0.000008 | 0.000156

B-P 0.5 0.008009 | 0.015688 | 0.058184 0.034488 | 0.050175 | 0.023696

L-P 0.000488 | 0.023208 | 0.023756* | 0.000060 | 0.023268

B-P 0.7 0.134717 | 0.158732 | 0.519635 0.226186 | 0.384918 | 0.293449

L-P 0.035268 | 0.258181 | 0.293453* | 0.000004 | 0.258185

B-P 0.9 0.784790 | 0.092731 | 0.924677 0.047156 | 0.139887 | 0.877521

L-P 0.549043 | 0.328478 | 0.877521+ | 0.000000 | 0.328478

B-P 0.92 | 0.859553 | 0.060368 | 0.946875 0.026954 | 0.087322 | 0.916921

L-P 0.659729 | 0.260192 | 0.919921=* | 0.000000 ; 0.260192

B-P 0.94 | 0.921977 | 0.032221 | 0.966813 0.012615 | 0.044836 | 0.954198

L-P 0.773763 | 0.180435 | 0.954198* | 0.000000 | 0.180435

B-P 0.96 | 0.967377 | 0.012022 | 0.983526 0.004127 | 0.016150 | 0.979399

L-P 0.880890 | 0.098509 | 0.979399« | 0.000000 | 0.098508

B-P 0.98 | 0.992929 | 0.001833 | 0.995380 0.000568 | 0.002452 | 0.994812

1-P 0.964662 | 0.030150 | 0.994812+ | 0.000000 | 0.030151

B-P 0.99 | 0.998438 | 0.000263 | 0.998775 0.000074 | 0.000338 | 0.998701

L-P : 0.990370 | 0.008331 | 0.998701* { 0.000000 | 0.008331

Table 13 _Cycle{20)-Complete(5) Graph_
n=24 b==30 ¢==2 C, =190 {==2500

Bounds p lower Alower upper Aupper r{p) actual

B-P 0.9 0.377378 | 0.014170 | 0.417759 | 0.026211 | 0.040380 | 0.391548
BBST-II 0.312628 | 0.078920 | 0.6289290 | 0.237381 | 0.316301

L-P 0.292477 | 0.099071 | 0.825838 | 0.434290 | 0.533361

B-P 0.92 | 0.505140 | 0.011609 | 0.537435 | 0.020686 | 0.032295 | 0.516749
BBST-II 0.448169 | 0.068580 | 0.687777 | 0.171028 | 0.239509

L-P 0.417290 | 0.099459 | 0.885011 { 0.368262 | 0.467721

B-P 0.94 | 0.652660 | 0.007751 | 0.673630 | 0.013219 | 0.020970 | 0.660411
BBST-II 0.611769 | 0.048642 | 0.761219 | 0.100808 | 0.149450

L-P 0.573479 | 0.086932 | 0.933723 | 0.273312 | 0.360244

B-P 0.96 | 0.806729 | 0.003598 | 0.816153 | 0.005826 | 0.009424 { 0.810327
BBST-II 0.786315 | 0.024012 | 0.851926 | 0.041599 | 0.065612

L-P 0.750826 | 0.059501 | 0.970024 | 0.159697 | 0.219198

B-P 0.98 | 0.939403 | 0.000697 | 0.941163 | 0.001063 | 0.001761 | 0.9401C0
BBST-1I 0.935142 | 0.004958 | 0.947347 | 0.007247 | 0.012204

L-P 0.917387 | 0.022713 | 0.992427 | 0.052327 | 0.075040

B-P 0.99 | 0.983032 | 0.000109 | 0.883300 | 0.000159 | 0.000268 | 0.983141
BBST-II 0.982347 | 0.000794 | 0.984211 | 0.001070 | 0.001865

L-P 0.976145 | 0.006996 | 0.998102 | 0.014961 | 0.021956
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5.3.1. Doubling all Edges in a Cycle

Ball and Provan [B3] suggest that multiple {or parallel) edges can be utilized to allow
the representation of networks containing links with different probabilities of failure. This is
of interest, as it relaxes one of the major constraints of the model; all of the bounds, however,
apply to the more general case of graphks with multiple edges.

The probability P,; that at least one of a set of m multiple edges between nodes n, and
n, is available is 1-¢™ The use of multiple edges increases the range between n-1 and 3-¢,
and thus increases the number of N, values that the subgraph bounds must approximate. The
eflect of increasing this range is of interest. Using multiple edges, we can perform a test on
this effect. If every edge of a graph is replaced by two edges with properly adjusted values of
p, a second functionally equivalent graph can be created. For this new graph, however, the
size of the range n-1 to b—c is twice as large as in the original graph.

Table 14 shows results obtained from the bounds for the graphs obtained by starting
with a simple 10 node cycle with one edge between the adjacent nodes and successively
doubling the edges 3 times to end up with an equivalent 10 node cycle with eight edges
between the adjacent nodes. The original cycle is a trivial graph and therefore all the bounds
other than the Lomonosov-Polesskii bounds give the exact reliability value. The
Lomonosov-Polesskii lower bound also gives the exact value. A number of very interesting
observations can be made from this table. Comparing the performance of the BBST-II and
Ball-Provan bounds, for both sets of bounds the range r{p), which starts at O for the original
cycle, increases with each successive doubling of the edges of the graph. Hcwever, this
increase proceeds at a much slower rate for the Ball-Provan bounds than it does for the
BBST-II bounds. By the third edge doubling (80 edge graph) the BBST-II bounds have been
driven essentially completely apart. The Ball-Provan bounds are still delivering an r{p) value
that is less than 0.05.

Another very interesting observation comes from studying the behaviour of the
Lomonosov-Polesskii bounds. They continue to deliver the same upper and lower bounds
regardless of the number of times the edges are doubled. Doubling the edges doubles the

Table 14 Doubling Edges of a Cycle
n=10 b=10 c=2 C,—45 (=10
Bounds P lower Alower upper Aupper range actual
B&P 0.906094 | 0.999328 0.000000 0.999328 0.000000 0.000000 0.999328
BBSTI 0.999328 0.000000 0.999328 0.000000 0.000000
L&P 0.999328 0.000000 0.699863 0.000535 0.000535
n=10 =20 c==4 C =45 {=5120
B&P 0.9375 0.998898 0.000430 0.999498 0.000170 0.000600 0.999328
BBSTIH 0.993268 0.006050 0.999693 0.000365 0.006425
L&P 0.999328 0.000000 0.999863 0.000535 0.000535
n=10 =40 =8 C,.=45 t==2.62144e+06
B&P 0.75 0.988692 0.010636 0.990812 0.000484 0.011119 0.999328
BBSTIH 0.306545 0.692783 1.000000 0.600672 0.693455
L&P 0.999328 0.000000 0.999863 0.000535 0.000535
n=10 =80 ¢=16 C =45 {=1.34218e+09
B&P 0.3 0.950115 0.049213 0.999937 0.000609 0.049822 0.999328
BBSTII 0.005788 0.993540 1.00G6000 0.000672 0.994212
L&P 0.999328 0.000000 0.999863 0.000535 0.000535
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value of ¢ and the cardinality of each of the cutsets in the cut basis. The Lomonosov-
Polesskii lower bound delivers the exact reliability for all these graphs. This in fact is the
type of graphs used by Lomonosov and Polesskii in [L5] to show that this bound is tight. A
cycie cn n nodes with m edges between the adjacent nedes is 2m-cohesive and has the lowest
value of R of any graph of n nodes 2nd ¢=2m. Therefore no bound using only n and ¢ can
deliver a bound any higher than the Lemonosov-Polesskii lower bound.

5.3.2. Cycle to Ladder Transforination

In this section, we again start with a 10 node cycie. This time we add one edge at a
time to produce a 10.node ladder. This is illustrated in Figure 10.

Figure 10

In this procedure, we transform the cycle which has the maximum number of minimum
cardinality cuts (C’c=(al ]) into a graph that onrly contains 2 minimum cardinality cuts; the
values of ¢ and n remain coastant.

Let G, denote the graph formed by the addition of edge ‘‘a” to the cycle. The next
graph formed by the addition of edge ‘3" to G, is G}, All these intermediate graphs are
subgraphs of the 2-tree ladder and therefore we can obtain exact values for their reliabilities.
The values delivered by the bounds for p==0.98 are displayed in Table 15. The graphs G,
and G, are still trivial graphs; therefore, both the BBST-II and Ball-Provan bounds deliver
their exact reliability. For G, these two subgraph bounds have a single N; value to
approximate. This number increases by one for each graph until the fnal iadder graph where
these bounds are approximating 5 of the N, values.

Looking at the behaviour of the lower bouad, the Ball-Provan lower bound increases as
the actual probability increases with each successive edge addition. However, 2s shown by
the fact that Alower increases, it does not keep pace with the actual increases in the value of
R. The BBST-II lower bound begins to increase with the increasing actual relisbility for G,
and G surprisingly, after this point this lower bound actually decreases as more edges are
added, despite the fact that the actual R value continues to increase.

At a p value as high as 0.98 the most important of the approximated subgraph counts is
Ny These lower bounds use the known value for ¢ (/V,.;) to obtain an underapproximation
for this value. As the distance between N,; and N, ., increases, this approximation
becomes worse.

This procedure also shows a problem with the Lomonosov-Polesskii lower bound, since it
only uses the values n and ¢. Since these two values remain constant for these graphs, it
cortinues to deliver the same bound for all of them despite the increasing value of R.

Switching attention to the performance of the BBST and Ball-Provan upper bouads, we
see that after G, (where they first must approximate an N, value) Aupper actually decreases
even though the number of N, values that need to be approximated increases. Again the



Table 15 Cycle to Ladder Transformation
n=10 b==10 =2 C,=45 {=10 Cycle
Bounds ? lower Alower upper Aupper r{p) actual
 B-P 0.98 | 0.983822 ! 0.0000C0 | 0.983822 0.000000 | 0.000000 | 0.983822
BBST-I 0.983322 | 0.600000 | 0.983822 0.000000 ; 0.00CG0C0
L-P 0.983822 | 0.000000 | 0.996406 0.012584 | 0.012583
n=10 é=11 ¢=2 C =21 t=34 G,
B-P 0.98 | 0.991826 | 0.00000C0 | 0.991826 0.000000 | 0.000000 | 0.991826
BBST-II 0.991826 | 0.000000 | 0.991826 0.000000 |} 0.00C0C0
L-P 0.983822 | 0.003004 | 0.996797 0.004971 | 0.012074
n=10 =12 ¢=2 C.=13 =% G,
B-P 0.98 | 0.994815 | 0.000000 | 0.594815 0.000000 | 0.000000 | 0.394315
BBST-II 0.994815 | 0.000000 | 0.994815 0.006000 | 0.00C000
L-P 0.983822 | 0.010993 | 0.997187 0.002372 | 0.013365
n=10 b==13 ¢=2 (=38 =14 G,
B-P 0.98 | 0.996168 | 0.000177 | 0.996632 0.000287 | 0.000464 | 0.995345
BBST-II 0.995682 | 0.000663 | 0.206329 0.000484 | 0.001147
L-P 0.983822 | 0.012523 | 0.997578 0.001233 | 0.013756
n=10 b=14 ¢=2 C =5 (=418 G,
B-P 0.98 | 0.997531 | 06.000346 | 0.993061 0.000184 | 0.000530 | 0.997877
BBST-1I 0.996478 | 0.091399 | 0.998291 0.000414 | 0.001813
L-P 0.983822 | 0.014055 | 0.997970+ | 0.000093 | 0.014147
n=10 b=15 ¢=2 C =4 =773 G, '
B-P 0.98 | 0.997871 | 0.000428 | 0.998446 0.000147 | 0.000574 | 0.998299
BBST-II 0.996200 | 0.002099 | 0.998654 0.000355 | 0.002454
L-P 0.983822 | 0.014477 | 0.998361* | 0.000062 | 0.014539
n=10 b=16 ¢=2 C=3 t=1419 G,
B-P 0.98 | 0.968212 | 0.000501 | 0.0983824 0.000111 | 0.600611 | 0.998713
BBST-II 0.995867 | 0.002846 | 0.999003 0.000290 | 0.003136
L-P 0.083822 | 0.014891 | 0.998753* | 0.000040 | 0.014930
n=10 =17 c=2 C =2 {=2584 Ladder
B-P 0.98 | 0.998563 | 0.000575 | 0.999208 0.000080 | 0.000655 | 0.999128
BBST-II 0.995469 | 0.003659 | 0.099344 0.000216 | 0.003875
L-P 0.983822 | 0.015306 | 0.909144+ | 0.000016 | 0.015322
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most important subgraph count is N, . ;. These upper bounds use the known value for Ny,
to obtain overapproximations on this valve. Incrzasing the number of V; values approximated
does not increase the distance between these two values; therefore, the accuracy of the
approximation depends primarily on the actual relation between N, and N;_.; (or actually
C.and C.,,). For graphs near the cycle (which has the maximum C, value for a given n), the
bounds must give a larger overapproximation than they can give for the smaller C, values for
graphs nearer the ladder.

In this example, the Lomonosov-Polesskii upper bound again shows very good
performance. It does not give the exact value for the cycle, G,, or G; as do the subgraph
bounds. However, by the time G, is reached, its Aupper value is already half that of the
Ball-Provan upper bound. For a cycle, almost every edge must be in two cutsets of the cut
basis and therefore a fair amount of overcounting takes place, increasing the resulting value
obtained for the bound. As the successive graphs move closer to the ladder the cutsets
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become more disjoint and thus the bound improves.

5.3.3. Subgraph Counts

As has been seen, the performance of the subgraph bounds is dependent on the accuracy
of its approximations of the different N, values. Therefore, it is of interest to examine the
actual values these bounds obtain for these approximations. In this section we examine the
subgraph count approximations calculated by the best of the subgraph bounds (the Ball-
. Provan bounds), for a series of G graphs. The final value delivered by any of the subgraph
bounds consists of these N, values ‘‘weighted” by the appropriate factor determined by p and
i. Hence, for the high value of p (0.08) used in the previous section the most important of
these are the approximations for the N, ., values.

For G, graphs we can easily obtain the actual subgraph counts from equation (35) to
compare against the overapproximations of the Ball-Provan upper and the
underapproximations of tke Ball-Provan lower bounds. A Gj; graph is obtained by
connecting two extreme points by k vertex-disjoint paths with #-1 intermediate vertices. The
resulting graph has n=hk-h+2, b==h%&, and c==2. An interesting property of such a graph is
the number of unknown N, values (5-c)-{n-1) is equal to A4 and is therefore independent of
the value of k. We use this fact 2nd test a set of graphs with fixed k==3. We begin with the
trivial graph where h==4 (any graph with A<4 is trivial for all values of k) and consider the
graphs obtained by successively incrementing 4 (i.e. 2dding another path, see Figure 11).

Figure 11

The number of terms which the Ball-Provan bounds approximate 'successively increases by
one for this series of graphs. The actual subgraph ccunts and the approximations caleulated
by the Ball-Provan bounds for these graphs are displayed in Table 16.

As illustrated in the previous section, for high values of p, the mest important of these
approximations is the one for Ny . ;. Therefore, the Alower and Aupper values for this term
are of interest. For the graph with k=5 the N,_., value is the only one approximated by the
bounds. Here Aupper is significantly less than Alower for N, ;. However, by the next
graph (with A==6) where two N; values are approximated, Alower is already larger than
Aupper. As the distance between N,,; and N, ., increases this difference becomes ever
larger. So, for high values of p we expect the error in the lower bound to increase as % and
the number of approximated N; values increases (see Appendix A4).

We observe that the Alower values increase for each successive graph. The ratio
between C, and n is increasing and therefore we have the same situation we would have had
in the previous secticn had we moved from the ladder to a cycle.

Considering the actual subgraph count values we see that they are relatively small near
N, and quite large near N, ;. This means that the assumption that Ny ., is the dominant
unknown term is only applicable when p is quite near one.



Table 16 Suberaph Counts

n=10 =12 ¢c=2 C =12 {=108 h=4 k=3

i lower Alower upper Aupper | actual
10 | b-c 54 0 54 0 54
9 | n-1 108 0 108 0 108
n=12 b=15 =2 C, =15 {==405 h=5 k=3
13 | b-e 90 0 90 0 90
12 238 32 325 55 270
11 | n-1 405 0 405 0 405
n=14 b=18 ¢=2 C.=18 t=1458 k=6 k=3
16 | b-¢ 135 0 135 Y 135
15 444 96 621 81 540
14 918 297 1961 746 1215
13 | n-1 1458 . 0 1458 0 1458
n=16 b=21 =2 C,=21 {=5103 h=7 k=3
19 | b-¢ 189 0 189 0 189
18 737 208 1057 112 945
17 177 1059 4172 1337 2835
16 3295 1808 8387 3284 5103
15 | n-1 5103 0 5103 0 5103
n=18 b=24 ¢=2 C =24 {=17496 h=8 k=3
22 | b-c 252 0 252 0 252
21 1153 359 1660 148 1512
20 3231 2439 7790 2120 5670
19 6842 6766 27714 14106 13608
18 12030 8382 383350 18438 20412
17 | n-1 17496 0 17496 0 17496
n=20 b=27 c=2 C, =27 {=>59049 h=9 k=3
25 | b-c 324 0 324 0 324
24 1707 561 2457 189 2268
23 5473 4733 13365 3159 10206
22 13058 17560 55545 24927 30618
21 25790 35446 | 138407 77171 61236
20 42962 35770 | 153117 74385 78732
19 | n-1 59049 0 59049 0 59049
n=22 =30 ¢=2 C =30 {==196830 h=10 =3
28 | b-c 405 0 408 0 405
27 2418 822 3475 235 3240
26 8758 8252 21500 44900 17010
25 23328 37908 | 102226 40990 61226
24 51082 | 102008 | 388424 | 235334 | 153090
23 05341 | 167099 | 737852 | 475412 | 262440
22 150250 | 144995 | 630082 | 334837 | 295245
21 n—-1 196830 0 196830 0 196830

5.3.4. Combination Graphs

In this seéﬁon, we lock briefly at the eflect that combining different types of subgraphs
kas on the bounds. A very interesting member of this group is the combination of a cycle and
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a complete graph, since the complete graph is the densest and hence the most reliable graph
while the cycle is one of the least reliable graphs. We call this type of graph a G, graph. It
has already been shown that a Gi, gzraph in which the number of nodes in the complete
subgraph is small while the number of nodes in the cycle is comparatively large is an example
where the value delivered by the Lomonosov-Polesskii upper bound is quite pcor (see Table
13). Due to the large cycle subgraph there will be a lot of overlap of the edges among the
cutsets which loosens the obtained bound. In Table 17 we look at a different G, graph; here
the complete subgraph has more nodes than the cycle. The Lomoncsov-Pclesskii upper
bound actually delivers the best value for 2 range of p values. As the complete graph is
relatively large here, there will be less overlap of edges among cutsets and therefore a better
bound is obtained.

For both of these graphs the BBST-II bounds deliver significantly worse values than the
Bali-Provan bounds. The BBST-II bourds do not appear to handle the case in which one
section of a network is very dense and another section is quite sparse very well. In Table 18
we show the results of a test of an extreme case of this type of situation; a 6 node complete
graph combined with a single edge. This graph actually has the same number of trees as the
original 6 node complete gravh but the ¢ and (. values have been decreased down to 1. For
this case, the BBST-II bounds are worse than the Bail-Provan bounds by orders of magnitude.

In Table 19 we show the results of a test on 2 6 node complete graph with 2 single new
node added to it; this time the node is connected to some arbitrary node of the complete
subgraph with 15 multiple edges. The second half of the table shows the performance of the
bounds on the 6 node complete graph itself. This graph has the same ¢ and C, values and
very close to the same reliability as the original 6 node graph. However it has fifteen times as
many trees. Both the BBST-II and Bzll-Provan upper bounds are somewhat weaker than for
the original Kg. Since the number of trees has been drastically altered, both their lower
bounds have been weakened to a more significant extent. Again, it is the BBST-II bound
which suffers the worst effects especially for the lower values of p. It should be noted,
however, that the eflect this operation had on the relative performance between the BBST-II
and Ball-Provan bounds was not as great as the previous operation {Table 18).

