A Distributed File-Server for
a Personal Computer Network

D.D. Cowan
Department of Computer Science

F.D. Boswell
T.R. Grove
Computer Systems Group
University of Waterloo
Waterloo, Ontario, Canada
NZ2L 3G1

Research Report (CS-84-54
December 1984

A Distributed File-Server for a Personal Computer Network

by F.D. Boswell, D.D. Cowan and T.R. Grove
Computer Science Department and Computer Systems Group

University of Waterloo

1 Introduction

The Computer Systems Group at the University of Waterloo has developed a computing
system called Waterloo microNet which is based on a network of microcomputer
workstations. This network is used to support educational and research computing and

as a test-bed for further investigation of networks of personal workstations.

The objective of this network is to make powerful computing systems economically
accessible to students and faculty, while using commercially available computers and
communication mechanisms. Since there is a constant demand for more and more
computing resources within universities it was attempted to design the microNet system

to offer inexpensive and easily maintainable computing.

Personal workstations are valuable computing resources and can be used for many
computing tasks. Since the computing power and the user interface are in close

proximity, definite advantages follow:

ability to provide powerful, friendly user interfaces: for example, the coupling
of inexpensive colour graphics to a powerful inexpensive CPU in a workstation

allows development of interfaces tailored to the user and the environment.

A Distributed File-Server for a Personal Computer Network 1

load independence: the real CPU time taken to complete a given computing

task is related to the length of the task, not the load currently on the system.
The network connection extends the power of the workstation by allowing:

data sharing: file-servers in the network can provide the ability to share

information in a controlled manner and provide services such as electronic mail.

resource sharing: scarce or expensive resources such as high-quality printers or
photo-typesetters, or devices such as large-scale, cost-effective disks can be
made accessible to a large community of users. Even scarce human resources

such as operators and system programmers can be shared.

The microNet network consists of a distributed file-server which supports a tree-
structured file system and a large number of personal workstations. The file-server is
used to store the system and applications software and user files of all types including
character and binary files. Files are either accessed in stream mode (continuous access
of small pieces) or downloaded (one access to the entire file) from the file-server. The
file-server operates on files as opposed to "virtual disks": in this sense is a true file-

server rather than a disk-server.

The file-server was designed to support a large user community consisting of both
students and faculty. From a user's perspective the file-server is similar to the
UNIX[Ritc78,Bour78] file system, but there are fundamental underlying differences. The
file-server can be distributed over several different computers in the network, thus
providing flexibility. For example, file access to both systems and application software
and user files can be optimized. Also, each user is assigned a file-space limit, thus
forcing the user to make efficient use of file-space. This file-space limit is enforced
continuously during a session not just at the time a user logs on or logs off. Finally, the

file-server has several added features to provide a robust environment. We have found

A Distributed File-Server for a Personal Computer Network 2

that these last two design features are particularly important when this service is being

provided to undergraduate students.

The original version of the network has been in operation since January 1981 and has
undergone constant refinement. Current versions of Waterloo microNet in use at the

University of Waterloo support approximately 3000 separate users and 200 workstations.

The file-server runs as part of an operating system called Watsys which was also
developed at the University of Waterloo by the Computer Systems Group. Watsys is a
message-oriented operating system and has an internal structure similar to the one used
in Thoth{Cher79,Cher80] and Port[Malc83]. Although Watsys is primarily supporting a
file-server function, it is a general-purpose real-time operating system with language

processors, editors and other facilities.

The file-server and the Watsys operating system were designed with three important
properties in mind, namely efficiency, distributability and portability. Since this was a
production system with a large user population and potentially heavy file access it was
necessary to create a system which would access files in an efficient manner. Also, the
volatile nature of computer technology and hence the constant availability of better
CPU, network and communications hardware forced us to try to create a file-server

system with two other design goals:

the ability to locate files at appropriate nodes in the network depending on the

bandwidth available (so-called "distributability"), and

the ability to move the system from one network to another with a minimal
amount of rewriting. In fact our goal was to design the file-server and the
operating system so that the cost of moving it was less than 10% of the cost of

rewriting it,

A Distributed File-Server for a Personal Computer Network 3

Obviously these last two goals are closely related.

