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~ ABSTRACT

Concurrent Prolog: is Shapiro’s definition. of a language which is a simple yet
powerful transformation of Prolog that incorporates concurrency, communication, syn-
chronization and indeterminacy. A computation model which uses processes communi-
cating via message-passing was defined and a prototypical interpreter was developed on
Waterloo Portf — a multi-process programming environment that supports concurrent
activities. The model defines the process structure, communication paths, binding

environment, and synchronization. procedures. The interpreter is a. partial implementa-
tion of the model. Some measurements were made to evaluate the performance of the
interpreter. '

tThis report was originally submitted as a Master’s thesis to the Depa.rtment of Computer Science, Fa.culty of
Mathematics, at the University of Waterloo by the author.
$ Port and Waterloo Port are trademarks of the University of Waterloo.



| Acknowledgements

This thesis would: not have been p0851ble w1thout the guidance and encouragement of my supervisor,
Prof. Randy Goebel. :

I would Iike to thank Patrlck Chan for many useful drscusswns during the preparation of this thesis
and development of the interpreter. :

I would like to thank R. Vasudevan for several valuable suggestions regarding the performance
aspects of the interpreter. »

I would like to thank Prof. Maarten van Emden for providing some helpful comments on this theisis.

I would also like to thank the members of the Software Portability Group for developing and sup-
porting such a productive research environment. -

I -am grateful to the Department of Computer Science at the University: of Waterloo and the
Natural Sciences and Engineering Research Council of Canada for financial support. ‘



Table of Contents

[ N

1. Introduction ....... B TSR O e RO

L1 MOBIVABION covvvrivsiceancensrisseseesssnissenss s SRR N ST '

1.2 Ob]ectlves...f................‘.................:...V ......... et teeech g s nenademtes s e ORI -

1.3 Organization of Thesxs O T T BT RO T A eieshens .

2. Parallelism in Logic Programs .............ccccccoiinnninnnn, RO suieeiitigiren e ber e iasiesestbedeees 3

2.1 AND-parallelism ........ccccoumnnnnns e drmsieenirens U ) RSO T S R RN 3
Execution Order. ....cccconnenne. S O OO S frdlagoncrmn bt el ae e .3
‘Handling Multlple SOlUtions ...c.ovcuviiiiicienn, rrsesrestnasas b beas st b sa s s esase st e saisbanas 4

2.2 OR-parallelism. ................ e iteviveeeisisrensinatsanenerasaonvesis iienrmnnavaiiesinaseseasaen iimeeniasreresrsensrapindareninaibebenieias 5
L0314 R Srasesinionsis e wesssae e dannsian TSN KRR ARV DR 5
Negation-as-failure .................. et S S E O SOOI SR UOHE R RO e renens breesrieesess 5

2.3 Stream Parallehsm ..... N UL RPN S S TP SRR Srsden’ 6

24 Search Paral]elxsm : ; ‘ s 6

2.5 Side-effects amiesiaveianessesengonsssebus bt s orerierewesosnasisierensagianes s inses asuinositnianiined e bainisiensainesed i 6

2:6 SUMIMATY ..oivieieeieeennas irieeeni e reViviesaiesistenien iveriieterieesenanisernnisines i e ivemine averinaris . 7

3. Parallel Logic Programmmg Languages ..............................

3.1 Language Features et ' ' , ,
PRISM ..ot e O S S SRS
IC-Prolog ioiccvviinen T O NPT SRR SO Gerenenideil L el
- The Relational Language for Parallel Programmmg S TR P S R S RS S, e S -9
Concurrent Prolog: ... e, mireneieiieatienees e er e i e e i et 10

3.2 Execution-Models ... D ievrivennrrins edieareas SRS RIAIN. e 10
B 4 2 1 O S S O SO SO SO ST ORI 11
A Model based on: the ABC Algorlthm ......... dedriveecens ieevaree e tas T RPN 11
AND/OR Model : : v ST eedideelin s 140
Distributed Concurrent Prolog R S ORI e b e s e e egi e - 16

4. Model of Computation ..........ccccoevirirennieccnicrerennns reainns seenebivneseenssneiuse ittt i st nen ek Lioies 17

4.1 The Port Process ADSEIACtION ......o..iovovieeeeeresieesieeosoesserereseeoseseesesenens e ieeerereaien sesinsienpsouiaes 17
Communication Primitives ...... U S e reea——— eerereriias et e et 17
Process SEIUCEUTE ........oooiveiiceieeis oo s s s 18

4.2 Overview ..... e U EPIUEETSURP SN SUP OO ......... 18

Process Structure ..ot R TR ST, ciiarmia e nan s wioterendeiraisen .19
Communication ................ T ) ................. [T L
4.3 Conjunction-Processes ....... inissasisnsienees et oot s est st et geat e e an st banmeenbe et i 19



