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Abstract

This document describes the development of a new Prolog system on a DEC
VAX-11/780% running under the UNIX} operation system. Modular
programming in Prolog and an adaptable runtime system are some of the
notable features introduced in this new implementation. It is a programming
environment that is expected to provide a Prolog system for developing
knowledge-based systems and studying further logic programming development.
Its design is primarily concerned with the long-term objectives of portability,
extendability, and adaptability. The discussion here concentrates on the
rationale behind and the details of this implementation. We conclude with a few
remarks on the results to-date, and with some comparisons with another popular

Prolog system.

tUNIX is a Trademark of Bell Laboratories.
3 DEC is a registered trademark of Digital Equipment Corporation. VAX is a registered trade-
mark of Digital Equipment Corporation.
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Chapter 1

Overview of Prolog

Since the seventeenth century, logicians and mathematicians have studied
mechanical theorem-proving to find a general decision procedure for proving
theorems. With the advent of digital computers, it then became an important
subject of research in Artificial Intelligence. The foundation of mechanical
theorem-proving was developed by Herbrand in 1930. A major breakthrough in
1965 was the development of Resolution Principle by Robinson [Rob65]. Since
then, many variations of this principle have been proposed as the basis for

automatic theorem-provers.

Robert Kowalski and Alain Colmerauer invented logic programming.
PROLOG (PROgramming in LOGic), a theorem-prover based on the Resolution
Principle, was devised around 1972 by Alain Colmerauer and others at
University of Marseilles, France [Col73]. It was first conceived as a
programming tcol for constructing natural language processing systems. The
first experimental Prolog interpreter was implemented in Algol-W by Philip
Roussel [Rou72]. The first widely used implementation was written in

FORTRAN by Battani and Meloni [Bat73].

During the past ten years, techniques have been refined to provide an
efficient implementation of Prolog. The DEC-10 Prolog interpreter and
compiler, written in Prolog by David Warren and others [War79], has been the
most widely used Prolog implementation, and is sometimes referred to as the de
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facto standard Prolog. Many of its features have later been adopted in other
Prolog systems. Together with the contributions by Maurice Bruynooghe
[Bru76,Bru82,Bru82a], Keith Clark and Frank McCabe [Cla82], and Chris

Mellish [Mel82] Prolog implementation has become rather well-understood.

1.1. Current Research and Development

In addition to natural language processing systems, Prolog has also been
used successfully in applications such as symbolic integration [Ber73), plan
formation [War76], computer aided building design [Mar77], compiler
construction [War77], database description and querying [Gal78], and drug
analysis [Dar78]. Recently, attempts have been made to develop practical
knowledge-based systems using Prolog [Miz83]. For other practical purposes,
there is a growing interest in defining and building Prolog machines to achieve
execution efficiency. This has been further stimulated by the Japanese proposal
to use Prolog as the basis for the kernel language in their Fifth Generation
Computer System (FGCS) project [ICO82]. One of their final goals, within ten
years time, is to provide a very large-scale high speed (1 billion LIPS%)

knowledge-based inference machine.

To support such large-scale applications, many present Prolog systems must
be modified or redesigned to accommodate future extensions. Most existing
Prolog implementations were built for experimental purposes: to investigate the
feasibility of using Prolog as another programming language. To a certain

extent, all suffered from very limited sizes of application.

t Logical inference per second, 1 LIP is approximately equivalent to 100 instructions per second in
present computer technology [Tre82].



Current research is predominantly focused on exploiting the inherent
parallelism of logic programs [Hog82,van82,Con83]. In the case of Prolog, the
major concern is with AND and OR parallelism. Difficulties commonly
encountered are the synchronisation of subgoal calls, search strategies in search
or proof tree, and the organisation and control of subgoal generation. As far as
‘“pure”’ Prolog is concerned, its data-driven and generate-and-search nature
suggest the possibility of realising P;olog machines based on Data-Flow
[Tfe82,Wis82] or Graph-Reduction architectures [Ona82]. All of these are
mostly concerned with the execution aspect of Prolog. Another area of research
that has been given much attention is the practicality of logic programming in

real applications: processing large databases, constructing operating systems and

building expert systems.

To support the development of large knowledge-based systems, a Prolog
system must provide good program development tools and be reasonably robust.
This requires a coherent and integrated programming environment. The notion
of modular programming in Prolog has been recently introduced and compared
with some modern programming languages [Jon80,Ben80,Egg82,Chi83,Fur83].
It must be incorporated in such a way not to violate the properties of logic
programming. The primary concern of the convertional use of modules is
program reusability. Meta-level control and object-oriented programming are
some other motivations for using modules in Prolog [Kah82,Bow82,Sha83]. As
the number of Prolog implementations increase, the task of transporting Prolog
programs across systems becomes non-trivial because of the differences in syntax

and system predicates. Some form of standardisation must be made to



eliminate this overhead of translation [Bru83].

1.2. Prolog at Waterloo

The first Prolog interpreter developed at University of Waterloo was
implemented by Grant Roberts [Rob77]. It was written entirely in IBM-370t
assembly language, and runs under the VM-370/CMS operating system.
Although it is an interpreter, its speed is comparable to the DEC-10 éompiler.
Usability and efficiency were the major objectives of its designer. Notable
features include user-definable error and exception handling, user-controllable
runtime environment (‘self-consciousness” programming, as explained by
Roberts). Its major drawbacks are lack of portability, inefficient-use of runtime
storage, and inadequate debugging facilities. Nevertheless, it is still the fastest

Prolog interpreter around today and fairly usable [Mos&0).

Ronald Ferguson [Fer81] implemented the first Unix-based Prolog
interpreter in system programming language C [Ker78|. His failure of using
YACC [Joh75] to generate a parser for translating Prolog programs with
Operator declarations provided a better understanding of dynamic parsing. In
addition to testing the initial version of ABC algorithm [van81], this interpreter
contributed much insight into the control and runtime structure, and the
possibility of using a high-level system language to build a reasonably efficient

Prolog system.

t IBM is a registered trademark of International Business M:chines Corp.



Paul Ng [Ng82] improved the design and structure on the first version of
Waterloo Unix Prolog interpreter by employing the concept of abstract data
types [Lis74,Gut77]. His prime motive was to increase the modularity of
Ferguson's interpreter and hence its extendability. He simplified the Prolog
syntax (thus, the parser) to a Lisp-like notation. An attempt was made to
define a minimal but workable set of built-in predicates in Prolog. The result

-

was a smaller, cleaner version of Prolog interpreter running on Unix.

The last two Unix-based Prolog interpreters were designed with similar
goals in mind: simplicity, portability and extendability. Despite the fact that
they were never released for general use, they provided much insight to the

current implementation.

1.3. Summary

All three above-mentioned interpreters suffered, as in most other Prolog
systems, from lack of defining long-term objectives at the outset. The
conflicting objectives of efficiency and modularity sometimes create real
problems in constructing an extendable system. Because the fast-expanding
VLSI (Very Large Scale Integration) technology provides hope of implementing
high-level computer architectures, modularity in the design and implementation
of a new Prolog system is an obvious choice over efficiency in execution. The
loss in efficiency can be compensated by building a Prolog machine in hardware

(as proposed in FGCS) based on a viable abstract machine definition.



A programming language is not successful just because of its simplicity or
mathematical elegance. It requires a good programming environment support.
Smalltalkt [Ing78], Ada} [DOD80] and Waterloo Port [Mal83] are examples of
integrating the language into its programming environment, that is self-
contained and specifically tailored for the supporting language. This is the
motivation behind the current version of Waterloo Unix Prolog. Our design is

based on the following long-term objectives:

portable (written in a high-level language)
usable (good debugging facility and programming environment)
extendable (modular in design and implementation)

'°S

adaptable (changeable runtime library for different applications)

(<2}

space-efficient (secondary storage management and tail recursion
optimisation)

— p— p— p— p—
R N .=

(8) suitable for large applications (introduces the notion of modules in
Prolog, and separate compilation).

Many ideas of the current implementation are based on the experience gained in
the past. The result is a fully operational and usable Prolog programming

environment integrated within the Unix operating system.

In the next chapter, we give an overview of this new implementation,
describe some terminology for later discussion, and take a brief look at the
system layout. The following two chapters form the core of this document; they
specify the details of the design and implementation. Our conclusions in the
final chapter include some comparisons with other Prolog systems, and a few
suggestions for future extensions and the result to date. Details of how to use

this system can be found in [van84,Che84].

Smalltalk is a trademark of Xerox Corporation.
Ada is a registered trademark of the U.S.Government (Ada Joint Program Office).



Chapter 2

Waterloo Unix Prolog Environment

The current implementation (hereafter, called WUP) is the third version of
Waterloo Unix Prolog system. It is not an extension to the previous versions.
Except for the runtime ABC algorithm on which all three versions are based, the
design and implementation are completely new. With the foresight that Prolog
will be heavily used in large system or application program development, WUP
is designed with the long-term objectives: extendability, adaptability and

usability.

2.1. Overview of WUP

WUP consists of five major components: a preprocessor, a compiler, an
interpreter, a database management system and a runtime support system (see
figure 2.1). The prominent features include the support of separate compilation,
adaptable runtime system and modular programming in Prolog. It can be

considered as an integrated programming environment built on top of Unix.

A user can create, maintain and execute Prolog programs of reasonable size.
Editing facilities are provided in WUP through the standard editors on Unix and
a simple interactive line-editor. Prolog programs are compiled and maintained
automatically by the database management system, which interfaces with the
Unix file system. With the facility of separate compilation, one can develop

large Prolog programs incrementally. For specific applications, a user can also
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Figure 2.1 Data Flow Diagram of WUP

supply his own runtime library to replace the standard one. WUP can be
modified for real application other than studying logic programming; for
instance, the WUP’s system primitives can be extended to include application-

oriented functions like: robot-movement controls or computer graphics interface.



Details of such an interface can be found in the implementation manual [Che84].
Next, we introduce some terminology for the purpose of future discussion and

give a brief outline of the overall system structure.

2.2. Terminology

A Clause is an assertion (a fact) or a rule as in the definition of Horn
Clause (cf. Kowalski 1974). A Predicate is the head functor of some clause, and
a Procedure is a sequence of clauses with the same predicate. Since WUP is
integrated in the Unix operating system, the notion of File and Directory are as

defined in the Unix file system.

In WUP, a Prolog program is defined by a Program Module, which is a
directory. A program module consists of two parts: a program source and a
program database. The user provides the source; WUP generates the database.
The consistency between the two is automatically maintained by WUP, using a

dictionary (see figure 2.2).

The program source is organised by the user as a structured collection of
files under a directory. All the files (or leaves in the file structure) in the
program source make up a Prolog program. A set of clauses: with the same
predicate name (perhaps with different numbers of arguments) must be stored in
a file with the same name as the filename, a Predicate Source File. The
corresponding program database is generated by WUP when the user invokes
WUP on that program module. Each predicate source file is compiled, and the
code generated is saved under a sub-directory, a Predicate Object Directory, with

the same name inside the program database. Every program module has exactly
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wur
File Tree

( User provided ) ( System generated )

Figure 2.2 A Program Module

one program database. Subsequent modification to a predicate source file in the
program source causes an automatic update on that corresponding predicate
object directory in the program database. A Dictionary (‘.dict’) is maintained
inside the program module to ensure the consistency between the source and the

database (see figure 2.3).

A Library is a pre-compiled program module which can be imported and
used by other program modules. In fact, the system built-in predicates and a
standard set of predicates are two libraries that are included in every WUP
invocation. Every library is imported with an internal user-defined Module
Name (or Module Alias) that can later be referred to, and an external Unix file
pathname, a Module Path. During a WUP session, a library can have multiple
instances as long as each instance has a different internal module name. The
mapping from a module name to a module path can be a many-to-one relation,

but never one-to-many. The order of library inclusion specifies the default
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searching sequence, the Search Path of Prolog predicates in WUP. In figure 2.4,
the module ‘‘usr” is the user’s current working directory and the library “lib” is
imported by the user, note that the two system libraries are always included at
the end of the search path. Conflicting predicates, those with the same name
and arity but are used differently, can co-exist as long as they belong to
different libraries. There is nothing special about system pre-defined predicates;

their definitions can be overridden by user-defined predicates.

During execution, every program module instance is represented internally
by a Module, and its program database becomes the external database of that
module. A module has three distinct parts: a user-defined name, an external
path and a clause database. The clause database has three sub-databases:

Internal, Ezternal and Auziliary. (see figure 2.5). The internal database
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lib ( User Library )
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std ( Standard Library )

sys ( System Library )

Figure 2.4 Search Path

represents the in-memory portion of a program database. The external
database represents the program database on secondary storage. The internal
database is initially empty and its clauses are incrementally loaded from the
external database on a demand basis. At any given time, the internal database
is always a subset of the external database. Together they form the read-only
portion of the main database. In Prolog, there is on distinction between code
and data. One can delete part of his program while it is running. The
underlying Prolog system must monitor the user program to ensure the system
integrity. We avoid self-modifying programs by providing auxiliary database(s)
to save all clauses dynamically created during execution. A user can assert or
retract clauses only in the auxiliary database. WUP ensures that the main and
the auxiliary database of any module are always mutually exclusive, i.e. the

same predicate cannot exist in both databases at the same time. This avoids the



runtime overhead of monitoring self-modifying code.
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Facilities for supporting inforrﬁation-hiding has been incorporated in many
modern programming languages (e.g. CLU, Ada). WUP provides a very simple
mechanism for restricting the accessibility of certain predicates in a program
module. A list of visible or accessible predicates can be specified in a special
predicate source file (‘“‘.export”) inside the program module. Any predicates not
specified in this file are strictly local to this program module, which means they
can be accessed only by those predicates belonging to the same module. As a
consequence, all clauses created at runtime in the auxiliary database are private

to its program module.

The notion of program module in WUP provides a uniform view of Prolog
programs and libraries. Large programs can be developed by combining many
such program modules. Using a program module as a tool, one can also exploit
the ideas of abstract data types and generic types. Furthermore, program
modules can also be used to encapsulate domain-dependent data [Fc;u83]. Our
concept of a “‘program module” and a ‘“module” is analogous to a program and
a process. A program module is a static collection of clauses, while a module is

an execution instance of a program module.

In the following sections, we will describe the functionality and interaction
of each WUP component. A more detailed description of module in Prolog from

a user’s viewpoint can be found in [Poo84] and [Che84].
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2.3. Outline of System Structure

To increase modularity and extendability, WUP is organised into five major
components. Each is constructed in such a way as to hide its internal structure
as much as possible and to reduce the sharing of information to a minimum.
The translation of a Prolog program to its interpretive code is done in three
distinct stages: preprocessing, parsing and code generation. Searching, dynamic

linking and loading, and proving are the phases of execution.