Table 17 _Cycle{5}-Complete{8) Graph
) n=12 =33 ¢=2 C =10 {==1.31072e+06

Bounds p lower Alower upper Aupper r{p) actual

B-P 0.5 | 0.065860 | 0.109845 | 0.404236 0.228531 | 0.338377 | 0.175705
BBST-II 0.006654 | 0.169051 | 0.941900 0.766195 | 0.935247

L-P 0.003174 | 0.172531 | 0.299503* | 0.123798 ! 0.206329

B-P 0.6 | 0.151125 | 0.181377 ; 0.583088 0.2505856 | 0.431963 | 0.332502
BBST-II 0.006781 | 0.325721 | 0.979331 0.646829 | 0.972551

L-P 0.019591 | 0.312911 | 0.492189* | 0.159687 | 0.472598

B-P 0.7 | 0.313481 | 0.213811 | 0.707171 0.179879 | 0.3936389 | 0.527292
BBST-II 0.007619 | 0.519673 | 0.981048 0.453756 | 0.973429

L-P 0.085025 | 0.442267 | 0.684700+% | 0.157408 | 0.589675

B-P 0.8 | 0.574501 | 0.162703 | 0.821460 0.084256 | 0.246960 | 0.737204
BBST-II 0.032974 | 0.704230 | 0.981172 0.243968 | 0.948198

L-P 0.274878 | 0.462326 | 0.849270 0.112066 | 0.574393

B-P 0.9 | 0.860491 | 0.049048 | 0.934858 0.016329 | 0.065377 | 0.018539
BBST-II 0.346274 | 0.572265 | 0.983792 0.065253 | 0.637518

L-P 0.659002 | 0.259537 | 0.960595 0.042056 | 0.301593




Table 18 K, + One Node Connectzd By Single Edge
n==7 b=16 c=1 C,=1 I—1296

Bounds ? lower Alower upper Aupper {p} actual

B-P 0.9 0.860117 | 0.009829 | 0.900000 0.000354 | 0.009882 | 0.890946
BBST-II 0.572674 | 0.327272 | 0.049081 0.049135 | 0.2376407

L-P 0.296123 | 0.603823 | 0.899955+« | 0.000009 | 0.6G3832

B-P 0.92 | 0.913647 | 0.006335 | 0.920000 0.600018 | 0.006353  0.919982
BBST-II 0.666854 | 0.253128 | 0.953962 0.033980 | $.287108

L-P 0.366924 | 0.5653058 | 0.919985% | 0.000003 ; 0.553061

B-P 0.94 | 0.936414 | 0.003582 | 0.940CC0 0.000004 | 0.0603586 | 0.939998
BBST-II 0.767626 | 0.17237 0.960723 0.020727 | 0.193097

L-P 0.457616 | 0.482380 | 0.939996+ | 0.000000 | 0.482331

B-P 0.96 | 0.958403 | 0.001596 | 0.0600060 0.600001 | 0.001587 | 0.959999
BBST-II 0.867125 | 0.092874 | 0.970025 0.010026 | 0.102901

L-P 0.576717 | 0£.383282 | 0.960000 0.000001 | 0.383283

B-P 0.98 | 0.9796G0 | 0.0004C0 | 0.980000 0.000000 | 0.000400 | 0.880000
BBST-II 0.951819 | 0.028181 | 0.982737 0.002737 | 0.030918

L-P 0.740469 | 0.239531 ; 0.980000 0.000000 | 0.239531

B-P 0.99 | 0.985900 | 0.000100 ; 0.9906000 0.000000 | 0.000100 | 0.990000
BBST-lI 0.982236 | 0.007764 { 0.990716 0.000716 | 0.008480

L-P 0.850306 | 0.139694 | 0.9900C0 0.000600 | 0.139624
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Finally, in Table 20 we look at resuits for an 8 ncde graph constructed from 3 basic K,

with one new node connected to it by a single edge and a second new node connected with
fifteen multiple edges. Here we have multiplied the number of trees from the original K, by
fifteen as well as altering C, and ¢ to one. Here, even for kigh values of p there is a very
significant difference between the values delivered by the BBST-II and Ball-Provan bounds.

5.3.5. Summary

The last four sections have illustrated some very interesting observations concerning the
behaviour of the bounds. Section 5.3.1 indicated that for the subgraph bounds increasing the
number of N; values that the bounds are approximating (increasing the range from n-1 to
b~c) has a dramatic negative effect on accuracy. In fact, this has a greater relative effect on
the BBST-II bounds than on the Bail-Provan bounds.

The transformation from a cycle to a ladder graph developed in section 5.3.2 showed
that increasing this range (n-1 to b-c) does not necessarily decrease the performance of both
the upper bournds. In this situation, the performance of the upper bounds actually improves
as this range is successively incremented. At this high value of p (0.98), the N, ., term
becomes dominant. Since the distance between it and the N, . term, which the subgraph
upper bounds use to approximate it, is not increasing, the most important factor becomes how
close an approximation is derived for it by the specific N, of the particular graph. The C,
values of the graphs near the cycle, which are large with respect to n, yield worse
approximations for the respective C,,, values of the graphs than the lower C, values of the
graphs nearer the ladder.

The effect of increasing the range from n-1 to b-c is further examined in section 5.3.3
where a series of G} ; graphs with increasing values of £ are tested. In this section the actual
approximations delivered by the best of the subgraph bounds (the Ball-Provan bounds) for the
individual NNV, are determined. Table 16 shows the approximation used by the lower bound



50

for N, ., becoming much worse than the approximation used by the upper bound as the
range of approximated NV, values increases.

In section 5.3.4 it is seen that taking a complete graph and altering the C, and ¢ values
by adding a single node and edge (Table 18) has a more drastic effect on the performance of
the bounds than does significantly altering the number of trees of the graph by connecting to
the new node with a relatively large number of multiple edges (Table 18). This again shows
the greater importance of the relationship between the C, and €, than other factors such
as the number of approximated N, values and the  value at high values of p. As well, the
performance of the BBST-II bounds again degraded to a much greater extent than did the
Ball-Provan bounds.

Table 192 K + O_n(e Node Connected By 15 Multiple Edges _
n=7 b=30 c=5 C.=6 (=19440

Bounds P lower Alower upper Aupper {p) actual

B-P 0.5 0.560513 0.254404 | 0.910995 0.006678 | 0.350482 | 0.814917
BBST-I1 0.032892 0.782026 | 0.999261 0.184344 | 0.966369

L-P 0.641375« | 0.173542 | 0.853189% | 0.0338272 | 0.211814

B-P 0.7 0.932454 0.052513 | 0.992724 0.007757 | 0.060270 | 0.984967
BBST-II 0.106825 0.878142 | 0.999959 0.014992 | 0.803134

L-P 0.956759% | 0.028208 | 0.987909* | 0.002942 { 0.021150

B-P 0.9 0.999724 0.000216 | 0.999953 0.000013 | 0.0060229 | 0.999940
BEBST-U 0.929202 0.070738 | 0.999993 0.000053 | 0.070791

L-P 0.999792+ | 0.000148 | 0.999950* | 0.000010 | 0.000158

B-P 0.92 | 0.999918 0.000062 | 0.995984 0.00C004 | 0.000066 { 0.999980
BBST-II 0.971669 0.028311 | 0.999996 0.000016 | 0.023328

L-P 0.909932+ | 0.000048 | 0.990084 0.006004 | 0.000052

B-P 0.94 | 0.999983 0.600012 | 0.999996 0.000001 | 0.600013 | 0.999995
BBST-II 0.992314 0.607681 | 0.999909 0.000G04 | 0.007685

L-P 0.999984* | 0.000011 | 0.9999%6 0.000001 | 0.000012

Table 19b I&
n="6 b=15 ¢=35 C,=6 (=1296

Bounds p lower Alower upper Aupper rip) actual

B-P 0.5 0.755219 0.059722 | 0.839783 0.024842 | 0.084564 | 0.814941
BBST-1I 0.491586 0.323355 | 0.887094 0.072153 | 0.395508

L-P 0.712266 0.102675 | 0.853215 0.038274 | 0.140949

B-P 0.7 0.971910 0.013057 | 0.989103 0.004136 | 0.017193 | 0.984967
BBST-UI 0.841059 0.143908 | 0.996673 0.011766 | 0.155614

L-P 0.9638083 0.016884 | 0.987909* | 0.002942 | 0.0190826

B-P 0.9 0.999890 0.000050 | 0.999950 0.600016 { 0.000069 | 0.999940
BBST-II 0.998700 0.001240 | 0.999974 0.000034 | 0.001274

L-P 0.999851 0.000088 | 0.999950 0.000010 | 0.000069

B-P 0.92 | 0.999966 0.000014 | 0.999982 0.C00CD3 | 0.000017 | 0.999980
BBST-1I 0.999596 0.000384 | 0.999990 0.0¢6010 | 0.0003%4

L-P 0.899951 0.000029 | 0.999984 0.000004 | 0.000033

B-P 0.94 | 0.999993 0.000002 | 0.999996 0.C00001 | 2.006003 | 0.999995
BBST-H 0.999915 0.000080 | 0.999697 0.000062 | 0.000082

L-P 0.995988 0.000007 | 0.999996 0.000001 | 0.000008
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Table 20 K,y + Oge Node By Single Edge
+ One Nede By 15 Multiple Edges
n=8 b=31 c=1 (=1 {=10440

Bounds ) lower Alower upper Aupper r{p) actual

B-P 0.7 0.392413 | 0.297064 | 0.699823 0.010346 | 0.307411 | 0.689477
BBST-II 0.007610 | 0.681867 | 0.967742 0.278265 | 0.960133

L-P 0.018713 | 0.670764 | 0.691536% | 0.002059 | 0.672823

B-P 0.9 0.824659 | 0.075287 | 0.900000 0.000054 | 0.075341 | 0.859946
BBST-II 0.171465 | 0.728481 | 0.968973 0.069027 | 0.797508

L-P 0.224580 | 0.675366 | 0.899055% | 0.060609 | 0.675375 .

B-P 0.92 | 0.867944 | 0.052038 | 0.920000 0.060018 | 0.052058 | 0.919982
BBST-II 0.277461 | 0.642521 | G.970174 0.050192 | 0.6892714

L-P 0.29G739 | 0.629243 | 0.919985% | 0.000003 | 0.629246

B-P .94 | 0.908401 | 0.031595 | 0.940000 0.000004 | 0.03158% | 0.936098
BBEST-UII 0.432299 | 0.507697 | 0.972489 0.032484 | 0.540181

L-P 0.379793 | 0.560203 | 0.9350958+% | 0.0000006 | 0.560203

B-P 0.96 | 0.944852 | 0.015147 | 0.960000 0.000001 | 0.015148 | 0.9599099
BBST-II 0.637346 | 0.322653 | 0.976842 0.016843 | 0.339496

L-P : 0.503317 | 0.456682 | 0.960000 0.G00001 | 0.456683

B-P 0.98 | 0.975917 | 0.004082 | 0.980000 0.600000 | 0.004083 | 0.980000
BBST-II 0.862806 | 0.117194 | 0.984985 0.004686 | 0.122180

L-P 0.684389 | 0.295611 | 0.980000 0.600000 | 0.295611

B-P 0.99 { 0.988940 | 0.001060 § 0.990000 6.000000 { 0.001060 | 0.990000
BBST-1I 0.954497 | 0.035503 | 0.991365 0.001265 | 0.036867

L-P 0.813105 | 0.176895 | 0.990000 0.0800C0 | 0.176895

Because of their different nature the Lomonosov-Polesskii bounds are not affected at all
when the edges of a graph are doubled. Therefore there comes a point as the edges of a
graph are successively doubled when the Lomonosov-Polesskii bounds both deliver better
bounds than do any of the subgraph bounds. Secticn 5.3.2 shows a major problem due to the
unsophisticated nature of the Lomonocsov-Polesskii lower bound. Even though R actually
increases if n is held constant and a number of edges are succesively added to a graph, this
bound continues to deliver the same value as it only uses these two values {c and n). The
Lomonosov-Polesskii upper bound performs much better in this situation. Its perfomance as
shown by all of these operations is mainly dependent on the overlap in cutsets of the
minimal cut basis. If there is a good deal of overlap between the edges in these cutsets such
as is the case for graphs that contain large sets of nodes in series (i.e. cycles or G, ; graphs
with high values of k) these edges are counted more than once for this upper bound and thus
its accuracy is degraded. If there are few cases where an edge is 3 member of more than one
of the cutsets in the cutbasis such as in the case for graphs that contain a large number of
parallel branchings of nodes (i.e. K, graphs , diamonds, and G, graphs with large values
of & but small values of k) this upper bound delivers very accurate values.



Chapter 6
Conclusions and Future Research

8.1. Summary and Conclusicns

In this thesis, we have investigated bounds on network reliability. We summarize the
thesis here, to reiterate conclusions drawn and to pocint out the original coniributions.
Reliability is defined as the probability that every node in the network is able to
communicate with every other node. We have modeled networks using probabilistic graphs
consisting of perfectly reliable nodes, and undirected edges with equivalent but statistically
independent failure probabilities. In this graph theoretic model, reliability correspounds to the
probability that the probabilistic graph representing the network is connected. This measure
is often termed probabilistic ccnnectedness and we denocte it as R.

In Chapter 2, we developed the need for measures of relizbility, and established the
wide applicability of the chosen model; we then reviewed previous research on the
determination of probabilistic connectedness. R can be represented conveniently by the
reliability polynomizal as a summation of the counts of the number of spanning subgraphs
containing equivalent numbers of edges. However, computing the exact valse of R is not
feasible. This motivated the development of 2 number of methods of obtaining lower and
upper bounds on the value of R.

Most of these bounds have been developed using the gemeral principle of obtaining an
upper bound on R by using facts known about the individual subgraph counts of the
reliability polynomial to find a set of overapproximations of them. Similarly, a lower bound is
obtained by finding a set of underapproximations for these individual subgraph counts. These
bounds all use the value for ¢, the edge connectivity of the graph, as well as the actual values
of two of the subgraph counts which can be obtained directly from the values for ¢, the
number of spanning trees in the graph and €, the number of minimum cardinality cuts in
the graph.

The simplest of these sets of bounds are the Jacobs bounds {J1], which simply make the
weakest possible assumptions about the unknown subgraph couats. In his origiral bounds,
Jacobs does not use the values for ¢ and C,. Frank and Van Slyke [V2] modify the Jacobs
bounds to use these values to obtain what we refer to as the Jacobs-II bounds. The BBST
[B5] and Kruskal-Katona [V2] bounds utilize theorems that are valid for any systems that are
coherent, to obtain bounds on the subgraph counts. These theorems are applicable since the
set of subgraph counts is coherent. The Kruskal-Katona bounds use a stronger theorem, and
are more sophisticated than the BBST bounds. The Ball-Provan bounds [B3] utilize a
theorem that applies to ‘‘shellable independence systems” to form bounds on the counts for 2
slightly different form of the relizbility polynomial. The set of counts for this polynomial
form a shellable independence system 2and therefore this theorem is also applicable. The final
bounds on subgraph counts are due to Leggett [L2], who purports to obtain bounds using
graph theoretic structure.

Lomonosov and Polesskii develop a set of bounds using a completely different approach.
They develop a lower bound using the fact that each of a set of edge disjoint spanning
subgraphs (in this case, spanning trees) of a graph must fail before the graph can fail. They
also develop an upper bound, using the fact that at least one of the edges in every cutset of a
cut basis of a graph must be available for the graph to be connected.

In chapter 3, we tock a closer look at Leggett's bounds and proved that they are
incorrect, and that the errors are fundamental. This is one of the main contributions of the
thesis and appears also in [H3}; for many years, the correctness of Leggett’s bounds has been
in doubt. Owing to the number of errors, these “bounds” were totally eliminated from



consideration in the subsequent analysis.

In chapter 4, we investigated the implementations of the rest of the sets of bounds. We
showed that the bounds and all the values used by them can be calculated in polynomial
time. In the process, we refined two of the bounds, the Jacobs and the BBST bounds, to
empioy all of the information calculated. The modified bounds use both ¢ and C,, in both
their upper and lower bounds. We named these versions the Jacobs-III and BBST-II bounds.

The Jacobs-IIl bounds and the BBST-II bounds can both be easily implemented and
calculated once the graph theoretic values of ¢, ¢, and C, have been determined. The
implementation of either the Kruskal-Katona or the Ball-Provan bounds is definitely more
complicated than that of the other two bounds. However, the overriding difficulty appears to
remain the calculation of the graph theoretic values ¢, {, and C.. The calculation of the
Lomonosov-Polesskii bounds is trivial once the values for ¢ and the cardinalities of the cuts in
a cut basis have been determined. Another contribution of the thesis is the implementations
themselves. Although the bounds employing subgraph counts have been implemented before,
this appezars to be the first implementation of the Lomonosov-Polesskii bounds.

In chapter 5, we discussed the results obtained when we tested the bounds on a number
of graphs for which we were able to obtain the exact reliability. Qur tests indicate that the
four sets of bounds which employ subgraph counts form a definite hierarchy with respect to
accuracy. This ranking from best to worst is:

1. Ball-Provan bounds

2. Kruskal-Katona bounds

3. BBST-1I bourds

4. Jacobs-III bounds
The BBST-I bounds are as easy to implement as the Jacobs-III bounds; furthermore, the
difficulty of implementation for the Kruskal-Katora and for the Ball-Provan bounds was of
roughly the same magnitude. Hence the choice among these bounds can be effectively
narrowed down to either the BBST-II or the Ball-Provan bounds. Since the major difficulty
of obtaining the bounds is actually the calculation of the graph theoretic values (¢, ¢, and C),
and since there is a marked improvement in perfcrmance delivered by the Ball-Provan bounds
over the BBST-II bounds, our contention is that the Ball-Provan bouads are gererally the
best choice among bounds employiag subgraph counts,

The Lomonosov-Polesskii bounds do not appear to be very sophisticated. The
performance they deliver is therefore quite amazing. The lower bound uses only ¢ and n in
its calculations, and in most cases delivered poor results. MNevertheless, for the fow graphs we
tested which had ¢>35, it delivered a better bound than even the Rall-Provan bounds for
certain ranges of p.

The upper bound uses some information that the four subgraph bounds did not use
(cardinality of the cutsets in a cut basis of the graph). It still does not appear to be very
sophisticated as it does not use the values for ¢ and C.. However, for a significant number of
graphs, and for certain ranges of p, it delivers a lower value than the Ball-Provan upper
bound. For cases like the 2-tree diamonds, it improves remarkably on the Ball-Provan bound.

The Lomonosov-Polesskii bounds do not it into the hierarchy developed for the other
bounds; at times they are an improvement, but at other times they are worse than any of
these other bounds. However, they can be used in conjunction with any of these other
bounds in a complementary fashion. Therefore, the tightest bounds currently zvailable would
be a combination of the Lomonosov-Polesskii and Ball-Provan bounds, chocsing the lowest of
the two upper bounds and the kighest of the two lower bourds. This can deliver guite large
improvement over taking either one separately.

Thus, another significant contribution of this thesis has been to establish that the best
available bound does not always arise via the standard technique of bounding subgraph
counts. Hence, =zIthough the Ball-Provan bounds are very sophisticated combinatorial
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analyses of subgraph counts, they do always outperform the substantially different
Lomeorosov-Polesskii bounds.

8.2. Future Research

The results obtained in the thesis suggest some potentially fruitful avenues for further
research. First we consider the bounds which use subgraph counts. One way of improving
the existing bounds would be to use some graph theoretic property that does not apply for
general coherent, shellable, or polyhedral systems; we already have bounds that are tight for
these systems. However, the possible set of spanning subgraph counts in the reliability
polynomial only forms a subset of any of these types of systems. Therefore, it might still be
possible to find a tighter bound that does not apply generally for any of these systems, yet
still applies for the set of spanning subgraph counts of a graph.