Incoming Messages ............ [T k .............. oo taeeseseni] e, e 21
Outgoing messages ......ccoceeemenn. e Newvesinntesetreerarasnsaseeenan aeeasamireieereaeinsrraee 2
4.4 Goal-Processes ..........oc.cocoeveuennr. everesbienssanngiess e iadeenealeeeeanedeneeiaanbrageeeeesasn rnttereeeereanasrntnyeeas sennnnnneeeas 23
INCOTIING MESSAZES .oiiieieitieiiiiei e et ee s i ere sttt e s et e s arbee s nneeseesbtdeeaaaseeeeeaatte e emstaeessaneae e e rareeees 24
’ Outgoing MeSSAZES ....oociieiiioriiiet s SRS PRR T 24
4.5 Clause—Pxocyesses .......... it eeeeeeeteeesessesrieseseeseaseseietedesiaanereeesaanereesieaaanreleneeeetaaaaaanertaeseaaannnenheeasaeaannnre 24
Incoming and Outgoing MeSSAZES ...iociiveiuireeriiiieei ettt re e et e s st ae s e e e s e s 24
4.6 Binding 0f VALIADIES w..c.courrmunsmsieemiiiiemecmsissemissessssessssssessseseeetereeosssssessessessssessens e 26
TAZS eveeeeeeiierreriseesarieeeneessesneer e er et a s s r e ane s e en erreres e e eteerennr e e eeae e ee s e 26
Storage of Bindings ... S TP SO S 27
‘ Retrieval of Bindings ............. et S U AP v s o
4.7 Synchronization ...................... eererierciree bt e e nes ST VIO SORC Y e e 28
4.8 SYSEIM PTOAICATES ..cuveiuieeiiiiieieiei s seeees e ite st earestaa et e e s sss et eesereesaseasesatemasaseense et easaesbessebesesseenraraeneas 28
5. The Port Prolog Language & User Interface .......ccccccooovovmviemoceeeeceeeneie e SRR Cieeens 30
5.1 The Waterloo Port Environment ... iieenia et PRSI R 30
The Port User-Interface ............oooiimini b ierreeesreiree e Lo 31
Port Processes .......ccooeveeieeiecvieeseereennaes e teeteeeererietesiesiesissressestsssssrssssssesssstssssssssssssssssseinsessasnserirns 31
Networking in POrt ....ccivvioneeiirneeecnsc i ecees e [ wrbererenueiaiase e insbens 31
. The Port File System. ....... rereenneie i rensens U S SR S e e 31
o The Port Programmmg LANGUAZE .oiiiiiveieeiivinnreioreraisseraresssessesssssssnassensssessnsssnnnes eeanma e e rennres .32
5.2 The Port Prolog Language ......ccccocnenen. esresintin SUIRE ORI et » sepefesiasasiabarains .33
Syntax Lii..... wianrenning erbeberveses eeteiresiereatheaenesenenn SO O ' .33
o Program Structure . ; - fuinanyt feente e 38
Source Files .......cocciin iurameeigeinatostam b i deass e casshamee et s iiin PSSO P .35
‘Modules ................. tveseaisseierasnsseaneiesraninsarnsebesesiaiisaresastasissiesanssasrancheantessennesinnnntserere s 35
Exporting Predicates ......ccccocieiiiieeiiiiniiiececir e et eiaeteeeessteeesiasanneeeaarreeessanenaian -35
The Source Tree ...t O S ST ES & SUSIPORS o236
Inclusion of Other MOAUIES w.....ccrvroiimvvreris st RO 36
Compilation ..... T O O TS SR SOV AU 36
5.3 The Port Prolog User Interface .......c.cooooevee. eireresases e e renee e et e et e taaiineens b Lt esn e teend 36
The Port Prolog Window ...................... ivesmesestiaian ety e en e enee e teaaiil b enngr e e nge aear e natnen oerenriens .. 36
The Errors Window .................. eererserassasiosinesesanstaenranysaneavarenin reveeereeeenens raneeniveniorasiibeseiviinseen 37
55.4 Preparing and Running a Port Prolog Program ........ e reneeieeneieisbebrsarenaenas .38
8. Implementation . 39
6.1 Process Structure 7 : 39
6.2 Internal Code ........ S O RV S ST B SR SO SUTOPTORIRROT ST 40
6.3 The .code Tree .....couvnennciee O S et Lreeedis et 41
6.4 COOTAIMALOT ..ivvieeiereecrestreenrseesees ®ereirecantaseseeeteenianeees beersesmssassneemsensssessessnen oo 44
6.5 Vulture ...... eietetereeeienenane TS S eieees S T S SRRSOV &
: Data StPUCLULES iocvivieircieciere e e neb e eseenenead Neemeabenmurensansti et SOR 44
Requests : 45
6.6 String Server 45
" Requests 45