Preprocessing

The varied syntaxes of available Prolog systems makes it difficult to
transport Prolog programs. In view of this difference, a preprocessor has been
given the task of doing the syntax to syntax translation, interpreting operator
declarations (c¢f. DEC-10 Prolog, CProlog, Waterloo Prolog) and expanding
macros. With a fixed intermediate language, the expansion of operators
simplifies the later task of the parser. Together with the macro facility, a user
can define his own ‘syntactic-sugar” for readability. Furthermore, the
discrepancy in the naming of built-in predicates from system to system can,

hopefully, be resolved by means of macro facility (e.g. ESP) [Chi84].

Parsing

The elimination of operator declarations and macros by the preprocessor
makes the lexical and syntactical analyses rather simple. In addition to
performing a few semantic checks, the parser also ensures the matching of

predicate names and their filenames. After an input clause is successfully
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parsed, its machine-independent intermediate code is generated and passed on to

the code generator.

Code Generation

Our current code generator is bspecifically written for the translation of
intermediate code to our interpretive pure code. The output of this code
generator is a relocatable form of pure code which is then saved in the program
database. An interesting aspect of this pure code is that the original input
clause can be reproduced from it, in other words, the compilation process is
reversible, and at the same time, it is compact enough for easy interpretation at

runtime.

Clause Database

The program database structure is designed to facilitate fast retrieval and
easy update on procedures. At the end of compilation, the relocatable pure code
representation of a Prolog program source is saved into the corresponding
program database. Later, during execution, a procedure is retrieved,
dynamically loaded and link-edited into memory from the external program
database. Since self-modifying programs are not permitted, any future
references to the same procedure can be found in the internal database. Such a
scheme makes code swapping (i.e. reloading) possible when main storage is

exhausted.
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Interpreter

This is the heart of the whole system and is based on the ABC algorithm
[van81]. As in most sequential Prolog system, three stacks are maintained by
this interpreter: a runtime (or control) stack, a copy (or global) stack and a trail
(or reset) stack. Using these stacks, the interpreter generates, searches and
maintains a proof tree. Whenever possible it also performs tail recursion
optimisation [War80] and garbage collection on the copy stack [Bru82a]. All
system predicates are trapped here, and control is passed to the corresponding

system procedures.

Runtime Library

WUP has no directives or command language. Every input from the user
specifies eitherv a user or system predicate. All system in predicates written in
the system implementation language reside in the runtime library. Since the rest
of WUP has no prior knowledge about the existence of any pre-defined
predicates, this permits us to tailor the set of system predicates to any
particular application. This can be done without affecting the functionality of
other components. It is one of the notable features in this new implementation

of Prolog.



Chapter 3
Design Details

To make efficient use of a programming language, some basic tools are
required: a text-editor, an interpreter or compiler, and a file system or database
management system. With the development of larger programs, the separate
compilation becomes increasingly important; it provides the basic tool for
modular programming and reusable software. In recent years, most of these
basic tools have been successfully integrated into a coherent programming

environment (cf. Interlisp).

The design of WUP follows the same philosophy. Our aim is to provide a
good program development system and to promote a programming paradigm
based on modules in Prolog. For future extendibility, WUP is organised into
several distinct but interdependent compon-e-nts. Although WUP is specifically
tailored for the Unix operating system many of the system-dependent features
are isolated for maximum adaptability and modifiability. This chapter will
discuss how these components are designed and how they are interconnected to

produce a usable programming environment.

18
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3.1. Specification Notations

Here we describe our notation for use in our specification language. A
program consists of two parts: data declarations and operation specifications.
The declaration part uses equational notation to define the basic data types and
their structures. For each operation, there is a type specification to indicate the
types of parameters, and an action specification which uses Prolog with
annotated variables to indicate its action conditions and sequences. The Prolog
syntax used is the same as WUP’s syntax which will be described in later section.
The type of each parameter in every predicate is shown in the type specification
position-wise. Every Prolog variable is either preceded by a *““?"” for an input-
only variable or *“!” for an output-only variable (¢f. CSP) [Hoa78]. A predicate
is not activated until all its input-only variables are instantiated. All its
output-only variables, which must be free at the time of activation, will be
bound at the end of its execution. For example, given the clause “p(?X) <-
q(?X,'Y),r(?Y)”, the predicate ‘“‘p” and the subgoal ‘‘q”" are not activated until
“X" is bound, and “r” is not activated until Y’ is bound. We can view that

(Pl

q" is the producer and

'TIRY)
r

is the consumer of the channer variable “Y".

Figure 3.1 is an example defining a stack as an abstract data type.
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def Boolean = {true, false}

def Element = an element belongs to any domain type
def EmptyStack = [

def Stack = { [TopElement|RestElement], EmptyStack }

new-stack: Stack
new-stack( [] );

push: Element, Stack, Stack
push( ’E, ?S, ['E[!S] );

pop: Stack, Element, Stack
pop( [?E|?S}, IE, IS );

is-empty: Stack
is-empty( [] );

Figure 3.1 An Example of Specification Notation

3.2. Frontend

The frontend of WUP consists of a Preprocessor and a Parser (see figure
3.2). The preprocessor is designed to make possible the translation from other
Prolog syntax to WUP syntax, the intermediate language (IML). The
translation of IML to WUP machine-independent Prolog intermediate code (PIC)
is done by the parser. The Code Generator (see section 3.3.1) transforms PIC to
pure code (PC) for WUP’s interpreter. Each of these components has a well-

defined interface, and provides enough flexibility for future modifications.
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3.2.1. Preprocessor

The preprocessor has three components, all of which hopefully will be
implemented in Prolog itself . The first component is the Syntaz Translator
where operator predicates are expanded. It collects all the operator predicates

into a database, the Operator Table, and translates the input Prolog source

program to a Parse-tree notation.

example:
op( “< ¥, left-to-right, 130 );
op( “&¢, left-to-right, 140 );
from:
X<Y&YKIZ
to:
u&«( a< “(X,Y),“< “(Y,Z) )

The second component is the Macro Processor. Given any clause in parse-

tree notation together with a macro database, it does the textual replacement of

every subtree that has a macro entry.

example:

macro{ “<“X)Y), (X,)Y) );

macro( “&“(X,Y), and(X,Y) );
from:

“CU“<HXY), “<4Y,2))
to:

and( 1t(X,Y), 1(Y,Z) )

The output from this component is the parse-tree representation of the
input clause without operator predicates or macros. The third component is the
transformation from parse-tree notation to IML notation, the Parse-tree
Transformer. Since our IML (described below) has a prefix function notation, it

is a simple task to translate the parse-tree notation to IML.

t At the time of writing, the preprocessor is not yet implemented.
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3.2.2. Parser

Parsing can be split into three stages: Source handling, Tokenising, and
Analysing. The source handler takes care of the filtering of comments and
redundant white space; this can be done in the preprocessing stage. The
tokeniser identifies all tokens recognisable by IML, and classifies them into
categories for the use by the analyser. The analyser performs the syntactic

analyses on each input clause. For each valid input clause, the analyser will

generate its intermediate code for the code generator.

3.2.2.1. IML

The original syntax of IML was Lisp-like notation [Ng82]. Though IML is
intended to be an intermediate language, we would like to use it for WUP
system programming. To increase its readability, we modified IML to a prefix
function form with a list notation as in DEC-10 Prolog (see Appendix Al). As
list structure is heavily used in Prolog, we give it a distinct notation, and
internally represent it differently from term for efficiency. In the following
example, we give an example of the “append/3” in IML (note that " and “‘<-"

are not reserved).

append( [], List, List ) ;
append( [Head | Oldtail], List, [Head | Newtail] ) <-
append( Oldtail, List, Newtail ) ;

Each token in IML is characterised by its type and value. Figure 3.3 is a
list of tokens defined in IML, together with their corresponding reserved
character representations. The underscore indicates a don't-care field. The

detailed regular expression definitions of each token type can be found in
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def IML-token = token( Token-type, Token-value )

def Token-type = { query, proc, atom, integer, char, comp-begin,
comp-end, list-begin, list-end, restlist, null-list, variable,
end-of-clause, end-of-input }

def Token-value = { integer-constant, char-constant, offset,
string-descriptor }

examples:

?f( abe, [123 [ 1X] ) ;

token( query, _ );
token( atom, f );
token( comp-begin, _ );
token( atom, abc );
token( list-begin, _ );
token( integer, 123 ) ;
token( null-list, _ ) ;
token( restlist, _ );
token( variable, “Y" );
token( list-end, _ );
token{ comp-end, _ );
token( end-of-clause, _ );

Figure 3.3 IML Tokens Specification

3.2.2.2. PIC

‘Our intermediate code (PIC) is designed to be machine-independent as we

would like to have different code generators for it in the future. The syntax of

PIC is Algol-like with several pre-defined data types: atom, integer, single

character, list and functor (see Appendix B). Variables in PIC are classified as:

base, reference and void. A base variable is the first occurrence of a variable

within a clause, a reference variable is the second or any subsequent occurences,

and a void variable is a don’t-care variable.

List and functor are further
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classified as constant-type and variable-type. A constant-type structure (list or
functor) is one not containing any variables; a variable-type structure does.
(Note: the decision on choosing such a representation of structured objects and
variables is affected by the representation scheme of ‘“‘constructed’’ term at
execution. (More detail on this later.) Each predicate or functor is identified by
its name and arity. A predicate is a special kind of functor. Each clause in PIC
also contains entries on the total number of base variables (those take up
storage at runtime) and the number of subgoal calls in the body. Figure 3.4
shows the PIC form of the “append/3" program given earlier and figure 3.5

shows the specification of PIC.

Our initial version of PIC was specified as a form of abstract syntax tree
[Aho77]. The present definition of PIC was chosen because it was very easy to
introduce the semantic actions into the parser. On close examinination, one can
see that PIC has no explicit information about the underlying machine

architecture (e.g. word size).

3.2.2.3. Parser Specification

Now that we have defined the input and output of our parser, we can
specify the required operations to support our design (see figure 3.6). Our top
level driver of the parser is the read-clause() which coordinates the processing

involved at each stage.
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PROC 1 call 4 vars
VAR_FUNC 3 args append
VAR_LIST 2 terms 2 vars
BASE_VAR offset 1 Head
BASE_VAR offset 2 Oldtail
END_LIST
BASE_VAR offset 3 List
VAR_LIST 2 terms 2 vars
REF_VAR offset 1 Head
BASE_VAR offset 4 Newtail
END_LIST
END_FUNC
CALL
VAR_FUNC 3 args append
REF_VAR offset 2 OQOldtail
REF_VAR offset 3 List
REF_VAR offset 4 Newtasl
END_FUNC
END_CALL
END_PROC

Figure 3.4 PIC Representation of Append/3

3.3. Backend

The backend of WUP consists of the Code Generator, Database
Management System, the Intepreter and the Runtime Library. The code
generator translates the intermediate code PIC to the relocatable Pure Code
(PC). The database management system maintains the storage or retrieval of
clauses. The interpreter and the runtime library control and support Prolog

execution. (see figure 3.7)



def PIC-objects = { PIC-constant, PIC-variable, PIC-functor,
PIC-list, PIC-call, PIC-clause }

def PIC-constant = constant( Const-type, Value )
def Const-type = { atom, integer, char }

def PIC-variable = variable( Var-type, Name, Offset )
def Var-type = { ref, base, void }

def PIC-functor = functor( Func-type, Name, Arity, Arguments )
def Func-type = { var-func, const-func }

def PIC-list = list( List-type, Head, Tail )
def List-type = { var-list, const-list }

def PIC-call = call( PIC-skel )
def PIC-skel = { PIC-func, atom }

def PIC-clause = clause( Clause-type, NumCall, NumVar, Head-skel
[FirstCall| RestCalls] )

def Head-skel = { _, head( PIC-skel ) }

def Clause-type = { goal, proc }

’

examples:

abe constant( atom, *“abc” )

123 constant( integer, 123 )

e’ constant( char, ‘c’ )

X variable( base, “X", 1)

_ variable( void, _, _)

f(a,X) functor( var, “f”, 2,
constant( atom, ““a'" ),
variable( base, “X", 1))

['a"Y] list( var,

constant( char, ‘a’ ),
variable( ref, “Y", 2} )
1{(X); clause( goal, 1,1, _,
[call( functor( var, “I”, 1,
variable( base, “X",1))] ))

Figure 3.6 PIC Specification
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def In-stream = |First-char, ..., end-of-input]
def PIC-buf = pic( Clause-type, Name, Arity, PIC-clause )

read-clause : In-stream, PIC-buf, In-stream

read-clause( 11, P, 113 ) <-
get-next-token( ?I1, !T, 12 ),
not-equal( ?T, end-of-input ),
accept-clause( 12, T, P, 113 );

get-next-token : In-stream, IML-token, In-stream
get-next-token( ?11, end-of-input, !1 ) <-
end-of-stream( ?I1 );
get-next-token( ?I1, !T, 12 ) <-
next-token( ?11, !T, 12 );

accept-clause : In-stream, IML-token, PIC-buf, In-stream
accept-clause( ?I1, token( query, _), P, I3 ) <-
get-next-token( ?11, T, !12 ),
accept-query( ?12, T, !P, I3 );
accept-clause( ?I1, token( axiom, _ ), !P, I3 ) <-
get-next-token( ?1, !T, 12 ),
accept-axiom( ?12, ?T, 'P, 13 );
accept-clause( ?I1, _, _, !12) <-
report-error( ?11, !12 );

Figure 3.8 Parser Specification

3.3.1. Code Generator

Upon receiving a clause in PIC representation, the code generator produces
the relocatable pure code (PC), which is then saved n a file, or link-edited for
loading. This component also includes the link-editor, and is the only
component in WUP that knows about the characteristics of PC. By abstracting
clause as a data type, its integrity can be ensured, thus increasing the system'’s

modularity.
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Figure 3.7 Backend of WUP

The PC is a form of threaded code and its data structure is a mixture of
vectors and lists (see Appendix C). A functor is represented by a vector for fast
accessing of its arguments. Lists and clauses are represented by different forms

of list structure. A list is a list of cons cells (cf. Lisp); each has a head and a tail
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portion. A clause is a list with a head as its first element, and the list of
subgoals as rest. As can be seen, there is a potential overhead for such a clause
representation. This overhead is observed when one tries to implement meta-
Prolog, Prolog in Prolog (which requires to convert a clause from a list into a
functor and vice versa). It can only be eliminated if every structured object in
the system is represented as a list of “cons” cell(s) (¢f. Micro-Prolog) or as
functors (cf. Waterloo Prolog). For instance a clause “p<-q” is represented as a
term ‘“‘<-(p,q)” in Waterloo Prolog and as a list “(p (q))” in Micro-Prolog.
Each scheme has its disadvantage: the former uses more storage for the
representation of a liét constructor as a binary functor; the latter provides
slower access to the arguments of a functor. At the expense of conversion
overhead; our approach takes the advantages of both representations. In WUP,
one cannot manipulate “p<-q” as a term “<-(p,q)" but rather as a list “[p,q]",

and can only rely on the system to do the conversion.