Another sigrificant improvement would be to obtain any of the intermediate subgraph
counts exactly. However, it is arn open problem whether any of the N, values for n-1<i<b-c
can be obtained in polynomial time. Currently, there are no known polynomial time
algorithms for calculating any of these values. In the last section of chapter 5, it was
illustrated that for values of p that are reasonable for computer networks (say, p=0.98) the
dominasnt factor in the performance of both the upper ard lower bounds of any spanning
subgraph bound is the accuracy of their approximation of the Nj..; value. Clearly, if the
Ny ., value could be determined exactly a marked improvement could be expected in these
bounds for p in this range.

The remarkable performance of the relatively unsophisticated Lomonosov-Polesskii
bounds indicates strong promise in pursuing their approach to cbtairing bounds on R. Their
lower bound makes use of the fact that for the network to fail every member of any set of
edge disjoint spanning trees must fail. A tree is very unreliable since the failure of any one of
its edges causes it to fail. It should be pessible to obtain an improved lower bound if we
partition a graph into edge disjoint spanning subgraphs which are more reliable than trees.
We would then obtain a higher value when the preduct of the reliability of these subgraphs is
taken. The exact reliability of these subgraphs would have to be known, and so candidates
for these subgraphs are the partial 2-trees. The major effort in this approach would be the
algorithm for suitably partitioning the original graph into the edge disjoint subgraphs. We
are currently pursuing this line of research.

The Lomonosov-Polesskii upper bound is based on the fact that at least one edge in
every cutset of a cut basis must be available for a graph to be connected. The cutsets of a
cut basis are not generally edge disjoint. Therefore, the product of the probabilities that at
least one edge in every cutset is availuble results in overcounting for the cases where an edge
is in two cutsets; thus a high value is obtained. An area which merits serious future research
is to exploit information about the intersections of the edge cutsets, to reduce the current
overcounting and therefore obtain a more accurate bound.

Breakthroughs in any of the suggested areas of research could have a dramatic effect on
the accuracy of bounds for R. Moreover, each would extend the research undertzken in this
thesis in an interesting way. ’
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Table Al.l1 7-node Ladder
n=7 b=11 c=2 (' ==2 t=144
Bounds ? lower Alower upper Aupper r{p) actual
B-P 0.3 0.029911 | 0.002460 | 0.034607 0.002205 | 0.004696 | 0.032402
K-K 0.028425 { 0.003976 { 0.035500 | 0.003098 | 0.007074
Jeb-II 0.018202 | 0.014200 | 0.039243 0.006841 | 0.021041
BBST-1I 0.024760 | 0.007642 | 0.038478 0.006076 | 0.013718
L-P 0.003791 | 0.028611 | 0.048462 0.016060 | 0.044671
B-P 0.5 0.246094 | 0.027344 | 0.295898 0.022460 | 0.049805 | 0.273438
K-K 0.225586 | 0.047852 | 0.304199 0.030761 | 0.078613
Jeb-111 0.102051 | 0.171387 | 0.343750 0.070312 | 0.241699
BBST-II 0.177386 | 0.096052 | 0.334961 0.061523 | 0.157575
L-P 0.062500 | 0.210938 | 0.329727 0.056289 | 0.267227
B-P 0.7 0.655498 | 0.050697 | 0.743106 0.036911 | 0.087609 | 0.706195
K-K 0.606135 | 0.100060 | 0.754447 0.048252 | 0.148312
Jeb-IIT 0.346645 | 0.359550 | 0.823600 0.117405 | 0.476955
BBST-UI 0.495306 | 0.210889 | 0.806256 0.100061 | 0.310950
L-P 0.329417 | 0.376778 | 0.742223* | 0.036028 | 0.412805
B-P 0.9 0.965777 | 0.008418 | 0.979074 0.004879 | 0.013297 | 0.974195
K-K 0.954585 | 0.019610 | 0.979887 0.005692 | 0.025302
Jeb-111 0.903455 | 0.070740 | 0.990266 0.016071 | 0.086811
BBST-1I 0.930513 | 0.043682 | 0.987109 0.012914 | 0.056596
L-P 0.850306 | 0.123889 | 0.976185+* | 0.001990 | 0.125880
B-P 0.92 | 0.979313 | 0.004878 | 0.986922 0.002731 | 0.007609 | 0.984191
KK 0.972595 | 0.011596 | 0.987310 0.003119 | 0.014715
Jeb-I11 0.942343 | 0.041848 | 0.993240 0.009049 | 0.050897
BBST-II 0.958207 | 0.025984 | 0.991389 0.007198 | 0.033182
L-P 0.897405 | 0.086786 | 0.985221% | 0.001030 | 0.087815
B-P 0.94 | 0.989199 | 0.602320 | 0.992768 0.001249 | 0.003569 | 0.991519
K-K 0.685888 | 0.005631 | 0.992911 0.001392 | 0.007023
Jeb-I11 0.971189 | 0.020330 | 0.995687 0.004168 | 0.024498
BBST-II 0.978825 | 0.012694 | 0.994796 0.003277 | 0.015972
1-P 0.938223 | 0.053296 | 0.991955* | 0.000436 | 0.053732
B-P 0.96 | 0.995647 | 0.000771 | 0.996816 0.000398 | 0.001170 | 0.996418
K-K 0.994504 | 0.001914 | 0.996849 0.000431 | 0.002345
Jeb-III 0.089504 | 0.0068914 | 0.997757 0.00133¢ | 0.008253
BBST-II 0.992076 | 0.004342 | 0.997457 0.001039 | 0.005380
L-P : 0.970620 § 0.025798 | 0.996547* | 0.000129 | 0.025928
B-P 0.98 | 0.999044 | 0.000108 | 0.999205 0.000053 | 0.000161 | 0.999152
K-K 0.998878 | 0.000274 | 0.999207 0.000055 | 0.000329
Jeb-111 0.998163 | 0.000989 | 0.999332 0.000180 | 0.001169
BBST-II 0.998528 | 0.000624 | 0.999290 0.000138 | 0.000762
L-P 0.992143 | 0.007009 | 0.999168*% | 0.000016 | 0.007025
B-P 0.99 | 0.999780 | 0.000014 | 0.999801 0.000007 | 0.000021 | 0.999794
K-K 0.999757 | 0.000037 | 0.999801 0.000007 | 0.000044
Jeb-111 0.999662 | 0.000132 | 0.999817 0.000023 | 0.000155
BBST-II 0.99971C | 0.000084 | 0.999812 0.000018 | 0.000101
L-P 0.997969 | 0.001825 | 0.999796* { 0.000002 | 0.001827
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Table A1.2 10-node Ladder
n==10 b=17 ¢=2 C =2 {=2584

Bounds P lower Alower upper Aupper r(p) actual
B-P 0.3 0.005502 | 0.002149 { 0.009068 0.001418 | 0.003567 | 0.007651
K-K 0.005296 | 0.002355 | 0.012617 0.004966 | 0.007321

Jeb-I1 0.002933 | 0.004718 | 0.015625 0.007974 | 0.012692

BBST-II 0.004282 | 0.003368 | 0.015438 0.007788 | 0.011156
L-P 0.000144 | 0.007507 | 0.013744 0.006093 | 0.013600
B-P 6.5 0.105248 | 0.064796 | 0.209076 0.039032 | 0.103828 | 0.170044
K-K 0.092529 | 0.077515 | 0.270027 0.099983 | 0.177498

Jeb-[I1 0.020874 | 0.149170 | 0.334229 0.164185 | 0.313355

BBST-II 0.054182 | 0.115862 | 0.329620 0.159576 | 0.275439
L-P 0.010742 | 0.159302 | 0.220891 0.050847 | 0.210149
B-P 0.7 0.450040 | 0.190847 | 0.728754 0.087867 | 0.278714 | 0.640887
K-K 0.355730 | 0.285157 | 0.788083 0.147196 | 0.432353

Jeb-I1I 0.083372 | 0.557515 | 0.901347 0.260460 | 0.817975

BBST-II 0.170318 | 0.470569 | 0.889318 0.248431 | 0.719000
L-P 0.149308 | 0.491579 | 0.683711* | 0.042824 | 0.534403
B-P 0.9 0.930207 | 0.040811 | 0.980324 0.009306 | 0.050117 | 0.971018
K-K 0.872668 | 0.098350 | 0.980940 0.009922 | 0.108272

Jeb-111 0.757689 | 0.213329 | 0.995787 0.024769 | 0.238097

BBST-II 0.782998 | 0.188020 | 0.992285 0.021267 | 0.209287
L-P 0.736099 | 0.234919 | 0.973260% | 0.002242 | 0.237161
B-P 0.92 | 0.958374 | 0.024197 | 0.987511 0.004940 | 0.029138 | 0.982571
K-K 0.920429 | 0.062142 | 0.987700 0.005129 | 0.067272

Jeb-III 0.846063 | 0.136503 | 0.996316 0.013745 | 0.150248

BBST-II 0.862039 | 0.120532 | 0.994107 0.011536 | 0.132068
L-P 0.812118 | 0.170453 | 0.983708+ | 0.001137 | 0.171590 v
B-P 0.94 | 0.979065 | 0.011775 | 0.992976 0.002136 | 0.013911 | 0.990840
K-K 0.958531 { 0.032309 | 0.993015 0.002175 | 0.034483

Jeb-IIT 0.918975 | 0.071865 | 0.997152 0.006312 | 0.078177

BBST-II 0.927284 | 0.063556 | 0.996002 0.005162 | 0.068718
L-P 0.882412 | 0.108428 | 0.991313+ | 0.000473 | 0.108901
B-P 0.96 | 0.992209 | 0.004010 | 0.996860 0.000641 | 0.004651 | 0.996219
K-K 0.984436 | 0.011783 | 0.996864 0.000645 | 0.012428

Jeb-11 0.969684 | 0.026535 | 0.998265 0.002046 | 0.028581

BBST-II 0.972722 | 0.023497 | 0.997845 0.001626 | 0.025123
L-P 0.941846 | 0.054373 | 0.996356* | 0.000137 | 0.054510
B-P 0.98 | 0.998553 | 0.000575 | 0.999208 0.000080 | 0.000655 | 0.999128
K-K 0.997317 | 0.001811 | 0.999208 0.000080 | 0.001891

Jeb-III 0.995000 | 0.004128 | 0.999409 0.000281 | 0.004409

BBST-iI 0.995469 ; 0.003659 | 0.999344 0.000216 | 0.003875
L-P 0.983822 | 0.015306 { 0.999144* | 0.000016 | 0.015322
B-P 0.99 | 0.999714 | 0.000077 | 0.999801 0.000010 | 0.000087 | 0.999791
K-K 0.999540 | 0.000251 | 0.999801 0.000010 | 0.000261

Jeb-1II 0.999216 | 0.000575 | 0.999828 0.000037 | 0.000612

BBST-U 0.999281 | 0.000510 | 0.999819 0.000028 | 0.000538
L-P 0.995734 | 0.004057 | 0.999793* | 0.000002 | 0.004059
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Table A1.3 15-node Ladder
n=15 =27 ¢=2 C =2 t=317811
Bounds ? lower Alower upper Aupper r{p) actual
B-P 0.3 0.000312 | 0.000378 | 0.001032 0.000342 | 0.000721 | 0.000690
K-K 0.000310 | 0.000380 | 0.003703 0.003013 | 0.003393
Jeb-I11 0.000147 | 0.000543 | 0.005108 | 0.004418 | 0.004961
BBST-II 0.000226 | 0.000464 | 0.005080 0.004390 | 0.004854
L-P 0.000001 | 0.000690 | 0.001682 0.000992 | 0.001682
B-P 0.5 0.021743 | 0.055297 | 0.125904 0.048864 | 0.104162 | 0.077040
K-K 0.020692 | 0.056348 | 0.266049 0.186009 | 0.245357
Jeb-I11 0.002371 | 0.074869 | 0.352922 0.275882 | 0.350551
BBST-II 0.007925 | 0.069i15 | 0.350024 0.273884 | 0.343000
L-P 0.000488 | 0.076551 | 0.113297*= | 0.036257 | 0.112809
B-P 0.7 0.198837 | 0.346333 | 0.725430 0.180260 | 0.526593 | 0.545170
K-K 0.154219 | 0.390951 | 0.824877 0.279707 | 0.670658
Jeb-11 0.605382 | 0.539788 | 0.964374 0.419204 | 0.958992
BBST-II 0.020577 | 0.524593 | 0.958609 0.413739 | 0.938333
L-P 0.035268 | 0.509902 | 0.596262* | 0.051092 | 0.560994
B-P 0.9 0.833941 | 0.131805 | 0.980907 0.015161 | 0.146966 | 0.965746
K-K 0.702229 | 0.263517 | 0.981000 (.015254 | 0.278770
Jeb-11 0.483145 | 0.482601 | 0.998564 0.032818 | 0.515418
BBST-II 0.491312 | 0.474434 | 0.995627 0.029881 | 0.504315
L-P 0.545043 { 0.416703 | 0.968403* | 0.002657 | 0.419360
B-P 0.92 | 0.896847 | 0.083028 | 0.987696 0.007821 | 0.090849 | 0.979875
K-K 0.795269 | 0.184606 | 0.987712 0.007837 | 0.192443
Jeb-111 0.630179 | 0.349696 | 0.998408 0.018533 | 0.368229
BBST-II 0.636013 | 0.343862 | 0.996310 0.016435 | 0.360297
L-P 0.659729 | 0.320146 | 0.981192% | 0.001317 | 0.321463
B-P 0.04 | 0.946738 | 0.042973 | 0.993014 0.003303 | 0.046276 | 0.989711
K-K 0.882461 | 0.107250 | 0.993016 0.003305 | 0.110555
Jeb-lil 0.779847 | 0.209864 | 0.998467 0.008756 | 0.218620
BBST-II 0.783311 | 0.206400 | 0.997221 0.007510 | 0.213910
L-P 0.773763 | 0.215948 | 0.990243* | 0.000532 | 0.216480
B-P 0.96 | 0.980308 | 0.015580 | 0.996864 0.000976 | 0.016556 | 0.995888
K-K 0.951859 | 0.044029 | 0.9963864 0.000976 | 0.045005
Jeb-1 0.907047 | 0.088841 | 0.998847 0.002959 | 0.091800
BBST-II 0.908501 | 0.087387 | 0.998324 0.002436 | 0.089823
L-P 0.880890 | 0.114998 | 0.996037*% | 0.000149 | 0.115147
B-P 0.98 | 0.996709 | 0.002378 | 0.999208 0.000121 | 0.002499 | 0.999087
K-K 0.991419 | 0.007668 | 0.999208 6.000121 | 0.007789
Jeb-Iil 0.983165 | 0.015922 | 0.999517 0.000430 | 0.016352
BBST-II 0.983424 | 0.015663 | 0.999424 0.000337 | 0.016000
L-P 0.964662 | 0.034425 | 0.999104*% | 0.000017 | 0.034442
B-P 0.99 | 0.999458 | 0.000328 | 0.999801 0.000015 | 0.000343 | 0.999786
K-K 0.998652 | 0.001134 | 0.999801 0.000015 | 0.001149
Jeb-1IT 0.997400 | 0.002386 | 0.999844 0.000058 | ©0.002444
BBST-II 0.997439 | 0.002347 | 0.999831 0.000045 | 0.002391
L-P 0.950370 | 0.009416 | 0.999788+ | 0.000002 | 0.009418
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Table Al.4 20-node Ladder
n=20 b=37 ¢=2 (=2 t=3.90882e+07
Bounds P lower Alower upper Aupper r{p) actual
B-P 0.3 0.000017 | 0.000045 | 0.000120 0.000058 | 0.000103 | 0.000062
K-K 0.000017 | 0.000045 | 0.001346 0.001284 | 0.001329
Jeb-I11 0.000007 | 0.000055 | 0.001936 0.001874 | 0.001929
BBST-II 0.000012 | 0.000051 | 0.001930 0.001868 | 0.001919
L-P 0.000000 | 0.000062 | 0.000206 | 0.000144 | 0.000206
B-P 0.5 0.004365 | 0.030538 | 0.078045 | 0.043142 | 0.073680 | 0.034903
K-K 0.004305 | 0.030898 | 0.271280 0.236377 | 0.266975
Jeb-111 0.000284 | 0.034619 | 0.371699 0.336796 | 0.371415
BBST-II 0.001106 | 0.033797 | 0.370584 0.335681 | 0.369478
L-P 0.000020 | 0.034883 | 0.058111* | 0.023208 | 0.058091
B-P 0.7 0.082450 | 0.381299 | 0.725452 0.261703 | 0.643002 | 0.453749
K-K 0.068650 | 0.395099 | 0.838856 0.375107 | 0.770205
Jeb-III 0.000275 | 0.463474 | 0.986939 0.523190 | 0.986664
BBST-II 0.002457 | 0.461292 { 0.983976 0.520227 | 0.981518
L-P 0.007637 | 0.456112 | 0.519997* | 0.056248 | 0.512360
B-P 0.9 0.714673 | 0.245830 | 0.980933 0.020480 | 0.266310 | 0.660503
K-K 0.542379 | 0.418124 | 0.981000 0.020497 | 0.438621
Jeb-111 0.269840 | 0.690663 | 0.999499 0.038996 | 0.729659
BBST-1I 0.271454 | 0.689049 | 0.997308 0.036805 | 0.725854
L-P 0.391747 | 0.568756 | 0.963571* | 0.003068 | 0.571824
B-P 0.92 | 0.812622 | 0.164566 | 0.987710 0.010522 | 0.175088 | 0.977188
KK 0.658415 | 0.318773 | 0.987712 0.010524 | 0.329297
Jeb-III 0.422412 | 0.554776 | 0.999309 0.022121 | 0.576896
BBST-Ii 0.423688 | 0.553500 | 0.997576 0.020388 { 0.573888
L-P 0.516856 | 0.460332 | 0.978683* | 0.001495 | 0.461827
B-P 0.94 | 0.897883 | 0.090700 | 0.993016 0.004433 | 0.095132 | 0.988583
K-K 0.784436 | 0.204147 | 0.993016 0.004433 | 0.208580
Jeb-II1 0.614759 | 0.373824 | 0.999174 0.010591 | 0.384416
BBST-II 0.615609 | 0.372974 | 0.998020 0.009437 | 0.382411
L-P 0.660455 | 0.328128 | 0.989174* | 0.000591 | 0.328719
B-P 0.96 | 0.960471 | 0.035087 | 0.996864 0.001306 | 0.036393 | 0.995558
K-K 0.901993 | 0.093565 | 0.996864 0.001306 | 0.094871
Jeb-111 0.815802 | 0.179756 | 0.999233 0.003675 | 0.183431
BBST-II 0.816208 | 0.179350 | 0.998682 0.003124 | 0.182474
L-P 0.810338 | 0.185220 | 0.995719+% | 0.000161 | 0.185381
B-P 0.98 | 0.993323 | 0.005723 | 0.999208 0.000162 | 0.005885 | 0.999046
K-K 0.980637 | 0.018409 | 0.999208 0.000162 | 0.018571
Jeb-1IT 0.962087 | 0.036959 | 0.999606 0.000560 { 0.037518
BBST-II 0.962170 | 0.036876 | 0.999493 0.000447 | 0.037323
L-P 0.940101 | 0.058945 | 0.999064+ | 0.000018 | 0.058963
B-P 0.99 | 0.998964 | 0.000817 | 0.999801 0.000020 | 0.000837 | 0.999781
K-K 0.996877 | 0.002904 | 0.999801 0.000020 | 0.002924
Jeb-111 0.993831 | 0.005950 | 0.999859 0.000078 | 0.006028
BBST-II 0.993844 | 0.005937 | 0.999841 0.000060 | 0.005997
L-P 0.983141 | 0.016640 | 0.999783* | 0.000002 | 0.016642
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Table A1.5 25-node Ladder
n=25 b=47 ¢=2 C =2 t=4.80753e+09
Bounds P lower Alower upper Aupper {p) actual
B-P 0.3 0.000001 | 0.000005 | 0.000020 0.000014 | 0.000019 | 0.000006
K-K 0.000001 | 0.000005 | 0.000514 0.000508 | 0.000513
Jeb-III 0.000000 |} 0.000005 | 0.000754 0.000749 | 0.000754
BBST-II 0.000001 ; 0.000005 | 0.000753 0.000747 | 0.000752
L-P 0.000000 | 0.000006 | 0.000025 0.000020 | 0.000025
B-P 0.5 0.000840 | 0.014973 | 0.082391 0.066578 | 0.081551 | 0.015813
K-K 0.000837 | 0.014976 | 0.275808 0.259995 | 0.274971
Jeb-HI 0.000034 | 0.015779 | 0.385468 0.369655 | 0.385434
BBST-II 0.000149 | 0.015664 | 0.384755 0.368942 | 0.384606
L-P 0.000001 | 0.015813 | 0.029806+% | 0.013992 | 0.029805
B-P 0.7 0.031695 | 0.362793 | 1.033670 0.639182 | 1.001970 | 0.394483
K-K 0.027796 | 0.366692 | 0.843939 0.449451 | 0.816143
Jeb-1HT 0.000012 | 0.394476 | 0.995002 0.600604 | 0.995080
BBST-II 0.000369 | 0.394179 | 0.993251 0.598763 | 0.992942
L-P 0.001571 | 0.392917 | 0.453488+ | 0.059000 | 0.451917 .
B-P 0.9 0.582322 | 0.372966 | 0.981282 0.025994 | 0.398960 | 0.955288
K-K 0.392497 | 0.562791 | 0.981000 0.025712 | 0.588503
Jeb-111 0.138164 | 0.817124 | 0.999825 0.044537 | 0.861662
BBST-II 0.138421 | 0.816867 | 0.993231 0.042943 | 0.859811
L-P 0.271206 | 0.684082 | 0.958763% | 0.003475 | 0.687557
- B-P 0.92 | 0.709467 | 0.265040 | 0.987745 0.013238 | 0.278278 | 0.974507
K-K 0.513636 | 0.460871 | 0.987712 0.013205 | 0.474076
Jeb-11I 0.263090 | 0.711417 | 0.999700 0.025193 | 0.736609
BBST-II 0.263310 | 0.711197 | 0.998337 0.023830 | 0.735027
L-P 0.394722 | 0.579785 | 0.976180+* | 0.001673 | 0.581459
B-P 0.94 | 0.831873 | 0.155583 | 0.993018 0.005562 | 0.161144 | 0.987456
K-K 0.665257 | 0.322199 | 0.993016 0.005560 | 0.327759 '
Jeb-III 0.458234 | 0.529222 | 0.999555 0.012099 | 0.541321
BBST-II 0.468395 | 0.529061 | 0.998554 0.011098 | 0.540158
L-P 0.552661 | 0.434795 | 0.988106* | 0.000650 | 0.435445
B-P 0.96 | 0.930922 | 0.064305 | 0.995864 0.001637 | 0.065942 | 0.995227
K-K 0.831251 | 0.163976 | 0.996864 0.001637 | 0.165613
Jeb-111 0.709315 | 0.285912 | 0.999490 0.004263 | 0.290176
BBST-II 0.709401 | 0.285826 | 0.998953 0.003726 | 0.289552
L-P 0.735810 | 0.259417 | 0.995400+* | 0.000173 | 0.259590
B-P 0.98 | 0.987767 | 0.011238 | 0.999208 0.000203 | 0.011441 | 0.999005
K-K 0.962589 | 0.036416 | 0.999208 0.000203 | 0.036619
Jeb-III 0.931937 | 0.067068 | 0.999678 0.000673 | 0.067740
BBST-II 0.931957 | 0.067048 | 0.999552 0.000547 | 0.087595
L-P 0.911355 | 0.087650 | 0.999024* | 0.000019 | 0.087669 _
B-P 0.99 | 0.998113 | 0.001663 | 0.999301 0.000025 | 0.001688 | 0.999776
K-K 0.993638 | 0.006138 | 0.999801 0.000025 | 0.006163
Jeb-1I1 0.988187 | 0.011589 | 0.999873 0.000097 | 0.011686
BBST-II 0.988190 | 0.011586 | 0.999851 0.000075 | 0.011661
L-P 0.974241 | 0.025535 | 0.999778+ | 0.000002 | 0.025537
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Table A2.1 7-node Diamond
n=7 b=11 =2 C =5 =112
Bounds P lower Alower upper Aupper r{p) actual
B-P 0.3 0.024356 | 0.000998 | 0.027785 0.002431 | 0.003428 | 0.025354
K-K 0.022526 | 0.002828 | 0.028730 0.003376 | 0.006204
Jeb-III 0.014252 | 0.011102 | 0.035294 0.009939 | 0.021041
BBST-1I 0.019353 | 0.006001 | 0.033381 0.008027 | 0.014028
L-P 0.003791 | 0.021563 | 0.030443 0.005089 | 0.026653
B-P 0.5 0.210449 | 0.011231 | 0.247070 0.025390 | 0.036621 | 0.221630
K-K 0.185059 | 0.036621 | 0.255859 0.034179 | 0.070801
Jeb-III 0.084961 | 0.136719 | 0.326660 0.104980 | 0.241699
BBST-II 0.143555 | 0.078125 | 0.304688 0.083008 | 0.161133
L-P 0.062500 | 0.159180 | 0.233597* | 0.011917 | 0.171097
B-P 0.7 0.598543 | 0.021568 | 0.663693 0.043582 | 0.065150 | 0.620111
K-K 0.537172 | 0.082939 | 0.675701 0.055590 | 0.138528
Jeb-III 0.326601 | 0.293510 | 0.803556 0.183445 | 0.476955
BBST-II 0.442226 | 0.177885 | 0.760196 0.140085 | 0.317970
L-P 0.329417 | 0.2900694 | 0.623577* | 0.003466 | 0.294160
B-P 0.9 0.947193 | 0.003778 | 0.957285 0.006314 | 0.010092 | 0.950971
K-K 0.933226 | 0.017745 | 0.958146 0.007175 | 0.024919
Jeb-Ill 0.891662 | 0.059309 | 0.978473 0.027502 | 0.085811
BBST-II 0.912707 | 0.038264 | 0.970581 0.019610 { 0.057874
L-P 0.850306 | 0.100665 ; 0.950989* | 0.000018 | 0.100683
B-P 0.92 | 0.966197 | 0.002204 | 0.971989 0.003588 | 0.005792 | 0.968401
K-K 0.957811 | 0.010590 | 0.972400 0.003999 | 0.014589
Jeb-111 0.933213 | 0.035188 | 0.984110 0.015709 | 0.050897
BBST-II 0.945552 | 0.022849 | 0.979483 0.011082 | 0.033931
L-P 0.897405 | 0.070996 | 0.968407+ | 0.000006 | 0.071001
B-P 0.94 | 0.681072 | 0.001056 | 0.983798 0.001670 | 0.002726 | 0.98212%
KK 0.976937 | 0.005191 | 0.983949 0.001821 | 0.007012
Jeb-11 0.964983 | 0.017145 | 0.989482 0.007354 | 0.024498
BBST-II 0.970922 | 0.011206 | 0.987255 0.005127 | 0.016332
L-P 0.938223 | 0.043905 | 0.982129+ | 0.000001 { 0.043906
B-P 0.66 | 0.991672 | 0.000353 } 0.992568 0.000543 | 0.000896 | 0.992025
K-K 0.090244 | 0.001781 | 0.992603 0.000578 | 0.002358
Jeb-1I 0.986177 | 0.005848 | 0.994430 0.002405 | 0.008253
BBST-II 0.988178 | 0.003847 | 0.993680 0.001655 | 0.005502
1-P 0.970620 | 0.021405 | 0.992026+« | 0.000001 | 0.021406
B-P 0.98 | 0.997952 | 0.000050 | 0.998075 0.000073 | 0.000124 | 0.998002
K-K 0.997744 | 0.000258 | 0.998078 0.000076 | 0.000333
Jeb-III 0.997163 | 0.000839 | 0.998331 0.000329 | 0.001169
BBST-II 0.997446 | 0.000556 | 0.998225 0.000223 | 0.000779
L-P 0.992143 | 0.005859 | 0.998002+ | 0.000000 | 0.005858
B-P 0.99 | 0.999493 | 0.000007 | 0.999510 0.000010 | 0.000016 | 0.999500
K-K 0.999466 | 0.000034 | 0.999510 0.000010 | 0.000044
Jeb-I11 0.999388 | 0.000112 | 0.999543 0.000043 | 0.000155
BBST- 0.999426 | 0.000074 | 0.999529 0.000029 | 0.000104
L-P 0.997969 | 0.001531 0.000000 | 0.001531