Data Structures



47
47
6.8 Parser ....cccocecevcinienieeiinennins e Ee e astes s et eeerenes v i AT
Lexical ANALYZET vvciiiiiiiiiiceeec e st bs e e en e ede e iverenrreeiaieesrennerens i 47
Syntactic Analyzer ... ebeselee i e aarenean et i e s an e e sansi savh e e e narerean e 48
Error Handling ..o esveaseha PR ieereerereesnanraesens T e 48
Requests ....ccocevveiimiinicnncennn, e e e U S SRR 48
. Files i, S O SO S S SO P D RPN 49
6.9 Errors WOTKET ...coeeeeusrieeesneerieeseneie eesensesesans e raseese e bns et s nde e s R AL e e s s sens 49
Data SETUCLUIES ..cocovviiiiveiiiieeieeeeeceineinnennineeeseeseseseenes eeeeirseesenniniesaereareteitertannnnisieeionrersrnsensssssio - 49
Requests ............ evhevbebeesiestensinaebeetesenessanedens e stnssarsnns e e ednriieisaasse syt e i e 49
6.10 Modules Administrator ................. et S RSO ROEUT P |
Data Structures ... COT U OISO NP S - | My
e (] 7 S S O O S PP U U 51
FIES ettt e e s et e e ettt ee et e e TN 51
6.11 Module PTOPrietor .......c.icivieriiiiiieeeteieseiersene e ennee s saee e eeeeeeen eeetenas s Eaes st e feen et ar e aaian 52
Requests ... SO o062
Data Structures ... S S eeven ettt e s e e e es 52
FHlES e ettt et ettt e e O S SO ST 52
6.12 Solver PTocesses: .........civeoveeivveins et et [, SSSE teernenaanas 53
’ Data Structures of the Solver Processes _ : . 53
Conjunction-Process ........ eeste it n ot eraa et s et et ere s nre st e sranreins eaveneranesie - - 53
- Requests. ............... SRS SR eeuieteieeniadteserensienieasinn icbeein veiissensiuesassrisient e '53.
Status e, Leesemeebesieeseneira e tean b s i mmnrie et e sien ke rdaes T S USRS RUE 54
GOBI-PTOCESS .vouieiiirieiaecriecieissaeiaeessaiesceseesssssra s b e s se s esetses e enesnssenes R s 54
Requests .......cccceiomreinnns S ST RNt RO SO USRI ek gussaeles e enerrenni e 54
SEALUS oot e e’ B4
Clause-Process ........ccccceviiiviinineininnns S OO VRO SRS SRNSO ORI e et 55
SEALUS ettt et s e ee e s s et e e e se s sae s s en b e s a e st et e e ae e s eanees 55
7. Some Performance Measurements ......................................................... ... 58
" 7.1 Measurement Techniques ........... SO SO TSSO TSR RS Simbrpeeeseesaieieis - 56
Limitations of the Device Interface .......cccoceiiiiiiinniini i, aesineneiserae e niacanian - 57
7.2 Breakdown of Execution Time .....oo.coovoverrevnnne. e eree et e ................. e st a e be e s e 57
Process Management ...............c..ccoeeee P O S SR S PSR SRPP ennenne——n AT
Communication' .......ccoiivnnncionnn. O SO RO SN Feererinnns SRR - H8
Other Compenents. .......... et e e S 0 PO PSSO SR v 08
7.3 Comparisons with a Sequential Prolog Interpreter ........ 59
’ Program Size ... eterree it et s 60
Execution Speed ..., vetisan i e snis et s a e te s e ne s e e bt an s SO 60
8. CONCIUSIONS ......ooooeooceee et et . 61
8.1 Summary .........co....... s e dreeteeiestenssenneasaass it eeenatote st err e i et e ar e e on - 61
8.2 Implementation Status ..., et SUEOTIN eaeteieedaesehheienenennrepedneesaatenas s 61
8.3 Experience using the Port Process Abstraction .................... O S U U 63

8.4 FUtUTe WOTK: oottt e eeee e eeieee e st eeee o erirereress et evenhertonaennghe o ex s emnens ane 64



vi
Bibliography
Appendix A:

Appendix B:

...............................

............................................................................................................

Counter/Timer Measurements ............c.c.vceevieecennnenincnneneennnes SOOI

Program Traces

.............................................................................................................



List of Figures

Figure 3-1: ABC ialgorithm ........................................... eeaeatonrananentsniugaseaneatnsenanesnsssetesasnuasenenastsnnsssanbrsshs 12
Figure 3-2: Process structure of a conéur‘rentProlog Interpreter ... ........ - 13
Figure 3-3: Concurrent algorithm ..o FA e evieneain ‘ SRR ’14
Figure 3-4: VAND/ORk process EREE /oo ................... et | 15
Figure 4-1: Process communication primitiveé .................................................................. N v | 17

, Fig.ure 4-2: Port Prolog proéess'structure ..................................................................................... R 20
Figure 4-3: Synchronization of variable bipdings ............................ reteeniianns e lierenanmeasraeaaendranns .............. 21
Figure 4-4: Conjunction-proéess MESSAZES .oovveeriiereieiiineie et OO S U - 21
Figure 4-5: Binding message formats. ........................................................................... T ereenes 2 2 
Figure 4-6: Goal-process messages ............. SR R itererieies ibeerse TP .............................. 23
Figure 4-7: Candidate clause-process ....................... ......................... 25 |
Figure 4-8: Clause-process messages. ...................... . SO e et | 25
Figure 4-9: Types of variables ............ .................................... S .............................. 26
Figure 4-10: System pnédicate PTOCESS 1eeveeeireranrneerinianannreseseassneseeesis .............. k 29
Figure 5-1: ’i‘he Port screen format ............. etreecinnare st are et treeanns remeeneesininrnieenen R eiiionen 30
Figure 5-2: An example of a Port file tT€E .oiiirririeceice e .......... 32
Figﬁre 5-3: Backus-Naur-Form productions for Port Prolog syntax ..........cocooceeeeeeeeuenn..n. e 34
Figure 5-4: An.example- of Poft Prolog syntax ...... erieensnipeses ‘ ......... 357
Figure 5.5 The.Port Prolog window ............... | Creeeranseratausressaisonssaerasssesenbonnenionsesatentensinenstnesesuinysatrnnsies 37
Figure 5-6: The eITOTS WIAOW .......ooo.vvoeeieeeeeeeeeeeseseseeseueeeeseemesstosseesseeesseseessssesssessesssoeessssesseseeseeeeenne 38
Figure 6-1: Genéalogical process structure of Port Prolog .................. eesiantdetivesis setenreiens aeelnranienand e 40
Figure 6-2: Processing of a query RS eeeriitearenteesnenirsaasnsnsaraeions IR eeaneas ........................ R -4l
F;igure~v6~3i Internal code format ........ R S O ST ORI it 42
Figure 6;4: The .code tree ...... eaeerrineiessesrennrenns eeeeeemsutreeeaeeinsreereaiasennessiien e ....................... ’43

