PARALLEL CHOLESKY FACTORIZATION
ON A MULTIPROCESSOR¥*

Alan George
University of Waterloo
Waterloo, Ontario, Canada

Michael T. Heath
Oak Ridge National Laboratory
Oak Ridge, Tennessee, U.S.A.

Joseph Liu
York University
Downsview, Ontario, Canada

Research Report CS-84-49
November 1984

Parallel Cholesky Factorization on a Multiprocessor*

Alan George

University of Waterloo
Waterloo, Ontario, Canada

Michael T. Heath

Oak Ridge National Laboratory
Oak Ridge, Tennessee, U. S. A.

Joseph Liu

York University
Downsview, Ontario, Canada

ABSTRACT

A parallel algorithm is developed for Cholesky factorization on a
multiprocessor. The algorithm is based on self-scheduling of a pool of
tasks. The subtasks in several variants of the basic elimination
algorithm are analyzed for potential concurrency in terms of precedence
relations, work profiles, and processor utilization. This analysis is
supported by simulation results. The most promising variant, which we
call column-Cholesky, is identified and implemented for the Denelcor
HEP multiprocessor. Experimental results are given for this machine.

*Research supported in part by the Canadian Natural Sciences and Engincering Researck Council under grants
A8111 and A5509, by the Applied Mathematical Sciences Research Program, Office of Energy Research, U.S.
Department of Energy under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems Inc., and by
the U.S. Air Force Office of Scientific Research under contract AFOSR-ISSA-84-00056.

1. Intrcduction

Designing parallel algorithms amounts to deciding how to break up a given
computational problem into subtasks that can be carried out concurrently on some
given number of processors. The optimal size or number of these subtasks, usually
referred to as the granularity of the parallel algorithm, and the appropriate type of
communication of data or control information among them are strongly dependent on
the target machine architecture. Our specific purpose in this paper is to present a
parallel algorithm for Cholesky factorization on a multiprocessor. A larger aim is to
exhibit a mode of analysis and a computational methodology that are applicable to
finding and exploiting potential parallelism in a broad range of problems, algorithms,
and computer architectures.

The computational paradigm we employ is that of a pool of tasks whose parallel
execution is governed by a self-scheduling discipline. A pool of tasks may range from a
relatively random, heterogeneous collection having no strong sense of order or
precedence among them to a systematic sequence having a well defined order, such as
the successive rows or columns of a matrix. In any case we will assume that the tasks
are assigned some well ordered sequence of task numbers or task id's, whether naturally
arising or more arbitrarily chosen. Some guidance as to what constitutes a good
ordering of tasks will emerge from our analysis of precedence relations and work
profiles.

In some parallel algorithms, specific tasks are mapped onto specific processors in
advance of initiating the computation, and therefore effective load balancing among the
processors requires that the tasks be reascnably uniform in size. Self-scheduling can be
viewed as a technique for automatic and dynamic load balancing that does not
necessarily require uniformly sized tasks. In self-scheduling, p processes are invoked to
perform a job comsisting of T tasks (p=<T). When a given process completes an
assigned task, it checks whether any unassigned tasks remain in the pool, and if so it is
assigned the next one. Thus, if a processor happens to have drawn a relatively small
task, this simply means that it will become free to take on yet another task from the
pool sooner than a processor occupied by a larger one. In this way all of the processors
tend to be kept busy even if the tasks vary in their computational difficulty. Similar
advantages are gained from this approach when processors having different
computational speeds are employed; i.e., faster processors tend to share a greater
portion of the total work load.

As noted above, tasks are claimed by free processors in an order specified by the
task numbers or id’s. The primary reason tasks are not selected from the pool at
random is that we must satisfy any precedence relations that may hold among the
tasks. Between two tasks, say task a¢ and task b, there are several possible types of
precedence relations affecting their potential parallel execution. Three that are of
interest to us in this context are:

Type 1: task a must finish before task b can begin;
Type 2: task ¢ must finish before task b can finish;
Type 3: task ¢ must begin before task b can begin.

The first type permits only serial execution of the two tasks, but the other two types
permit at least some degree of concurrent execution. Obviously the order chosen for
the pool of tasks should be consistent with any such precedence relations in order to

Table of Contents

Lo INEPOAUCEION .oovvviiiiiieiieeecieeecceceeeecsnrereesencncosesnnsossannesssessnsaosesossustessossassasssssssanes 1
2. Cholesky Factorization and Self-Scheduling Loopscccccoeoriiininnnin. 3
.1, OVEIVIEW ..ooeiiiiiiiciieeeireereeereneesteesssressessosntessnesesssessessassessseessssassesssssessasens 3
2.2. ROW-Choleskycccooiirimiirirniticiinniinieernininisnenieeene e enesersessseessees 5
2.3. Column-Choleskyccoooiiiiriiririniirioinsssisnnisirisiminesisnnireeesinnreessssseees 6
2.4. Submatrix-Choleskyccccccorviiniinninniiniiiiiiiice e 6
3. Analysis of Cholesky Factorization with Self-scheduling Loops 7
3.1. Work Profiles and Processor Utilizationc.cccvvivvevnnivnrnninnninnnne 7
3.2. Simulation Resultsccccccovvimniiiiriennieiencneecce e 11
4. Implementation on the HEPccoooiiniiiiniiiiiintcie e 15
4.1. The Denelcor HEP Computerc.cccociiviinieriniiieninnriinneineeeaneeen 15
4.2. Review of the Dongarra-Hiromoto Implementation 15
4.3. Implementation of Column-Cholesky on the HEP 16
4.4. Experimental Results on the HEP ..o, 17
B. CONCIUSION ..ooeiiiiiiiiiiieeeeeeee e eeercrnreeessenneeesesesssisaneesieantesesssasssassessannessssansnnsens 18
8. Acknowledgmentc..cccccooiiiiiniiiiniiiiincie e 19
Fe REFEIEIICESccoeeiiiieieieiieeieieeteeeeteereerereereeresnretaesteteeeaesesaeesasiesssstesssrsesesseresssersessenns 19