In order to make the file-server portable it was necessary to identify hardware
dependencies. There are three such areas: the CPU, the peripherals and the network.
The CPU difficulty was removed by writing the system in a systems programming
language called the Waterloo Systems Language[Bos82] (often shortened to the acronym
WSL; pronounced "whistle"). The WSL system is operational on 15 different computer
and operating systems, including the IBM 370, DEC VAX, DEC PDP-11, IBM Series/1 and
several microcomputers based on the 68000, 8086, 6809 and 6502 microprocessors. The
lack of portability between peripherals and networks was handled by designing
appropriate interfaces between the device drivers and the network driver so that the
file-server saw a constant interface independent of devices and network architecture.
The ISO Open Systems Interconnection Reference Model[Tann81] was used as a guide in
the design of these interfaces. Watsys and the file-server consist of 50,000 lines of WSL
code and moving the system to a new network architecture requires the re-

implementation of about 2,000 lines of code.

Watsys and the file-server currently operate on three different CPU's ranging from a

large mainframe to a microcomputer and on three different network configurations.

2 A Functional View of the File-Server

2.1 Introduction

This section presents a functional view of the file-server and describes the structure,

file attributes, permission mechanisms and capacity constraints.

The Waterloo microNet file-server system can be viewed as consisting of two

components:

A Distributed File-Server for a Personal Computer Network 4

(1)

(2)

the file server and system software, and

the network controller software.

2.2 The General Structure of the File-Server

The file-server stores and manages files on disk. It is a general purpose file system and

provides the following facilities:

(1)

(2)

(3)

(4)

(5)

"Tree structure" (or "hierarchical organization"). This allows files to be
grouped together in directories for simple and clear organization of data.

Directories may contain other directories to any desired depth.

Each file has a specific user associated with it called the "owner". A file also
has permission attributes which determine whether or not the file is

accessible to other users or groups of users.

Each user can be assigned an individual file space limit which is continuously

monitored and acted upon during the time a user is signed on.

A simple library facility exists which allows read-only directories to contain
files which are accessible to all users of the system. Only designated library

administrators can modify the library.

A queueing mechanism exists which allows an entire file to be sent to a
program. Print spooling and electronic mail are implemented in this way. In

fact, a queue is just a special type of directory.

The user communicates with the file system through the network controller: a

program which controls access to the system and handles user protocol validity.

Parameters to the network controller are stored in files and the system may be tailored

A Distributed File-Server for a Personal Computer Network 5

by editing the parameter files.

2.3 Files and Directories
A file follows the UNIX[Ritc78] model and is just a sequence or stream of bytes.

Simple file-names can consist of up to 20 characters. Numbers and alphabetic
characters are legal and so are most special characters such as dot ".", hyphen "-" and
dollar sign "$". Blanks are not allowed and the slash "/" has a special meaning. File

names are case-sensitive.

There is a special type of file called a directory which is a collection of files.
Directories may contain directories so there can be several levels of hierarchical or

tree-structured organization. The directory at the top of the tree is called the root of

the file system and is represented by a special name consisting of only a slash "/".

Any directory in the tree can be specified by a filename which indicates the path

from the root to that directory.

One directory may be designated as the current directory. A filename beginning

with a slash is relative to the root and is called an absolute filename. A filename not

beginning with a slash is relative to the current directory and is called a relative

filename.

2.4 File Attributes

Files have the following attribute information associated with them:
(1) filename

(2) date of last modification

A Distributed File-Server for a Personal Computer Network 6

(3) owner identification number

(4) permissions
(5) file descriptor number
(6) file type (data file or directory) and resources (file size for data files and file

space limit for directories)

Each person who may store files on the system is assigned a unique identification
number called a "userid". Userid 0 is special and has complete permissions on all files.

The userid of the owner of a file is called the owner identification number of the file.

File permissions determine who, other than the owner, can read and write a file. In
general, permissions on a file can only be modified by the owner, although userid 0 (the

"super-user") can read, write or modify the permissions of any file.

Each directory can be assigned a limit on the number of 1024 byte blocks available to

files stored in that directory.

Devices are just another type of file. They are referenced by special names
beginning with /dev. Even though the devices are conceptually under the root directory

they will not be displayed when the files and directories under the root are examined.

3 Watsys

The description in the preceding section presented the user's view of Watsys and the
microNet file-server. There are many topics for discussion which arise from the design
and implementation of a portable operating system. In the descriptions that follow, the
emphasis will be on the aspects of design which pertain to the implementation of the

microNet file-server.

A Distributed File-Server for a Personal Computer Network 7

3.1 Watsys Organization

3.1.1 Nomenclature

Before the Watsys operating system is described, a definition of some of the terminology

is presented.

process Watsys considers a process to be a single "thread" of execution, that is, a
process g

single sequence of instructions and associated data.

message A message is an object used for communication between processes.