vii



viii

Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:

Figure 7-1:

Figure 7-2:

Figure 7-3:

Vulture process tree ............... e

..........................................................................................

String table and string descriptor format T N reeraens

Flattened predicate table .............

Solver processes” data structures

..........................................................................................

..........................................................................................

..........................................................................................

..........................................................................................



- Introduction

1 1 Motlvatlon

) A most appealing characterlstlc of logrc programs is thelr mherent adm1581b111ty of parallel execution.
Substantial effort has been expended explorxng this potential. One of these efforts is Shapiro’s definition
of the language Concurrent Prolog — a simple yet powerful transformation of Prolog that mcorporates :
“‘concurrency, communication, synchromzatmn and 1ndetermmacy ¥

A subset of Concurrent Prolog has been unplemented in Prolog [Shaprro 83] Although it is 51mple
and elegant, the interpreter suffers the same limitations as Prolog. This implies speed hindrance (due to
the extra level of interpretation) and unattainable “true’” parallelism. Moreover, the interpreter’s role as a
simulator for developing and debugging Concurrent Prolog programs is limited as it uses much of Prolog’s
deterministic control strategies, instead of strategies that can properly support Concurrent Prolog’s:
indeterminacy and parallelism. A program that executes correctly on the simulator may fail to do so on a.
truly concurrent interpreter because the progra.m depended on; for exa.mple the sequentxa.l selection. of
clauses.. :

This thesis examines: the issues: surro.undingf the design- and implementation of a concurrent PrologA
interpreter, Port} Prolog, in' a message-based multi-process environment. By constructing the interpreter
“outside a Prolog environment, the difficulty of implementation is drastically increased. For example,
instead of having Prolog's binding environment handle shared variables, the binding mechanism of vari-.
ables (shared or otherwise) must be restructured. However, an independent interpreter can improve execu-
tion speed by eliminating the intermediate Prolog system. Furthermore, an interpreter that makes use of
the distributed facilities: of a multi-process environment has the potential of realizing true parallelism.
Without multiple processes which work cooperatively in accomplishing a task (the solving of a Concurrent
Prolog goal, in this case), we would have to resort to a sequential approach which, at best, can only simu-
late the parallelism offered by Concurrent Prolog. ~ _ o » R

1.2 Objectives ,
' This research investigates the feasibility of employing message-based processes to build a Concurrent

Prolog interpreter. By capitalizing on an environment which supports processes, concurrency and net-
working; we wish to 1mplement an interpreter which is truly parallel

Another objective is to succinctly. define and validate the workablhty of Shapiro’s mtormal descrip- -
tion of a distributed Concurrent Prolog machine. The des:gn of Port Prolog is based on this description,
rather than his sequential implementation which depends on a centralized processor. The distributed
machine proposal may incorporate any number of processors ‘

+ [Shapiro 83|, page 9.
1 Port and aterloo Port are trademarks of the University of Waterloo
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2 Objectives ’ : ' Chapter-1

1.3 Organization of Thesis

Chapter 2 studies the relationship between logic programming and parallelism, focusing on the prob—
lems of parallelism, and examples of how proposed systems have addressed these problems. We assume
that the reader has at least a working knowledge of Prolog [Kowalsk1 82, Clocksin & Mellish 81].

Chapter 3 focuses on the parallelism aspect of several logic programming languages. We first con- -
centrate on language features defined for handling parallelism. -We then present a survey of execution
models of parallel logic programming sysStem to demonstrate how such systems are designed.

Chapter 4 describes Port Prolog’s model of computation. The chapter begins with a description of
the communication primitives which are used to define the Port Prolog interpreter. We then articulate
the distributed Concurrent Prolog model by proposing a more precise process structure and by defmmg
the communication paths; variable bmdmgs and synchronization procedures.

Chapter 5 describes the synta.x and structure of Port Prolog programs and the interpreter’s user
interface. We first provide a summary of the Waterloo Port implementation envxronment

~ Chapter 6 describes the implementation of Port Prolog. We start by giving an overview of the pro~
cess structure of the mterpreter This is followed by dlscussmns of the major components of the inter- -
preter.

Chapter 7 presents some performance measurements of the prototype We then compared these
measurements with those from a sequential Prolog interpreter on Port. ,

Finally, a summary of the work is presented and some suggestions for future research are discussed
in Chapter 8.