-2 -

take maximum advantage of parallelism. We shall see examples of all three types of
precedence relations in various forms of Cholesky factorization.

The implication of these precedence relations can be depicted in terms of the
following horizontal time-line diagrams:

Type 1:

Type 2:

or

or

Type 3:

7:1:) 'S R [P—
task b: | e |

or
task a: | --meeemeee]
task b: |-----e- |

or
task a: | -—=mem-mmev |
task b: [—

This self-scheduled pool-of-tasks approach is flexible in that it is not strongly
dependent on the number of processors available, but it is best suited to large-to-
medium grained parallelism, which, in the present context, means problems for which
the total number of tasks T exceeds the number of processors p by a substantial
margin. Since the pool of tasks must be made available to each processor, this
paradigm is not appropriate for all parallel architectures, but it is appropriate for
several important ones, including systems having a significant amount of shared global
memory and systems having a master processor that can dispatch tasks to a number of
other processors.

The concept of self-scheduling, at least in the sense we are using it, seems to be
due to the designers of the Denelcor HEP multiprocessor, principally Burton Smith. It
is discussed in several of Harry Jordan’s early unpublished manuscripts on programming
methodology for the HEP. It is mentioned briefly in his published paper [7] and is given
as an example in the HEP Fortran manual [2].

-3 -

2. Cholesky Factorization and Self-Scheduling Loops

2.1. Overview

We turn our attention now to the specific problem we wish to address, computing
the Cholesky factorization of a symmetric positive definite matrix of order n. With a
single processor, the amount of work required is O(n®) arithmetic operations. With
more processors, the total number of arithmetic operations performed remains the
same, but the total execution time will be reduced as a result of sharing the work
among the processors, even though some additional overhead may be introduced by
necessary communication or synchronization among the tasks and processors. If the
number of processors available is very large, say O(n) or O(n?), then the work
performed by each processor will be correspondingly small, perhaps just a few
arithmetic operations. Some appropriate parallel algorithms for this case include
systolic arrays [1] and data-flow [10], and the corresponding architectures involve very
simple processors with limited communication among them and only local memory. We
are interested in the case p <<n. Most existing machines with architectures suitable for
supporting our approach have a number of general purpose processors in the range
4=<p=64.

It has long been known that there are numerous ways of organizing Gaussian
elimination (Crout, Doolittle, etc.), each of which has advantages in specific
circumstances (memory access patterns, vectorization, etc.). A systematic study of
these variations on Gaussian elimination and their implications for particular computer
architectures is given by Dongarra, Gustavson and Karp [3]. Their formulation, which
serves as the point of departure for our analysis, is given by the following generic
algorithm describing Gaussian elimination for a given n Xn matrix A:

for
for

for

In this formulation, a particular algorithm results from filling the blanks with the limits
on the loop parameters ¢, j, and k& in some order. A minor variant of this genmeric
algorithm can be used to describe the Cholesky factorization LLT for symmetric
positive definite matrices. In the latter case we can take advantage of symmetry (i.e.,
ax; =ag) in order to access only one triangle of the matrix (say the lower triangle) and
to access the matrix by rows or columns, as desired. Our discussion of Cholesky
factorization will be based on this formulation. Six different algorithmic forms of
Cholesky factorization can be obtained, depending on the arrangement of the three loop
indices ¢, j, and k. Dougarra et al [3] have appropriately called these the

ijk, ikj, jik, ki, kij, and kji

-4 -

forms of the algorithm. In this paper, we consider the self-scheduling of tasks for
parallel execution in these different forms of Cholesky decomposition. To aid our
discussion, we define the following three classes of factorization forms (see [5, pp. 17-20]
for a detailed discussion):

Row-Cholesky: The rows of the Cholesky factor L are computed one by one. This
formulation is sometimes referred to as the bordersng method.

Column-Cholesky: The columns of the Cholesky factor L are computed one by one
using the previously computed columns of L. This is sometimes called the inner-
product formulation of symmetric decomposition.

Submatrix-Cholesky: The submatrix modifications from columns of L are applied one
by one to the remaining submatrix to be factored. This is sometimes called the outer-
product formulation of symmetric decomposition.

Fig. 2.1 illustrates these three forms of Cholesky decomposition.