The set of PC-objects is almost the same as the set of PIC-objects except
that each PIC-object is packed into a single machine word (PC-word) or an
array of PC-words. The fundamental unit of PC is a PC-word that has a tag
field and a value field. The size of a PC-word depends entirely on the chosen
machine implementation of this system. Figure 3.8 shows the ‘‘append/3"

program in PC form.

At this point, we have specifed the definitions of our abstract machine code
and the translation processes from Prolog source programs to machine code (see
figure 3.9). The interpretation of this machine code will be described in a later

section on the runtime system. The management of Prolog clauses by the
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Figure 3.8 PC Representation of Append/3
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database system will be the subject of discussion in the next section.
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def PC-object = PC-word( Tag, Value )

def PC-type = { query, axiom }

def PC-clause = [Clause-head| Clause-body]

def PC-buf = pc( PC-type, Pred-name, Arity, PC-clause )

generate-code: PIC-buf, PC-buf

generate-code( pic(goal,’N,?A,?C1), pc(query,IN'A,!C2) ) <-
translate-body( ?C1, [], !C2 );

generate-code( pic(proc,’N,?A,?C1), pe(axiom,'N,!A,['H|'B]) ) <-
translate-head( ?C1, !C2,'H),
translate-body( ?C2, [], !B );

Figure 3.9 Code Generator Specification

3.4. Database Management

Our database management (DBM) system is not a general purpose one; it is
intended to be a secondary storage management system for Prolog clauses only.
The program database structure resides on top of a tree-structure file system,
and provides the foundation for implementing modules in Prolog. The
fundamental ideas came from the Make system [Fel79] on Unix, and the file
system of the Waterloo Port system [Mal83]. In Port every procedure is stored
in a separate file and the procedure’s name is the filename; the program as a
whole is structured as a tree of files. Our objective is to provide a clause
database management system for fast look-up of predicates and efficient
maintenance of programs. Within the Unix file system, this sub-system is easily
constructed and provides a well-organised interface between a user and his

program modules.
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In WUP, a procedure (a sequence of clauses with the same predicate name
and arity) is defined as an abstract data type. Two well-defined operations on
procedures are supported by this system: clause-generator() and nert-clause()
(see figure 3.10). Given any predicate name and its arity, the clause database
manager will return the corresponding procedure upon calling clause-generator{().
By successively invoking nezf-clause() on a given procedure, it will return the
next clause in that procedure until there are none left. This is the only means

by which the interpreter communicates with the clause database system.

def PredCall = call{ Name, Arity )
def Procedure = | First-PC-clause | Rest-PC-clauses |

clause-generator: PredCall, Procedure

clause-generator( call(?N,?A), ICg ) <-
search-procedure( N, ?A, !Cg );

next-clause: Procedure, PC-clause, Procedure

next-clause( |’F|’R], !IF, IR );

Figure 3.10 ABC Algorithm Support Specification

Clause DBM is split into three subsystems: module management, internal
DBM and external DBM. The auxiliary DBM is merged into the internal DBM

because there is only a minor difference on handling clauses in mainstore.



34

3.4.1. Module Management

The module management defines and controls the search strategy on
predicates. There are two modes of searching for predicates: Non-speci fic and
Specific. By default, given any predicate, it does a linear search along the
search path starting from the caller’s module; it searches downward and wraps
around until it finds the required predicate. If the search returns to the caller’s
module, a warning is issued for a non-existent predicate. A predicate reference
across modules is checked against its visibility; whether it is exported by the
module in which it resides. This is the Non-specific mode search and it only

looks up predicates in the main database.

A module can be viewed as a set of predicates performing some specific
operations on some data (cf. abstract data types), or as a well-defined database
which encapsulates some domain-dependent relations. In order to generalise this
concept, all meta-predicates include an extra argument, the module name. For
example, the ‘“‘prove(X)” predicate is written as ‘‘prove(M X)”, where M specifies
the module in which X is to be proven. If M is unbound upon the execution of
‘“prove’’, then the non-specific mode search is used and M will be bound to the
name of the first module containing a definition for the predicate X. If M is
bound, then only the module M will be searched. This is the Specific mode
search, and both the main and auxiliary databases will be searched “without”
visibility check. Hence, the user can have some amount of control over the
search strategy being used for certain predicates. Given such facilities, one can
also implement generic types in Prolog. Examples of the use of modules as

generic data types can be found in [Poo84].
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Coupling the different search étrategies with modules facilities, the clause-
generator{) defined above should now be modified (see figure 3.11). Assume that
the search path is <M1, M2, M3, ..., Mk>, the search sequence starting from
M3 is <M3, M4, ..., Mk, M1, M2>. Search-path() returns a list of the current
imported modules and search-sequence() generates the search sequence starting
from Mi. All the other supporting functions will be described in the following

sectlons.

def Mode = { specific, non-specific }
def Module = String

clause-generator: Mode, Module, PredCall, Module, Procedure
clause-generator( specific, M, call(?N,?A), 'M, 'P ) <-
search-procedure( specific, M, N, ?A, 'P );
clause-generator( non-specific, 'Mi, call(?N,?A), Mo, 'P ) <-
search-path( !SP ),
search-sequence( Mi, ?SP, !Mseq ),
member( Mo, Mseq ),
search-procedure( non-specific, Mo, N, ?A, IP );

search-procedure: Mode, Module, PredName, Arity, Procedure
search-procedure( specific, M, ’N, ?A, IP ) <-
search-main-db( ™, N, ?A, 1P ),
search-procedure( specific, M, ’N, ?A, 'P ) <-
search-aux-db( ’M, ?N, ?A, IP );

search-procedure( non-specific, M, IN, ?A, 'P ) <-
search-main-db( M, N, ?A, P );

search-main-db: Module, PredName, Arity, Procedure
search-main-db( ?M, N, ?A, P ) <-

search-int-db( M, ’N, ?A, !P );
search-main-db( ?M, ?N, 7A, 1P ) <-

search-ext-db( M, N, A, P ),

assert-int-db( M, N, ?A, IP });

Figure 3.11 Module Management Specification
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3.4.2. External Database Management

The external DBM takes care of all the object files that belong to a
program module. It is the interface to the Unix file system and is the only part
in WUP that is dependent on the existing file system. When we wish to move
WUP onto a completely different file system, we can modify the interface

between this component and the existing file system.

The program database of any program module is stored under a directory
called ““.db” (refer to figure 2.3). The dictionary is kept in a file “.dict” inside
the program module, and is accessible to the user. Each entry in the dictionary
specifies the name of a predicate and its absolute pathname in the Unix file
system. Whenever a predicate file is added to (or removed from) the program
source, a new entry is inserted into (or deleted from) the dictionary. This
information is used to maintain the consistency of program source and its

compiled program database.

For every predicate source file, there is exactly one predicate object
directory with the same name inside the program database. If a predicate
source file contains several predicates with the same name but different arities,
then for each of the same arity there is an object file under that predicate object
directory with its arity as the filename; this is called a Predicate Object File.
With such a scheme, any predicate with a certain arity can be located in the
program database. For example, when searching the predicate “p’’ with arity
“2” in a module “M”, we first compute the module path of module “M", say

“path”; we can then test the existence of that predicate by accessing the
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predicate object file with pathname ‘*‘path/p/2” through the file system

primitives.

When compiling a program module, the external DBM traverses its program
source file tree and compares the time stamp on each predicate source file
against its corresponding predicate object directory in its program database. If
there is a mismatch and the predicate source file is more recent, it is recompiled.
If a predicate source file has no corresponding predicate object directory, the
source file is compiled and a new directory is created. After it is recompiled, a
new up-to-date dictionary is then saved. At runtime, the search for a procedure
in a particular module from the external database requires one to check for the
existence of the corresponding predicate object file in the program database (see

figure 3.12).

search-ext-db: Module, PredName, Arity, Procedure
search-ext-db( ’M, N, ?A, IP ) <-

module-path{ M, 'M’ ),

integer-to-atom( A, !As ),

concatenate( ?M’, N, IFP'),

concatenate( ?FP’, ?As, 'FP ),

accessible( read, 'FP ),

load-procedure( ?FP, P );

Figure 3.12 External Database Specification
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3.4.3. Internal and Auxiliary Databese Management

This subsystem provides the necessary mechanisms for manipulating the in-
memory clauses of modules. Whenever a procedure is requested by the
interpreter through a call to clause-generator(), the internal database is first
checked. If the procedure is not already loaded, the request is passed to the
external DBM system. Using the pure code link-editor, the threaded pure code
of any known procedure can be dynamically loaded into the internal database
from the external database. Since the modification, insertion or deletion of
clauses in the internal database is not allowed, we can release some of the
currently unused clauses when storage is exhausted. This process of releasing
clause storage can also be done by a user’s explicit request, when he no longer
needs them for further execution. Alternatively, it can be done automatically
using a least-recently-used release algorithmt. In general, this is the case when a

user maintains a large database, and only refers to a small portion of it.

For maximum modifiability, the structure of the internal database is also
hidden within this sub-system. Different schemes for storing and retrieving

clauses from a module can then be compared for efficiency.

The internal database consists of a Predicate Table and a list of procedures
(see figure 3.13). The supporting function search-int-pred-table() is very similar
to locate-procedure(). It needs to know the internal data structure of a module;
the implementor can choose the appropriate representation. Given any module
name, it should be able to find the corresponding predicate table and search the

Pred-entry for any given predicate name. The organisation of the predicate

t This is not yet implemented in WUP.
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def Proc-entry = proc( Arity, Procedure )
def Pred-entry = pred( PredName, [First-Proc-entry| Rest-Proc-entry] )
def Pred-table = [First-Pred-entry|Rest-Pred-entry]

search-int-db: Module, PredName, Arity, Procedure

search-int-db( M, !N, ?A, P ) <-
search-int-pred-table( ™M, N, pred( !N, {PE ) ),
locate-procedure( 'PE, ?A, P );

locate-procedure: Proc-entry, Arity, Procedure

locate-procedure( [proc(?A,?P)| _], ?A, P );

locate-procedure( |_|?R], ’A, P ) <-
locate-procedure( 'R, ?A, IP );

Figure 3.13 Internal Database Specification

table is also unspecified; it could be some form of hash-table in order to give fast

access to the Pred-entry.

After a procedure is successfully loaded from the external database, it is
then inserted into the internal database of the given module through assert-int-
db(). Again the implementation of assert-int-db() is very much dependent on the

chosen data structure of the predicate table.

The auxiliary DBM is almost identical to the internal DBM. The only
difference is that the auxiliary DM will handle dynamic insertion and deletion of
clauses at execution time. Every module has its own auxiliary database that can
be accessed only by the predicates within the same module. New clauses can be
added to any module’s auxiliary database provided that it is not already defined
somewhere in the module’s main database. The search-auz-db() and assert-

auz-db() are the same as their internal database counterparts. As long as the
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auxiliary database is used to store ground clauses only, the operation retract-
auz-db() will not pose severe problems in the implementation. This can only be
achieved by restricting the system primitives to only manipulate clauses in the

auxiliary database.

3.4.4. Protection of Program Database

As mentioned in chapter 2, the visibility of certain predicates in any

[}

program module can be restricted. In WUP, an optional file ‘‘.export” can be
used in any program module to list all predicates accessible to other module.
Each entry in that file is in the form of a Prolog fact, ‘“‘export(PredicateName)".

This scheme can be extended to include the arity of a predicate or the name of a

constant symbol.

To further support and encourage the use of program modules in Prolog, a
simple locking mechanism is provided. If an optional (empty) file ‘““.lock” exists
inside a program module, then that program module is said to be locked. Any
predicate that belongs to a locked module cannot be traced or listed during
debugging (see section 3.6). A user can only see calls and the result of bindings
before and after the execution of such predicate. With this feature, one can
avoid tracing some predicates that have been fully debugged and tested, thus
speeding up the process of program development. Since there is a unique
interface between the DBM system and the interpreter, these proposed
protection mechanisms can be incorporated without affecting the functionality

of the interpreter.
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3.5. Runtime System

The runtime system consists of two sub-systems: the Interpreter and the
Runtime Library. The interpreter controls and drives the other WUP
components at execution time and the runtime library supports all system built-
in predicates. A user communicates with WUP through either his own
predicates or system predicates; there are no directives or command language as
opposed to CProlog. Every user query is eventually proven by the interpreter or
executed by the runtime library routines. This has the advantage that the rest
of WUP is insensitive to system predicates; hence, the runtime library can be

tailored for particular applications without too much further effort.

The main interpreter loop is based on the ABC algorithm which has been
modified to include several storage saving techniques [Bru82] such as popping
deterministic computation and tail recursion optimisation. The runtime library
is a collection of routines written in the implementation language C, and has a
unique interface to the interpreter. Currently, all the library routines are
compiled into WUP. Our design does not preclude the possibility of calling
resident routines which may be written in some other languages (e.g. FORTRAN

or Pascal), although this is not yet implemented in WUP.

In the following sections, we shall describe several improvements on the
ABC algorithm, the unification algorithm wused in this particular
implementation, and the interface between the runtime library and the

interpreter.



3.5.1. The ABC Algorithm

Using the two operations defined on the data type ‘“‘procedure’”, the ABC
algorithm generates and tests the AND-tree (i.e. proof tree) and the OR-tree (i.c.
search tree) in response to a goal request. This algorithm defines the general
structure of a stack node (or frame) to maintain all necessary information
during execution. Two previous implementations of Waterloo Unix Prolog
interpreter did not take advantage of the fact that a deterministic node requires
less space. As much Prolog computation is deterministic, such a distinction can
give a noticeable improvement on storage usage. As described by Maurice
Bruynooghe [Bru82], given a goal and a sequence of candidate clauses for
unification, a look-ahead on next possibly-matched clause is of great benefit; this
can assist the early detection of a deterministic computation. In addition to
saving the storage otherwise wasted for a non-deterministic node, it can help to
determine the possibility of tail recursion optimisation. This idea is similar to

the clause indexing technique mentioned by David Warren [War80].