Parallelism in Logic Programsz

“Statements” in logic programs, unlike those in procedural languages such as Pascal, have no expli-
cit ordering to them. The separation of control from the program’s logic admits flexibility to how logic
programs can be executed. It is this inherent flexibility of execution which permits parallelism in logic
programs. ‘

Conery and Kibler classxfled four types of parallehsm in loglc program execution: AND parallehsm
OR-parallelism, stream parallelism, and search parallelism [Conery & Kibler 81]. In this chapter, we e
explam the difficulties of rea.hzmg them in practical implementations. v

2.1 AN D-parallehsm

Solvmg literals in a clause 51multa.neously is referred to as AND-parallehsm One dlffnculty of
1mplementmg AND-parallelism: arises from the sharmg of vanables For example, the goal

: Jather( Child, Father ) & mother( Child, Mother ) :
requires that processes. executing the two hterals coordinate. and agree upon- the binding . of - Child.

father( robert, - Joseph: ) and mother( dan, mary) a;e" mconsxstent answers«because- Child. cannot: be both
robert and dan at the same time. Consistency -is- only one aspect. of the problem: introduced. by shared:
variables; tlmmg may also be. a factor in some situations. For example, the order in which father binds
Child and mother binds Child may be important in some circumstances. We discuss this timing problem
in more detail in Sections 2:1.1 and 2.1.2 in this chapter. The concurrent execution of literals that share
variables is called dependent AND-parallelism whereas the concurrent execution of hterals in: a- clause
which. do not share vanables is called independent AND- parallehsm

2.1.1 Executzon Order

Another difficulty in: realizing AND-parallehsm is determining the order in which to execute literals
in a clause. Sequential Prolog always chooses literals: from left to right. However, the *left-to-right’ rule
is’ inappropriate as literals are executed simultaneously in a parallel interi)ret:er; When variables are
shared, the instantiation of these variables often depends on the evaluation order of the literals that share
them. At the syntactic level, the order is immaterial; however, 'synchr‘onization either in: the form of exe-.
cution order ‘or special dynamic . control operatlons is- necessary for the correct evaluation of a clause of
literals. For exa.mple evaluation of the goal « :

. get(X)E‘p’put(X) . -
is meaningful only when get( X ) be executed before put( X ). This requires either an execution order

that ensures this order; or some form of speclal control that only allows put{ X ) to be executed when X
is instantiated. : .

Predicates with s.idé-effe‘cts also require specific executibn orders: »This ‘is‘fdiscussed‘ih "Section 2.5 _in
this chapter. Most existing designs: extend the logic programming language with control operations that-

relegate the task of controlling execution to the user. The control operations in all of the surveyed imple-

mentations are specified with special symbols embedded in a clause. ‘We shall see some examples of such
-extensions in the next chapter, when we survey some parallel logic programming languages.



4. AND-parallelism , : v v Chapter 2

2.1.2 Handling Multiple Solutions

Another implementation problem of AND-parallelism is the possibility of multiple solutions for a set
of goals. For example, for each literal, there may exist several clauses which can.be successfully executed
to yield results. - Some of these results may be later rejected if they are inconsistent with other results. A
sequential interpreter backtracks to examine the results one at a time. There are several approaches that
a parallel interpreter may take to solve this problem.

One solution is to gather all consistent sets of bindings at each stage of execution. Bindings to 2
group of literals are obtained by performing a massive JOIN operation on the bindings found for each
literal [Date 77]. For example, consider the problem of obtaining values for X from the literals -

| fruit(X ) & red( X ) |
given the following facts: '

Jruit( apple ) red(car)
fruit( orange ) red( ap,»plelk )
frudt( cherry ) , red( cherry )

. fruit( lemarz ) AR red( radzsh ) |

fruzt( pear ).

A JOIN on the values of X obtained by solving frust( X ) and red{ X ) separately results in X = apple
and X = cherry. Although simple to conceptualize and implement, this approach has some serious disad-
vantages. Because solving each: literal involves finding all possrble answers, much effort can be wasted
computing instances which cannot be joined with those generated by other literals. Furthermore the
JOIN operation: is expensive in. terms of time and space: o :

Ano!,ber approach is similar to the backtracking solution of sequential mterpreters ‘generate answers
for a literal one at a t:une and reiry only upon request. At each stage of execution, a group of literals has
. at most one set’ of ‘bindings. For the: above example fruzt( X ) wouwld have the binding X = apple and

red( X) would have the binding X = car. If the union. of two groups of literals introduces mconsrstencres
among bindings, action must be taken to produce a set of bindings agreed upon by both groups. This ,
~ action usually mvolves fmdmg a new solution to one {or more) of the literals in either (or both) group(s).

In the above example, the union of fruit( appie ) and red( car ) is inconsistent as X cannot be both apple
and car at the same time. Hence, we must either discard apple and try to solve fruit( car ) or discard

car and try to solve red( apple ).- Several levels of execution may have to be repeated before a consistent
set of bindings is found. Another drawback to this approach is the horrendous bookkeeping that -is
requlred State information about each-literal in the proof tree is necessary in order for the retry pro-
cedure to work correctly. For example, the interpreter. needs to keep track of which clauses have not been

" tried.yet, so that ones that failed will not be re-tried. Also, the strategy for selecting: literals to retry.is - k

- mon-trivial. Of course, if the system is willing to sacrifice parallelism, it can use backtracking to simplify
the bookkeeping and selection process: simply solve literals using the left-to-right rule and retry the most -
- recent literal that caused the binding inconsistency. Although this method does not promote parallelism,
it is often adopted by systems (e.g. PRISM [Kasif et al. 83]) that support only rndependent AND-
parallelism but still wish to correctly execute dependent literals using existing facilities.