Row-Cholesky Column-Cholesky Submatrix-Cholesky

modified
used for modification

Fig. 2.1. Three Forms of Cholesky Decomposition

We shall study the following scheduling loops:

fori:=1ton forj:=1ton fork:=1ton
schedule Trow(s) schedule Tcol(j) schedule Tsub(k)
end end end

for the three different forms, where Trow(i) is the task to compute the i** row L;, of
the Cholesky factor L, Teol(j) is the task to determine the j** column L,;, and Tsub(k)
is the task to perform the submatrix modification from the k** column of L. We shall
consider the self-scheduling of these tasks for the three algorithms and compare their
respective performance in a multiprocessor environment.

It should be emphasized that there are many other ways of setting up self-
scheduling loops to perform Cholesky factorization, depending on how we split up the
entire factorization into tasks. The three scheduling loops under consideration are
logical ways of defining tasks, are appropriate for the level of granularity we wish to

-_5 -

exploit, and they serve to illustrate the various techniques used in §3 to compare
different parallel algorithms.

2.2. Row-Cholesky

In order to compute the i** row of the Cholesky factor, we require access to the
previous i—1 rows of L. Computationally, these i—1 rows are used to do a lower
triangular solve to determine L, for j=1,...,i—1. Then the diagonal element L; can
be obtained from these computed entries of the i** row. Depending on how the
previous i —1 rows are accessed, whether by row or by column, we have the ijk or the
ikj forms of factorization, respectively, as used by Dongarra et al [3]. Fig. 2.2

illustrates these two forms pictorially.

ikj-form

Fig. 2.2. Two Forms of Row-Cholesky

The i** task Trow(i) depends on results from all the previous i —1 tasks. It should
be noted, however, that in the ijk form, since the first i —1 rows of L are being accessed
row by row in the execution of task Trow(s), the part involving the first r rows can be
performed once the first r tasks Trow(1), . .. ,Trow(r) to compute L,,, ... ,L,, have been
completed. In other words, although Trow(i) uses results from Trow(:i—1), a major
portion of these two tasks can be executed concurrently, except when i <2.

Thus there is a Type 2 precedence relation among the n tasks

Trow(1) = Trow(2) = - - - = Trow(n)

since task Trow(i) cannot be completed until Trow(i—1) has finished, but Trow(s) can
begin before Trow(i—1) is finished. Thus, the scheduling of these tasks on a number of
parallel processors becomes potentially advantageous. The ikj form of row-Cholesky,
on the other hand, leads to a Type 1 (i.e., serial) precedence relation among the tasks
Trow(*). Since we want to maximize parallelism, we shall henceforth use ‘‘row-
Cholesky” to refer to the ijk form of Cholesky.

2.3. Column-Cholesky

To compute column j of the Cholesky factor, we require access to the rectangular
submatrix enclosed (inclusively) by the 7** row and j** column of L. This rectangular
submatrix can be accessed either by row or by column, so that we have the jik and jki
forms of Cholesky as used by Dongarra et al. These two forms are illustrated in Fig.
2.3.

jik-form jki-form

Fig. 2.3. Two Forms of Column-Cholesky

The jki form of column-Cholesky shares the same advantage as the ijk form in
row-Cholesky. This may be attributed to the fact that the submatrix that modifies
column j is being accessed column by column. Indeed, the same Type 2 precedence
relation exists among the n tasks

Teol(1) = Tcol(2) = - - - = Teol(n)

so that there is a high degree of potential concurrency among these tasks. It makes
sense, therefore, to schedule these tasks for a number of parallel processors. We shall
use ‘‘column-Cholesky” to refer to this jki form. Note that in the BLAS (Basic Linear
Algebra Subroutines [8]) terminology, the basic operation here is a SAXPY; that is, a
computation of the form Az +y, where A is a matrix, and z and y are vectors.

It should be pointed out that the parallel implementation of Cholesky factorization
by Dongarra and Hiromoto [4] is the jik version. Since at the outer loop level of jik the
precedence relation among the tasks Tcol(*) is of Type 1 (i.e., serial), any parallelism
must come within the inner loops, where the basic operation is a matrix-vector product.
The latter operation, called a GAXPFY in [3] is implemented in [4] as a set of inner
products computed in parallel. More will be said about this implementation in §4.

2.4. Submatrix-Cholesky

To apply the modification from column % of the Cholesky factor, we need to
modify entries in the submatrix as given by the remaining n —k columns of the matrix.
Again, the modification can be performed either by row or by column to give the kij
and kji forms of Cholesky, respectively. Fig. 2.4 illustrates these two forms.

kij-form kji-form

Fig. 2.4. Two Forms of Submatrix-Cholesky

The kji form is more appropriate for self-scheduling loops, for the same reason as
in the case of ijk and jki forms. For our purpose, we shall use ‘‘submatrix-Cholesky” to
refer to the kji version, in which modification is applied column by column. Again, the
basic operation for this scheme is a SAXFY.

It is interesting to note that the n tasks Tsub(#) are related in a rather different
way. The task Tsub(k) can start whenever the modifications to column k from the
previous k—1 tasks are done. It is therefore possible that the task Tsub(k) is completed
before a task Tsub(c), where ¢ <k. Thus the precedence relation

Tsub(1) = Tsub(2) » - - - = Tsub(n)

is of Type 3.