To help to understand the basic terminology, figure 3.14 gives a description
of the ABC algorithm. For any given clause, new-environment() will initialise a
new binding environment, head-of() returns its clause head and body-of{) returns
its clause body -- a list of subgoals. The routine uni fy() takes a subgoal call and
its environment and tries to unify it with a clause head and its new temporary
environment- (see next section). For any node, an empty procedure field (the
clause generator for the call in the same node) implies that it is a deterministic
node. Every new node generated in son() is pushed onto the node stack; the top

node is popped one at a time to be the current node for checking its
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def Environment = [Variable-bindings]

def Subgoals = [PredCall|RestPredCalls]

def Node = node( Subgoals, Procedure, Environment )
def NodeStack = [TopNode|RestNodes]

solve : Subgoals

solve( ?InitGoals ) <-
new-environment( ?InitGoals, !InitEnv ),
first-call-of( ?InitGoals, !C ),
select( node(’C, [], MnitEnv), [] );

select : Node, NodeStack

select( node([], _, _), [| ) <- succeed ;

select( node(]], _, _), [node([_|?C], _, 'E)|?S] ) <-
select( node(’C, _, 7E), S );

select( node([?C|?Cs], _, 'E), 1S ) <-
clause-generator( ?C, !Cg ),
son{ ?Cg, node(|?C|?Cs], _, 'E), 1S );

son : Procedure, Node, NodeStack
son( [, ’N, S ) <-
backtrack( ?S );
son( [?Cl|7Cg], node(|?C|1Cs]
head-of( ?Cl, 'H ),
new-environment( ?Cl, !T ),
unify( ?C, ’E, ’H, T ),
body-of( ?Cl, !C’" ),
select( node(?C’, _, ?T), [node([?C|?Cs], ?Cg, ?E)|?S] ),
son( [_|?Cg), IN, 7S ) <-
son( ?Cg, N, 7S );

'E), 1S ) <-

backtrack : NodeStack

backtrack( [} ) <- fail;

backtrack( [node(_, (], _)I?S] ) <-
backtrack( ?S );

backtrack( [node(?C, [?C]|?Cg], TE)|?S] ) <-
son( [?Cl|?Cg|, node(?C, _, ’E), ?S );

Figure 3.14 ABC Algorithm Specification

“continuation’” in select() and ‘‘alternatives” in backtrack(). The actions
“succeed’ and ‘‘fail” indicate the success and failure respectively of the proof of

the original given goal. The following is a list of improvements that were
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included in this version of the ABC algorithm. The conditions which must be

satisfied before applying these improvement techniques are then described.

(1]

3]

(4]

Deterministic and non-deterministic nodes are distinguished. In
general, the size of a non-deterministic node is almost always twice the
size of a deterministic node.

Stack frames are popped at the end of a deterministic computation,
deterministic call optimisation (DCO). All the stack frame storage
generated during the execution of a clause can be released as long as
there aren't any alternatives (or backtrack points) between the start
and the end of such a computation. (Note: this includes the case when
the alternatives are later removed by ‘‘cut’.)

tail recursion optimisation (TRO). Any deterministic recursive
predicate call is unwound into iteration, which means that each
recursive call is using the same stack frame storage. For deep
recursions, this provides a big saving in terms of stack usage.

clauses are indexed on the first argument of any predicate call. Given
any predicate call, its first argument is used to select the first and next
possibly-matched clauses. For a procedure containing a large set of
clauses, this has the advantage of avoiding a fair amount of shallow-
backtracking, and determines that such a predicate call is deterministic
earlier, in order to apply the storage saving techniques described above.

In order to apply [1], every newly generated procedure through clause-

generator() must have a single matched clause only. There are two cases where

this could happen: either there is exactly one clause in that procedure, or

through the use of [4] there is only one possibly-matched clause in that given

procedure. For [2], the continuation (the unsolved subgoals in the current node)

must be empty and there must be no backtrack point above (or more recent

than) the current node. This applies to every node that is either deterministic

originally, or later converted to deterministic by the “cut” predicate. For TRO

[3], before unification, the current node for the current call must be deterministic

or the current call must be the last one in the continuation of the current node,

and the last backtrack point is above the current node. After unification, the
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newly created node for the matched clause is copied onto the current node and
the new node is then released. Given the current call and its procedure (or
clause generator), in order to apply {4], the current call must be a predicate call
with arity greater than 0. To locate the next possibly-matched clause in the
procedure given, we test whether the first argument of the clause head and the
first argument of the current call are possibly-matched. Two terms are
possibly-matched if: 1) either one is a free variable, 2) both are constant with
the same type and same value, 3) both are list structures with their first

elements possibly-matched, or 4) both are functors with same name and arity.

So far, we have only discussed how to save the storage on the runtime stack
(or control stack). The trail stack can be collapsed to remove redundant entries.
In particular, some of the variable binding records generated can be released at

the end of TRO or the execution of the “‘cut” operation.

3.5.2. Unification

Our unification algorithm is the same as previous implementations, which
were based on Robinson’s algorithm [Rob65]. Figure 3.15 gives a description of
a unification algorithm used in WUP. Bind-to() binds the term “T" with
environment ‘E2’" to the variable “V’ in the environment “E1”, and tdentical()
checks whether two terms are the same term or have the same values. There is
no ‘“‘occurs’ check in this algorithm. Most practical Prolog systems do not
implement such a check in their unification processes, because it is too
expensive. A Prolog system with more basic object types (e.g. WUP) can extend

the given basic algorithm. In the next chapter, we shall give an example
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implementation of a more compact and efficient table-driven unification routine

based on this one. A similar method was used in [Bal83|.

def Term = term( TermType, Value )
def TermType = { const, var, func }
def TermList = |[FirstTerm|RestTerms)
def Constant = term( const, Value )
def Variable = term( var, Value )

def Functor = term( func, TermList )
def Env = binding environment

unify : Term, Env, Term, Env

unify( term(var, ?V1), ’E1, term(var, ?V2), ’E2 ) <-
identical( ?V1, E1, V2, 'E2 );

unify( term(var, ?V), ’E1, T, 'E2 ) <-
bind-to( ?V, 'E1, T, 'E2 );

unify( ?T, ?El, term(var, V), E2 ) <-
unify( term(var, ?V), ’E2, T, ?E1 )

unify( term(const,?V1), _, term(const,?V2), _) <-
identical( ?V1, _, V2, _);

unify( term(func,?Al), ’E1, term(func,’A2), ?E2 ) <-
unify-arg( A1, ?E1, A2, 7E2 ),

unify-arg : TermList, Env, TermList, Env
unify-arg( [, _, [ _ )
unify-arg( {?A1|?R1], ?E1, [?A2|?R2], ’E2 ) <-
unify( 7A1, ?E1, A2, 'E2 ),
unify-arg( ?R1, ?E1, 'R2, ’E2 );

Figure 3.15 Unification Algorithm Specification
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3.5.3. Structure-sharing Versus Structure-copying

An interesting problem related to the runtime system is the construction of
structured terms during unification. Bruynooghe [Bru82] and Mellish [Melg2]
have discussed and compared the relative merits of using structure-sharing and
structure-copying methods. Their results were inconclusive. They claimed that
examples can be created to make each method highly inefficient compared to the

other one.

Some recent attempts at defining virtual Prolog machines have proposed
the use of structure-copying strategy |[Bow83,Bal83]. They believed that
structure-copying provides a better locality of reference in a virtual memory
system, whereas structure-sharing has the potential danger of thrashing on a
paging system. To provide the reader with a better understanding of this
problem, we below describe the runtime structures of both methods for the goal
call “? p(X);” and the fact “p( f(Y) );".

Structure-sharing

1) Every newly constructed term is represented by a Afolecule, which
contains a pointer to the pure code of that term and a pointer to its
binding environment (see figure 3.16). To construct a new term, it is
only necessary to instantiate two pointers, hence structure-sharing
allows rapid construction of terms.

2) When accessing the components of a structured term, and if such a
term has many deeply nested sub-terms, a long chain of dereferencing is
unavoidable. Therefore, in some cases, it is slower for accessing.

3) Sometimes, a newly constructed term may unify with a simple
constant; in that case, a pointer could be wasted on a machine which
cannot represent a molecule with a single machine word.
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Environment Pure Code
[60AL | «—}— 7P(X);
I CODE I
T LEMY — UFUNC| p | 1
molecule BURR | X | 1
CODE | Undef
Y FACT | o—f— (1(M);
ENU | Undef l l P
molecule UFUNC| p I )
REF -
vFONC| £ [ 1 [
BuAR | Y |

Figure 3.16 An Example of Structure-sharing

Structure-copying

1) To create a new structured term, a new copy must be made of the
original pure code representation (see figure 3.17). Multiple occurences
of the same variable must be linked together. For a large structured
term, this could be very expensive in terms of space and time.

2) When accessing the components of a new structured term, it can be
accessed directly from the new copy. Hence, it is faster for accessing.

3) When a new term unifies with a simple constant, there is no copying to
be done. A simple assignment is all that is required. In fact, all
‘“ground’ sub-terms in any structured term can also be shared without
copying. Therefore, for ground terms, there is no wasted time or space.

For the structure-sharing approach, in order to apply DCO and TRO
mentioned earlier, some newly constructed terms in the ‘local” binding
environment must be saved somewhere off the runtime stack to avoid ‘‘dangling
pointers”. (Recall that structure-sharing approach uses a molecule to represent
a componud term containing variable(s). One of the pointers in a molecule is an

environment pointer which refers to some binding environment. If some
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Environment Pure Code
x: [ REF | —— [coAL | «—— ?P(D):
UFUNC] 5 | U]
UFUNC| 1 | 1 BURR | X | 1
REF | =
New Copy [Facy I —t—  pU(Y));
Y: | | undef |
vrunc[p | 1
REF | e
UFUNC] 1 [ 1
BUAR | Y | 1

Figure 3.17 An Example of Structure-copying

environment is removed due to optimisation, then there is a danger of dangling
references.) A new ‘‘global” stack is allocated for this purpose. However, since
all terms to be contructed on the global stack cannot be identified at compile
time, some are specified using the “mode" declarations (¢f. DEC-10 Prolog) in
order to reduce usage of the the global stack. In the case of the structure-
copying approach, all structured terms are created on the ‘‘copy’ stack at
runtime. It is not necessary to identify the global or local status of every
variable at compile time. As noted by Chris Mellish [Mel82], the distinction
between ‘‘constructing’ or ‘‘accessing” a term is best determined at runtime,
which favours the structure-copying approach. In WUP, the structure-copying
approach was selected for another reason; all previous implementations at
Waterloo were based on the structure-sharing approach and we sought a better

understanding of both representation schemes.
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As mentioned earlier (see section 3.2.2.2), the reason for classifying
structured objects into constant and variable types is to reduce the amount of
copying at runtime; those that do not contain variables are ‘‘shared”. The
decision of choosing a runtime constructed term representation affects, to a
certain extent, the design of intermediate and pure code. For example, if we
choose structure-sharing approach, we need to identify the global or local status
of each variable encountered at compile-time, and this piece of information must
be stored somewhere in the intermedicate code and the pure code. Also we do
not have to distinguish constant and variablé structured terms. For a prolog
system that does not intend to implement some of the storage optimisation
techniques, the design of the frontend and the interpreter can be totally

independent.

3.5.4. Interpreter and Runtime Library Interface

When designing the interface between the interpreter and the run.tirne
library, two problems are commonly encountered. The first is the method of
handling parameter-passing between Prolog code and non-Prolog code, and
second is the method of identifying calls to non-Prolog code. It might seem that
these two problems can be studied in isolation, but in some cases, their solutions
are inter-related and must be considered together. To keep a system adaptable
and modifiable, such an interface should have minimal interference with the
other parts of the same system. Hence, one should be able to replace some of
the runtime library routines with little knowledge of the design of the whole

system. This is one of the major criteria set down at a very early design stage
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of WUP.

For the first problem, we use a standard protocol to extract and assign the
parameters (as variable bindings) on the runtime stack through a common
routine. In the current implementation, a dedicated area is used to store the
parameters. When invoking a system predicate, the arguments in the
corresponding environment are moved into that area; when returning from a
system predicate, these arguments are then copied back into the environment.
This can be done if we restrict parameter passing to non-struétured terms only
(e.g. integer, atom). For passing structured objects to a library routine, we can
only use pointers and rely on that library routine to extract the necessary
information. Obviously, such a library routine will need to know about the pure
code representation of some structured object. By defining each structured
object as an abstract data type, we can make the implementation of those

library routines easier.

The second problem can be attacked in many different ways, but we are
going to propose two such solutions and explain why one is better than the
other. First, by initialising a table of all system predefined primitives, we could
replace every call to such primitives by a (direct or indirect) pointer to the
corresponding runtime routine at compile time. This will make the frontend (or
some parts of the system) sensitive to some predefined primitives, and will
complicate the matter of designing the parameter passing mechanism. In
particular, each library routine will now have to handle (or extract) parameters.

Furthermore, installing a new primitive could be difficult for a non-implementor.



52

The other possible solution is to create a Prolog clause instance for every
system primitive, except that its clause body is some ‘‘pointer mechanism™ to
the corresponding runtime library routine. As long as these clauses are in
existence before any calls being made, they can be trapped by the interpreter at
execution time and passed on to a common system primitive handling routine
which can set up the parameters and invoke the corresponding library routine.
To install a new primitive amounts to creating a new clause instance and

inserting a new entry in the system primitive handling routine.

The second solution is used in WUP because it fits well into our first
solution a;zd our concept of program module in Prolog. By pre-compiling the
system predefined predicates into a module (the system library), they can be
loaded upon their first reference. At interpretation time, the call to a system
predicate is done in the normal way except, during execution of the body of such
predicate, control is passed on to the system predicate handling routine. The
pointer mechanism for each system predicate to its runtime routine is, in our
design, the ‘‘case” label branching in the handling routine. This provides an
interface between the interpreter and the runtime library having the advantage
that the other components in WUP are insensitive to the changes of system
primitives. For example, the built-in predicate “add(X,Y,Z) <- 15" is declared
as a rule in the system library, when ‘““add/3" is invoked during execution, the
integer constant ‘15" is used as the ““case’” switch code in the primitive handling

routine ‘‘CallSystem( Code )".
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3.6. The Debugging Facility

Very often an interpreter is judged by the availability of program
development tools. One of the most frequently used is a program debugger.
Debugging a Prolog program is very different in nature from debugging a Pascal
program. In Prolog, there is no name attached to each data object in the
program, thus we cannot examine any kind of ‘‘variable” as in a Pascal
program. Instead, we have to follow the control flow of a Prolog program and
examine the variable bindings constructed by the unification of a goal and its
matched clause. In writing a debugger for Prolog, two general approaches can
be taken. One is a meta-level debugger written in Prolog and the other is an
object-level debugger embedded in the runtime interpreter. A meta-level
debugger executes and monitors a user program on behalf of the underlying
interpreter on the system [Sha83a]. It has the advantage of being more flexible,
portable and extendable. The object-level debugger is the Prolog interpreter
itself but working in a special “‘trace” mode. It is simple and easy to implement

in any Prolog interpreter.