A third method for handling the possibility of multiple answers is to eradicate the problem at its
source. The system, with the help of user specified control operations, always eliminates all but one solu-
tion at each stage of execution so that if that solution proves to be inconsistent, the literal has no other
answers. and fails [Shaplro 83, Clark & Gregory 81]. This is analogous to the use of the cut operation in
sequential Prolog, except in this case, the cut is applled to every clause See the next section for a more
detaﬁed look at’ the unphcatmns of the cut operatlon ‘ o~



Chapter 2 o AND-parallslism 5

2.2 OR-parallelism

With OR-parallelism, clauses with the same predicate name and arity are invoked concurrently For
example, the procedure to append two lists; '

~append([l, X, X').
append (lAlB}, C, [A]D] -—append(B C, D)

would invoke two processes, one for each clause. Because of the potential exponential fanout of the sea,rch ,
tree, OR-parallelism typically exhausts system resources very rapidly. Also, if unrestrained, the system
wastes time following execution branches which obviously lead to failure nodes.

Some lmplementatlons have mcorporated OR-parallehsm into their interpreters, though only a:few
have considered controlling OR-parallel activities. Ciepielewski and Haridi have reduced this controlling
problem to- that of “(1) controlling :the traversal of the search tree and (2) pruning some branches of the
~ search tree”t with (1) being handled by an appropriate scheduling algorithm and (2) being solved by

“adopting a richer control language. A popular solution to (2) uses ideas borrowed from the guard concept
of Hoare's Communicating Sequential Processes notation [Hoare 78]. This sohmon is discussed later in the
chapter on Parallel Logic Programming Languages. :

- ~Methods. for controlling OR:par,allehsm are ‘“‘clause selection” strategiés. In Prolog; clauses with-the
same predicate name and arity are sequentially selected (as they are ordered in the program) until one.
satisfies the goal. Based on this control policy, some non—logical operations have been defined in ‘Prolog to-
help prune the search space and to make Prolog more ‘“‘usable.” These non-logical operations introduce
problems when we migrate towards a parallel selection mechanism. The problems discussed in the follow- .

ing subsections have been presented in the literature, most notably in [Shaplro 83] and [Haridi &
Cleplelewskl 83] : : :

2. 2.1 Cut

The cut opemtlon whlch stops the mterpreter from choosmg alternatwcs that hav ‘already been
tried (i.e. backtrackmg) is more  ‘than sxmply an efficiency mechanism. ‘In many Prolog programs, it
affects the program’s logic. - Ehmmatmg the cut operatlon from some programs could render them

“incorrect” — .that is, the functlonahty of the program is ‘altered. Cut is not applicable i in a parallel logic
programming language because all: choxces for a literal are tried snnultaneously There is, however, an
analogous construct in some parailel logic languages which serves to prune the proof tree and to prevent
backtrackmg This construct is the guard and is. dlscussed in: the next chapter.’ v

2.2.2 Negatlon-as-fallure :

An example of ‘the lmportance of cut and the selection order of clauses in Prolog is 1ts role in the
definition of the meta—level function not( X ).

not(X } = X, cut, fail. '

not( X ). . | ‘

To prove the negation of a goal, say X, we first try to prove X; if X succeeds, then not( X ) fails. Nega-
tion is only a specific example of the dependence of certain styles of Prolog programming on the selection
order of clauses. -Typically, a “catch-all” clause is placed as the last clause in a group of clauses with-the
same name and arity to ensure that the clause invocation always succeeds (or always fails). In parallel
implementations, special primitives for negation or mechanisms for controlling the clause selection process
(i.e. OR-parallelism) are ways of achieving the ‘“‘negation-as-failure’ effect. Examples of these mechanisms
are given in: the next chapter: - S . ‘

t [Ciepielewski & Haridi 83], page 536.
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2.3 Stream Parallelism

Using a list or structured data as it is being generated is referred to as stream parallelism or eager
evaluation. For example, if a list is shared by several literals, these literals can begin working on the list’s
elements as soon as they become available. A good application of stream parallelism is given by Conery
and Kibler: “one might begin testing for membership in a list while the list was being constructed.”} To
make use of this feature, the interpreter must support AND-parallelism or co-routining; otherwise, stream
parallelism is useless because all literals are solved in thexr entirety before other hterals have a chance to
execute. S

The implementation of stream parallelism'depends-heavily on how the binding of variables is done
and how concurrently executing literals are synchronized. The user may control stream parallelism by
specifying, with the use of special notations, how variables can be instantiated. For example, by
annotating variables, the user can fix the literal containing the variable to be either the producer or con-
sumer of values for the variable. Annotation of variables is explained in more detail in the next chapter
when -we descnbe the language features of some parallel logic programming languages

2.4 Searc‘h Patra,llehsvm

A potential bottleneck of program execution is the task of searching for clauses. Search parailelism
refers to the ability to concurrently search the database of clauses. This can mean searching for clauses
with the same name or those with different names. The availability of search parallelism is especially’ use-
ful for interpreters that support OR-parallelism. The time gap between the invocation of the first clause
found in the database and the last can be greatly reduced, thus speedmg up the start-up time of OR-f
parallelism. .