0.999500*
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Table A2.2 10-node Diamond
=10 b=17 ¢=2 ¢ =8 {=1280
Bounds p lower Alower upper Aupper {p) actual
B-P 0.3 0.002025 | 0.000874 | 0.005465 0.001566 | 0.002441 | 0.0033899
K-K 0.002791 | 0.001108 | 0.009189 0.005290 | 0.006398
Jeb-III 0.001453 | 0.002446 | 0.014145 0.010246 | 0.012692
BBST-1I 0.002122 | 0.001777 | 0.013399 0.009499 ;| 0.011277
L-P 0.000144 | 0.003755 | 0.004392+ | 0.000493 | 0.604248
B-P 0.5 0.058474 | 0.029686 | 0.146423 0.048263 | 0.077950 | 0.098160
K-K 0.054474 | 0.043686 | 0.212555 0.114395 | 0.158081
Jeb-IHI 0.010879 | 0.087280 | 0.324234 0.226074 | 0.313355
BBST-II 0.027379 | 0.070781 | 0.305801 0.207641 | 0.278423
L-P 0.010742 | 0.087418 | 0.099917* ;| 0.001758 | 0.089175
B-P 0.7 0.367293 | 0.102669 | 0.600297 0.130335 | 0.233004 | 0.469962
K-K 0.264144 | 0.205818 | 0.668615 | 0.198653 | 0.404471
Jeb-111 0.077356 | 0.392606 | €.895331 0.425269 | 0.817975
BBST-li 0.120425 | 0.349537 | 0.847214 0.377252 | 0.726789
L-P 0.149308 | 0.320654 | 0.470243* | 0.000281 | 0.320935
B-P 0.9 0.896300 | 0.026445 | 0.942172 0.019427 | 0.045872 | 0.922745
K-K 0.832909 | 0.089836 | 0.942996 0.020251 | 0.110088
Jeb-111 0.745331 | 0.177414 | 0.983428 0.060683 | 0.238097
BBST-II 0.757868 | 0.164877 | 0.968422 0.046677 | 0.211555
L-P 0.736099 | 0.186646 | 0.922745% | 0.000000 | 0.186646
B-P 0.92 | 0.933965 | 0.015967 | 0.960787 0.010855 | 0.026822 | 0.949932
K-K 0.892120 | 0.057812 | 0.961048 0.011116 | 0.068928
Jeb-1II 0.835073 | 0.114859 | 0.985322 | 0.035390 | 0.150248
BBST-II 0.842084 | 0.106948 | 0.976483 0.026551 | 0.133499
L-P 0.812118 | 0.137814 | 0.949%32% | 0.000000 | 0.137815
B-P 0.94 | 0.963649 | 0.007911 | 0.976517 0.004957 | 0.012868 | 0.971560
K-K 0.940982 | 0.030578 | 0.976573 0.005013 | 0.035591
Jeb-1I1 0.910436 | 0.061124 | 0.988613 0.017053 { 0.078177
BBST-II 0.914553 | 0.057007 { 0.984015 0.012455 | 0.069462
L-P 0.882412 | 0.089148 | 0.971560* | 0.000000 | 0.089148
B-P 0.96 | 0.984529 | 0.002742 | 0.988849 0.001578 | 0.004320 | 0.987271
K-K 0.975940 | 0.011331 | 0.988856 0.001585 | 0.012915
Jeb-III 0.964480 | 0.022791 | 0.993061 0.005790 { 0.028581
BBST-II 0.965985 | 0.021286 | 0.991380 0.004109 | 0.025395
L-P 0.941846 | 0.045425 | 0.987271* | 0.000000 | 0.045425
B-P 0.98 | 0.996405 { 0.000399 | 0.997015 0.000211 | 0.000610 | 0.996304
K-K 0.995037 | 0.001767 | 0.997015 0.000211 | 0.001978
Jeb-IIT 0.993228 | 0.003576 | 0.997637 0.000833 | 0.004409
BBST-II 0.993460 | 0.003344 | 0.997377 0.000573 | 0.003917
L-P 0.983822 | 0.012982 | 0.996804* | 0.000000 | 0.012982
B-P 0.99 | 0.999146 | 0.000054 | 0.999227 0.000027 | 0.000081 | 0.999200
K-K 0.998954 | 0.000246 | 0.999227 0.000027 | 0.000274
Jeb-111 0.998700 | 0.000500 | 0.999312 0.000112 | 0.000612
BBST-II 0.998732 | 0.000468 | 0.999276 0.000076 } 0.000544
L-P 0.995734 | 0.003466 | 0.999200« | 0.000000 | 0.003466
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Table A2.3 15-node Diamond
n=15 b=27 c=2 C;=13 {=61440
Bounds p lower Alower upper Aupper r{p) actual
B-P 0.3 0.000074 | 0.000075 | 0.000320 0.000171 | 0.000246 | 0.000149
K-K 0.000073 | 0.000076 | 0.002860 0.002711 | 0.002787
Jeb-111 0.000028 | 0.000121 | 0.004990 0.004841 | 0.004961
BBST-II 0.000044 | 0.000105 | 0.004806 0.004657 | 0.004762
L-P 0.000001 | 0.000149 | 0.c00157* | 0.000008 | 0.000156
B-P 0.5 0.008009 | 0.015688 | 0.058184 0.034488 | 0.050175 | 0.023696
K-K 0.006823 | 0.016873 | 0.211773 0.188077 | 0.204951
Jeb-1I1 0.000460 | 0.023236 | 0.351012 0.327316 | 0.350551
BBST-II 0.001534 | 0.022162 | 0.338028 0.314332 | 0.336494
L-P 0.000488 | 0.023208 | 0.023756* | 0.000060 | 0.023268
B-P 0.7 0.134717 | 0.158732 | 0.519635 0.226186 | 0.384918 | 0.293449
K-K 0.083388 | 0.210061 | 0.685121 0.391672 | 0.601733
Jeb-1II 0.004972 | 0.288477 | C.963964 0.670515 | 0.958992
BBST-II 0.007610 | 0.285539 | 0.928446 0.634997 | 0.920536
L-P 0.035268 | 0.258181 | 0.203453* | 0.000004 | 0.258185
B-P 0.9 0.784790 | 0.092731 | 0.924677 0.047156 | 0.139887 | 0.877521
K-K 0.629627 | 0.247894 | 0.925418 0.047897 | 0.295791
Jeb-II1 0.475249 | 0.402272 | 0.990667 0.113146 | 0.515418
BBST-II 0.476827 | 0.400694 | 0.971577 | 0.094056 | 0.494750
{i L-P 0.549043 | 0.328478 | 0.877521* | 0.000000 | 0.328478
B-P 0.92 | 0.859553 | 0.060368 | 0.946875 0.026954 | 0.087322 | 0.919921
K-K 0.739615 | 0.180306 | 0.947060 | 0.027139 | 0.207445
Jeb-111 0.621424 | 0.298497 | 0.989653 0.069732 | 0.363229
BBST-II 0.622552 | 0.297369 | 0.976015 0.056094 | 0.353463
L-P 0.659729 | 0.260192 | 0.919921* | 0.000000 | 0.260192
B-P 0.94 | 0.921977 | 0.032221 | 0.966813 0.012615 | 0.044836 | 0.954198
K-K 0.845912 | 0.108286 | 0.966842 0.012644 | 0.120930
Jeb-IT1 0.771416 | 0.182782 | 0.990036 0.035838 | 0.218620
BBST-II 0.772086 | 0.182112 | 0.981939 0.027741 | 0.209853
L-P 0.773763 | 0.180435 | 0.954198+« | 0.000000 | 0.180435
B-P 0.96 | 0.967377 | 0.012022 | 0.983526 0.004127 | 0.016150 | 0.979399
K-K 0.933637 | 0.045762 | 0.983528 0.004129 | 0.049891
Jeb-1II 0.900704 | 0.078695 | 0.992504 0.013105 | 0.091800
BBST-Ii 0.900985 | 0.078414 | 0.989104 0.009705 | 0.088119
L-P 0.880800 | 0.098509 | 0.979399* | 0.000000 | 0.0985083
B-P 0.98 | 0.992929 | 0.001883 | 0.995380 0.000668 | 0.002452 | 0.994812
K-K 0.986641 | 0.008171 | 0.995380 0.000568 | 0.008740
Jeb-111 0.980510 | 0.014302 | 0.996862 0.002050 | 0.016352
BBST-II 0.980560 | 0.014252 | 0.996256 0.001444 | 0.015697
L-P 0.964662 | 0.030150 | 0.994812% | 0.000000 | 0.030151
B-P 0.99 | 0.998438 | 0.000263 | 0.998775 0.000074 | 0.000338 | 0.998701
K-K 0.997479 | 0.001222 | 0.998775 0.000074 | 0.001296
Jeb-1I1 0.996545 | 0.002156 | 0.998989 | 0.000288 | 0.002444
BBST-II 0.996552 | 0.002149 | 0.9088938 0.000197 | 0.002346
L-P 0.990370 | 0.008331 | 0.698701* | 0.000000 | 0.008331
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Tahle A2.4 20-node Diamond
n=20 b==37 ¢c=2 C =18 {=2.62144e+06
‘Bounds P lower Alower upper Aupper r{p) actual
B-P 0.3 0.000002 | 0.000004 | 0.000018 0.000012 | 0.000016 | 0.060005
K-K 0.600%02 | 0.000004 | 0.001067 0.001062 | 0.001066
Jeb-1I1 0.060000 | 0.000005 ] 0.001929 0.001924 | 0.001929
BEST-II 0.000001 | 0.000005 | 0.001877 0.001872 | 0.001876
L-P 0.000000 | 0.000C005 | 0.000005* | 0.0000C0 | 0.000005
B-P 0.5 0.000790 | 0.004846 | 0.022827 0.017191 | 0.022037 | 0.005636
K-K 0.000720 | 0.004916 | 0.217006 0.211370 | 0.216286
Jeb-I1 0.000019 | 0.005617 | 0.371434 0.365798 | 0.371415
BBST-Ii 0.000074 | 0.005562 | 0.361396 0.355760 | 0.361321
L-P 0.000020 | 0.065616 | 0.005638+ | 0.000002 | 0.005618
B-P 0.7 0.042256 | 0.140868 | 0.463435 0.280311 | 0.421179 { 0.183124
K-K 0.025814 | 0.157310 | 0.693993 0.510869 | 0.668179
Jeb-111 0.000253 | 0.182871 | 0.986917 0.803793 | 0.986664
BBST-II 0.000400 | 0.182724 | 0.960250 0.777126 | 0.959851
L-P 0.007637 | 0.175487 | 0.183124+ | 0.000000 | 0.175487
B-P 0.9 0.653186 | 0.181328 | 0.914578 0.080064 | 0.261392 | 0.834514
K-K 0.442283 | 0.392231 | 0.915009 0.080495 | 0.472727
Jeb-111 0.265835 | 0.563679 | 0.995494 0.160980 | 0.729659
BBST-II 0.265943 | 0.568571 | 0.975774 0.141260 | 0.709830
1-P 0.391747 | 0.442767 | 0.834514* | 0.000000 | 0.442767
B-P 0.92 | 0.763709 | 0.127149 | 0.937755 0.046897 | 0.174046 | 0.890858
KK 0.574368 § 0.316490 | 0.937835 0.046977 | 0.363467
Jeb-HI 0.416880 | 0.473978 | 0.993777 0.102919 { 0.576896
BBST-II 0.416966 | 0.473892 | 0.978185 0.087327 | 0.561219
L-P 0.516856 | 0.374002 | 0.890858* { 0.000000 | 0.374002
B-P 0.94 | 0.864064 | 0.073081 | 0.959691 0.022546 | 0.095627 | 0.937145
K-K 0.724351 | 0.212794 | 0.959699 0.022554 | 0.235349
Jeb-I11 0.608153 ! 0.328992 | 0.992569 0.055424 | 0.384416
BBST-II 0.608210 | 0.328935 | 0.982179 0.045034 | 0.373969
L-P 0.660455 | 0.276690 | 0.937145* | 0.000000 | 0.276691
B-P 0.96 | 0.942231 ! 0.029357 | 0.979134 0.607596 | 0.036953 | 0.971588
K-K 0.870003 | 0.101585 | 0.979184 0.007596 | 0.169181
Jeb-II1 0.809668 | 0.161920 | 0.993099 0.021511 | 0.183431
BBST-U 0.800696 | 0.161892 | 0.988142 0.016554 | 0.178446
L-P 0.810338 | 0.161250 | 0.971588+* | 0.000000 | 0.161250
B-P 0.98 | 0.887872 | 0.004952 | 0.993603 0.001079 | 0.006031 | 0.992824
K-K 0.972159 | 0.020665 | 0.993903 | 0.001079 | 0.021744
Jeb-111 0.958932 | 0.0338092 | 0.996450 0.003626 | 0.037518
BBST-II 0.958937 | 0.033887 | 0.995436 0.002612 | 0.036499
L-P 0.940101 | 0.052723 | 0.992824* | 0.000000 | 0.052723
B-P 0.99 | 0.997483 | 0.000719 | 0.998345 0.000143 | 0.000862 | 0.998202
K-K 0.994895 | 0.003307 | 0.998345 0.000143 | 0.003450
Jeb-111 0.992705 | 0.005497 | 0.998734 0.000532 | 0.006028
BRST-II 0.992706 | 0.005496 | 0.998571 0.000369 | 0.005865
L-P 0.983141 | 0.015061 | 0.998202+ | 0.000000 | 0.015061
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Table A2.5 25-node Diamond
n=25 b=47 =2 C, ;=23 t=1.04858e+08
Bounds p lower Alower upper Aupper rip) actual
B-P 0.3 0.000000 | 0.000000 | 0.000001 0.000001 | 0.000001 | 0.000000
K-K 0.0G0000 | 0.000000 | 0.000409 0.000409 | 0.000409
Jeb-111 0.600000 | 0.000000 | 0.000754 0.000754 | 0.000754
BBST-II 0.000060 | 0.060000 | 0.000738 0.000738 | 0.000738
L-P 0.000000 | 0.000000 | 0.600000+ | 0.000000 | 0.000000
B-P 0.5 0.000077 | 0.001260 | 0.009128 0.007791 | 0.009051 | 0.001338
KK 0.000074 | 0.001264 | 0.220750 0.219412 | 0.220676
Jeb-111 0.000001 | 0.001337 | 0.385434 0.384096 | 0.385434
BBST-II 0.000003 | 0.001335 | 0.377234 0.375396 | 0.377230
L-P 0.000001 | 0.001337 | 0.001338+ | 0.000000 | 0.001337
B-P 0.7 0.012587 | 0.101688 | 0.423790 0.309515 | 0.411204 | 0.114275
K-K 0.008172 | 0.106103 | 0.6975642 0.583367 | 0.689470
Jeb-IU 0.000011 | 0.114264 | 0.995091 0.880816 | 0.995080
BBST-II 0.000018 | 0.114257 | 0.973919 0.859644 | 0.973902
L-P 0.001571 | 0.112704 | 0.114275% ;| 0.000000 | 0.112704
B-P 0.9 0.522935 | 0.270679 | 0.908659 0.115045 | 0.385723 | 0.793614
K-K 0.303090 | 0.490524 | 0.908863 0.115249 | 0.605773
Jeb-1I1 0.136331 | 0.657283 | 0.997983 0.204379 | 0.861662
BBST-II 0.136336 | 0.657278 | 0.979659 0.186045 | 0.843323
L-P 0.271206 | 0.522408 | 0.793614* | 0.000000 | 0.522408
B-P 0.92 | 0.658946 | 0.203767 | 0.931727 0.069014 | 0.272781 | 0.862713
K-K 0.431467 | 0.431246 | 0.931755 0.069042 | 0.500288
Jeb-IHT 0.259936 | 0.602777 | 0.996546 0.133833 | 0.736609
BBST-II 0.258941 | 0.602772 | 0.980873 0.118160 | 0.720932
~ L-P 0.394722 | 0.467991 | 0.862713% | 0.000000 | 0.467992
B-P 0.94 | 0.794585 | 0.125812 | 0.954456 0.034058 | 0.159870 | 0.920398
K-K 0.600465 { 0.319933 | 0.954457 0.034059 | 0.353992
Jeb-1 0.453564 | 0.466834 | 0.994886 0.074488 | 0.541321
BBST-UI 0.453568 | 0.466830 | 0.983368 0.062970 | 0.529800
L-P 0.552661 | 0.367737 | 0.920398+ | 0.000000 | 0.367737
B-P 0.96 | 0.909511 | 0.054330 | 0.975642 0.011801 | 0.066131 | 0.963841
K-K 0.793047 | 0.170794 | 0.975642 0.011801 | 0.182595
Jeb-I1I 0.703962 | 0.259879 | 0.994138 0.030297 | 0.200176
BBST-II 0.703964 | 0.259877 | 0.987964 0.024123 | 0.284000
L-P 0.735810 | 0.228031 | 0.963841% | 0.000000 | 0.228030
B-P 0.98 | 0.980981 | 0.009859 | 0.992567 0.001727 | 0.011586 | 0.990840
K-K 0.951478 | 0.039362 | 0.992567 0.001727 | 0.041089
Jeb-1I 0.928553 | 0.062287 | 0.996294 0.005454 | 0.067740
BBST-II 0.928554 | 0.062286 | 0.994852 0.004012 | 0.066299
L-P 0.911355 | 0.079485 | 0.990840* | 0.000000 | 0.079485
B-P 0.99 | 0.996220 | 0.001483 | 0.997936 0.000233 | 0.001717 | 0.997703
K-K 0.990969 | 0.006734 | 0.997936 0.000233 | 0.006968
Jeb-1IT 0.986851 | 0.010852 | 0.998537 0.000834 | 0.011686
BBST-II 0.986851 { 0.010852 | 0.998288 0.000585 | 0.011437
L-P 0.974241 | 0.023462 | 0.997703* | 0.000000 | 0.023462
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Table A3.1 5-pode Complete Graph
n=3 6==10 c=4 C =5 =125