We took the latter approach because it is very easy to introduce tracing
facilities within the ABC algorithm. We follow the ‘‘box” model of Prolog
execution described in [Byr80]. Every clause execution has four possible states:
1) “CALL” when it is first invoked, 2) “EXIT” when it succeeds on the given
call, 3) “REDQO" when backtracking occurs, and 4) “FAIL” when it fails on the

given call. In trace mode, the predicate and its arguments with all variable

bindings are printed for examination.
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example:

[3,15] CALL: foo(_1) <alns|N> ?
..MORE...

[3,15) EXIT: foo(a) <alns|N> ?

[3,15] REDO: foo(_2) <alns|N> ?

[3,15] FAIL: foo(_2) <alns|N> ?

The tuple inside brackets, i.e. *“[L,N]”, is the unique identification of a node
in the proof tree; L is tree level and N is the node number assigned in a pre-
order traversal. The message “MORE"” indicates the CALL just printed has
alternatives. The trace modes are *‘<alns|N>", which stand for a(bove-level-

spy), l(evel-at), n(ext-spy), s(ingle-step) and N(-skip). The meaning of each

mode is:
a show every spy point above the pre-selected tree level.
]I  show every node at the pre-selected tree level.
n show the next spy point.
s show every step of execution.

N when inside one of the above modes, an integer N has different
meaning. For example, in mode *“n’’, 5 means ‘“skip 5 spy points’’, and
in mode ‘s, 5 means *‘skip 5 single step of execution"'.

As in most other debuggers, breakpoints can be set on any predicate using a
“spy’ facility. A rather unusual tracing facility is the filtering of tracing steps
at a certain level in the proof tree. The idea is to cut the proof tree in two at a
particular level, and to display the tracing steps on or above that level only.
When one is certain that a program error occurs above a particular tree level,
this certainly helps to speed up the process of debugging. Together with the
locking mechanism in modules, WUP provides a fairly simple and useful

debugger.
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3.7. Built-in Predicates

Following the same direction as in the second version of Waterloo Unix
Prolog [Ng82], our first attempt is to define a minimal set of system predicates.
Since there is no standard set of system predicates that should be included in
any Prolog system, this approach seems reasonable. However, defining a
minimal set of system predicates is not easy. In particular, to support a whole
new programming environment in Prolog we must define a set of primitives
which is sufficient to comstruct such an environment in Prolog itself. Only
experience will tell whether these primitives can be efficiently implemented in

Prolog or in system implementation language.

The task of designing interactive programming systems is hard because
there is no way of avoiding complexity in such a system.... The only
applicable research method is to accumulate experience by
implementating a system, synthesize the experience, think for a while
and start-over [San78].

In WUP, all built-in predicates written in the implementation language are
pre-compiled and stored in the system library. All other predicates that can be

written in Prolog are stored in a standard library. They are referred to as the

"

module ‘‘sys” and ‘‘std’’ respectively. All predicates defined in these libraries

can be redefined by the user. WUP does not verify that predicates have been
defined by the system or other program modules. There are advantages (A1-A2)

and disadvantages (D1-D2) to this approach:

Al) A user may want to distribute a relation into several program modules
because they are domain dependent; depending on the input for a proof
on such relation, the user can switch from module to module efficiently.
He cannot do so if WUP checks every predicate to see whether it is
already defined in another module.
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A2) Sometimes a certain predicate cannot achieve a user’s intent. Without
resorting to defining the same predicate with strange names, a user can
redefine it in some other module for specific purposes.

D1) Unnoticed by the user, the default searching path may uncover a
predicate that has been defined elsewhere, and which might give some
mysterious result or failure.

D2) The user must know every visible predicate in the search path, or he
must explicitly state, for any goal, the module in which the goal should
be attempted.

Our objective is to make every built-in predicate look like any user
predicate, so that we can maintain the uniform view of program module given to
all Prolog programs in WUP. The arguments mentioned above are only

observations; they are not strong enough to make better design decisions.

For details on all built-in predicates defined in WUP, consult the
implementation manual [Che84]. The basic environment support, such as
editing, compiling, program listing and checking, and module handling, can be

found in the tutorial and reference manual [van84).



Chapter 4

Implementation Details

WUP is written entirely in the programming language C and runs on the
Unix operating system. C was chosen because of its good development tools and
easy interface with the Unix} programming environment. The discussion in this
chapter will be informal. No prior knowledge about Unix or C is assumed. The

terminology used here will refer to that defined in the last two chapters.

This chapter is about the implementation details of WUP, most further
details are available in the implementation manual [Che84). Our discussion here
will be mainly concerned with the runtime system of WUP: the interpreter and
its supporting library. Other WUP components, such as the parser, the code-
generator, the symbol-table management, the Unix-system interface, the error-
handling and the database management system (DBMS), will not be described in
this document. Most of these components, except the DBMS, are fairly standard
components as in many other language processors. Our DBMS is a very simple
clause database for Prolog and its implementation is rather straight-forward

with the specifications given in the previous chapter.

In this chapter we begin with a description of WUP’s storage organisation.
We then introduce the different algorithms used in execution, unification and
structure-copying. We explain the implementation of some of the more

important built-in predicates and show how the trace facility can be

t University of California, Berkeley, Software Distribution 4.2 version 7.

57



58

incorporated into the ABC algorithm.

4.1. Runtime System

The runtime system of WUP consists of the interpreter and the runtime
library. The interpreter is based on a slightly modified version of the ABC
algorithm, which implements the ‘‘prove’” built-in predicate. The runtime
library is a collection of C routines supporting all other built-in predicates. The
memory organisation of our interpreter 1is similar to other Prolog
implement'ations. Three stacks (runtime, copy and trail) are used to maintain
the state of computation. The unification algorithm is almost the same as
previous WUP implementations except thal.: it is table driven. As mentioned in
chapter 3, WUP uses the structure-copying strategy for constructing terms at
execution time; this strategy is tightly coupled with the unification algorithm.
There are many built-in predicates defined in WUP. Some are for supporting
WUP as a programming environment and others for making Prolog a better
programming tool. They are too numerous for discussion and only a few will be
described here. In the next few sections, we will describe all these aspects of our
runtime system in detail and explain the storage optimisation problems that

were solved during our implementation.
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4.2. Storage Organisation

In WUP, three stacks are used to maintain the state of execution: the
runtime (or control) stack, the copy stack and the trail stack. The runtime
stack stores the control (or navigational) information and the binding
environments of variables. The copy stack saves the terms constructed during
execution. The trail stack records pointers to variable bindings which are
instantiated during unification and are undone (reset to ‘‘undefined” values)

upon backtracking.

Runtime Stack

Two types of object are stored on the runtime stack: stack frame and
environment. A stack frame corresponds to an activation record as in the
implementations of block-structured programming languages; an environment
corresponds to the storage allocated for parameter(s) and local variable(s) as in
an Algol-like procedure. A stack frame is created for every predicate call and its
matched clause-head pair. The environment for the matched clause, with size
equal to its total number of unique variables, is allocated on top of the stack
frame (see figure 4.1). A stack frame together with its binding environment

(possibly empty) is called a ‘‘stack node” (see section 4.3 for further details).

Since many Prolog computations are deterministic, the distinction between
a deterministic (DET) and a non-deterministic (NDET) frame could (depending
on the program) result in a substantial saving in storage. A DET frame has
three fields; a NDET frame has seven (see figure 4.2)‘. The meaning of each field

is defined as follows:
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A

Environment; Stack Nod
-------------------- ¢k Node

Stack Frame,

Environment, size-of ( Environment )
""""""""""" = No. of unique variables
Stack Frame,

Environment . size-of ( Stack Node )
SRSAAEEEEREEEE Q... = 7 if non-determimstic
Stack Frame, or =3 if deterministic

Figure 4.1 Runtime Stack

FATHER

CALL

MODULE

CL-GEN

a stack frame pointer to the parent frame of the current node.
This forms the chain of all parent nodes belonging to the
current node and thus maintains the structure of the proof
tree.

a pure code pointer to a subgoal call of the clause causing the
creation of the current node. It provides access to all the
remaining subgoal call(s) within the same clause (this is where
the computation will continue after successful completion of
the current call).

a pointer to the module containing the matched clause of the
current call. This is necessary for implementing multiple
modules in Prolog; it helps find predicates. (Note: The module
from which the current call originates might not be the same
as the module for its matched clause. In this case, the module
from which the current call originates is not in the current
stack node, but in its parent stack node.)

a pointer to pure code for the procedure containing the
remaining candidate clause(s) for unification with the current
call. When the current node is selected for backtracking, this
provides the remaining alternative clause(s) for the current
call, which are then retried.
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a stack frame pointer to the most recent backtrack node (or
choice point). This forms a chain of all backtrack nodes of the
current proof tree. Upon failure this speeds up locating the
last backtrack node; the segment of runtime stack above it is
then popped.

a pointer to the trail stack that records the top of the trail
stack at the time of creation of the current node. On
backtracking, it indicates the segment of trail stack to be
popped; each variable binding recorded in this segment is
reset.

a pointer to the copy stack which records the top of the copy
stack at the time of creation of the current node. Upon
backtracking, it is used for indicating the segment of copy
stack to be popped. During unification, variable bindings that
occur above this pointer on the copy stack are not recorded
(see section 4.3 for further details). ‘

Deterministic Non-determinjstic
CALL —+PureCode CALL —» PureCode
FRATHER | —» Stack Frame FATHER | — Stack Frame
MODULE | - Module MODULE | — Module

CL-GEN | —= PureCode

BACK -+ Stack Frame

RESET -+ Trai] Stack

CoPY — Copy Stack

Figure 4.2 Stack Frame




The Copy stack

The copy stack has a function similar to that of the heap in Pascal. Its
main purpose is to save the newly constructed terms at runtime. It is like a
heap because all objects are created dynamically during execution; during their
life time some may become inaccessible and must be garbage-collected. It is not
exactly a heap because some objects can be released in a ‘last-in first-out”
fashion, so that garbage collection is not the only means of reclaiming storage.
A new object is created on the copy stack at runtime under the following
circumstances: (1) during unification, whenever a free (unbound) variable binds
to a structured object (functor or list) containing variable(s), a new copy of that
structured object is made on the copy stack and a pointer to it is assigned to
that free variable; (2) whenever there is a structural conversion, e.g. functor to
list, the final object (a list in this case) is temporarily saved on the copy stack;
(3) implementations of some meta predicates (e.g. prove, assert) require internal
objects to be created in order to proceed: these internal objects are also

allocated on the copy stack.

Objects are released, and their storage on the copy stack is reclaimed, under
the following circumstances: (1) upon failure of a predicate call, its stack node
and ‘“‘copy stack segment” -- all the storage used on the copy stack during its
execution -- are popped; (2) when the copy stack overflows, some of the
inaccessible objects are then garbage-collected (this is not yet implemented at

the time of this writing).
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In the following example program, the storage allocated on the copy stack
during the execution of ‘‘process” becomes inaccessible upon the next recursive
call; hence, this must be garbage-collected. (Note: this problem also exists in

structure-sharing approach using a global stack.)

cycle( SO0 ) <-
process( S0, S1 ),
cycle( S1);

The Trail stack

The trail stack stores pointers to the environment or copy stack. During
unification, the addresses of newly bound variables are recorded on the trail
stack. Upon backtracking, these addresses are used to reset the variable
bindings to ‘“‘undefined”. Because of Prolog’s left-to-right depth-first execution
order and its stack-based storage organisation, not every variable binding
occurring during unification is recorded. As described earlier, upon
backtracking, all stack nodes above and including the most recent backtrack
node and their corresponding copy stack segments are popped. Hence, only
those variable bindings in the environments (copy stack segments) below the
most recent backtrack node's environment (copy stack segment) are recorded.
(Note: The ‘“‘cut” operations in Prolog can freeze the variable bindings in some
stack nodes; thus their binding records on the trail stack can be thrown away as

part of the storage optimisation.)
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4.3. Memory Management

In the previous chapter we mentioned briefly some of the storage saving
techniques implemented in WUP. Before we embark on our discussion of the
improved ABC algorithm, we first introduce some of the basic concepts in the
memory management of Prolog. We begin with a propositional and
deterministic case to show the internal structure of the runtime stack. Next we
show the environments and their variable bindings for a non-deterministic
computation, and how the trail stack is used to record and undo the variable
bindings. We then illustrate the structure-copying method for creating new data
structure at execution time. Finally, we demonstrate, by an example program,
how these concepts are put into use in the storage saving techniques. (Note: All
stack addresses in these e?(amples grow higher as the stack grows downward.
This is important when stack addresses are compared to determine which way

stack pointers should point.)

Example 1: Propositional and Deterministic

In figure 4.3, we show a propositional deterministic program with its
resulting internal structure of the runtime stack after execution. Initially, we
assume that there is an implicit call ‘?’ generated by the system which will
match any user queries and cause the creation of the first stack node N1. The
FATHER of N1 is obviously nil since N1 is the root of the proof tree. The
CALL of N1 is the implicit query ‘?’. (Reminder: A stack node is created for
every call and its matched clause-head pair.) The node N2 is created for the first

call ‘p’ in the original query and the clause-head of rule C1. The CALL of N2
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points to the call ‘p’ and the right-hand brother of ‘p’, i.e. ‘s’, and its FATHER
points to the node which initiates the call, i.e. NI. Noie that we do not store
the head of the matched clause explicitly in any node; its body, if any, is given
by the CALL field of its left-most child node. For instance, the body of the
matched clause of ‘7" in node N1 are listed in the CALL of node N2, and the
body of the matched clause of ‘p’ in node N2 are listed in the CALL of node N3,

-

ete.

Selecting an unsolved subgoal can be divided into two steps: (1) Forward
Selection (FS) - the selection of first subgoal in any matched clause; (2)
Backward Selection (BS) - the selection of next subgoal in any matched clause.
The FS step can be done without examining the stack nodes. Given any
matched clause, we just pick off the first subgoal in its body as the next
unsolved subgoal. If FS step fails, which implies the body of the matched clause
is empty, then we have to follow the FATHER chain. Starting from the current
node, if the next call in CALL is not nil, then the BS step succeeds and we have
found an unsolved subgoal; otherwise, we repeat the same step for the parent of
the current node. When the BS step has exhausted the remaining subgoals, the

proof of the original input query succeeds.