Search parallelism may be achieved by dmdmg the database into separately manageable com-
. ponents and initiating searches simultaneously on each component. We consider this problem to be in the
reaim of database theory. Its contrlbutlon to logic programmmg ianguage 1mplementatlon is efficiency.

2.5 Slde—ef Te ec'ts

Non-logical built-in system predlcates such as rmd wrzte add arzom and delete_aziom mtroduce
problems for parallel logic programs because they cause permanent side-effects. The parallel logic pro-
gramming systems which we have surveyed (proposed or 1mplemented) do not support add_aziom and
delete_aziom. Race problems due to the asynchrony of concurrently executing goals using these built-in -
predicates is the major concern. For example, the timing of an add_aziom is vital to the correct execu-
tion of the program because of its global effects. The same is true for read, write and delcte axiom predi-
cates.

“Consider a Prolog program that toggles'a bit. If the bit is on, the procedurc turns it off, and vice
versa. Suppose the following are in the database: ' :

toggle_bit ~ bit(1), delete_aziom( bit(1) ), add_aziom( bit(0) ).
toggle_bit « bit(0), delete azwm( bit (0) ), add_a:ciom( bz‘t(l) )

bit(1). o SRR S ; : ,
OR and AND parallelism are the control strategles Suppose the goal toggle bzt is evaluated Because of
AND-parallelism, the three literals in each clause are evaluated concurrently; -and because of OR-
parallelism, the two clauses are evaluated simultaneously also. The first clause may fail (even though it
should succeed) if delete_aziom( bit(1) ) is executed before bit(1). The second clause may"succeed (even
though it should fail) if add_aziom( bit(0) ) of the first clause is evaluated before bit (0). Also, there is the
possibility of both clauses succeeding in which case bit(1) and “bit (0) will both be in the database — a
situation unexpected, unintended and probably unwanted by the programmer. The programmer must be
aware of these problems when he is working with a parallel logic programming system. -

 [Conery & Kibler 81], page 166.
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2.6 Summary

We have described four types of parallelism-in logic: programs and with each t,ype identified lmple- ,
mentation considerations. Parallelism- makes irrelevant the control of execution; however, a certain
amount of control is desirable and sometimes necessary. Hence, most nnplementatlons extend the defini-
tion of the language to include-control primitives.

The problem of shared variables introduces many fundamental problems in the realization of AND-
parallelism. This, as we shall see, makes binding environments very difficult to define in parallel logic pro-
gramming implementations. Although OR-parallelism is more straight-forward to implement, special
operations for controlling it are still necessary for practical use. Stream parallelism can potentially
increase the degree of AND-parallelism in the execution of logic programs by making available elements of
shared structured data before all elements of that data are instantiated. A useful feature for logic pro-
gramming systems is the use of search parallelism: to reduce the search time for clauses in a database.
Predicates which produce side-effects must be used prudently because: through these predlcates one
branch- of execution can violate the integrity of other branches.

In the followmg,,chapter, we survey some logic programming languages which incorporate these types

of parallelism and examine how they deal with the associated problems.
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Parallel Logic Programming Languages

In thisb-hapter, we focus on the parallelism-aspect of several logic program.ming languages. - We first
concentrate on their language features which are defined particularly for handling parallelism. We then
present a survey of execnt;-ion models of parallel logic programming systems to illustrate their designs.

3.1 Language Features

Parallel logic programming languages are usually modeled after Prolog. These parallel languaoes
adopt Prolog-like syntax and semantics for defining programs but. employ different control strategies. A
parallel logic language can be defined without altering any of Prolog’s syntax; by replacing the left-to-right
depth-first execution order of Prolog by one that uses AND-parallelism and OR-parallelism, we have a
parallel logic programming language. This conceptually simple extension is advantageous because it elim-
inates the user’s burden of understanding how the syntax affects the control and, consequently, the result
of his program. However, such extensions are usually not done without some seemingly innocent but fun-
_ damental alterations. For example, by mtroducmg a notation: to prune the search tree (such as a

“guard’’), the completeness. of the interpreter may be affected — some solutions which existed had the
‘notation not been installed may be never found. :

To solve the control problaemsﬂdescnbed in the previous chapter, the most general solution has been
to devise control operations which give the programmer control over the order in which literals are exe--
cuted. In this section, we give a brief overview of some parallel logic programming languages, concentrat-
ing mainly on their syntactic and semantic aspects rather than their computation models.

3.1.1 PRISM

PRISM is a “Parallel Inference System for Problem Solving’ being developed at the University of
Maryland [Kasif et al. 83, Eisinger et al. 82]. It is constructed on the ZMOB multiprocessor machine {also
built at the University of Maryland) and ‘makes use of the many processors to achieve real parallelism. It
supports independent AND-parallelism, OR-parallelism, and search parallelism. The PRISM language pro-
vides the user with notations for controlling the execution order of literals (AND-parallelism) as well as the
selection order of clauses (OR-parallelism).