3.1.2 Process Structuring

Stated succinctly, Watsys is a message-oriented system. The various operating system

services are implemented as individual processes, and these processes communicate with
each other by transmitting messages. If a process transmits a message to another
process, it is normally blocked (it temporarily ceases execution) until the process to
which the message was transmitted responds to the message. It is in this fashion that
inter-process synchronization is achieved. Processes are dynamic entities, that is, they
may be created and destroyed as required. The message-passing scheme is described in

more detail in a subsequent section.

Processes and inter-process communication are implemented in a manner similar to
that described by Cheriton[Cher80]. Watsys is designed to provide inexpensive inter-
process communication and process management (such as process creation and
destruction), and this process-structured mode of programming has been used liberally
throughout Watsys. For example, each peripheral device connected to a machine

running Watsys will require at least one process, and each application (such as microNet)

A Distributed File-Server for a Personal Computer Network 8

running on the machine may create many processes. Process management and inter-
process communication is the responsibility of the Watsys kernel, which is described in

the next section.

3.1.3 The Watsys Kernel

The kernel is a small collection of routines which support the Watsys process

abstraction. The services provided by the kernel include:

process creation and destruction;
message-passing primitives;
interrupt management; and
real-machine memory management.

These operations are considered to be operating-system primitives; that is, they are not
part of the process abstraction, but rather are considered to be equivalent to a hardware
operation. The kernel itself is not able to use process abstraction, since it is the

implementor of the abstraction.

The kernel also uses a lower-level abstraction, the message switch, which carries out

the actual delivery of messages.

An important aspect of the separation of the kernel from the remainder of the
system is that these critical kernel operations and the message-switch may be easily
identified and optimized for performance, thus reducing any impact from the overhead

caused by the process abstraction.

A Distributed File-Server for a Personal Computer Network 9

3.1.4 Message Passing

Messages in Watsys serve two purposes: inter-process communication and data

transmission, and process synchronization.

The fundamental message-passing primitives are send, receive, reply, forward, and

send kernel.

Process synchronization is achieved in the following manner: since these primitives
are blocking primitives, a process which sends a message to another process is suspended
from execution until the recipient replies to the message. Similarly a process can block
on receive while waiting for a message to be sent. Thus, critical sections such as device

contention and file access contention are resolved in a straightforward fashion.

Interrupts and exceptions are converted by the kernel into messages so that they may

be processed within the process abstraction model.

The message-passing primitives are designed to facilitate thin-wire communication

between processes. Since no shared data space is involved in message transmission and
reception, the processes can operate in different computers. This distribution capability

is discussed in the next section.

3.2 Distributing the File-Server Over Multiple Machines

The portability of Watsys -- the attribute that the system can run on several different

machines — is important for two reasons:

It provides a uniform base upon which applications such as microNet can be
built.
It facilitates the implementation of a distributed system. In this sense,

A Distributed File-Server for a Personal Computer Network 10

"distributed" means that several machines (not necessarily all of the same

type), each running Watsys, are viewed as one large Watsys system.

A distributed Watsys system consists of a number of individual kernels (one per
machine) which maintain a peer relationship amongst themselves. A kernel may create a
process on its machine only, and processes may not migrate between machines. At this
stage of development, applications such as microNet must be aware of the topology of
the distribution, and inter-machine communication must be done at the file-system

level, rather than the process level.

Since the file-server can be distributed over a number of nodes in the network, files
can be placed to optimize network performance. For example, user files which are
dynamic in nature can be centralized in one location for ease of access, while large
software packages which are seldom updated can be duplicated at several nodes of the
network. This means that downloading of software packages can occur over local high-
speed transmission links while smaller volume user files can be accessed over longer and
usually slower communication links. In other words, we place the files in order to make
efficient use of current bandwidth. Of course as faster transmission media become

available, file placement strategies can evolve to meet the new demands.

3.3 The Watsys File System

In a discussion of file systems, two issues which are of particular interest in a file-server

application are data integrity and security.

It is inevitable that computer systems are subject to various failures and
interruptions, such as hardware failure, operator error and software failure. It is
desirable that such failures have only a minor impact on the integrity of the data in the

system, that is, that the loss of data is kept to a mininum. The Watsys file-server

A Distributed File-Server for a Personal Computer Network 11

achieves this goal by keeping two copies of a file during the updating sequence (the
existing version of a file is not deleted until the new version of the file has been
successfully written to backing-storage). If a system interruption occurs at a critical
point in time, data loss in a file is restricted to the changes which have been made since

the file was last updated.