By a matched clause “‘exit” we mean that the last call in that clause body
has completed successfully and the control is passed back to its caller. If a
matched clause exits deterministically, i.e. itself and every immediate subgoal
call invoked by this clause are deterministic, then the storage occupied by these
nodes can be released. We observe that popping DET nodes can be performed

only when we are in the BS step. During every BS step, if a DET node is found
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Goal: ?7p.s;
Cl: p<«<q.r;

C2: q<s;
C3: r;
C4: s ;
Fl| nil
N1 C| =7
= —T
N2 {55
N3 L=
Cl -q.r
F P~
N4 ==
F -
N5 C| »r
Ne [EL° = ~
Cl —*s N3 and N4 can be popped
before allocating NS
F - father of the current node FS - Forward Selection
C - list of subgoal calls, the BS - Backward Selection
first one being the current
cail

Figure 4.3 An Example of Propositional and Deterministic

to be ‘‘above’ the most recent backtrack node, then it is popped. For instance,
where the clause C2 (with immediate subgoals in node N4) exits successfully, the
nodes N3 and N4 can be removed just before the creation of node N5. As we
can see, it is only safe to do so if we can guarantee that there are no pointers
oriented from either N1 or N2 to N3 and N4. Therefore, all pointers within the

runtime stack are always oriented downward, from top to bottom in order to
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avoid the danger of dangling pointers. This is one of the major assumptions in

our subsequent discussions on storage optimisations.

Example 2: Backtracking with Enivronment

In figure 4.4, we show a non-deterministic program with variable bindings.
In order to illustrate the basic ideas, we will not perform any of the possible
storage optimisations. All variables names are uniquely defined and are referred
to globally for convenience. Given any subgoal call, we sfore its binding
environment in its parent node. For example, in figure 4.4a, the binding
environment for the call ‘s(U)’ in node N3 is in node N2, and for the call ‘r(Y)’ in

node N4 is in node N1.

In thé node N1, an environment of size 2 (X and Y) is allocated for the
original input query (see figure 4.4a). Node N2 is created with an environment
of size 1 (U) for the execution of the subgoal call ‘q(X)’ and its matched clause
C1; its RESET field points to the beginning of the trail stack and the CL-GEN
points to the next alternative clause C2. After unification, the free variables U
(in N2) and X (in N1) are unified, and a pointer is assigned from U to X. The
execution of the call ‘s(U)’ and its matched clause C5 (node N3) causes U to
unify with the constant ‘a’ which is then assigned to X after dereferencing, and
X is recorded on the trail stack because it is below the most recent backtrack
node N2. Similarly, after the execution of the second subgoal ‘r(Y)’ (node N4) in
the input query, Y unifies with the constant ‘b’ and is also recorded on the trail
stack. Node N5 is created for the subgoal ‘t(X,Y)’ and the matched clause C3; Z

first unifies with X and gets the constant ‘a’, but then fails to unify with Y; the



Goal: ? q(X), r(Y), t(X,Y);
Cl: q(U)<«s(U);
C2: q(V)<«r(V);

C3: uz2.z2):;
C4: r(b);
CS: s(a);
(a) (b)
N1 Trail Stack N1 Trail Stack
F| nu | X T0 F| nil ) To
C| o2 Y Tl C| o2 ://////// T
x| a /T2 x| o 2//////ke
Y b W Y b
N2 - N2 -
F. - F -
C - > q(X), C . * q(X),
Rt TO r(Y), v X r(Y),
Cg c2 t(x,Y), N3 ’ t(x,Y);
U X F
N3 C - > r(V);
F . N4
C . +s5(U); F .
C - +»1(Y),
N4 F . NS t(X.Y);
C - - r(Y), F -
NS tHX,Y), C —t— t(X,Y);
F Z b
C g » t(X.Y).
z a
AN
FAIL. X o ¥ F* - NDET node

Figure 4.4 An Example of Backtracking with Environment
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call ‘t(X)Y)’ fails and causes backtracking. (N.B. Z is not recorded on the trail

stack because it is above the last backtrack node N2.)

Upon backtracking, the nodes N5, N4, N3 and N2 are popped; every
variable recorded from the top of the trail stack down to the pointer RESET in
node N2 is reset to ‘‘undefined”, which in this case is X and Y. In figure 4.4b,
we show the situation after backtracking and the final execution. Notice that
the node N2 is now DET because the clause-generator for ‘q(X)’ is empty, and
nothing is recorded on the trail stack. The node N3 for the call ‘r(V)’ this time
causes the variable X (in N1) to unify with the constant ‘b’ and the node N4 for
the call ‘r(Y)' causes the variable Y (in N1) to unify with the constant ‘b’
Finally, the execution of the node N5 succeeds with Z equal to X and to Y,

which is the constant ‘b’.

In this sample program, we observe: (1) variable bindings occurring above
the last backtrack node are never recorded on the trail stack; (2) simple
constants are assigned to the free variables directly during unification; no
pointer is needed and nothing is allocated or copied (3) when two free variables

are unified in the runtime stack, the higher one always points to the lower one.

Example 3: Constructing New Terms

In figure 4.5, we show, with the “append/3” program, how new terms are
constructed on the copy stack during execution. For simplicity, we omit the
details of backtracking and show only the successful nodes in the runtime stack

and the content of the copy stack.
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Goal: ?app(la)],Ibl,L);

Cl: app(llL.X.X);

C2: app(IUKX] Y, [UZ]) <«
app(X,Y,Z);

N1 Copy Stack
F | nil | a PO U2 Copy of [ULZ]
c -2 . |cLisT|P1 Z2°

L1|{VLIST| * p2

N2 .
F &
C -~

U2 a

X2 §)

vz lcLisT| -

22 |REF .

N3
F*| o
C . » app(X,1,2); Pure Code for
Cp| P2 app(lal,[blL)
cgl c2
Bk| nil

X3|CLIST| «

Note: Tag fields are reversed in some entries for convenience.

Figure 4.5 An Example of Constructing New Terms

Node N2 is created for the first and only subgoal call in the input query and
the clause C2, which is DET with an environment of size 4. The variables U2

and X2 unify with the list ‘[a]’ and get the constants ‘a’ and ‘[]' respectively; Y2
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gets the list ‘[b]’ (Note: variables are subscripted with their node numbers).
When L1 in NI unifies with a list structure ‘(U] Z]’ with variables, it is assigned a
pointer to a copy of ‘[U|/Z]'" on the copy stack; the new copy has U2’ being
replaced by the constant ‘a’, and Z2' being linked together with the
corresponding entry in its environment. In order to avoid dangling pointers to
the environment due to storage optimisationt, when a free variable in the
environment unifies with a free variable in the copy stack, a pointer is always
assigned from the environment to the copy stack. Hence, the variable Z2 in
node N2 is assigned a pointer to the corresponding variable, Z2’, in the new copy

on the copy stack.

For the execution of the subgoal in clause C2, a NDET node N3 with an
environment of size 1 is allocated for the matched clause C1; the COPY field is
set to the top of the copy stack, P2. The variable X3 first unifies with Y2 and
gets the list ‘[b]’, and then it unifies with Z2 (and hence Z2'). The final value of

L1 in node N1 is the list ‘[a,b]".

In this example, we see that the decision to construct new terms on the copy
stack is determined at execution whenever a free variable unifies with a
structure containing variable(s). If the variable L in the original input query is

replaced by a list structure ‘[a,b]’, then no copying is necessary during execution.

1 Recall that storage optimisation will remove portions of the runtime stack, therefore the poten-
tial lifetime of environments is shorter than corresponding copy stack entries.
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Example 4: Tail Recursion Optimisation

In figure 4.6, we show the application of tail recursion optimisation (TRO).
The basic idea is to detect situations in which we can turn recursion into
iteration. In Prolog, the only mechanism for performing repetitive computation
is recursion. For a deep recursive call, the storage usage can be substantial. If
we can make a recursive call re-use the same storage (a stack node), then we can

save a lot of space.

In applying TRO, we must guarantee that whatever is left in the previous
stack node is not relevant to the new one overwriting it. The conditions under
which we can apply TRO are: (1) ti)e call being invoked must be the last call in
the clause to which it belongs; (2) in the same clause, between this call and the
first call inclusive, there must not be any backtrack points; (3) the call is
recursive (N.B. this is not a condition -- more on this later). For our example in
figure 4.6, the call “‘append(X,Y,Z)"” in clause C2 is the last call and recursive.
Only at runtime can we tell if this call is deterministic or not. So long as the

first argument X is not the empty list, this call will remain deterministic.

Following the first two steps of execution in our example, nodes N2 and N3
are created for the first subgoal in the query and the first recursive call
respectively. Both are determinate and the variable bindings in N2 are on longer
relevant for the future execution of N3. (However, there might be free variables
in N3 which unify with the free variables in N2, and pointers are normally
assigned from N3 to N2. Hence, there could be a danger of dangling pointers if

we discard or overwrite N2. To avoid this problem, the solution here is to swap
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Goal: ? app( la,bllcdlL ) ;

Cl: app(Ill.X.X);

C2: app(I[UIX], Y, [UIZ]) <~
app( X, Y,Z2);

( Before TRO ) ( After TRO )
Copy Stack .

N1 . . . NI

F nil 2 PO U2’ F

c — 2 —— |cLisT|P1 z2 2+ |C
L1|VLIST| ~ ! b P2 U3 + |VLIsT
N2 !cusr :i 23 NZoN3

F F

C - X el N2
U2 a b U3
X2 ) ) I3
Y2|CLIST| = - |CLIST|Y3 N3
22|REF | z2’ Z3’ |REF |z3
N3 N4

F P

¢ - + app(X.1,2), « . C
U3 b P4 |Cp
X3 1 Cc2 Cg
Y3|CLIST| -~ nil  |Bk
Z3|REF | 23 - |CLIST|x4

Note: Tag fields are reversed in some entries for convenience.

Figure 4.6 An Example of Tail Recursion Optimisation

the two environments -- but not the stack frames -- before unification, once we
detect the possibility of applying TRO.) [Bru82] We observe that the CALL field
in N3 is useless because it is the last call, and the FATHER field can be ignored

since it is going to share the necessary information with its parent node N2;
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therefore, N3’s stack frame can be discarded and its environment can be placed
over the environment of N2. As a result, N2 becomes a ‘“hybrid” node -- its
stack frame is not the ‘‘real” father of its environment. This type of node must
be marked so that it is saved from the “‘cut’ predicate, which eliminates all the
backtrack points up to and including its “‘real” parent. The execution continues

until the creation of node N4 which is non-deterministic and we cannot apply

TRO.

In general, the situation in which TRO applies is not necessarily recursive.
More appropriately, it should be called ‘last call optimisation” (LCO). In
applying LCO there is a possibility that the old and new environments are of
different sizes, so it is difficult to swap the two as a complete segment of the
runtime stack between the environments would have to be relocated. In WUP,
the restriction is such that the old and new environments must be of the same

size in order to apply LCO.

Note that LCO can be applied even before the call successfully returns; if
the optimised call ultimately fails, it will not affect the state of computation
since it was deterministic and it is the last call in its parent clause; if its parent
clause is deterministic, then the call to its parent clause fails; otherwise, its
parent clause's stack node is popped and rebuilt for the next alternative(s). In
the case of DCO, we have to wait until the call exit. So, LCO has a bigger

benefit for systems with limited amount of memory.



4.4. An Improved Version of the ABC Algorithm

With the introduction of all the necessary basic concepts, we now turn our
discussion back to our ABC algorithm which incorporates all the above-
mentioned optimisations. In WUP, this algorithm is implemented as the built-in

‘“‘prove’”’ predicate. The state of execution is characterised by a set of machine

registers:

Cur-frame a pointer to the control stack frame for the current node
(the current node is the head of the list of all the parents
on a particular branch of the proof tree).

Cur-env a pointer to the environment of the current node.

Cur-call a pure code pointer to the current call that is selected for
execution.

Cur-proc a pure code pointer to the procedure containing clauses

that possibly-match the current call.
Cur-module a pointer to the module to which the current call belongs.

Cur-back a stack frame pointer to the most recent backtrack point
(head of the list of all backtrack points).

In figure 4.7, we present the complete ABC algorithm in an Ada-like

language. All necessary support routines are briefly described in Appendix D.

4.5. Unification Algorithm

The unification algorithm used in WUP is no different from previous
Waterloo Unix Prolog implementations. It does not include the “occurs check”.
So, for unifying infinite structures, our algorithm loops until available storage is

exhausted, and then the execution will be aborted.

Since lists and functors are implemented as different data structures in
WUP, we have more cases for testing whether two terms are unifiable. For
efficiency, our unification routine is table-driven (see figure 4.8). Based on this

table, the unification routine can now be condensed into fewer and more
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module ABC is
StackRange = 1. MAX_STACK_SIZE ;
RT_top, Copy_top, Trail_top : StackRange ;
Cur_frame, Cur_back : FramePtr ;
Cur_env, Init_env : EnvPtr ;
Cur_proc : Clause ;
Cur_call : GoalCall ;
Cur_cg : Procedure ;
Cur_module : ModulePtr ;

procedure select () returns { Boolean ) ; external ;
procedure son () returns ( Boolean ) ; external ;

procedure solve ( M: ModulePtr ; Q: Clause ) returns ( Boolean ) ;
begin
( Cur_frame, Init_env) := push-stack-node( M, Q, DET) ;
( FATHER|[ Cur_frame |, CALL| Cur_frame }) := ( NIL, NIL ) ;
( Cur_proc, Cur_call, Cur_env, Cur_module, Cur_back ) :=
( Q, NIL, Init_env, M, NIL ) ; {
A: if select() then
( Cur_cg, Cur_module ) := clause-generator( Cur_module, Cur_call ) ;
else
return ( true ) ;
endif ;
B: if son() then
goto A ;
endif ;
C: if Cur_back = NIL then
return ( false ) ;
else
undo-binding( RESET| Cur_back ] ) ;
pop-copy-stack{ COPY| Cur_back ] ) ;
pop-stack-node{ Cur_back ) ;
( Cur_frame, Cur_call, Cur_cg, Cur_module ) :=
( FATHER|[ Cur_back |, CALL| Cur_back ], CL-GEN| Cur_back ],
MODULE]| Cur_back | ) ;
Cur_env := env-ptr-of( Cur_frame ) ;
Cur_back := BACK]| Cur_back | ;
goto B ;
endif ;
end solve ;
endmodule.