Another notable difference is the possibility of modifying the same column by
different tasks at the same time. Some mechanism for mutual exclusion must therefore
be incorporated to avoid simultaneous updates. This problem does not arise in row-
Cholesky and column-Cholesky, since the modifications to a particular row or column
are performed by only one task, so that the updates are done serially by one processor.
Finally, we note that the algorithm of O’Leary and Stewart [10] is associated with the
kji form of submatrix-Cholesky, but with a finer grain of parallelism in that the inner
loops are parallelized as well.

3. Analysis of Cholesky Factorization with Self-scheduling Loops

3.1. Work Profiles and Processor Utilization

In §2, we have discussed three ways (row-Cholesky, column-Cholesky, and
submatrix-Cholesky) of scheduling tasks in a parallel environment for the solution of
symmetric positive definite linear systems. For each of the three forms, we saw that a
comparison of the precedence relations among the resulting tasks enabled us to identify
the more inherently parallel of the two possible variations. In this section we turn to
the problem of choosing from among the three basic forms the best for parallel
execution. In order to do this we introduce the notion of work pro files of the different
self-scheduling algorithms and study the corresponding processor utilization curves.

-8 -

In general, consider the self-scheduling of the following loop:

fort :==1ton
schedule Task(t)
end

where ¢ is the task number or task id used for the purpose of task scheduling. In other
words, if there are p processors available (assuming that p <n), the first p tasks will be
claimed by these processors. Whenever a processor becomes free, it will be responsible
for the next task in the sequence, namely Task{p +1).

For each task, we define TaskWork(t) to be the amount of work required to
complete it. The work profile is then the graph of TaskWork(t) plotted against ¢. In
Cholesky factorization, for simplicity, we assume that the amount of work for a task is
the number of multiplicative operations required. Here, for uniformity, we shall regard
a square root operation as another multiplicative operation. For the three basic forms
of Cholesky it is easy to verify that:

TrowWork(i)=i(i +1)/2
TeolWork(5)=j(n—j5+1)
TsubWork(k)=(n—k+1)(n—k+2)/2

Figs. 3.1 to 3.3 show the work profiles of the row-, column-, and submatrix-Cholesky
schemes for n =50. It should be noted that the area under each curve represents the
total number of multiplicative operations required to perform Cholesky factorization on
a 50X 50 linear system. The areas under the three graphs are therefore the same, but
their different shapes lead to quite different processor utilization characteristics.

With row-Cholesky, the relatively small tasks at the beginning should enable all
processors to become fully utilized quickly, but saving the larger tasks to the end is
likely to cause a significant number of processors to become idle while other processors
finish with tasks involving the last few rows. Since these tasks require comparatively
more time (proportional to n2/2), the degradation in the overall efficiency of the scheme
is non-trivial. Submatrix-Cholesky is rather the opposite: the relatively large tasks at
the beginning may tend to inhibit full processor utilization early on, but its terminal
behavior should be good because the tasks are getting smaller toward the end.
Column-Cholesky has the best properties of both: task sizes taper up and then down in
a smooth manner, leading to good processor utilization throughout the computation.

In Figs. 3.4 to 3.6 these conclusions are graphically illustrated in the processor
utilization curves, resulting from simulations described in §3.2, for the three forms of
Cholesky. As expected, row-Cholesky (Fig. 3.4) “ramps up” quickly to full processor
utilization, but its utilization degrades near the end due to processors becoming idle
while the last few large tasks are completed. The processor utilization graph for
submatrix-Cholesky (Fig. 3.6) is somewhat deceptive in that the processors may all
begin tasks rather quickly, but that does not mean that they are actually engaged in
productive work, since the processor for a given task may spend a good deal of its time
waiting for modifications from earlier columns to be completed (this effect is discussed
in detail below in §3.2). Thus, in effect, submatrix-Cholesky ramps up to full utilization
more slowly because of the large early tasks, but then maintains reasonably good
utilization until near the end. Column-Cholesky (Fig. 3.5) shows more uniformly good
behavior and is clearly the superior method. Note that in the example the efficiencies,

which will be defined below, of the row-Cholesky and submatrix-Cholesky methods
happen to be the same. This is entirely accidental; in general, their efficiencies would

be different.

1400 -
1200 +

1000 4
Task

800 4
Work

400 +

Fig. 3.1. Work Profile of Row-Cholesky.

1400 T
1200 4

1000 ¢+

Task
Work

800 +

Fig. 3.2. Work Profile of Column-Cholesky.

-9 -

Row-Cholesky

Task i

Column-Cholesky

Task |

- 10 -

1400

1200 :
Submatris-Cholesky
1000

Task
Work
600

400

Task k

Fig. 3.3. Work Profile of Submatrix-Cholesky.

“T Row-Cholesky (88.7% Efficiency)
S+ !
sactive T
Processorsg |
|
14
0 A
Time

Fig. 3.4. Processor Utilization Graph for Row-Cholesky (» = 50, p = 5).

-11 -

Column-Cholesky (95% Efficiency)

S+ “
A cti 41+
Active
Processors, |
2+
14
0 4

Time

Fig. 3.5. Processor Utilization Graph for Column-Cholesky (n = 50, p = 5).