Bounds p lower Alower upper Aupper {p) actual
B-P 0.1 | 0.008028 | 0.000059 | 0.008129 | 0.000041 | 0.000100 | 0.008098
K-K 0.007903 | 0.000195 | 0.008157 | 0.000059 | 0.000254

Jeb-1I1 0.006787 | 0.001311 { 0.008275 | 0.000177 | 0.001488

BBST-II 0.007672 | 0.000425 | 0.008239 | 0.000142 | 0.000567
L-P 0.005526 | 0.002572 | 0.013987 | 0.005890 | 0.008462
B-P 0.2 | 0.080897 | 0.001049 | 0.082680 | 0.000734 | 0.001783 | 0.081946
K-K 0.078485 | 0.003460 | 0.082994 | 0.001049 | 0.004509

Jeb-HI 0.058667 | 0.023278 | 0.085091 | 0.003146 | 0.026424

BBST-II 0.074396 | 0.007550 | 0.084462 | 0.002517 | 0.010066
L-P 0.059794 | 0.022151 | 0.121503 | 0.039558 | 0.061708
B-P 0.3 | 0.252176 | 0.004084 | 0.250119 | 0.002859 | 0.006943 | 0.256260
K-K 0.242783 | 0.013477 | 0.260345 ! 0.004085 | 0.017562

Jeb-I 0.165593 | 0.090667 | 0.268513 | 0.012253 | 0.102919

BBST-II 0.226855 | 0.020405 | 0.266062 | 0.009802 | 0.030207
L-P 0.200250 | 0.056010 | 0.333446 | 0.077186 | 0.133196
B-P 0.4 | 0.481691 | 0.007963 | 0.495228 | 0.005574 | 0.013536 | 0.489654
K-K 0.463377 | 0.026277 | 0.497617 | 0.007963 | 0.034239 ’
Jeb-I 0.312884 | 0.176770 | 0.513542 | 0.023888 | 0.200658

BBST-1I 0.432323 | 0.057331 | 0.508764 | 0.019110 { 0.076441
L-P 0.409364 | 0.080290 | 0.573952 | 0.084298 | 0.164588
B-P 0.5 | 0.701172 | 0.009766 | 0.717773 | 0.006835 | 0.016602 | 0.710038
K-K 0.678711 | 0.032227 | 0.720703 | 0.009765 | 0.041992

Jeb-I11 0.494141 | 0.216797 | 0.740234 | 0.029296 | 0.246094

BBST-1I 0.640625 | 0.070313 | 0.734375 | 0.023437 | 0.093750
L-P 0.632813 | 0.078125 | 0.772476 | 0.061538 | 0.139664
B-P 0.6 | 0.862294 | 0.007963 | 0.875831 | 0.005574 | 0.013536 | 0.870257
K-K 0.843980 | 0.026277 | 0.878219 | 0.007962 | 0.034239

Jeb-111 0.693487 | 0.176770 | 0.894145 | 0.023888 | 0.200658

BBST-II 0.812926 | 0.057331 | 0.889367 | 0.019110 | 0.076441
L-P 0.816509 | 0.053748 | 0.901465 | 0.031208 | 0.084956
B-P 0.7 | 0.953429 | 0.004084 | 0.960372 | 0.002859 | 0.006943 | 0.957513
K-K 0.944036 | 0.013477 | 0.961597 | 0.004084 | 0.017562

Jeb-111 0.866846 | 0.090667 | 0.069765 | 0.012252 | 0.102919

BBST-1II 0.928108 | 0.029405 | 0.967315 | 0.009802 | 0.039207
L-P 0.932619 | 0.024894 | 0.967992 | 0.010479 | 0.035372
B-P 0.8 | 0.990616 | 0.001049 | 0.992399 | 0.000734 | 0.001783 | 0.991665
K-K 0.988204 | 0.003461 | 0.992713 | 0.001048 | 0.004509

Jeb-111 0.968386 | 0.023279 | 0.994810 { 0.003145 | 0.025424

BBST-II 0.984115 | 0.007550 | 0.994181 | 0.002516 | 0.010066
L-P 0.985242 | 0.006423 | 0.993615 { 0.001950 | 0.008373
B-P 0.9 | 0.999433 | 0.000059 | 0.999534 | 0.000042 | 0.000100 | 0.999492
K-K 0.999297 | 0.000185 | 0.999551 | 0.000059 | 0.000254

Jeb-IIT 0.968181 | 0.001311 | 0.999659 | 0.000177 | 0.001488

BBST-II 0.999067 | 0.000425 | 0.999634 | 0.000142 | 0.000567
L-P 0.999020 | 0.000472 | 0.999600 | 0.000108 | 0.000580
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Table A3.2 6-node Combplete Graph
n=6 b=15 c=5 C,=6 {=1205
Bounds p lower Alower upper Aupper p) actual
B-P 0.1 | 0.005909 | 0.000305 | 0.006376 0.000161 | 0.000466 | 0.006214
K-K 0.005767 | 0.000448 | 0.006575 0.000361 | 0.000809
Jeb-III 0.064519 | 0.001695 | 0.006769 0.000554 { 0.002249
BBST-II 0.005490 | 0.600725 | 0.006764 0.000550 | 0.001274
L-P 0.003224 | 0.002990 | 0.011517 0.005302 | 0.008202
B-P 0.2 | 0.084405 | 0.007891 | 0.096314 0.004018 | 0.011909 | 0.092297
K-K 0.079769 | 0.012528 | 0.100834 0.008537 | 0.021065
Jeb-IIT 0.044643 | 0.047653 | 0.105581 0.013284 | 0.060938
BBST-II 0.070942 | 0.021354 | 0.105460 0.013163 | 0.034517
L-P 0.055189 | 0.037108 | 0.137366 0.045069 | 0.082178
B-P 0.3 | 0.284157 | 0.032744 | 0.332763 0.015862 | 0.0486C6 | 0.316901
K-K 0.255055 | 0.057846 | 0.348731 0.031830 | 0.089676
Jeb-T1 0.002606 | 0.224295 | 0.367332 0.050431 | 0.274726
BBST-Ii 0.211169 | 0.105732 | 0.366783 0.049882 | 0.155614
L-P 0.218106 | 0.098795 | 0.398505 0.081604 | 0.180399
B-P 0.4 | 0.536887 | 0.058661 { 0.622164 0.026616 | 0.085278 | 0.595548
K-K 0.475839 | 0.119709 | 0.645614 0.050066 | 0.165774
Jeb-III 0.114029 | 0.481519 | 0.676980 0.081432 | 0.562951
BBST-II 0.356981 | 0.238567 | 0.675856 0.080308 | 0.318874
L-P 0.466968 | 0.128580 | 0.667144 0.071596 | 0.200176
B-P 0.5 | 0.755219 | 0.059722 | 0.839783 0.024842 | 0.084564 | 0.814941
K-K 0.667786 | 0.147155 | 0.858398 0.043457 | 0.190613
Jeb-I1T 0.190247 | 0.624694 | 0.888489 0.073548 | 0.698242
BBST-I 0.401586 | 0.323355 | 0.887094 0.072153 | 0.395508
1-P 0.712266 | 0.102675 | 0.853215 0.038274 | 0.140949
B-P 0.6 | 0.899547 | 0.036974 | 0.950212 0.013691 | 0.050665 | 0.936521
K-K 0.821158 | 0.115363 | 0.958639 0.022118 | 0.137481
Jeb-II1 0.413411 | 0.523110 | 0.976362 0.039841 | 0.562951
BBST-II 0.656363 | 0.280158 | 0.975238 0.038717 | 0.318374
L-P 0.883379 | 0.053142 | 0.949838* | 0.013317 | 0.066459
B-P 0.7 | 0.971910 | 0.013057 | 0.989103 0.004136 | 0.017193 | 0.984967
K-K 0.930088 | 0.083979 | 0.991120 0.006153 | 0.060132
Jeb-111 0.722496 | 0.262471 | 0.997222 0.012255 | C.274726
BBST-II 0.841059 | 0.143908 | 0.996673 0.011706 | 0.155614
L-P 0.968083 | 0.016884 | 0.987909% | 0.002942 | 0.019826
B-P 0.8 | 0.996047 | 0.002007 | 0.998571 0.000517 | 0.002523 | 0.998054
K-K 0.986645 | 0.011409 | 0.998768 0.000714 | 0.012123
Jeb-111 0.938786 | 0.059268 | 0.999724 0.00167C | 0.060938
BBST-II 0.965085 | 0.032969 | 0.999602 0.001548 | 0.034517
L-P 0.995424 | 0.002630 | 0.998401% | 0.000347 | 0.002977
B-P 0.9 | 0.999880 { 0.000G50 | 0.999950 0.000010 | 0.000060 | 0.999940
K-K 0.999538 | 0.000402 | 0.999953 0.000013 | 0.000415
Jeb-I1I 0.997729 | 0.002211 | 0.999979 | 0.000039 | 0.002249
BBST-II 0.998700 | 0.001240 | 0.999974 0.000034 | 0.001274
L-P 0.999851 | 0.000089 | 0.999950 0.000010 | 0.000099
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Table A3.3 8node Complete Graph
n=8 §=28 =7 C =8 ==262144
Bounds p lower Alower upper Aupper {p) actual
B-P 0.1 | 0.004306 0.001iG5 | 0.005940 0.000529 | 0.001634 | 0.005411
K-K 0.004243 0.001168 | 0.007352 0.001941 | 0.003110
Jeb-111 0.002868 0.002543 | 0.007819 0.002408 | 0.004951
BBST-II 0.003965 0.001447 | 0.007819 0.002408 | 0.003855
L-P 0.001550 0.003861 | 0.010519 0.005108 | 0.008969
B-P 0.2 | 0.090529 0.047982 | 0.158346 0.020835 | 0.068817 | 0.138511
K-K 0.085401 0.053110 | 0.198001 0.059490 | 0.112600
Jeb-1IT 0.030948 0.107563 | 0.212718 0.074207 | 0.181770
BBST-II 0.071192 0.067319 | 0.212717 0.074206 | 0.141525
L-P 0.057826 0.080685 | 0.192524 0.054013 | 0.134698
B-P 0.3 | 0.200388 0.189481 | 0.547838 0.067969 | 0.257450 | 0.479869
K-K 0.247798 0.232071 | 0.628548 0.148679 | 0.380749
Jeb-111 0.032023 0.447846 | 0.667217 0.187348 | 0.635194
BBST-1I 0.172654 0.307215 | 0.667213 0.187344 | 0.494559
L-P 0.281924 0.197945 | 0.547930 0.068061 | 0.266006
B-P 0.4 | 0.522905 0.263366 | 0.855168 0.068897 | 0.332262 | 0.786271
K-K 0.386744 0.399527 | 0.902309 0.116038 | 0.515564
Jeb-111 0.009605 0.776666 | 0.935412 | 0.149141 | 0.925807
BBST-II 0.214577 0.571694 | 0.935406 0.149135 | 0.720829
L-P 0.602658+ | 0.183613 | 0.819755% | 0.033484 | 0.217097
B-P 0.5 | 0.746441 0.190651 | 0.968901 0.031809 | 0.222461 | 0.937092
K-K 0.498721 0.438371 | 0.980187 0.043095 | 0.481467
Jeb-111 0.007247 0.929845 | 0.994706 0.057614 | 0.987459
BBST-II 0.225868 0.711224 | 0.994€99 0.057607 | 0.768831
L-P 0.846916* | 0.090176 | 0.946578* | 0.009486 | 0.099662
B-P 0.6 | 0.907526 0.079243 | 0.994386 0.007617 | 0.086859 | 0.986769
K-K 0.616341 0.370428 | 0.995851 0.009082 | 0.379510
Jeb-111 0.074042 0.912727 | 0.999849 0.013080 | 0.928807
BBEST-II 0.279014 0.707755 | 0.999843 0.013074 | 0.720829
L-P 0.961012* | 0.025757 | 0.988587+ | 0.001818 | 0.027575
B-P 0.7 | 0.981079 0.017165 | 0.999167 0.000923 | 0.018088 | 0.998244
K-K 0.776842 0.221402 | 0.999312 0.001068 | 0.222470
Jeb-1T1 0.364804 0.633446 | 0.999998 0.001754 | 0.635194
BBST-II 0.505435 0.492809 | 0.999994 0.001750 | 0.494559
L-P 0.694229* | 0.004015 | 0.998470+= | 0.000226 | 0.004241
B-P 0.8 | 0.99857: 0.001323 | 0.999939 0.000041 | 0.001364 | 0.999898
K-K 0.942675 0.057223 | 0.999947 0.000049 | 0.057272
Jeb-I11 0.818229 0.181669 | 0.995999 0.000101 | 0.181770
BBST-II 0.858473 0.141425 | 0.995998 0.0001C0 | 0.141525
L-P _ 0.999647+ | 0.000251 | 0.969910+% | 0.000012 | 0.000264
B-P 0.9 | 0.999990 0.000009 | 0.999999 0.000000 | 0.000010 | 0.999999
K-K 0.998533 0.001466 | 0.999999 0.000000 | 0.001466
Jeb-1I1 0.995049 0.004950 | 1.000000 0.000001 | 0.004951
BBST-II 0.996145 0.603854 | 1.000000 0.000001 | 0.003855
L-P 0.999997+ | 0.000002 | 0.999999 0.000000 | 0.000002
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Table A3.4 10-node Complete Graph
n=10 =45 ¢=9 C =10 {=1e+08
Bounds ? lower Alower upper Aupper r{p) actual
B-P 0.2 | 0.091362 0.125867 | 0.279682 0.062453 | 0.188320 | 0.217229
K-K 0.089205 0.128024 | 0.396634 0.179405 | 0.307429
Jeb-I1i 0.016615 0.200614 | 0.428660 0.211431 | 0.412045
BBST-ii 0.063113 0.154116 | 0.428660 0.211431 | 0.365547
L-P 0.070760 0.146469 | 0.273324* | 0.056095 | 0.202564
B-P 0.3 | 0.253727 0.395239 | 0.775526 0.126560 | 0.521798 | 0.648966
K-K 0.224236 0.424730 | 0.870858 0.221892 | 0.646622
Jeb-111 0.005219 0.643747 | 0.911850 0.262884 | 0.906631
BBST-II 0.107529 0.541437 | 0.911850 0.262884 | 0.804321
L-P 0.373152+ | 0.275814 | 0.690242% | 0.041276 | 0.317090
B-P 0.4 | 0.472446 0.428830 | 0.964829 0.063553 | 0.492383 | 0.901276
K-K 0.348049 0.553227 | 0.580419 0.079143 | 0.632371
Jeb-111 0.000270 0.901006 | 0.996529 0.095353 | 0.996359
BBST-II 0.112706 0.788570 | 0.996629 0.095353 | 0.883924
L-P 0.734598+ | 0.166680 | 0.912872* | 0.011596 | 0.178276
B-P 0.5 | 0.727790 0.252659 | 0.994716 0.014267 | 0.266927 | 0.980449
K-K 0.468755 0.511694 | 0.996073 0.015624 | 0.527317
Jeb-IH 0.000036 0.980413 | 0.999970 0.019521 | 0.999934
BBST-11 0.112874 0.867575 | 0.999970 0.019521 | 0.837096
L-P 0.930584* | 0.049865 | 0.982559* | 0.002110 | 0.051974
B-P 0.6 | 0.913862 0.083512 | 0.999191 0.001817 | 0.085329 | 0.997374
K-K 0.585332 0.412042 | 0.999349 0.001975 | 0.414017
Jeb-1I1 0.003641 0.993733 | 1.600000 0.002626 | 0.996359
BBST-1I 0.116076 0.881298 { 1.000000 0.002626 | 0.833924
L-P 0.980180* | 0.008194 | 0.997643% | 0.000269 | 0.008463
B-P 0.7 | 0.986971 0.012832 | 0.999923 0.000120 | 0.012952 | 0.999803
K-K 0.711289 0.288514 | 0.299936 0.000133 | 0.288647
Jeb-Iil 0.083369 0.906434 | 1.000000 0.000197 | 0.906631
BBST-II 0.195679 0.804124 | 1.000000 0.000197 | 0.804321
L-P 0.999135+ | 0.000668 | 0.009823* | 0.000020 | 0.000688
B-P 0.8 | 0.999445 0.000550 | 0.999997 0.000002 | 0.000553 | 0.999995
K-K 0.892959 0.107036 | 0.999993 0.000003 | 0.107038
Jeb-Iil 0.587956 0.412039 | 1.006000 0.000005 | 0.412044
BBST-II 0.634453 0.365542 | 1.000C00 0.000005 | 0.365547
L-P 0.999977+ | 0.000018 | 0.999995+ | 0.000000 | 0.000018
B-P 0.9 | 0.999999 0.0006001 | 1.000000 0.000000 | 0.000C01 | 1.000000
K-K 0.997181 0.002819 | 1.000000 0.000000 | 0.002819
Jeb-1I1 0.987970 0.012030 | 1.0000C0 0.000000 | 0.012030
BBST-II 0.989327 0.010673 | 1.000000 0.000000 | 0.010673
L-P 1.000000* | 0.€00000 | 1.000000 0.600000 | 0.000000