Figure 4.7a The ABC Algorithm (solve)
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procedure select () returns ( Boolean ) ;
begin
% forward selection step
Cur_call := first-call-of( Cur_proc ) ;
while Cur_call = NIL loop
% popping deterministic node
if Cur_frame > Cur_back then
pop-stack-node( Cur_frame } ;
endif ;
% backward selection step
Cur_call := next-call-of( CALL| Cur_frame | );
Cur_frame := FATHER| Cur_frame | ;
%% reach the root of the proof tree
if Cur_frame = NIL then
return ( false ) ;
endif ;
endloop ;
Cur_env := env-ptr-of( Cur_frame ) ;
Cur_module := MODULE| Cur_frame | ;
return { true ) ;
end select ;

» Figure 4.7b The ABC Algorithm (select)

manageable cases. -

4.6. Structure-copying Algorithm

As described previously in figure 4.5, a copy of a structured object
containing variable(s) is made on the copy stack whenever it unifies with a free
variable. There are cases where the new copy also contains free variable(s). The
question now is how to maintain the equivalence between a variable with an
instance in the copy stack and another instance in the runtime stack
(environment). As long as the two instances are linked by some pointer, the
interpretation will be correct. But, as mentioned before, in order to apply the

storage optimisation techniques, we cannot leave dangling pointers in the
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procedure son () returns ( Boolean ) ;
tframe : FramePtr ; tenv : EnvPtr ;
tproc : Clause ; TRO : Boolean ;
copy : StackRange := Copy_stack_top ;
reset : StackRange := Trail_stack_top ;
begin
while Cur_cg <> NIL loop
( tproc, Cur_cg ) := next-clause( Cur_cg ) ;
if Cur_cg = NIL then
set-binding-limit( Cur_back, COPY| Cur_back | ) ;
( tframe, tenv ) := push-stack-node( Cur_module, tproc, DET ) ;
else
set-binding-limit( tframe, copy ) ;
( tframe, tenv ) := push-stack-node{ Cur_module, tproc, NDET ) ;
endif ; :
TRO := next-call-of( Cur_call ) = NIL and is-det-node( tframe ) and
env-size-of( Cur_env ) = env-size-of( tenv ) and
Cur_module = MODULE]| Cur_frame | ;

if TRO then

swap-environment( Cur_env, tenv ) ;

( Cur_env, tenv ) := ( tenv, Cur_env) ;
endif ;

if unify( Cur_call, Cur_env, head-predicate-of(tproc), tenv ) then
If not is-det-node( tframe ) then
( BACK] tframe |, COPY]| tframe |, CL-GEN] tframe |,
RESET| tframe | ) := ( Cur_back, copy, Cur_cg, reset ) ;
endif ;
if TRO then
pop-stack-node( tframe ) ; set-not-real-father( Cur_frame ) ;
else
{ MODULE] tframe ], CALL| tframe |, FATHER| tframe | ) :=
Cur_module, Cur_call, Cur_frame ) ;
Cur_frame := tframe ;
endif ;
( Cur_proc, Cur_env ) := ( tproc, tenv ) ;
return ( true );
else
undo-binding( reset ) ; pop-stack-node( tframe ) ; pop-copy-stack( copy ) ;
endif ;
endloop ;
return ( false ) ;
end son ;

Figure 4.7c The ABC Algorithm (son)
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CALL |Eree|Void]| Int |Atom|Char | End iConst| Var Const| Var

HEAD Var. | Var. [ConstiConstiConst| List | List | List {Func|Func
v::;;m FVv|s |an|an|an|an| an|cu | an | cu
G | s e el o le |e e s
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VaLriisible cC|S|F |F|F|F |UL|UL|F |F
onstant |ac| s | F|F | F|F|F|F|uF|ur
pvrngl K 0 L L Il 0 A A

F - always Fail - UL - Unify Lists

S - always Succeed UF - Unify Functors

FV - Free Variables CH - Copy to Head

AH - Assign to Head CC - Copy toCall

AC - Assign to Call SC - Simple Comparison

Figure 4.8 Unification Table

environments. One general assumption is that all pointers within the
environments are always oriented downward, from top to bottom of the runtime
stack. To guarentee correctness of those optimisations, there is no doubt that
we should orient the pointers from the environments to the copy stack. For

uniformity, we would also orient the pointers downward whenever two free
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procedure unify ( C: Functor; CE: EnvPtr; H: Functor; HE: EnvPtr ) returns ( Boolean ) ;

begin
C := dereference( C, CE } ;
H := dereference( H, HE ) ;
if H = C then return ( true ) ; endif;
case Unify_table] TAG|H |, TAG| C ] ] is
when F => return ( false ) ;
when S => return ( true );
when FV =>
ifH > C then
( TAG|H |, VAL[H] ) := ( REF, C ) ; record-binding( H ) ;
else
( TAG| C |, VAL| C ] ) := ( REF, H ) ; record-binding( C ) ;
endlf;
when AH =>
H := C ; record-binding( H ) ;
when AC =>
C := H ; record-binding( C ) ;
when UL =>
if not unify( LIST_HEAD| C ], CE, LIST_HEAD| H |, HE ) or not
unify( LIST_TAIL[ C |, CE, LIST_TAIL| H |, HE ) then
return ( false ) ;
endlf ;
when UF =>
if FUNC_NAME| C | = FUNC_NAME| H | and then
ARITY| C ] = ARITY| H | then
for i in ARITY| C | loop
if not unify( argument-of( i, C ), CE, argument-of( i, H ), HE ) then
return ( false ) ;
endloop ;
else
return ( false );
endif ;
when CH =>
new-copy-to{ C, CE, H ) ;
when CC =>
new-copy-to{ H, HE, C } ;
when SC =>
return ( VAL[|H] = VAL[C ] );
endcase ;
return ( true );
end unify ;

Figure 4.9 Unification Algorithm
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variables in the copy stack are unified. Our assumption is that the pointers for
variable bindings are always oriented from top to bottom in the runtime or copy
stack and from runtime to copy stack. Hence, the danger of dangling pointers

after optimisation is avoided.

procedure new-copy-to ( From: Term; E: EnvPtr; To: Term ) ;
begin
From := deference( From, E ) ;
Cé don’t copy existing term on the copy stack
if in-copy-stack( From ) then
To := From ; return ;
elsif From = To then return ; endif;
case TAG| From | is
when Free Variable =>
if From > To then
( TAG| From |, VAL| From | ) := ( REF, To ) ;
record-binding( From ) ;
else
( TAG| To ], VAL| To ] ) := ( REF, From ) ;
record-binding( To ) ;
endif ;
when Constants or End List or Constant Functor or Constant List =>
To := From ;
record-binding( To ) ;
when Variable List =>
new-copy-to( LIST_HEAD| From |, E, LIST_HEAD| To ] ) ;
new-copy-to( LIST_TAIL| From |, E, LIST_TAIL| To ] ) ;
when Variable Functor =>
( FUNC_NAME| To |, ARITY|[ To | ) :=
( FUNC_NAME]| Frome |, ARITY| From | ) ;
for i In ARITY| From | loop
new-copy-to( argument-of( i,From ), E, argument-of(i,To ) );
endloop ;
endcase ;
end new-copy-to ;

Figure 4.10 Copying Algorithm
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The copying algorithm is a simple recursive routine that uses the tag field
of the copied object to determ.ine whether a new copy should be made, or just a
simple assignment should be done (see figure 4.10). The algorithm does not
perform full copying, i.e. the constant terms (scalar or compound) are shared.
One observation about copying is that we are only concerned with the pure-code
terms, i.e. the static read-only code generated at compile-time. Once a copy of a
pure-code term is made, this new copy will be shared. It is crucial to identify a
term which is already a copy of some pure-code term because without such a

distinction a program linear in space can be turned into one that is quadratic.

One final remark about this implementation of the structure-copying
algorithm: when dealing with infinite terms, as in the unification algorithm, this

algorithm can go into an infinite loop until the copy stack overflows.

4.7. Built-in Predicates

In implementing a Prolog system, the majority of the effort is on the
““cosmetic” features -- the built-in primitives necessary for making Prolog a
usable programming environment. Some are ‘‘extralogical” in order to make
Prolog more efficient (e.g. cut). These primitives can be classified into the
following main categories: arithmetic, control, i/o, meta-logical, database and

relational. We give a few example predicates for each of these categories:

arithmetic add, mul, mod
control cut, or, prove
i/o read, write, get, put

meta-logical is_var, is_functor, is_atom

database assert, retract, clause
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relational It, gt, eq

The above lists only a very small number of built-in primitives supported in
WUP. They will not be described here in full detail, however, we will discuss the

implementation of some of the more interesting ones: cut, prove and clause.

cut or ‘!’

This predicate has a side-effect on the selection of execution alternatives. It
will remove all the alternatives up to and including the clause to which it
belongs. For the implementation, it makes deterministic all the nodes between
the current node (the call to ‘“‘cut”) and its parent node. Because of TRO, the
parent node may not be the ‘“‘real” father, and should be left unchanged. The

implementation of “cut” in WUP is given below (note that the variables Cur-

back and Cur-frame are those declared in the ABC algorithm, see figure 4.72a):

% remove all choice points between the current node
% and its parent node
%
while ( Cur-back > Cur-frame ) loop
set-det-node( Cur-back ) ;
Cur-back := BACK]| Cur-back | ;

endloop ;

if is-real-father( Cur-frame ) and Cur-back = Cur-frame then
set-dct-node( Cur-frame ) ;
Cur-back := BACK] Cur-back | ;

endif ;

After the application of a ‘“‘cut”, any variable bindings that were created
between the current node and its parent node are now frozen, i.e. they will not
be reset upon backtracking. Hence, their binding records on the trail stack can
be removed. This could provide a marginal saving in storage for a very deep

recursive call where ‘‘cuts’ are used to remove alternatives.
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prove( Goal)

In WUP, the internal representation of a goal call and a normal Prolog term
is slightly different; a goal call has some extra information about the matched
procedure and the next call in the same clause. The structure representing the
goal call “prove( Goal )" cannot be modified, we must find some way to
construct another §tructure representing the goal call “Goal” and to insert it
between the the goal call “‘prove’ and the next goal call, so that the new “Goal”
call will be executed next after the successful return of the predicate ‘“‘prove”.
One solution is to make a copy of the goal call ‘“‘prove( Goal )", modify the new
copy’s next call pointer to the new goal call for “Goal” and the new goal call's
next call pointer to the next goal call of the original “prove( Goal )". Figure

4.11 shows an example of how the data structure is adjusted at runtime.

clause( Module, Head, Body )

Given a term “Head”, ‘‘clause” will try fo retrieve from the database of the
module “Module” a clause whose head is unifiable with ‘““Head” and its body is
then unified with “Body’. Later upon backtracking, this predicate will be
retried on the next clause which has the same properties. This predicate fails if

nothing in the database is unifiable with “Head”.

One immediate problem is how to index through all the database clauses
without explicit references. One solution is to allocate a new temporary variable
on top of the current environment, and use it as the “reference” to the clause
found. This variable should never be reset upon backtracking, so it not recorded

on the trail stack. A new problem now is how to distinguish the first, second or
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Figure 4.11 Execution of Prove Predicate

subsequent invocations to ‘‘clause/3”. When it is first called, the temporary
variable (or reference) does not exist yet. In WUP, a state variable is declared in
the ABC algorithm and is used to indicate the state of computation. If a call to

‘clause/3” is made by backtracking, the state variable is set and we know this
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call cannot be the first invocation.

4.8. Trace Facility

The debugging facility in WUP is based on the “‘box’’ model [Byr80] which
describes the execution of a Prolog clause in terms of four different states:
CALL, EXIT, REDO and FAIL. In WUP, we add an extra message “MORE"
for indicating that the current call succeeds, and has alternatives (i.e. it is choice
point). These states can be easily incorporated into the ABC algorithm. Their

relationship with the ABC algorithm are given below:
CALL  after every successful selection step (forward or backward).

EXIT  just before every backward selection step, i.e. the current call is
the last call in the current node.

REDO at every backtracking step.
FAIL after every unsuccessful call to ‘‘son()’’ generation step.

MORE at every successful return from ‘son()” when the ‘‘clause-
generator' is not empty.

Apart from giving the state of execution, the trace information also
indicates the location in the proof tree of every state by a unique tuple, ( tree
level, node number ). The implicit query “?" is at (0,0). For every “CALL", the
node number is increased by 1. The tree level of any node is the tree level of its
immediate parent plus 1. (Note: During debugging, no optimisation is
performed.) Both the tree level and node number are stored in the stack frame;

thus, it is straight-forward to determine the location of each state.



Chapter 5

Conclusions

WUP has been fully operational since January 1984. It has been used as a
teaching tool for the course CS486 (Introduction to Artificial Intelligence) at
University of Waterloo. During this period, many of the more serious system
bugs have been fixed. The concepts of ‘Modules” and “Programming
Environment” in Prolog have been studied. As a first attempt in this direction,
the results to-date have been satisfactory. We have now learned more about the
feasibility of building a Prolog environment in Prolog. Our next step is to
evaluate WUP's user interface and its usefulness for real programming tasks. In
the following sections, we show one interesting test program for our unification
algorithm, provide the results of comparisons with CProlog [Per83], summarise
the central ideas in this implementation (and the things that we would do
differently next time) and finally state a few possible short-term and long-term

extensions for WUP and Prolog in general.

87
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5.1. Unification Test

Figure 5.1 shows a list construction and traversal program in WUP. The
program is written in Lisp-style of ‘“‘car-and-cdr’” operations. The result of this
program demonstrates the ease of constructing two-way cyclic lists in Prolog.
Its main idea is to illustrate the power of ‘‘unification’ in Prolog. (Note that

the unification step is represented by the predicate ‘‘eq’.)

-

At the end of execution of this program, the variable X contains the term
“[ [a21 | [a22 | b22)]) | [[a22 | b22] | b12] |’ with only one copy of the term
“[a22 | b22]”, which implies that there is a cycle in X. Another view of looking
at this program is as a set of recursive equations with ‘‘eq” being the “="
operator. Then, the term that X represents is equivalent to the set of equations
{ X = [Z]Y], Z = [a21]W], Y = [W|B21], W = [a22|b22] }. To construct such
a structure in Lisp is impossible without destructive assignment [Mor80]. Most
Lisp implementations provide the list-structure-altering primitives for modifying
the “‘car” and ‘‘cdr” fields -- “rplaca” and “‘rplacd”. However this destroys the

mathematical elegance of Lisp’s lambda calulus foundation.
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eq( X, X);

car( [X]_]. X );
cdr( [LIY]L Y );

test <-
eq( X, [2]Y]),
eq( Y, [W[b12] ),
eq( Z, [a21|W]),
car( X, Z1), cdr( Z1, 22 ), eq( 22, [a22]b22] ),
cdr( X, Y1), car( Y1, Y2), write( Y2 ), nl

I

? test ;
[a22]b22)
yes

Figure 5.1 A List Construction and Traversal Program

5.2. Comparative Studies

At the time of writing, CProlog is the only other Prolog system available at
Waterloo on Unix. Initially, we intended to include comparisons of both
'execution time and storage usage on a few standard test programs, but there is
no obvious way to determine the storage usage (in particular of the main stacks)
in CProlog. Thus, we can provide only the statistics on execution time for both
systems. One thing to keep in mind is that these two systems are very different.
CProlog is an interpreter designed and implemented for pure speed and practical
purposes; WUP is an experimental system for testing new concepts. Although
both systems are written in C on Unix, WUP is designed for its modularity and

extendability. It is not surprising that CProlog is about twice as fast as WUP.
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( Time 1n seconds )

Programs Input size CProlog WUP
(1) fibonacci 18 42583 57.850
(2) naive reverse | 30 0.283 0617
(3) quicksort 20 0.133 0267
(4) hanoi 10 2.099 2.833
(5) hanoi 15 stack 96.003

overfiows

Figure 5.2 CProlog versus WUP

In figure 5.2, we list the results of comparisons on four test programs using
the ‘‘cputime’” predicate on CProlog and ‘“time” predicate on WUP (see
Appendix E for details on the test programs). For the programs (2) and (3),
CProlog is about two times faster than WUP because it uses structure-sharing
(SS), while WUP uses structure-copying (SC). It is known that the SS approach
performs better than the SC approach in constructing new terms at execution
time. The programs (2) and (3) involve m:;ny list construction operations, while
(4) requires none. As shown in program (4), CProlog is marginally faster than
WUP. However, it runs out of available stack space for the same program with

bigger input size. WUP still performs reasonably well with TRO.