Submatrix-Cholesky (88.7% Efficiency)

#Active 4
Processors3

-

Time

Fig. 3.6. Processor Utilization Graph for Submatrix-Cholesky (n = 50, p = 5). |

3.2. Simulation Results

In this section we turn from a theoretical analysis of the three forms of Cholesky
factorization to a simulation of their actual behavior for nXn systems on a
multiprocessor with p processors. Numerical experiments on an existing
multiprocessor, the Denelcor HEP, will be provided in §4.

In the simulation, we assume that the p processors have the same performance.
Each takes one time unit to perform anr additive operation or a multiplicative
operation. Two unit time steps are required to compute the square root of a real
number. In the simulation, time that might be lost to memory contention caused by
simultaneous access (as opposed to simultaneous update) has been ignored.

- 12 -

In the results reported, we give the total number of time steps required to

complete the entire factorization using p processors. The speed-up for p processors is
defined to be:

speed-up = (time used by 1 processor) / (time used by p processors).

Efficiency for p processors is computed as:

efficiency = speed-up / p.

In general, efficiency is less than 100% except for the case when p =1. This is due
to the fact that during the course of the computation, some processors spend some time
steps waiting, so that time is spent not directly for the actual numerical computation.
Indeed, efficiency can also be computed as:

efficiency = 1 - (total wait time) / (total time steps * p) .

We classify the wait time into two types. Busy-wait time is time spent by a
processor waiting in order to do further work on a task it has already been assigned.
Idle-wast time is time in which a processor is in a wait state with no task on hand.
Idle-wait time should occur only towards the end of the computation when all tasks
have been assigned and yet there are some free processors.

Implicit in the notion of idle-wait time is the assumption that the p processors are
released only after all tasks in the computation have been completed. In some contexts,
of course, where the Cholesky factorization is only one job in a long chain of
computations, there might be the possibility of “idle” processors being assigned to tasks
in a subsequent member of the chain. However, our attitude in this paper is that we
are designing a ‘library subroutine”, and are concerned with maximum utilization of
resources for the specific computational problem of Cholesky factorization.

In what follows, we discuss the way busy-wait time is computed in the three
schemes. In the row-Cholesky method, consider the task Trow(i). As described in §2,
this task consists of a lower triangular solve involving the previous {—1 rows of the
factor L. If the first r—1 rows of L have been used in this lower triangular solve and yet
L,, is not ready (that is, Trow(r) has not been completed), the processor working on
Trow(:) will enter into a busy-wait state. It will be in this wait state until Trow(r) is
completed. This situation can be depicted by a ‘“horizontal time-line” as shown below.

Trow(r): |-----===--e-eeeev|
Trow(i): S — |

In the case of column-Cholesky simulation, the busy-wait time is determined in the
same way as row-Cholesky except that columns are considered instead of rows. The
task Tcol(j) requires modifications of column j from the previous j—~1 columns. Thus, if
the column modifications from the first ¢—1 columns have been performed on column j
and column ¢ is not yet ready, the processor with task Tcol(j) will have to wait for the
completion of Tcol(c).

- 13 —

Finally, in the submatrix-Cholesky scheme, the situation is quite different.
Consider the task Tsub(k). This task cannot start until all the modifications from the
previous k—1 columns have been performed on column &. It should be noted that these
column modifications are applied by the tasks Tsub(1), ... ,Tsub(k—1). In other words,
if any one of these k—1 tasks has not yet modified column &, the processor working on
Tsub{k) will be in a busy-wait state. This can be implemented quite easily by
maintaining a modification count for each column: the task Tsub(k) can start only if its
count is k—1.

As mentioned in §2, simultaneous updating of a column is a problem that must be
resolved for submatrix-Cholesky. However, for simplicity in the simulation, no measure
is used to guard against this. Therefore, the time reported can only be regarded as a
lower bound for the actual time that would be required.

In Tables 3.1 to 3.3, results from the simulation are tabulated.

p Total Time | Speed-up | Efficiency | Busy-Wait | Idle-Wait | Total Wait
1 2686900 1.00 100.00 0 0 0
2 1353508 1.98 99.26 16 20100 20116
3 909081 2.95 98.52 73 40270 40343
4 686900 3.91 97.79 194 60506 60700
5 553623 4.85 97.07 403 80812 81215
6 464791 5.78 96.35 721 101125 101846
8 353855 7.59 94.92 1785 142155 143940

10 287388 9.34 93.49 3573 183407 186980

12 243167 11.05 92.08 6270 224834 231104

14 211658 12.69 90.68 10062 266250 276312

16 188131 14.28 89.26 15135 308061 323196

18 169985 15.80 87.81 21675 351155 372830

20 155548 17.27 88.37 29873 394187 424060

50 84852 31.66 63.33 478310 1077390 1555700

100 79801 33.67 33.67 1994850 3298350 5293200

Table 3.1: Simulation of Row-Cholesky on a 200X200 System.

The column-Cholesky scheme emerges as the clear winner when the simulation
results in Tables 3.1-3.3 are compared. For p =20 (10% of the size of the matrix), the
efficiency of column-Cholesky remains at a level of about 97%. On the other hand, the
efficiency for the other two schemes for 20 processors drops to about 87%. The
difference is more dramatic when p =50. These results are consistent with our earlier
analysis of processor utilization based on work profiles.