Appendix A4 G p Graphs 74

Table A4.1  (5,3)-G, ; Graph
n=12 b=15 ¢=2 C ;=15 =405 h=5 k=3
Bounds D lower Alower upper Aupper Ap) actual
B-P 0.3 0.000223 | 0.000006 | 0.000239 { 0.000010 | 0.000016 | 0.000229
K-K 0.000216 | 0.000013 | 0.000244 | 0.000015 | 0.000028
Jeb-IIT 0.000180 | 0.000049 | 0.000263 | 0.000034 | 0.000083
BBST-NI 0.000204 | 0.000025 | 0.000251 | 0.000022 | 0.000046
L-P - 0.006015 | 0.000214 | 0.000990 | 0.000761 | 0.000975
B-P 0.5 0.022858 | 0.000977 | 0.025513 | 0.001679 | 0.002655 | 0.023834
K-K 0.021667 | 0.002167 | 0.026337 | 0.002502 | 0.004669
Jeb-11 0.015595 | 0.008240 | 0.029480 | 0.005646 |-0.013885
BBST-II 0.019714 | 0.004120 | 0.027496 | 0.003662 | 0.007782
L-P 0.003174 | 0.020660 | 0.054554 | 0.030719 | 0.051380
B-P 0.7 0.267558 | 0.011959 | 0.300071 | 0.020554 | 0.032513 | 0.279517
KK 0.252033 | 0.026534 | 0.310162 | 0.030645 | 0.057178
Jeb-IT1 0.178614 | 0.100903 | 0.348654 | 0.069137 | 0.170040
BBST-II 0.229065 | 0.050452 { 0.324363 | 0.044846 | 0.095297
L-P 0.085025 | 0.194492 | 0.388470 | 0.108953 | 0.303445
B-P 0.9 0.857739 | 0.009037 | 0.882310 | 0.015534 | 0.024571 | 0.866776
K-K 0.846724 | 0.020052 | 0.889936 | 0.023160 | 0.043212
Jeb-IIT - 0.760520 | 0.076256 | 0.919026 | 0.052250 | 0.128505
BBST-II 0.828648 | 0.038128 | 0.900668 | 0.033892 | 0.072020
L-P 0.659002 | 0.207774 | 0.604373 | 0.037597 | 0.245371
B-P 0.92 | 0.905994 | 0.006024 | 0.922372 | 0.010354 | 0.016377 | 0.912018
K-K 0.898653 | 0.013365 | 0.927454 | 0.015436 | 0.028802
Jeb-I11 0.861192 | 0.050826 | 0.946844 | 0.034826 | 0.085652
BBST-II 0.886605 | 0.025413 | 0.934608 | 0.022590 | 0.048003
L-P 0.751318 | 0.160700 | 0.937809 | 0.025791 | 0.186491
B-P 0.94 | 0.945833 | 0.003289 | 0.954776 | 0.005654 | 0.008943 | 0.949122
K-K ’ 0.941823 | 0.007299 | 0.957552 | 0.008430 | 0.015728
Jeb-111 0.921366 | 0.027756 | 0.968140 | 0.019018 | 0.046773
BB5T-II 0.935244 | 0.013878 | 0.961458 | 0.012336 | 0.026214
L-P 0.840455 | 0.108667 | 0.964577 | 0.015455 | 0.124122
B-P 0.96 | 0.975586 | 0.001255 | 0.978997 | 0.002156 | 0.003412 | 0.976841
K-K 0.974057 | 0.002784 | 0.980056 | 0.003215 | 0.006000
Jeb-II1 0.966253 | 0.010588 | 0.984095 | 0.007254 | 0.017842
BBST-I1 0.671547 | 0.005294 | 0.981546 | 0.004705 | 0.009999
L-P 0.919065 | 0.057776 | 0.984115 | 0.007274 | 0.065050)
B-P 0.98 | 0.993892 | 0.000201 | 0.994439 | 0.000346 | 0.000546 | 0.994003
K-K 0.993648 | 0.000445 | 0.994608 | 0.000515 | 0.000960
Jeb-II1 0.992398 | 0.001695 | 0.995255 | 0.001162 | 0.002856
BBST-II 0.993246 | 0.000847 | 0.994847 | 0.000754 | 0.001601
L-P 0.976892 | 0.017201 | 0.996007 | 0.001914 | 0.019115
B-P 0.99 | 0.998483 | 0.000028 | 0.998560 | 0.000049 | 0.000077 | 0.998511
K-K 0.998448 | 0.000063 | 0.998584 | 0.000073 | 0.000136
Jeb-1I1 0.998272 | 0.000239 | 0.998675 | 0.000164 | 0.000403
BBST-II 0.098361 | 0.000120 | 0.698617 | 0.000106 | 0.000226
L-P 0.993825 | 0.004686 | 0.999000 | 0.000489 | 0.005175
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Table A4.2 {7,3)-G,; Graph
n==16 =21 ¢=2 C,=21 {=5103 k=7 k=3
Bounds p lower Alower upper Aupper {p) actual
B-P 0.3 0.000012 { 0.600002 | 0.000016 | 0.000003 | 0.000004 | 0.000013
K-K 0.000011 | 0.000002 | 0.000021 | 0.C00008 | 0.000009
Jeb-111 0.000009 | 0.000005 | 0.000025 | 0.000012 | 0.000017
BBST-II 0.000010 | 0.000003 | 0.000024 | 0.000010 | 0.000014
L-P 0.000000 | 0.000013 | 0.002074 | 0.000061 | 0.000074
B-P 0.5 0.005303 | 0.001467 | 0.009027 | 0.002257 | 0.003724 | 0.006770
K-K 0.004943 | 0.001826 | 0.012310 | 0.005540 | 0.007367
Jeb-111 0.002534 | 0.004236 | 0.015725 | 0.008955 | 0.013191
BBST-UII 0.063774 | 0.002995 | 0.014406 | 0.007636 | 0.010632
L-P 0.000259 | 0.006510 | 0.017679 | 0.010909 | 0.017419
B-P 0.7 0.135111 | 0.043704 { 0.235453 | 0.056638 | 0.100342 { 0.178815
K-K 0.116599 | 0.062216 | 0.208904 | 0.120179 | 0.182395
Jeb-111 0.042636 | 0.136179 | 0.378219 | 0.199404 | 0.335583
BBST-II 0.074195 | 0.104620 | 0.344661 | 0.165846 | 0.270466
L-P 0.026112 | 0.152703 | 0.266984 | 0.088169 | 0.240872
B-P 0.9 0.767436 | 0.052231 | 0.864860 | 0.045193 | 0.097425 | 0.819667
K-K 0.724529 | 0.095138 | 0.804964 | 0.075297 | 0.170435
Jeb-III 0.621092 | 0.198575 | 0.958238 | 0.138571 | 0.337146
BBST-II 0.652797 | 0.166870 | 0.924523 | 0.104856 | 0.271726
L-P 0.514728 | 0.304939 | 0.868746 | 0.049079 | 0.354018
B-P 0.92 | 0.843672 | 0.035813 | 0.908374 | 0.028883 | 0.064702 | 0.879485
K-K 0.812049 | 0.067436 | 0.926393 | 0.046908 | 0.114344
Jeb-II1 0.739076 | 0.140409 | 0.967854 | 0.088369 | 0.228778
BBST-II 0.760501 | 0.118894 | 0.944977 ; 0.065492 | 0.184386
L-P 0.629854 | 0.249631 | 0.914034 | 0.034549 | 0.284179
B-P 0.94 | 0.509573 | 0.620067 | 0.944584 | 0.014944 | 0.035011 | 0.929640
K-K 0.800511 | 0.039129 | 0.953368 | 0.023728 | 0.062857
Jeb-II1 0.848316 | 0.081324 | 0.975608 | 0.045968 | 0.127292
BBST-lI 0.860286 | 0.069354 | 0.962878 | 0.033238 | 0.102592
L-P 0.751055 | 0.178585 | 0.950763 | 0.021123 | 0.199708
B-P 0.96 | 0.959915 | 0.007836 | 0.973073 | 0.005322 | 0.013158 | 0.967751
K-K 0.951902 | 0.015849 | 0.976069 | 0.008318 | 0.024167
Jeb-II1 0.934847 | 0.032904 | 0.9844090 | 0.016658 | 0.049563
BBST-II 0.939507 | 0.028244 | 0.979453 | 0.011702 { 0.039946
L-P 0.867338 | 0.100413 | 0.977832 | 0.010081 | 0.110493
B-P 0.98 | 0.990460 | 0.001281 | 0.992524 | 0.000783 | 0.002063 | 0.991741
K-K 0.989049 | 0.002692 | 0.992959 | 0.001218 | 0.003910
Jeb-1H1 0.686153 | 0.005588 | 0.994275 | 0.002534 | 0.008123
BBST-II 0.986916 | 0.004825 | 0.993463 | 0.001722 | 0.006546
L-P 0.960140 | 0.031601 | 0.994415 | 0.002674 | 0.034275 |.
B-P 0.99 | 0.997733 | 0.000183 | 0.998021 | 0.000105 | 0.000288 | 0.997916
K-K 0.997524 | 0.000392 | 0.998080 | 0.000164 | 0.000556
Jeb-1I 0.997103 § 0.000813 | 0.998265 | 0.000349 | 0.001162
BBST-II 0.997212 | 0.000704 | 0.998149 | 0.000233 | 0.000937
L-P 0.989067 | 0.008849 | 0.998601 | 0.000685 § 0.009534