Our conclusions about these comparisons are: (1) the execution efficiency of
any Prolog systems depend mainly on the types of input programs and their

chosen schemes for constructing new terms, assuming that they are all
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implemented in the same language on the same machine; (2) the main issue on
Prolog implementation lies with storage optimisation; no matter how fast a
system can run, it cannot continue its execution if the available storage is

exhausted.

5.3. Summary

Many of the design decisions are influenced by experience with previous
implementations and comments from our users. The implementation and
optimisation techniques used in WUP are not drastically different from other
Prolog implementations except at the lowest level of details. The organisation
and design of WUP has been much directed towards our original aims:
portability, modularity and extendability. The following is a summary of some

interesting features in WUP:

Compiling

An interpreter provides good debugging facilities for program development;
a compiler produces fast executable code for production. Our approach is a
compromise between pure interpretation and pure compilation. Compiling
Prolog into virtual machine code has also been discussed recently in

[Bow83,Bal83] and their objectives are portability and efficiency.
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Database

The use of the existing file system (Unix) to organise the program database
simplifies maintainance of very large programs. Integrating Prolog with a
relational database machine has also been suggested by [Bal83] for efficiently
storing and retrieving large amounts of facts. All these research directions will
in some way affect future extensions of WUP. Our current design is an attempt

to make Prolog more usable for large programming projects.

Debugging

The “box™ model [Byr80] provides a simple but adequate view of watching
Prolog at work. With good debugging and separate compilation facilities, large
Prolog program can be tested and assembled. The design of WUP’s debugging
facility comes mostly from discussions with students that have used other Prolog

systems.

Modules

The new notion of modules in Prolog is the most attractive part, and that
has also generated further research to investigate its semantics and practicality
in logic programming. This notion, we believe, will become very important in
the area of practical logic programming. Similiar approaches have also been
proposed recently in [Bow83,Ben80,Bal83,Chi83,Fur83]. The module defined in
MProlog [Ben80] and Micro-Prolog [Cla81] are basically for the purpose of

reusable software and separate compilation.

e
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ABC algorithm

The ABC algorithm has been used in the previous two implementations of
Waterloo Unix Prolog. Its succinct description of Prolog’s underlying execution
mechanism is one of the major contributions to the continuing effort of
improvements. We hope our introduction of optimisations will not destroy the

clarity of the original.

Unification

The increase in the number of basic types (e.g. integer, string, etc.) in
Prolog can compli;:ate the unification algorithm. A table-driven unification
routine can reduce the total number of cases into a few manageable ones. This
is particularly suitable for hardware implementation. A similar approach has

also been proposed in [Bal83].

Structure-copying

As an alternative to the structure-sharing approach, the structure-copying
approach has other advantages. As noted by Bowen [Bow83], structure-copying
may give a better locality of references for a virtual memory based Prolog
implementation. Structure-copying is also easier to be implemented on machines

that cannot store two addresses in a single machine word.
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Optimisations

Tail recursion (TRO) and deterministic call (DCO) optimisations have
become almost absolutely necessary in any future Prolog implementations. In
practice, if we can implement TRO efficiently, we can promote recursive rather
than iterative style of programming (Note that the latter requires ‘“‘destructive”
assignment which cannot be done in Prolog in general). As database machines
become available, the technique of clause indexing becomes less important. For

a large database application, software indexing becomes impractical.

Memory Layout

The major assumption about pointer orientation in the copy and runtime
stack has somewhat affected the memory layout of our actual implementation.
One simplication that can be easily achieved is to allocate the two stacks, copy
and runtime, in the same storage area with the runtime stack on top of the copy
stack; under this condition, the pointers are always oriented downward, and we

can guarentee our original assumption.

What to do differently next time

The unification and structure-copying algorithms employed in this
implementation have one drawback in that they are both recursive; in Unix this
has the problem of causing a ‘““memory fault” when operating on infinite terms.
An alternative approach is to use an explicit ‘“‘auxiliary” stack for maintaining
nested or partially finished structure terms. In that case, we can replace

recursion by iteration and raise an exception whenever the “‘auxiliary” stack
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overflows. This could have a slight improvement on the speed of execution of

these two algorithms because it involves fewer procedure calls.

Another thing that to do differently next time is the selection of built-in
primitives. We have no known guiding principle prior to our implementation on
what the minimal but usable set of primitives is required in order to support a
programming environment in Prolog. Our approach is ad hoe. Until there is a
better understanding of what Prolog modules are and how they are used, we
cannot pinpoint the real problem in such an implementation. In the next version
of WUP, we can provide some insight which will help contribute to the

development of -a complete Prolog programming environment.

5.4. Future Works and Extensions

Prolog is still an evolving programming language. Its future success relies
on its suitability for large programming projects. In this document, we gave an
account of the design and implementation issues of a programming environment
for Prolog, which is a step forward in the direction of making Prolog more
usable and practical. Throughout our discussions, we have emphasised the
importance of the concept, “Modules in Prolog”. To fully appreciate the
usefulness of this concept, we propose in the following, a list of future plausible

short-term and long-term extensions in WUP or Prolog.
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Short-term Extensions

I)

1)

Modules in Prolog

a) interface to non-Prolog code -- by defining the protocols of
communication among modules, a Prolog module can communicate
with non-Prolog modules.

b) generalise the search for a proof -- the search path can be organised
into a tree hierarachical structure, e.g. like Smalltalk, and its
configuration should be user-definable.

¢) query-the-user -- the user can be viewed as another module which
observes certain properties; hence, a non-provable fact can be reflected
to this module for possible solutions.

Environment Supports

a) more extensive editing facilities -- a syntax-directed editor with an
integrated debugger is a powerful tool for watching Prolog at work
while developing programs.

b) a more elaborate file system specially tailored for Prolog sources, code
and databases. Avoiding the distinction of these objects, a user
operates directly only on modules or predicates.

¢) an automatic garbage-collection facility -- this is the ultimate solution
to the problem of stacks overflow.

Long-term Extensions

)

1)

III)

Parallelism -- by defining the communication and synchronisation primitives
for modules, we can view modules as independent execution units and run
them asynchronously.

Heuristic Control -- without modifying the Horn clause semantics of Prolog,
we provide a way of including a set of Horn clauses for describing the
execution order of other sets of clauses in order to speed up the search of
proofs.

Relational Database Machine Interface -- again, based on the concept of
module, we define the lazy and eager evaluation primitives for accessing a
large database which is encapsulated as a module.
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Appendix Al
BNF Definition of IML

<clause> = <axiom> | <query>

<query > = ‘Y <conditions> <endclause>

<axiom> u== <conclusion> <imply> <conditions> <endclause>
<conclusion> ;1= <literal>

<imply > = <emtpy> | ‘<-'|

<conditions> 1= <emtpy> | <literal> <conditions>

<endclause> = ‘|«

<literal> 1= <atom> | <compound>

<compound> := <atom> ‘(’ <term> <termlist> ‘)’

<termlist> 1= <empty> | <term> <termlist>

<term> = <conmstant> | <variable> | <list> | <atom> | <compound>
<list> s= ]| [ <term> <listtail> ¢’

<listtail> 1= <empty> | ‘|’ <term> | <term> <listtail>

<constant> = <atom> | <integer> | <char>
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Appendix A2

Regular Expression Definition of IML Lexemes

<variable> = "'_"(<char_set>)* | <upper>(<char_set>)*
<atom>  u=‘“(<any_char>)*“ | <letter>(<char_set>)*
<integer> = <sign>(<digit>)+

<sign> = <empty> | “'

<char> = <any char within single quotes>

<char_set> ::= <any char except ‘reserve’>

<letter> 1= <upper> | <lower>

<reserved> = |(’| l)’ I |[D I ;]v I £;| I l?' I 4‘»

Note:
““ = empty string.
When using ‘“’ inside a string, double it.
When using ' as character, triple it. (i.e. ‘")
Special characters:
Ab’  backspace
A" formfeed
\n' newline
A\t tab
\ddd’' ‘ddd’ is the decimal representation of any ascii characters.
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Appendix B
BNF Definition of PIC

<clause> ;= <assertion> | <query>

<query> = GOAL <proc_info> <proc_call> END_PROC
<assertion> ::= PROC <proc_info> <literal> <proc_call> END_PROC
<proc_info> ;== <pum_call> <num_var>

<proc_call> ::= <empty> | CALL <literal> END_CALL <proc_call>
<literal> 1= <atom> | <functor>

<functor> = <func_info> <term> <term_list> END_FUNC
<func_info> = <func_type> <num_arg> <name>

<func_type> = CFUNC | VFUNC

<term> = <variable> | <constant> | <functor> | <list_unit>
<term_list> ::= <emtpy> | <term> <term_list>

<list_unit> ::= NULL_LIST | <list_info> <term> <term_list> END_LIST
<list_info> ;1= <list_type> <num_term> <num_var>

<list_type> = CLIST | VLIST

<variable> 1= NULL_VAR | <var_type> <offset> <name>

<var_type> := BASE_VAR | REF_VAR

<constant> = <atom> | <integer> | <char>
<atom> = ATOM_CONST <bpame>
<integer> = INT_CONST <value>

<char> = CHAR_CONST <char>
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Appendix C
Pure Code Representation (PC)

Pure Code Word

| 1AG |

VALUE

|6oAL_cALL |

—

160RL_CRALL

-+ Next Goal

CALL_SKEL

-+ First Call

HUN_VUAR

Integer

|cLAUSE_HEAD]

——

CLAUSE_RERD

CALL_SKEL

-+ First Call

-+ Next Clause

NUN_UAR Integer

ATON / FUNCTOR

{caLL_skeL |

CLAUSE_HERD |+ Matched Proc

CALL_SKEL -» Next Call

ATON / FUHCTOR

FUNCTOR |

FUNC_NANE |String Descriptor

RRITY Integer

Argument 1

Argument N

[LisT |

—

LIST_HEAD| Term

LIST_TRIL| Term

[uRR_TvPE [O1tset [String Descriptor]
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Appendix D

Slipport Routines for the ABC Algorithm

procedure
‘ return:
effect:

error:

procedure
return:
effect:

procedure
return:
effect:

procedure
return:
effect:

procedure
return:
effect:

procedure
return:
effect:

procedure
return:
effect:

push-stack-frame ( M: ModulePtr; Cl: Clause; T: NodeType )
( F: FramePtr; E: EnvPtr )

allocate a new stack frame of type ‘T’, initialise a new binding environment for
the clause ‘Cl’ with ‘undefined’ values, and return the pointers to this new frame
and environment.

runtime stack overflows.

pop-stack-node ( F: FramePtr )
none

deallocate the stack frame at location ‘F’ but do not erase its content.

env-ptr-of( F: FramePtr )
( E: EnvPtr)

return the environment pointer of the stack frame ‘F’, which is based on the node
type of ‘F’.

is-det-node ( F: FramePtr )
Boolean

return true if the stack frame at ‘F’ is a deterministic node, otherwise return
false.

set-not-real-father ( F: FramePtr )
none

record that the stack frame at ‘F’ is not the “‘real” father of its environment. its
environment, otherwise return false.

first-call-of ( Cl: Clause )
( C: GoalCall )

return the first call of the clause ‘Cl' if it exists, othewise return nil.

next-call-of ( C: GoalCall )
( C': GoalCall)

return the next call following (or to the right of) ‘C’ if it exists, otherwise return
nil.
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procedure
return:

effect:

procedure
return:
effect:

procedure
return:

effect:

procedure
return:
effect:

procedure
return:
effect:

procedure
return:
effect:
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head-predicate-of { Cl: Clause )
( H: Term )

return the head functor of the clause ‘Cl'.

set-binding-limit ( E: EnvPtr; C: CopyPtr )
none

set the upper limits on the runtime and copy stack such that any future variable
bindings above these limits are not recorded.

undo-binding ( T: TrailPtr )
none

starting from the top of the trail stack down to ‘T’ inclusive reset all the variable

- bindings recorded back to ‘undefined’.

pop-copy-stack ( C: CopyPtr )
none

deallocate the storage from top of the copy stack to ‘C’ back to the copy stack.

swap-environment ( E1,E2: EnvPtr )
none

the contents of the environments E1 and E2 are swapped, and all the pointers are
properly readjusted.

env-size-of ( E: EnvPtr )
( S: Integer )

return the size of the environment at ‘E’.



Appendix E

Sample Test Programs

(1) fibonacci
test <- fib( 18, N ), write( N ) ;

fib(0,1);

fib( N, V) <-
seq-plus( [0,1|F], [1|F], F ),
nth( N, F, V)

nth( 1, |AIL], A );

nth( N, [A]L], V) <-
add( 1, NI, N),
nth( N1,L, V)

nth( N, seq(X)Y), V) <-
nth( N, X, V1),
nth( N, Y, V2),
add( V1, V2, V)

seq-plus( X, Y, seq(X,Y) ) ;

(2) naive reverse

test <-

nreverse( [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20], L ),

write( L )

’

nreverse( [|, [] ) ;

nreverse( [X|L1],L3) <-
nreverse( L1, L2),
append( L2, [X], L3)

ap;;end( LL,L);
append( [U]X], Y, [U]Z] ) <-
append( X, Y, Z)
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(3) quicksort

test <-

gsort( [27,74,17,33,94,18,46,83,65,2,32,53,28,85,99,47,28,82,6,11], L, ] ),

write( L )

’

gsort( [, R,R);

gsort( [X|L], R, RO ) <-
partition( L, X, L1, L2 ),
gsort( L2, R1, RO ),
gsort( L1, R, [X|R1])

partition( [l . {1, [] )

partition( [X[L], Y, [X|L1], L2 ) <-
X, Y)
partition( L, Y, L1,L2)

partition( [X|L], Y, L1, [X|L2} ) <-
partition( L, Y, L1,L2)

?

(4) & (5) tower of hanoi

hanoi( N ) <-
move( N, 1, ¢, 1)

move( 0, _, _,_);

move( N,L, C,R ) <-
add( 1, N1, N ),
move( N1,L, C,R ),
move( N1, C,R, L)

’
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