The amount of idle-wait time for the row-Cholesky method is strikingly high.
Indeed, we see from Table 3.1 that for p = 20, over 90% of the total wait time is spent
for idle-wait. This is not surprising in view of the work profile of the row-Cholesky
scheme as shown in Fig. 3.1 and the idealized processor utilization curve shown in Fig.
3.4.

On the other hand, from Table 3.3, we note that most of the wait time for the
submatrix-Cholesky method is attributed to busy-wait, again consistent with our
analysis of its work profile and precedence relation. As explained in §3.1, the processor
working on task Tsub(k) has to wait until all the £—~1 modifications on column % have
been applied. It should be emphasized again that the busy-wait time reported does not

- 14 -

P Total Time | Speed-up | Efficiency | Busy-Wait | Idle-Wait | Total Wait
1 2686900 1.00 100.00 0 0 0
2 1343701 2.00 99.98 403 99 502
3 8906065 2.99 99.95 1150 145 1295
4 672306 3.99 99.91 2035 289 2324
5 538110 4.99 99.86 3366 284 3650
6 448836 5.98 99.77 5150 966 6116
8 337100 7.97 99.63 9393 507 9900

10 270298 9.94 99.41 153086 774 16080

12 226120 11.88 99.02 24191 2349 26540

14 194468 13.81 98.69 31106 4546 35652

16 170991 15.71 98.21 42903 6053 48956

18 152395 17.63 97.95 52844 3366 56210

20 138068 19.46 97.30 69520 4940 74460

50 65902 40.77 81.54 541744 66456 608200

100 60100 44.70 44.71 2818200 504900 3323100

Table 3.2: Simulation of Column-Cholesky on 200X 200 System.

P Total Time | Speed-up | Efficiency | Busy-Wait | Idle-Wait | Total Wait
1 2686900 1.00 100.00 0 0 0
2 1353504 1.98 99.26 20106 2 20108
3 909065 2.95 98.52 40288 7 40295
4 686868 3.91 97.80 60556 16 60572
5 553568 4.85 97.08 80910 30 80940
6 464712 5.78 96.36 101322 50 101372
8 353695 7.59 94.96 142548 112 142660

10 287128 9.35 93.58 184170 210 184380

12 242785 11.06 92.22 226168 352 226520

14 211140 12.72 90.90 268514 546 269060

16 187447 14.33 89.59 311452 800 312252

18 169090 15.89 88.28 355598 1122 356720

20 154428 17.39 87.00 400140 1520 401660

50 77552 34.64 69.29 1168650 22050 1190700

100 60100 44.70 44.71 3151500 171600 3323100

Table 3.3: Simulation of Submatrix-Cholesky on 200X 200 System.

include any wait time that would be incurred due to simultaneous column modifications.

The column-Cholesky scheme exhibits a relatively good balance between busy-wait
and idle-wait time. The work profile of this method as depicted in Fig. 3.2 and
processor utilization curve shown in Fig. 3.5 help to explain its desirable behavior.

The relatively poor performance of all three schemes for very large numbers of
processors (say 100 in the tables) is disappointing, but not entirely unexpected. It
means that the granularity of our approach is not appropriate for such large numbers
of processors. In other words, treating each row/column/submatrix as a task is too
coarse when p is a significant fraction of n. Thus, each task should be broken up into
finer subtasks for parallel computation when the number of processors is relatively
large.

- 15 -

4. Implementation on the HEP

4.1. The Denelcor HEP Computer

The Denelcor HEP is a commercially available multiprocessor whose architecture
and corresponding programming style are described, for example, in [6, pp. 669-684] and
[7]. A HEP can have one or more process execution modules (PEM’s), but even within a
single PEM there is an eight-fold parallelism due to an eight-stage instruction pipeline
that can in effect process eight independent instruction streams simultaneously (that is
to say, an instruction from each of eight streams is executed in each major machine
cycle). Due to latencies in certain instructions, memory fetches, etc., more than eight
instruction streams {processes) are usually necessary to keep the eight-stage instruction
pipeline fully occupied. Experience has shown that about twelve processes are usually
needed to utilize fully the machine’s throughput capability.

Other salient features of the HEP for our purposes include a large shared memory,
facilities for creating processes, low-overhead synchronization primitives for
coordinating processes, and hardware locks on memory that facilitate efficient
implementation of mutual exclusion. In particular, the self-scheduled pool-of-tasks
paradigm can be programmed on the HEP in a natural and efficient manner. See [9] for
a detailed discussion of implementing self-scheduling on the HEP.

A single PEM HEP at Argonne National Laboratory was kindly made available to
us for the experiments reported in this paper.

4.2. Review of the Dongarra-Hiromoto Implementation

In [4], Dongarra and Hiromoto describe an implementation of the Cholesky
factorization on the Denelcor HEP computer. It is based on the jik formulation of the
factorization. Recall from §2.3 that in this jik version, columns are computed one by
one, and the rectangular submatrix required for column modification is accessed row by
row. We shall refer to this as the Dongarra-Hiromoto implementation.

It must be emphasized that their objective was to obtain near optimum parallel
performance by implementing only the underlying modules (i.e., inner loops) by parallel
constructs. In this way, they are able to produce “portable algorithms with a high level
of granularity in their structure.” They have certainly achieved their goal in [4].