Appendix A4

Gh, E Graphs 76
Tablg_é43 (15,3)—(;3 k Graph
n=32 b==45 =2 =45 (=7.17445e+07 h=15 k=3
Bounds P {ower Alower upper Aupper {p) actual
B-P 0.3 0.000000 | 0.0C0C00 | 0.000000 0.000000 | 0.000000 | ©0.000000
K-K 0.000000 | 0.000000 | 0.000000 0.000000 | 0.000000
Jeb-II1 0.000000 | 0.000000 | 0.000000 0.066000 | 0.000000
BBST-II 0.000000 | 0.000000 | 0.000000 0.000000 | 0.000000
L-P 0.000000 | 0.000000 | 0.00GC00 0.000006 | 0.000000
B-P 0.5 0.000007 ; 0.000023 | 0.000125 0.000095 | 0.000117 | 0.000030
K-K 0.000¢07 | 0.000023 | 0.002212 0.002181 | 0.002204
Jeb-111 0.000002 | 0.000028 | 0.003306 0.003276 | 0.003304
BBST-II 0.000003 | 0.000027 | 0.003156 0.003126 | 0.003153
L-P 0.000000 | 0.000030 | 0.000179 0.000148 | 0.000179
B-P 0.7 0.003785 | 0.022197 | 0.097477 0.071495 | 0.092692 | 0.025982
K-K 0.003250 | 0.0227231 | 0.360724 0.334743 | 0.357474
Jeb-III 0.000075 | 0.025907 | 0.508806 0.482825 | 0.508732
BBST-II 0.000294 | 0.025688 | 0.485682 0.459701 | 0.485389
L-P 0.000163 | 0.025819 | 0.0590563* | 0.023071 | 0.058890
B-P 0.9 0.372592 | 0.280530 | 0.828136 0.175014 | 0.455544 | 0.653122
K-K 0.258847 | 0.394275 | 0.891919 0.238797 | 0.633072
Jeb-III 1 0.154194 | 0.498928 | 0.995069 0.341947 | 0.840875
BBST-II 0.154556 | 0.498566 | 0.956848 0.303726 | 0.802292
L-P 0.156423 | 0.496699 | 0.739700+= | 0.086578 | 0.583277
B-P 0.92 | 0.519642 | 0.239818 | 0.873874 0.114414 | 0.354232 | 0.759460
K-K 0.391646 | 0.367814 | 0.916148 0.156688 | 0.524502
Jeb-111 0.282976 | 0.476484 | 0.992008 0.232548 | 0.709032
BBST-I1 0.283281 | 0.476179 | 0.959780 | 0.200320 | 0.676499
L-P 0.262423 | 0.497037 | 0.824708% | 0.065338 | 0.562375
B-P 0.94 | 0.687592 | 0.167683 | 0.915941 0.060666 | 0.228348 | 0.855275
K-K 0.570269 | 0.285006 | 0.940558 0.085283 | 0.370290
Jeb-11T 0.476992 | 0.378283 | 0.988675 0.133400 | 0.511683
BBST-II 0.477212 | 0.378063 | 0.965417 0.110142 | 0.488205
L-P 0.420078 | 0.435197 | 0.897453* | 0.042178 | 0.477375
B-P 0.96 | 0.850349 | 0.081817 | 0.954559 0.022393 | 0.104211 | 0.932166
K-K 0.775650 | 0.156516 | 0.965101 0.032935 | 0.189452
Jeb-IIT 0.719322 | 0.212844 | 0.987555 0.055389 | 0.268233
BBST-1I 0.719438 | 0.212728 | 0.975363 0.043197 | 0.255925
L-P 0.631912 | 0.300254 | 0.953097* | 0.020931 | 0.321185
B-P 0.98 | 0.965639 | 0.016747 | 0.985863 0.003477 | 0.020224 | 0.982386
K-K 0.945788 | 0.036598 | 0.987830 0.005444 | 0.042042
Jeb-111 0.931435 | 0.050951 | 0.992449 0.010063 | 0.061014
BBST-11 0.931461 | 0.050925 | 0.989676 0.007290 | 0.058215
L-P 0.866011 | 0.116375 | 0.988069 0.005683 | 0.122058
B-P 0.99 | 0.992866 | 0.002673 | 0.996024 0.000485 | 0.003158 | 0.995539
K-K 0.989262 | 0.006277 | 0.996327 0.000788 | 0.007065
Jeb-II1 0.986701 | 0.008838 | 0.997079 0.001540 | 0.010378
BBST-II 0.986705 | 0.008834 | 0.996607 0.001068 | 0.009902
L-P 0.959318 | 0.036221 | 0.997004 0.001465 | 0.037687 .
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Table A4.4 (5.2)-G;; Graph
n=7 b=10 c=2 =5 (=80 h==5 k=2
Bounds p lower Alower upper Aupper r{p) actual
B-P 0.3 0.021058 ! 0.000375 | 0.022184 0.000750 | 0.001125 | 0.021433
K-K 0.020383 | 0.001050 | 0.022184 0.000750 | 0.001800
Jeb-IH 0.015432 | 0.006001 | 0.024434 0.003001 | 0.009002
BBST-HII 0.018362 | 0.002572 | 0.023434 0.002000 | 0.004572
L-P 0.003791 | 0.017643 | 0.028704 0.007270 | 0.024913
B-P 0.5 0.201172 | 0.004883 | 0.215820 0.009765 | 0.014648 | 0.206055
K-K 0.192382 | 0.013672 | 0.215820 0.009765 | 0.023438
Jeb-111 0.127930 | 0.078125 | 0.245117 0.039062 | 0.117188
BBST-11 0.172573 | 0.033482 | 0.232096 0.026041 | 0.059524
i-P 0.062500 | 0.143555 | 0.229889 0.023834 | 0.167389
B-P 0.7 0.599845 | 0.011118 | 0.633199 0.022236 | 0.033354 | 0.610963
K-K 0.576833 | 0.031130 | 0.633199 0.022236 | 0.053366
Jeb-I1I 0.433078 | 0.177885 | 0.699908 0.088943 | 0.256828
BBST-1I - 0.534727 | 0.076236 | 0.670258 0.059295 | 0.135532
L-P 0.329417 | 0.281546 | 0.622516% | 0.011553 | 0.293099
B-P 0.9 0.948410 | 0.002391 | 0.955584 0.004783 | 0.007174 | 0.950801
K-K 0.944105 | 0.006696 | 0.955584 0.004783 | 0.011479
Jeb-1I1 0.912537 | 0.038264 | 0.269933 0.019132 | 0.057396
BBST-II 0.934402 | 0.016399 | 0.963556 0.012755 | 0.029153
L-P 0.850306 | 0.100495 | 0.950981% | 0.000180 | 0.100675
B-P 0.92 | 0.666910 | 0.001428 | 0.971194 0.002856 | 0.004284 | 0.968338
K-K 0.964339 | 0.003999 | 0.971194 0.002856 | 0.006855
Jeb-111 0.945489 | 0.022849 | 0.979763 0.011425 | 0.034274
BBST-II 0.958545 | 0.009793 | 0.975054 0.007616 | 0.017409
L-P 0.897405 | 0.070933 | 0.968404* | 0.000066 | 0.070998
B-P 0.94 | 0.981411 | 0.000700 | 0.983512 0.001401 | 0.002101 } 0.932111
K-K 0.980150 | 0.001961 | 0.983512 0.001401 | 0.003362
Jeb-III 0.970905 | 0.011206 | 0.987714 0.005603 | 0.016809
BBST-II 0.977308 | 0.004803 | 0.985846 0.003735 | 0.008538
L-P 0.938223 | 0.043888 | 0.982128+ | 0.000017 | 0.043905
B-P 0.96 | 0.991782 | 0.000241 | 0.992504 0.000481 | 0.000721 | 0.992023
K-K 0.991350 | 0.000673 | 0.992504 0.000481 | 0.001154
Jeb-II1 0.988175 | 0.003848 | 0.993947 0.001924 | 0.005771
BBST-II 0.990374 | 0.001649 | 0.9933C5 0.001282 | 0.002931
L-P 0.970620 | 0.021403 | 0.992025% | 0.000002 | 0.021406
B-P 0.98 | 0.997967 | 0.000035 | 0.998071 0.000069 | 0.000104 | 0.9598002
K-K 0.997904 | 0.000008 | 0.998071 0.000069 | 0.000167
Jeb-1II 0.997446 | 0.000556 | 0.998279 0.000277 | 0.000833
BBST-II 0.997763 | 0.000239 | 0.998187 0.000185 | 0.000423
L-P 0.992143 | 0.005859 | 0.998002* | 0.000000 | 0.005858
B-P 0.99 | 0.999495 | 0.000005 | 0.999509 0.000009 | 0.000014 | 0.999500
K-K 0.999487 | 0.000013 | 0.999509 0.000009 | 0.000022
Jeb-III 0.999426 | 0.000074 | 0.999537 | 0.000037 | 0.000112
BBST-11 0.999468 | 0.000032 | 0.999525 0.000025 | 0.000057
L-P 0.997069 | 0.001531 | 0.999500* | 0.000000 | 0.001531
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Table A4.5 (5.,10)%-G,; Graph
n==47 b==50 ¢=2 (C,==225 {=50000 h=35 k=10
Bounds P lower Alower upper Aupper r{p) actual
B-P 0.3 0.0000G0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
K-K 0.000000 | 0.600000 | 0.0000C0 | 0.000000 | 0.0000C0
Jeb-II1 0.000060 | 0.000060 | 0.000000 | 0.000G00 | 0.000000
BBST-II 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
L-P 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.06G0000
B-P 0.5 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
K-K 0.000000 | 0.0000C0 { 0.000000 | 0.000000 | 0.00C000
Jeb-II1 0.000000 | 0.000600 | 0.000000 | 0.000000 | 0.C00C00
BBST-II 0.000600 | 0.000C00 | 0.000000 | 0.000060 | 0.000000
L-P 0.600000 | 0.000000 | 0.000002 | 0.000002 | 0.000002
B-P 0.7 0.000044 ;| 0.000004 | 0.000054 | 0.000006 | 0.000010 | 0.000048
K-K 0.000043 | 0.000005 | 0.000054 | ©.000006 | 0.000011
Jeb-1I 0.000034 | 0.000014 | 0.000062 | 0.000014 | 0.000028
BBST-II 0.000040 | 0.000008 { 0.C00057 | 0.000008 | 0.000017
L-P 0.000001 | 0.000047 | 0.014315 | 0.014267 | 0.014314
B-P 0.9 0.187152 | 0.020233 | 0.235664 | 0.028279 | 0.048512 | 0.207385
K-K : 0.181850 | 0.025535 | 0.237325 | 0.029940 | 0.055476
Jeb-111 0.136689 | 0.070696 | 0.275254 | 0.067869 | 0.138365
BBST-1I 0.166772 | 0.040613 | 0.249803 | 0.042418 | 0.083031
L-P ] 0.043989 | 0.163396 | 0.636179 | 0.428794 | 0.5921%90
B-P 0.92 | 06.316466 | 0.029105 | 0.386248 | 0.040677 | 0.069783 | 0.345571
K-K 0.308839 | 0.036732 | 0.388638 | 0.043067 | 0.079800
Jeb-111 0.243376 | 0.101695 | 0.443197 | 0.097626 | 0.192321
BBST-II 0.287150 | 0.058421 | 0.406587 | 0.061016 | 0.119437
L-P 0.101038 | 0.244533 749066 | 0.403495 | 0.648027
B-P 0.94 | 0.496462 | 0.033739 | 0.577356 | 0.047155 | 0.080894 { 0.530201
K-K 0.487621 | 0.042580 | 0.580126 | 0.049925 | 0.092505
Jeb-1I 0.412315 | 0.117886 | 0.643372 | €.113171 | 0.231057
BBST-II 0.462479 | 0.067722 | 0.600933 | 0.070732 | 0.138454
L-P 0.218308 | 0.311893 | 0.850192 | 0.319991 | 0.631884
B-P 0.6 | 0.712618 | 0.026891 | 0.777091 | 0.037582 | 0.064473 | 0.739509
K-K 0.705572 | 0.033937 | 0.773299 | 0.039790 | 0.073728
Jeb-111 0.645552 | 0.093957 | 0.829707 | 0.090198 | 0.184155
BBST-II 0.685534 | 0.053975 | 0.7958383 | 0.056374 | 0.11034¢
L-P . 0.4234306 | 0.305203 { 0.930477 | 0.190968 | 0.496172
B-P 0.93 | 0.912699 | 0.008859 | 0.93394G | 0.012382 | 0.021241 | 0.921558
K-K 0.910378 | 0.011180 | 0.934667 | 0.613109 | 0.024239
Jeb-Iil 0.890604 | 0.030954 | 0.951274 | 0.029716 ! 0.060670
BBST-I1 0.903776 | 0.017782 | 0.940131 | 0.018573 | 0.036354
L-P 0.758055 | 0.163503 | 0.982158 | 0.060600 | 0.224102
B-P 0.99 | 0.977059 | 0.001785 | 0.681338 | 0.002494 | 0.004279 | 0.978844
K-K 0.976592 | 0.002252 | 0.981485 | 0.002641 | 0.004893 :
Jeb-Hi 0.972609 | 0.006235 | 0.984830 | €.005985 | 0.012221
BBST-II 0.975262 | 0.003582 | 0.082585 | 0.003741 | 0.007323
L-P 0.919543 | 0.059301 | 0.995510 | 0.016666 | 0.075967
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Table A4.6 (7.6)-G,; Graph
n=37 b==42 ¢=2 C,=105 ==326592 h=7 k=56
Bounds P lower Alower upper Aupper p) actual
B-P 0.3 0.0000G0 | 0.000000 | 0.600000 | 0.0000C0 | 0.000000 | 0.000000
K-K 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
Jeb-I11 0.000000 | 9.000000 | 0.000000 | 0.000000 | 0.000000
BBST-II 0.000000 | 0.600000 | 0.000000 | 0.000000 | 0.000000
L-P 0.000000 | 0.000000 | 0.G600GCO | 0.000000 | 0.000000
B-P 0.5 0.000060 | 0.000000 | 0.000000 | 0.000000 | 0.0000C0 | 9.000000
K-K 0.000000 | 0.600000 | 0.000000 | 0.CC0C00 { 0.000000
Jeb-II1 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
BBST-II 0.000000 | 0.000000 | 0.006000 | 0.000000 | 0.000000
L-P 0.000000 | 0.000060 | 0.000042 | 0.000042 | 0.000042
B-P 0.7 0.001424 | 0.000656 | 0.003578 | 0.001498 | 0.002154 | 0.002080
K-K 0.001363 | 0.000717 | 0.004381 ;| 0.002301 | 0.003018
Jeb-T11 0.000681 | 0.001400 | 0.005978 | 0.003897 ; 0.005297
BBST-iI 0.001010 | 6.001070 | 0.005332 | 0.003251 | 0.004321
L-P 0.000031 | 0.002049 | 0.026843 | 0.034763 | 0.036812
B-P 0.9 0.219055 | 0.1067932 | 0.568863 | 0.141876 | 0.249808 | 0.426987
K-K 0.202329 | 0.134658 | 0.606698 | 0.179711 | 0.314369
Jeb-1I1 0.186945 | 0.240042 | 0.752211 | 0.325224 | 0.565266
BBST-II 0.222138 | 0.204849 | 0.683277 | 0.256290 | 0.461139
L-P 0.103631 | 0.323356 | 0.703448 | 0.276461 | 0.599817
B-P 0.92 | 0.4572€9 | 0.111783 | 0.700179 | 0.131027 | 0.242811 | 0.569152
K-K 0.426202 | 0.142950 | 0.728873 | 0.159721 | 0.302671
Jeb-III 0.316726 | 0.252426 | 0.864520 | 0.295368 | 0.547793
BBST-II 0.350831 | 0.218321 | 0.797716 | 0.228564 | 0.446885
L-P 0.192839 | 0.376313 | 0.798740 | 0.229588 | 0.605901
B-P 0.94 | 0.626078 | 0.093411 | 0.814866 | 0.095377 | 0.188787 | 0.719489
K-K 0.596641 | 0.122848 | 0.830764 | 0.111275 | 0.234122
Jeb-III 0.504424 | 0.215065 | 0.931634 | 0.212145 | 0.427210
BBST-1I 0.531022 | 0.188467 | 0.879536 | 0.160047 } 0.348514
L-P 0.340636 | 0.378853 | 0.881415 | 0.161926 | 0.540779
B-P 0.96 | 0.804794 | 0.053738 | 0.904886 | 0.046354 | 0.100092 | 0.858532
K-K 0.785586 | 0.072946 { 0.910089 | 0.051557 | 0.124503
Jeb-111 0.731759 | 0.126773 | 0.961257 | 0.102725 | 0.229498
BBST-lII 0.746047 1 0.112485 | 0.933269 | 0.074737 | 0.187222
L-P 0.561248 | 0.297284 | 0.945497 | 0.086965 | 0.384249
B-P .98 | 0.948064 | 0.012799 | 0.969818 | 0.008955 | 0.021754 | 0.960863
KK 0.942859 | 0.018004 | 0.970390 | 0.009527 | 0.027531
Jeb-111 0.929741 | 0.031122 | 0.981110 | 0.020247 | 0.051369
BBST-lI 0.932939 | 0.027924 | 0.974845 | 0.013982 | 0.041906
L-P 0.831127 | 0.129736 | 0.986005 | 0.025232 | 0.154968
B-P 0.99 | 0.987628 | 0.002194 | 0.991177 | 0.001355 | 0.003549 | 0.989822
K-K 0.986675 | 0.003147 | 0.991243 | 0.001421 | 0.004568
Jeb-II1 0.984392 | 0.005430 | 0.992972 | 0.003150 | 0.008580
BBST-Ii 0.984926 | 0.004896 | 0.991926 | 0.002104 { 0.006999
L-P 0.947122 | 0.042700 | 0.996506 | 0.006684 | 0.049384
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Table A4.7 (106)}G, . Graph
n=52 p==€0 c=2 C,=150 t=1.00777e+08 h=10 k=6
Bounds J lower Alower upper Aupper {p) actual
B-P 8.3 0.000000 | 0.C00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
K-K 0.00CC00 | 0.0C0000 | 0.000000 | 0.000000 | 0.000000
Jeb-1I 0.000C00 | 0.000000 | 0.000000 | 0.000000 | 0.0000C0
BBST-II 0.00000C | 0.000000 | 0.000C0C | 0.000000 | 0.000000
L-P 0.000000 ; 0.0000C0 | 0.0000C0 | 0.000000 | .0.000000
B-P 0.5 0.000000 § 0.0000G0 | 0.000000 | 0.000000 | 0.000000 | 0.000000
K-K 0.000000 | 0.6000C0 | 0.000000 | 0.000000 | 0.000060
Jeb-1II 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
BBST-II 0.600000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
L-P 0.000000 | 0.0060000 | 0.000001 | 0.000001 | 0.00000%
B-P 0.7 0.000068 | 0.000097 | 0.000530 | 0.000365 | 0.000462 | 0.000165
K-K 0.000067 | 0.060098 | 0.001491 | 0.001326 | 0.001424
Jeb-111 0.000025 | 0.000140 | 0.002233 | 0.002068 | 0.002208
BBST-II 0.000040 ;| 0.000125 | 0.002046 | 0.001881 | 0.002006
L-P 0.000000 | ©.000165 | 0.008955 | 0.008790 | 0.008955
B-P 0.9 | 0.131280 | 0.1653882 | 0.551469 | 0.254307 | 0.420159 | 0.297162
K-K 0.110530 | 0.186632 | 0.650711 | 0.353549 | 0.540182
Jeb-111 0.050185 | 0.246977 | 0.855504 | 0.558342 | 0.805319
BBST-I 0.055675 | 0.241487 | 0.787257 | 0.490095 | 0.731582
L-P 0.028294 | 0.268868 | 0.605006 | 0.307844 | 0.576712
B-P 0.92 | 0.239485 | 0.207880 | 0.696998 | 0.249633 | 0.457513 | 0.447365
K-K 0.204877 | 0.242488 | 0.756100 | 0.308735 | 0.551223
Jeb-1I1 0.124262 | 0.323103 | 0.944326 | 0.496961 | 0.820064
BBST-II 0.129852 | 0.317513 | 0.874829 | 0.427464 | 0.744677
L-P 0.072284 | 0.375081 | 0.725403 | 0.278038 | 0.653119
B-P 0.94 | 0.414678 | 0.210243 | 0.812495 | 0.187574 | 0.397817 | 0.624921
K-K 0.36822G | 0.256695 | 0.835154 | 0.210233 | 0.466929
Jeb-lil 0.279118 | 0.345803 | 0.975905 | 0.350984 | 0.696787
BBST-1I 0.283868 | 0.341053 | 0.916855 | 0.291934 | 0.632987
L-P 0.173000 | 0.451921 | 0.83499% | 0.210078 | 0.661999
B-P 0.96 | 0.657438 | 0.146781 | 0.896298 | 0.092072 | 0.238860 | 0.804219
K-K 0.614626 | 0.189593 | 0.901154 | 0.096935 | 0.286529
Jeb-111 0.545103 | 0.259116 | 0.976506 | 0.172687 | 0.431304
BBST-II 0.548046 | 0.256173 | 0.940313 | 0.136094 | 0.392267
L-P 0.379059 | 0.425160 | 0.923057 | 0.118838 | 0.543998
B-P 0.98 | 0.901829 | 0.042633 | 0.962546 | 0.017984 | 0.060617 | 0.944562
K-K 0.885640 | 0.058922 | 0.963197 | 0.018635 | 0.077557
Jeb-1IT 0.862669 | 0.081893 | 0.981408 | 0.035846 | 0.118739
BBST-II 0.863478 | 0.081084 | 0.971345 | 0.026783 | 0.107867
L-P 0.720911 | 0.223651 | 0.980185 | 0.035633 | 0.259284
B-P 0.99 | 0.977402 | 0.008089 | 0.988267 | 0.002776 | 0.010865 | 0.985491
K-K 0.973878 | 0.011613 | 0.988387 | 0.002896 | 0.014510
Jeb-III 0.969206 | 0.016285 | 0.991625 | 0.006135 | 0.022420
BBST-lII 0.969359 | 0.016132 | 0.989726 | 0.004235 | 0.020367
L-P 0.904424 | 0.081067 | 0.995012 | 0.009521 | 0.090588
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Table A5.1  Cyele(7}-Compiete(5) Graph
n=11 =17 ¢=2 ¢ =21 t=875
Bouads P lower Alower upper Aupper r{p) actual
B-P 0.5 0.034279 | 0.010155 | 0.057220 | 0.012787 | 0.022042 | 0.044434
K-K 0.029045 | 0.015389 | 0.087456 | 0.043022 | 0.058411
Jeb-HI 0.007690 | 0.036743 | 0.172668 | 0.128234 | 0.164978
BBST-UI 0.015113 | 0.029321 | 0.147194 | 0.102760 | 0.132081
L-P 0.005859 | 0.038574 | 0.137484 | 0.093050 | 0.131625
B-P 0.6 0.108777 | 0.029272 | 0.173355 | 0.035306 | 0.064579 | 0.138049
K-K 0.087551 | 0.050498 | 0.243874 | 0.105825 | 0.156322
Jeb-Iil 0.019407 | 0.118642 | 0.454029 | 0.316880 | 0.435522
BBST-1I 0.03%002 | 0.099047 | 0.387680 | 0.249631 | 0.348677
L-P 0.030233 | 0.107816 | £.316683 | 0.178634 | 0.286450
B-P 0.7 0.265023 | 0.050398 | 0.371878 | 0.056457 | 0.106855 | 0.315421
K-K 0.211339 | 0.103582 | 0.465766 | 0.150345 | 0.253927
Jeb-II1 0.073818 | 0.241603 | 0.771648 | 0.456227 | 0.697830
BBST-II 0.105214 | 0.210207 | 0.663895 | 0.348474 | 0.558680
L-P 0.112600 | 0.202431 | 0.549693 | 0.234272 | 0.436703
B-P 0.8 0.523707 | 0.048203 | 0.619815 { 0.047905 | 0.096108 | 0.571910
K-K 0.447764 | 0.124146 { 0.687369 | 0.115459 | 0.239606
Jeb-1II 0.281270 | 0.290640 | 0.933984 | 0.362074 | 0.652714
BBST-II 0.310637 | 0.261273 { 0.833198 | 0.261288 | 0.522561
L-P 0.322123 | 0.249787 | 0.777760 | 0.205850 | 0.455638
B-P 0.92 | 0.887172 | 0.010048 | 0.905161 | 0.007941 | 0.017989 | 0.897220
K-K 0.861112 | 0.036108 | 0.915022 | 0.018702 | 0.054809
Jeb-I1 0.811260 | 0.085960 | 0.961331 | 0.064111 | 0.150071
BBST-II 0.818012 | 0.079208 | 0.938159 | 0.040939 | 0.120146
L-P 0.781899 | 0.115321 § 0.962052 | 0.064832 | 0.180152
B-P 0.94 | 0.633096 | 0.005066 | 0.941976 | 0.003814 | 0.0608379 | 0.938162
K-K 0.918816 | 0.019346 | 0.947277 | 0.009115 | 0.028462
Jeb-1I1 0.891938 ; 0.046224 | 0.970085 | 0.031923 | 0.078148
BBST-II 0.805454 | 0.042708 | 0.958019 | 0.019857 | 0.062565
L-P 0.861784 | 0.076378 | 0.978543 | 0.040381 | 0.116758
B-P 0.96 | 0.968822 | 0.001785 | 0.971884 | 0.001277 | 0.003063 | 0.970607
K-K 0.663351 | 0.007256 | 0.873726 | 0.003119 | 0.016375
Jeb-1H 0.853265 | 0.017402 | 0.981784 | 0.011177 | 0.028579
BBST-II 0.954491 | 0.016116 | 0.977371 | 0.006764 | 0.022880
L-P 0.930766 | 0.039841 | 0.990428 ! 0.019821 | 0.059662
B-P 0.98 | 0.991878 | 0.0006265 { 0.992322 | D.G00179 | 0.000444 | 0.992143
K-K 0.990098 | 0.001145 | 0.992593 | 0.000450 | 0.001595
Jeb-111 0.989387 | 0.002756 | 0.993796 | 0.001653 | 0.004409
BBST-II 0.989586 | 0.002557 | 0.693115 | 0.000972 | 0.003530
L-P 0.080487 | 0.011656 | 0.997602 | 0.005459 | 0.017114
B-P 0.99 | 0.997933 | 0.000036 | 0.997993 | 0.000024 | 0.000060 | 0.997969
K-K 0.997808 | 0.000161 | 0.698029 | 0.000060 | 0.000221
Jeb-I11 0.997582  0.000387 | 0.998194 | 0.000225 { 0.000612
BBST-iI 0.997609 | 0.000360 | 0.998099 | 0.000130 | 0.000450
L-P 0.994820 | 0.003149 | 0.999400 | 0.001431 | 0.004580
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Table A5.2 Cycle{20)}-Complete(5) Graph
n=24 b=30 ¢==2 ' =190 {==2500
Bounds r lower Alower upner Aupper r{z) actual
B-P 0.9 0.377378 | 0.014170 i 0.417759 | 0.026211 | 0.040380 | 0.391548
K-K 0.339838 | 0.051710 | 0.482129 | 0.090581 | 0.142291
Jeb-IH 0.311837 | 0.079611 | D.874759 | 0.483211 | 0.562822
BBST-1I 0.312628 | 0.078920 | 9.628929 | 0.237381 | 0.316301
L-P 0.292477 | 0.0896G71 | 0.825838 | 0.434290 | 0.533361
B-P 0.91 | 0.438367 | 0.013085 | 0.475226 | 0.023774 | ©.036860 | 0.451452
K-K 0.402241 | 0.049211 | 0.531866 | 0.080414 | 0.129625
Jeb-II1 0.375796 | 0.075656 | 0.875017 | 0.423565 | 0.499221
BBST-1I 0.376409 | 0.075043 | 0.656966 | 0.205514 | 0.280557
L-P 0.250825 | 0.100627 | 0.856586 | 0.405144 | 0.505771
B-P 0.92 | 0.505140 | 0.011609 | 0.537435 | 0.020€36 ! 0.032295 | 0.516749
K-K 0.471740 | 0.045009 | 0.585388 | 0.068639 | 0.113648
Jeb-11I 0.447645 | 0.069104 | 0.874002 | 0.357233 | 0.4262357
BBST-I 0.448169 | 0.068580 | 0.687777 | 0.171028 | 0.233609
L-P 0.417200 | 0.099459 | 0.835011 | 0.368262 | 0.467721
B-P 0.94 | 0.652660 | 0.007751 | 0.673630 | 0.013219 | 0.020970 | 0.660411
K-K 0.628444 | 0.031667 | 0.702972 | 0.042561 | 0.074528
Jeb-111 0.611443 | 0.048968 | 0.877373 | 0.216982 | 0.265930
BBST-I 0.611769 | 0.048642 | 0.761219 | 0.100808 | 0.149430
L-P 0.573479 | 0.086932 | 0.933723 | 0.273312 | 0.360244
B-P 0.95 | 0.730195 | 0.005621 | 0.745168 | 0.009352 | 0.014973 | 0.735816
K-K 0.711896 | 0.023920 | 0.765617 | 0.020801 | 0.053721
Jeb-1I1 0.699211 | 0.036605 | 0.885459 | 0.150843 | 0.187248
BBST-1i 0.699441 | 0.036375 | 0.804673 | 0.068857 | 0.105232
L-P 0.660817 | 0.074999 | 0.053530 | 0.217714 | £.292713
B-P 0.96 | 0.806729 | 0.003598 | 0.816153 | 0.005826 | 0.009424 | 0.310327
K-K 0.794528 | 0.015799 | 0.828769 | 0.018442 | 0.034242
Jeb-I11 0.786171 | 0.024156 | 0.902920 | 0.002593 | 0.116749
BBST-II 0.786315 | 0.024012 | 0.851926 | 0.041599 | 0.065612
L-P 0.750826 | 0.059501 | 0.970024 | 0.159697 | 0.219198%
B-P 0.97 | 0.878266 | 0.001892 | 0.883135 | 0.002977 | 0.004869 | 0.880158
K-K 0.871579 | 0.008579 | 0.889555 | 0.009397 | 0.017976
Jeb-1I1 0.867051 | 0.013107 | 0.927096 | 0.046938 | 0.060045
BBST-Ii 0.867125 | 0.013033 | 0.900870 { 0.0620712 | 0.033745
L-P 0.838758 | 0.0414C0 | 0.983035 | 0.102877 | 0.144277
B-P 0.98 | 0.938403 | 0.000697 | 0.941163 | 0.001063 | 0.001761 | 0.940100
K-K 0.936835 | 0.003265 | 0.943460 | 0.003360 | 0.006625
Jeb-IIT 0.935116 | 0.004984 | 0.956832 | 0.016732 | 0.021716
BBST-II 0.935142 | 0.004958 | 0.947347 | 0.007247 | 0.012204
L-P 0.917387 | 0.022713 | 0.992427 | 0.052327 | 0.075040
B-P 0.99 | 0.983032 | 0.000109 | 0.9833C0 | 0.000159 | 0.000268 | 0.983141
K-K 0.982617 | 0.000524 | 0.983647 | 0.000506 | 0.001030
Jeb-111 0.982343 | 0.000758 | 0.985650 | 0.002519 | 0.003318
BBST-II 0.982347 | 0.000794 | 0.984211 { 0.001070 | 0.001865
L-P 0.976145 | 0.006996 | 0.998102 | 0.014961 | 0.021956
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Table A5.3 Cvele(7)-Complete{(8) Graph
n=14 =35 ¢=2 C =21 t=1.83501e+06
Bounds r lower Alower upper Aupper r{p) actual
B-P 0.5 0.020006 | 0.037662 | 0.173491 0.114923 | 0.152586 | 0.058568
K-K 0.019502 | 0.039066 | 0.469691 0.411123 | 0.450189
Jeh-IIT 0.000053 | 0.058515 | 0.912321 0.853753 | 0.812267
BBST-II 0.001187 | 0.057381 | 0.880123 0.821555 | 0.878936
L-P 0.000016 | 0.057653 | 0.168470+« | 0.109902 | 0.167555
B-P 0.6 0.067984 | 0.088548 | 0.239482 0.182950 | 0.271498 | 0.156532
K-K 0.05785¢ | 0.008632 | 0.598135 0.441803 | 0.540285
Jeb-III 0.000009 | 0.156523 | 0.994742 0.838210 | 0.994733
BBST-II 0.001245 | 0.155237 | 0.959634 0.803102 | $.958388
L-P 0.008098 | 0.148434 | 0.347239 0.190757 | 0.336191
B-P 0.7 0.183280 | 6.140559 | 0.502208 0.173369 | 0.313928 | 0.328839
K-K 0.1424€0 | 0.186379 | 0.700146 0.371307 | 0.557686
Jeb-I1 0.000460 | 0.328379 | 0.999927 0.671088 | 0.999467
BBST-Ii 0.001702 | 0.327137 | 0.954652 0.635813 | 0.962949
L-P 0.047476 | 0.281363 | 0.567000 0.238161 | 0.519525
B-P 0.8 0.438227 | 0.138431 | 0.677782 6.101124 | 0.239555 | 0.576658
K-K 0.308160 | 0.268498 | 0.801845 0.225187 | 0.49363%4
Jeb-111 0.018508 | 0.558150 | 0.999468 0.422810 { 0.980960
BBST-U 0.019727 { 0.556931 | 0.964845 0.388187 { 0.945118
L-P 0.197912 | 0.378746 | 0.782688 0.206030 | 0.584776
B-P 0.92 | 0.864218 | 0.033187 | 0.911233 0.013828 | 0.047015 | 0.897405
K-K 0.732029 | 0.165376 | 0.933888 0.036483 | 0.201859
Jeb-111 0.452010 | 0.444495 | 0.991422 0.094017 | 0.538512
BBST-II 0.453580 | 0.443825 | 0.972415 0.075010 | 0.518836
L-P 0.690036 | 0.207369 | 0.962209 0.064804 | 0.272173
B-P 0.94 | 0.920967 | 0.017256 | 0.944822 0.006599 | 0.023855 | 0.938223
K-K 0.831224 | 0.106999% | 0.956362 0.018139 | 0.125138
Jeb-I1i 0.639054 | 0.209169 | 0.900188 0.051965 | 0.351135
BBST-II 0.639490 | 0.298733 | 0.977795 0.039572 | 0.338305
L-P 0.796310 | 0.141913 | 0.978593 0.040370 | 0.182283
B-P 0.96 | 0.964336 | 0.006284 | 0.972829 0.002209 | 0.008493 | 0.970620
K-K 0.921368 | 0.049252 | 0.976973 0.006353 | 0.055605
Jeb-111 0.827797 | 0.142823 | 0.601264 0.020644 | 0.163467
BBST-iI 0.828000 | 0.142620 | 0.985495 0.014875 | 0.157495
L-P 0.804066 | 0.076554 | 0.990438 0.019818 | 0.096372
B-P 0.98 | 0.991181 | 0.000962 | 6.992455 0.000312 | 0.001274 | 0.992143
K-K 0.982470 | 0.009673 | 0.993085 0.000942 | 0.G10615
Jeb-111 0.963149 | 0.028994 | 0.995687 0.003544 | 0.032529
BBST-II 0.963189 | 0.028054 | 0.994539 0.002396 { 0.031350
L-P 0.968968 | 0.023175 | 0.997602 0.005459 | 0.022634
B-P 0.99 | 0.997836 | 0.000133 | 0.998010 0.000041 | 0.000174 | 0.997969
K-K 0.996448 | 0.001521 { 0.998097 0.000128 | 0.001650
Jeb-1T1 0.993339 | 0.004630 | 0.998493 | 0.000524 | 0.005154
BBST-1I 0.993346 | 0.004623 | 0.998311 0.000342 | 0.004965
L-P 0.991599 | 0.005370 | 0.999400 0.001431 | 0.007801