The security, or permission facility in the Watsys file-server is implemented in a
fashion similar to many tree-structured (hierarchical) file systems. When a file is

created, it has associated with it an owner identifier. The owner identifier may

represent a single user or a group of users. The owner of the file may always read and
write the file, and further, may grant read and write permissions on the file to a pre-
established group of users (group permission), or to all users on the system (global
permission). If global permission has been granted on a file, then any group permissions

are irrelevant.

Above and beyond these permissions, Watsys also has the concept of so-called "super-
users". A super-user may override any permissions of its domain: the global super-user
may modify any permissions in the entire system, and group super-users may modify

permissions in their group.

3.4 File System Performance

Since most of the activity in a file-server application is concerned with accessing files,
the performance of the file-server with respect to file-access times is of interest.

Watsys utilizes two major techniques designed to improve the speed of file accesses.

3.4.1 File System Caching

File system caching is a technique whereby recently-accessed blocks of backing-storage

A Distributed File-Server for a Personal Computer Network 12

are kept in memory, so that backing-storage access (and the inevitable associated

delays) may be minimized.

Given that each block of backing-storage is uniquely identified, the Watsys file

system caching method may be described as follows:

(1) If a block of backing-storage is to be read, the file system first searches the
cache to see if the required block is already present in memory. If it is, then
no access to backing-storage is required. If the block is not found in the
cache, then it is read in from the backing-storage device, placed in the cache,

and then given to the requestor.

(2) If the block is to be written, it is placed in the cache, and then immediately

written to the backing-storage device.
(3) The cache is maintained using standard LRU techniques.

An interesting effect of this scheme which should be noted is that since blocks which are
being written to backing-storage are always actually written immediately (with a copy
left in the cache), many problems relating to the integrity of the file system in the case
of system failure are avoided. For example, a user can not sign off the computer
system without knowing that the file-space limit has been exceeded or that some other
storage error has occurred. This method contrasts with "write-behind" schemes where
file system errors may not be detected until after the user has completely left the
system. This technique of writing immediately seems to decrease the total efficiency of
file operations by about 10%, but we felt this was an acceptable tradeoff in our

applications.

A Distributed File-Server for a Personal Computer Network 13

3.4.2 Directory Structure

In hierarchical file systems many accesses to backing-storage may be required in order
to read a file. This is undesirable because the inherent physical properties of backing-
storage technology make backing-storage accesses relatively slow. A design criterion of
Watsys was to minimize the backing-storage access required to read a file. In particular,
it was decided to implement the concept of a "current directory", and to optimize the

access time to a file in the current directory.

The hierarchical structure of the file system (also referred to as the "directory
structure") is stored in files on backing-storage. A "directory file" at some arbitrary
point in the hierarchy contains information pertaining to the files stored at that point in

the hierarchy.

In normal circumstances, an application program maintains a "current directory"
which is used as the "starting point" for filename searches. For example, the interactive
command processor, or "shell", establishes the current directory for each user. Also, the
microNet network controller maintains a current directory for each communications

line.

The information stored in a directory file allows it to be used as an index to the
actual location of a data file. In the best case (accessing a file which is in the current

directory), three accesses to backing-storage are required in order to access a file:
(1) reading a block of data from the current directory file;
(2) reading the file descriptor for the file (a list of data block numbers);
(3) reading the first block of data from the file.

The effect of the file system caching scheme on the performance of this file access

A Distributed File-Server for a Personal Computer Network 14

method is substantial, since the data blocks for the current directory files tend to

remain in the cache.

4 Summary

4.1 Current microNet Implementations

As mentioned in the introduction, the microNet file-server described in this paper is in
use at the University of Waterloo. The current implementation consists of an IBM 370 (a
4341-2 mainframe running Watsys in a virtual machine under VM/SP), six IBM Series/1
mini-computers (each running Watsys) plus approximately 200 microcomputer
workstations (IBM PCs, Commodore SuperPETs and others). The 370 mainframe is used
as the primary file-server (and backing-storage), and the Series/1 mini-computers are
used as smart communications front-ends (30 to 40 workstations each). This
arrangement permits users to migrate between the various types of workstations and to
access their files without regard to which particular workstation is being used.
Preliminary performance measurements on the total system indicate that based on the
current computing load approximately 30% of the resources of the mainframe are being
used to support microNet functions. Prior to this configuration there were three
independent Series/l networks each running a file-server. When the system was
integrated with the mainframe, the users were not even aware that the system had been

upgraded, attesting to our ability to maintain a constant environment.