Since the outer-loop precedence relation for the jik form is of Type 1, in the
implementation [4] the n tasks of computing columns are performed serially. The self-
scheduling technique is used in the second loop for performing the basic GAXPY
operation to do a matrix-vector product. In other words, the inner-products within the
GAXPY module (which is in fact named SMXPFY in [4]) are executed in parallel.

For completeness, we have tabulated in Table 4.1 results from simulating the
Dongarra-Hiromoto parallel implementation. Note that in this implementation, there is
no busy-wast, since at this level all parallel processes active at a given time are
completely independent (recall that in the simulations we are ignoring any wait time
due to possible memory contention).

As might be expected from the serial (Type 1) nature of the outer loop, the
Dongarra-Hiromoto implementation is uniformly less effective than any of the three
Cholesky variations studied in §3, except that it does beat the worst of the three, row-
Cholesky, for very large p.

P Total Time | Speed-up | Efficiency | Busy-Wait | Idle-Wait | Total Wait
1 2686900 1.00 100.00 0 0 0
2 1363600 1.97 98.52 0 40300 40300
3 922522 291 97.09 0 80666 80666
4 702000 3.82 95.69 0 121100 121100
5 569700 4.71 94.33 0 161600 161600
6 481510 5.58 93.00 0 202160 202160
8 371300 7.23 90.46 0 283500 283500

10 305200 8.80 88.04 0 356100 365100

12 261156 10.28 85.74 0 446972 446972

14 229710 11.69 83.55 0 529040 529040

16 208148 13.03 81.46 0 611468 611468

18 187832 14.30 79.47 0 694076 694076

20 173200 15.51 77.57 0 777100 777100

50 94800 28.34 56.69 0 2053100 2053100

100 70000 38.38 38.38 0 4313100 4313100

Table 4.1: Simulation of Dongarra-Hiromoto Implementation on 200X 200 System.

4.3. Implementation of Column-Cholesky on the HEP

The simulation results in section 3.2 suggest the use of the column-Cholesky
scheme on the HEP machine for parallel implementation. A closer examination of the
task Tcol(j) in the column-Cholesky method suggests that there are two types of
subtasks:

1. emod(j,k) : modification of column j by column & (k < j);

2. cdiv(j) : division of column j by a scalar.

Fig. 4.1 contains a precedence graph for these subtasks. It should be clear that
modifications from the preceding columns must be performed before scalar division on
column j can start. Furthermore, column j can be used to modify subsequent columns
only after its values are completely formed through the subtask cdiv(j).

emod(j+1,5) Cm0d(_7+2] -+« cmod(n,J)

cdw(J) /
PN

emod(j,1) emod(j,2) - emod(j,5—1)

Fig. 4.1. Subtask Precedence Graph for Column-Cholesky.

-17 -

The self-scheduling of the tasks Tcol(j) can be implemented quite easily by
maintaining a vector of flags “‘ready|+#]"’, where ready[j] indicates whether column j is
ready to be used for modification of subsequent columns. The following gives an
algorithmic description of the implementation:

ready(l] := 1;

for j:=2ton
ready|j] := 0;

for j:=1ton
schedule Tcol(5);

The task Tcol(j) can then be implemented as:

fork :=1to j—1
begin
wait until ready[k] = 1;
do cmod(j,k)
end;
do cdiv(j);
ready|j] == 1;

We note that this implementation has the advantage of requiring no mutual exclusion
or critical section other than that directly related to self-scheduling (i.e., processes
picking up a unique task id).

4.4. Experimental Results on the HEP

The column-Cholesky scheme was implemented on the HEP. Results on its
performance for systems of order 200 are tabulated in Table 4.2. For the sake of
comparison, we have also included the experimental results on the Dongarra-Hiromoto
implementation. The times shown are actual values obtained from the timing clock on
the HEP with no other user jobs running, and are in units of 10™7 seconds.

Our results on the HEP are reasonably consistent with our theoretical analysis and
simulation results, especially when the simplifying assumptions of the latter are
considered. Speed-up and efficiency are, of course, uniformly inferior when the realities
of synchronization overhead, memory contention, etc., are taken into account. Still, the
shape and trend of our results seem to bear out our expectations. For our
implementation of column-Cholesky, in particular, a speed-up of about 8.9 on a machine
having only an eight-fold hardware parallelism seems most satisfactory. Veteran HEP
users have conjectured that a speed-up of about 10 is the most that could be expected
of any algorithm for matrix problems of this type on a single PEM HEP [4, p. 3]. We
note that due to the nature of the HEP architecture, the speed-up flattens out at about
p =12, since the instruction pipeline is fully saturated by that point, then actually gets
slightly worse for larger p, since there is overhead associated with maintaining
additional processes.