Appendix Ab G, Graphs 84

Table A5.4 Cycle{20)-Completei8) Graph
n==27 d==48 c=2 C =190 1=5.24288e--06
Bounds ? lower Alower upper Aupper {p) actual
B-P 0.1 | 0.409820 | 0.041782 | 0.506399 | 0.054797 | 0.09657¢ 0.451602
K-K 0.255569 | 0.196033 | 0.657333 | 0.205731 | 0.401764
Jeb-111 0.161369 | 0.200233 | 0.979602 | 0.523300 | 0.818533
BBST-II 0.161369 | 0.200233 | 0.842029 | 0.390427 | 0.680659
L-P 0.287623 | 0.163979 | 0.856820 | 0.405218 | 0.560198
B-P 0.92 | 0.479226 | 0.037630 | 0.563217 | 0.046361 | C.0839090 | 0.516856
K-K 0.321025 | 0.195831 | 0.694851 | 0.177995 | 0.373825
Jeb-1II 0.224150 | 0.292706 | 0.973747 | 0.456891 | 0.749598
BBST-1I 0.224150 | 0.292706 | 0.847485 | 0.330629 | 0.623335
L-P 0.352399 | 0.164457 | 0.885156 | 0.368300 | 0.532758
BP | 093 | 0.554606 | 0.032251 | 0.624235 | 0.037378 | 0.069630 | 0.586857
K-K 309906 | 0.186951 | 0.734234 | 0.147377 | 0.334328
Jeb-111 0.304791 | 6.282066 | 0.966950 | 0.380093 | 0.662160
BBST-II 0.304791 { 0.232066 | 0.855416 | 0.268539 | 0.550626
L-P 0.427372 | 0.159485 | 0.910894 | 0.324037 | 0.483522
B-P 0.94 | 0.634531 | 0.025924 | 0.688759 | 0.028304 | 0.054228 | 0.660455
K-K 0.492388 | 0.168067 | 0.775558 | 0.115103 | 0.283170
Jeb-1II1 0.404543 | 0.255012 | 0.960287 | 0.299832 | 0.555743
BBST-II 0.404543 | 0.255912 | 0.866677 | 0.206222 | 0.462134
L-P 0.512347 | 0.148108 | 0.933772 | 0.273317 | 0.421424
B-P 0.95 | 0.716733 | 0.019107 | 0.758518 | 0.019678 | 0.033786 | 0.735840
K-K 0.566766 | 0.139074 | 0.818748 | 0.082008 | 0.221982
Jeb-I 0.522174 | 0.213666 | 0.955128 | 0.219288 | 0.432934
BBST-II 0.522174 | 0.213666 | 0.882201 | 0.146361 | 0.360027
L-P 0.606006 | 0.120744 | 0.953554 | 0.217714 | 0.347457
B-P 0.96 | 0.797906 | 0.012432 | 0.822432 | 0.012094 | 0.024526 | 0.810338
K-K 0.708368 | 0.101970 | 0.863370 | 6.053032 | 0.155003
Jeb-111 0.652315 | 0.158023 | 0.953511 | 0.143173 | 0.301196
BBST-II 0.652315 | 0.158023 | 0.902778 | 0.092440 | 0.250463
L-P 0.705801 | 0.104537 | 0.970034 | 0.159696 | 0.264233
B-P 0.97 | 0.873511 | 0.006651 | 0.886281 | 0.006119 { 0.012770 | 0.880162
K-K 0.818476 | 0.061686 | 0.908221 | 0.028059 | 0.089745
Jeb-1I1 0.783766 | 0.006395 | 0.657879 | 0.077717 | 0.174113
BBST-il 0.783766 | 0.096396 | 0.928552 | 0.048380 | 0.144786
L-P 0.896279 | 0.073883 | 0.983038 | 0.102876 | 0.176759
B-P 0.98 | 0.937608 ; 0.002493 | 0.942274 | 0.002173 | 0.004666 | 0.940101
K-K 0.913863 | 0.026238 | 0.950569 | 0.010468 | 0.036706
Jeb-I11 0.808769 | 0.041332 | 0.969994 | 0.029893 | 0.071225
BBST-NI 0.898769 | 0.041332 | 0.9579%7 | 0.017896 | 0.059228
L-P 0.8908921 | 0.041180 | 0.992427 | 0.052326 | 0.093508
B-P 0.99 | 0.982747 | 0.000394 | 0.983466 | 0.000325 | 0.000719 | 0.983141
K-K 0.978428 | 0.004713 | 0.984795 | 0.001654 | 0.006367
Jeb-1l 0.975660 | 0.007481 | 0.088033 | 0.004892 | (.012373
BBST-I1 0.975660 | 0.007481 | 0.985949 | 0.002808 | 0.010289
L-P 0.97G254 | 0.012887 | 0.9981062 | 0.014961 | 0.027847




Appendix AB

Miscellaneous

Table AS.1 Arpanet {1979 version, Figure 8)
n==59 b=T1 o==2 (=57 i=2.72817e-+11

Bounds P lower upper {p)
B-P 0.5 0.0000G0 | 0.000000 0.000000
K-K 0.000000 | 0.C00000 0.000000
Jeb-111 0.000C00 | 0.006000 €.000060
BBsT-NII 0.006006 | 0.000000 0.000000
L-P 0.000000 | 0.600001 0.000001
B-P 0.7 0.000148 | 0.002483 0.002335
K-K 0.000148 | 0.007398 0.007250
Jeb-111 0.000045 | 0.008790 0.008745
BBST-II 0.000086 | 0.008590 0.008503
L-P 0.000000 | 0.017175 0.017175
B-P 0.9 0.129562 | 0.839673 0.710111
E-K 0.113389 | 0.881802 0.768503
Jeb-11 0.021977 | 0.976842 0.954865
BBST-II 0.026460 | 0.954940 0.928480
L-P 0.015086 | 0.675115% | 0.650029
B-P 0.92 | 0.220425 | 0.905370 0.675945
K-K 0.196839 | 0.017562 0.720673
Jeb-II1 0.068567 | 0.9949577 0.926410
BBST-1I 0.072917 | 0.973728 0.900811
L-P 0.044765 | 0.780114* | 0.735345
B-P 0.94 | 0.397043 | 0.939865 0.542822
K-K 0.344436 | 0.941535 0.597100
Jeb-111 0.190570 | 0.996848 0.806178
BBST-II 0.194455 | 0.978356 0.783901
L-P 0.123762 | 0.871119% | 0.747327
B-P 0.96 | 0.642423 | 0.963840 0.321417
K-K 0.584093 | 0.963901 0.379808
Jeb-IT1 0.450476 | 0.994542 0.544065
BBST-II 4 0.453031 | 0.982062 0.529031
L-P 0.311079 | 0.941208* | 0.630129
B-P 0.97 | 0.770467 | 0.975281 0.195815
K-K 0.732273 | 0.975286 0.243013
Jeb-IH 0.634748 | 0.993728 0.358980
BBST-II 0.636434 | 0.985494 0.349061
L-P 0.458286 | 0.966686% | 0.498399
B-P 0.98 | 0.901379 | 0.086323 0.084044
K-K 0.874712 | 0.986323 0.111611
Jeb-II1 0.824434 | 0.994344 0.169910
BBST-II 0.825232 | 0.990446 0.165215
L-P 0.669216 | 0.985141* | 0.315924
B-P 0.89 | 0.979896 | 0.095639 0.015743
K-K 0.973574 | 0.995639 0.022065
Jeb-I1I 0.962586 | 0.997151 0.034565
BBST-II 0.962749 | 0.996358 0.033609
I-P 0.882061 | 0.905286 0.114225

85



Appendix AS

Miscellaneous

Table A6.2 A @-cohesive Graph
n=12 §==36 c¢=0 O\ =12 {==6.04662e+07

Bounds 7 lower upper {p)
B-P 6.3 0.080240 0.265126 0.184887
K-K 0.078728 0.372930 0.294222
Jeb-Iii 0.014365 0.405289 0.390924
BBST-1I 0.053708 0.405286 0.351578
L-P 0.046951 0.252380+« | 0.205350
B-P 0.37 | 0.163247 0.565863 0.402617
K-K 0.154568 0.683551 0.538983
Jeb-1II 0.010257 | 0.742084 | 0.731727
BBST-II 0.084000 0.742080 0.658080
L-P 0.158224 (.491546% | 0.333252
B-P .28 | 0.176634 0.607615 0.430931
K-K $5.165988 6.731090 0.565162
Jeb-1If 0.0093069 0.780124 0.770814
BBST-II 0.086835 780119 | 0.693233
L-P 0.181230+ | 0.525582% | 0.344302
B-P 0.5 0.382003 0.925124 0.543120
K-K 0.310007 0.957567 0.647560
Jeb-1I 0.000915 0.986472 0.985557
BBST-II 0.100103 0.586465 0.886362
L-P 0.546704* | 0.840043% | 0.204239
B-P 0.7 0.856081 0.997084 0.141063
K-K 0.602483 0.997603 0.395120
Jeb-I11 0.053569 0.999999 0.946430
BB3T-1 0.148819 0.996993 0.851174
L-P 0.950801% | 0.992010% | 0.032209
B-P 0.9 0.999531 0.999992 0.000461
K-K 0.983049 0.999993 0.016344
Jeb-1il 0.937171 0.999999 0.062828
BBST-II 0.9434%5 0.999999 0.056505
L-P 0.599934* | 0.999989* | 0.6C0055
B-P 091 | 0.999754 0.999996 0.600242
K-K 0.986590 0.999996 0.010436
Jeb-I11 0.960956 1.6C0000 0.039043
BBST-I 0.564886 (.999999 0.035114
L-P 0.999965% | 0.999994* | 0.000029
B-P 0.92 | 0.999882 0.9999¢98 0.000116
K-K 0.954137 0.999998 0.005861
Jeb-11 0.977766 1.000000 0.022234
BBST-II 0.98G004 1.006000 0.019996
L-P 0.509983* | 0.999997+ | 0.000014
- B-P 0.93 | 0.096949 0.999959 0.000050
K-K 0.997042 0.9999%9 0.002957
Jeb-1I1 0.988866 1.G600000 0.011334
BBST-II 0.986807 1.660000 0.010193
L-P 0906892+ | 0.999999 0.000006




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