File-servers are implemented on both the mainframe and mini-computers and files
are placed to obtain optimum file-server performance. Because of the portability and
design of Watsys and the file-server the messages sent between two physically distinct
file-servers are identical in format to messages which are routed inside a single file-

server.

A Distributed File-Server for a Personal Computer Network 15

—
/

P/C Lo

@ P
- -
a o
= <
-

BN [anguage Processors = -

N\

| I
/ T\N\
H-EEN

Figure 1

A configuration for the current system is shown in Figure 1. The physical

communication paths in this system are:

9600 baud RS-232 serial communication lines between the workstations and
the Series/1 mini-computers. Since these are relatively low-speed lines, they
may extend over large geographic distances. The ﬁse of RS-232 lines is a
design compromise: they are relatively cheap, simple, commonly available,
and compatible with current telephony equipment, but they are not very fast
when there is a requirement for lérge—scale file transfers such as downloading
a software system. Our design of microNet is independent of this constraint

and we are constantly seeking better communications mechanisms.

High-speed (300K byte/sec) channel attach between the Series/l's and the 370
mainframe. These lines may only be used over a short distance

(approximately 200 feet).

A Distributed File-Server for a Personal Computer Network 16

Another version of the microNet system has approximately 30 workstations and an

IBM Series/1 mini-computer as the primary file-server.

4.2 Directions for Further Development

Development work currently in progress includes various Series/1 to Series/1
communications facilities, and low-speed (56 kilobit synchronous) long-distance

communication facilities for the Series/1 to mainframe communication.

There are three major areas for future development. The first is to implement a
distributed kernel for Watsys, rather than the peer-related multiple-kernel version that
exists now. Such a development would permit the implementation of a microNet file
server without a mainframe, since file sharing across a group of Series/l's will be

possible.

Second, investigations are being made concerning the feasibility of replacing the
Series/1-to-microcomputer communications with more modern (faster) technology.
Since the microNet environment is portable with respect to networking facilities, this
area of development tends to be a matter of examining new developments from the
hardware manufacturers both from a technological and economic perspective, and then

implementing the appropriate device drivers.

The third area for future development is the implementation of Watsys on the
various microcomputer workstations. In particular, there are several high-speed
communication peripherals already available for the IBM PC, and the implementation of
Watsys on the PC would allow a microNet file-server to be implemented on a network of
PC's without the need for either a mainframe or a mini-computer communications front-
end. One typical configuration is shown in Figure 2. Files are stored on the personal

computer file-server because the user accesses files in that geographical location most

A Distributed File-Server for a Personal Computer Network 17

of the time. If the user temporarily moves and wishes to use the files then they can be
accessed over the 56 kilobit line connecting the maiﬁframe. Of course if the user
relocates on a permanent basis then the files would be moved to a different machine.
No software would be changed in the user's library and in most cases the user would not

even be aware that the files had migrated to a new location.

370
56 Kb
I
PC Pc | PC

File Stonrage

Figure 2

5 References

[Bos82] Boswell F. D.; Waterloo Systems Language Tutorial and Language Reference

- WATFAC Publications, 1982; ISBN 0-919884-00-8

7

[Bour78] Bourne S. R.; "The UNIX Shell"” Bell System Technical Journal 57, 6, Part 2

(July-August 1978), 1971-1990
[Cher79] Cheriton D. R., Malcolm M. A., Melen L. S. and Sager G. R.; "Thoth, A

A Distributed File-Server for a Personal Computer Network 18

[Cher80]

[John78]

[Malc78]

[Ritc78]

[Tann81]

Portable Real-Time Operating System" Comm. A.C.M. 22, 2 (Feb. 1979),

105-115

Cheriton D. R; Multi-Process Structuring and the Thoth Operating System

Ph.D Thesis, Computer Science Department, Faculty of Mathematics,

University of Waterloo; 1980

Johnson S. C. and Ritchie D. M.; "Portability of C Programs and the UNIX

System" The Bell System Technical Journal 57, 6, Part 2 (July-August 1978),

2021-2048

Malcolm M. A. Didur Phyllis A. and McWeeny Paul A.; Waterloo Port User's

Guide Software Portability Group, Institute for Computer Research,

University of Waterloo; 1983

Ritchie D. M. and Thompson K.; "The UNIX Time-Sharing System" The BELl

System Technical Journal 57, 6, Part 2 (July-August 1978), 1905-1929

Tannenbaum A. S.; Computer Networks Prentice-Hall, 1981; ISBN

0-13-165183-8

A Distributed File-Server for a Personal Computer Network 19

	