We note that the column-Cholesky algorithm outperforms the Dongarra-Hiromoto
implementation, both in absolute terms and in terms of speed-up and efficiency;
moreover, the differences become greater as p increases. The superiority of column-
Cholesky in speed-up and efficiency for p >1 is easily explained in terms of the analysis
we have presented. Less readily understood is the superior performance of column-

- 18 —

Column-Cholesky Dongarra-Hiromoto

P HEP Time Speed-up Efficiency | HEP Time Speed-up Efficiency
1 229817620 1.00 100.06 402804992 1.00 100.00
2 116241803 1.98 98.85 208148142 1.94 98.76
3 77378577 2.97 99.00 143416418 2.81 93.62
4 59260228 3.88 96.95 111825036 3.60 90.05
5 47445196 4.84 96.88 93630438 4.30 86.04
6 40356802 5.69 94.91 81451456 4.95 82.42
8 31406321 . 7.32 91.47 66082956 6.10 76.19
10 | 27091879 8.48 84.83 61120506 6.59 65.90
12 25888952 8.88 73.98 57677942 6.98 68.20
14 25785533 8.91 63.66 57417148 7.02 50.11
16 26353589 8.72 54.50 57249314 7.04 43.97
18 | 26645924 8.62 47.92 57124855 7.05 39.17
20 27345522 8.40 42.02 59152152 6.81 34.05

Table 4.2: Experimental Results on the HEP for 200X 200 System

Cholesky for p =1, since the two algorithms are performing the same number of floating
point operations, and parallelism is not a factor. We conjecture that this behavior is an
artifact of the nature of the HEP architecture. A probable contributing factor is the
relatively high cost of integer arithmetic (and hence index and subscript computations)
on the HEP. Thus, the use of a two-dimensional array (GAXPFY) in the Dongarra-
Hiromoto code leads to relatively poor performance compared to the one-dimensional
array (SAXPFY) required for the inner loop of our implementation of column-Cholesky.
It has also been observed that because of latency in memory access, some computations
on the HEP can be dominated by memory references rather than arithmetic operations.
Another anomaly is the discrepancy between the maximum speed-up of about 7.1 that
we observed for the Dongarra-Hiromoto code and their published value of 7.6 [4, p. 3]
for the same code on the HEP at Los Alamos National Laboratory.

5. Conclusion

In this paper we have developed a parallel algorithm for Cholesky factorization on
a multiprocessor. The algorithm is based on the concept of self-scheduling a pool of
tasks. We considered six variations on the basic elimination algorithm corresponding to
all possible arrangements of the three loops. An analysis of the precedence
relationships among tasks, task work profiles, and the resultant processor utilization
characteristics enabled us to identify the most promising variant for parallel
implementation. The algorithm chosen, which we call column-Cholesky, was
implemented on the Denelcor HEP multiprocessor. Its performance surpassed that of a
previous algorithm for the same problem, and seems to approach the maximum of
which the machine is capable.

The self-scheduling pool of tasks seems to be a powerful paradigm for parallel
computation because it tends to yield good load balancing and makes effective use of all
processors even if the tasks are heterogeneous. It is not strongly dependent on the
number of processors available, and therefore the resulting algorithms are potentially
portable across parallel machines having different numbers of processors. In order that
self-scheduling effectively exploit potential concurrency, however, the order in which
tasks are scheduled from the pool must take into account the precedence relations and

- 19 -

work profiles of those tasks. The type of analysis that we have used should be helpful
in designing parallel algorithms for many other computational problems. We have
already applied the same technique, although necessarily with somewhat more
complicated data structures and control logic, to the factorization of sparse matrices.
These results will be reported in a future paper.

8. Acknowledgment

We are grateful to J. Dongarra and R. Hiromoto for kindly providing us with a
copy of their code. We also greatly appreciate the advice and assistance provided by J.
Dongarra and D. Sorensen in connection with the use of the HEP at Argonne National
Laboratory.

7. References

[1] R. P. BRENT AND F. T. LUK, “Computing the Cholesky factorization using a
systolic architecture’”, TR 82-521, Department of Computer Science, Cornell
University , Ithaca, NY (September 1982).

[2] DENELCOR, INC., “HEP Fortran 77 User’s Guide”, Pub. No. 9000008, Denelcor,
Inc., Aurora, CO (February 1982).

[3] J. J. DONGARRA, F. G. GUSTAVSON, AND A. KARP, “Implementing linear algebra
algorithms for dense matrices on a vector pipeline machine”, SIAM Review, 28
(1984), pp. 91-112.

[4] J. J. DONGARRA AND R. E. HIROMOTO, “A collection of parallel linear equations
routines for the Denelcor HEP”’, ANL/MCS-TM-15, Argonne National Laboratory,
Argonne, IL (September 1983).

[5] J.A. GEORGE AND J. W-H. LIU, Computer Solution of Large Sparse Positive
De finite Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ (1981).

[6] K. HWANG AND F. A. BRIGGS, Computer Architecture and Parallel Processing,
McGraw-Hill Book Co., New York (1984).

[7] H. F. JORDAN, “Experience with pipelined multiple instruction streams’, Proc.
IEEE, 72 (1984), pp. 113-123.

[8] C. LAwsoN, R. HANSON, D. KINCAID, AND F. KROGH, ‘“‘Basic linear algebra
subprograms for Fortran usage”, ACM Trans. Math So ftware, 5 (1979), pp. 308-
371.

[9] E. L. LUSK AND R. A. OVERBEEK, “Implementation of monitors with macros: a
programming aid for the HEP and other parallel processors”, ANL-83-97, Argonne
National Laboratory, Argonne, IL (December 1983).

[10] D. P. O’'LEARY AND G. W. STEWART, “Data-flow algorithms for parallel matrix
computations’”, Tech. Rept. 1366, Computer Science Dept., University of
Marylard , College Park, MD (January 1984).

	