There are two notations for controllmg the execution of literals. Literals enclosed by p.xrcnthcsl\ (e
) are executed left to right whereas literals enclosed by square brackets [ ... ] are executed in mr'lllel Yor
example the clause definition

a - (b, ¢, [d, (e, £

requires that b be executed before ¢ and ¢ before [d, (e, /)|; d and (e, f) can be executed in parallel with
e being solved before f. These two notations can: be omltted in whlch case a default strategy is used;
“left-to-right’ -and asynchronous are the two choices of default available.

The specification for controlling OR-parallehsm is “static” — the clause selection order is given at.
the time the clauses are defined and not during execution. Clauses with the same name and arity are
numbered in accordance with their selection order. Lower numbered clauses have higher priority th’m E
those with higher enumerations.” For example, the definitions

1 a «b.
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1 ae-c

2 a«d
*3 g ee

permit the first two clauses to be executed simultaneously. The third clause may be tried along with the
first two or after the first two. The asterisk on the fourth clause forces the first three clauses to be tried
before the fourth is attempted. The “negation-as-failure’’ programming technique may easily be simulated
by forcing the interpreter to adopt a sequential clause selection scheme. :

3.1.2'IC-Prolog

IC-Prolog is Imperial College’s version of Prolog, which, among other features, permits more control
over how a program can be executed. It offers-much more sophisticated methods for controlling parallel-
ism than PRISM. IC-Prolog programs resemble Prolog programs with the exception of some control nota-~
tions: - There are two annotations used with variables: the snput-“?" and output “"" variable annotations.
The input annotation (e.g. X ?) specifies that the annotated variable (X) must be bound before execution
is carried any further. The output annotation {e.g. X ") permits clause invocation only when the variable
being annotated (X) is uninstantiated. Note that clause selection is suspended until these annotations are
satisfied (or farled) no other clause (with the same name and arrty) may be tried until the annotations are
resolved: L ‘

Literals in- a goal can be Jomed by erther sequential “&’ or concurrent “/ /7 con]unctlon symbols.

For the goal, S : :
o A8B//C, :

“A 6‘9’ B” and “C " are executed concurrently with. B being started only: when A has been successfully com-

pleted. This conjunction notation is functlonally equlvalent to: that used in PRISM and is less cumber—

some. « v v

A clause-in IC—Prolog has the fo]l'Ow»irig syntax:
- e . P-G:A1 8 - 84,

The guard priymitive . makes the execution of the literal G lndlvmble w1th the umhcatmn of the head P
~ the bindings in P are not passed back until after G has been. successfully complcted The guard does

not prevent backtrackmg of P or G‘ if.Por G farls their alternatives can still be tried.

Programs may. execute in. dlfferent rnodes according to their use of the control directives. Some
examples of execution modes are unsynchronized parallel execution, parallelism ‘with direct communica-
tion, and data-triggered co-routining. In unsynchronized parallel execution, the ‘& for con]uncnon is
replaced by /{". Basically, literals are evaluated asynchronously; if a literal binds some shared variables,
then other literals are signaled to check the bindings for consistency. In parallelism with direct communi-
cation, only one literal is allowed to generate bindings for a specified shared variable — the one that anno-
tated the variable using " ", Thls creates a producer-consumer relatlonshxp, wherein each time the pro-
ducer updates the shared variable, consumers are reactivated in order to record the new binding. This is
more controlled than unsynchronized parallehsm in the unsynchrom?ed case, any. literal can perform the
binding. Data triggered co-routining is different from the direct communication case in that there is no
“forking.""t When shared variables are bound, producers - are suspended until* the consumers are
resuspended. Syntactically, goals in parallehsm with dlrect commumcatron are conjomed using “/[”-
whereas “&” is used for data-triggered co—routmmg

3.1.3 The Relational Language for Parallel Programming

Most motations in IC-Prolog are present in the Relational Language; however, the semantics of the
Relational Language are significantly different enough to warrant its own discussion. ‘

: Clauses in a program have the followmg format:

1t In parallehsm ‘with direct communication, the producer keeps on’ executmg even after it has
bound a variable; it need not wait until the consumer is resuspended
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PeGL 8 - G| Sy - 118,
Like IC-Prolog, “&’ denotes sequential execution and ‘“//” denotes concurrent execution. The clause bar
“[ is similar to the guard ‘" of IC-Prolog. It makes the execution of the guard sequence

(G1 & -+ & Gy) and the unification of the head P indivisible. However, unlike IC-Prolog, it also

prevents backtracking once evaluation has reached: the clause bar (like the cut in Prolog). In other words,
the first clause to successfully execute its guard sequenceé becomes the candidate clause and all other alter-
natives are eliminated. In IC-Prolog, clause selection is sequential.: The clause bar ¢an be omitted if no

guard sequence is desired, in which case unification of P acts as the guard. Each S; that makes up the
goal sequence (Sy /M - -+ M Sn) consists of sequentially ordered literals (S; = A1 BA2 & - - - HA )

All S;'s are started sxmultaneously (after the guard sequence has been successfully executed) and are syn-

chronized with the use of modes and annotated variables. The variable annotations (“?” and ") are
identical with those in IC-Prolog. Mode declarations, however,; are more general than. variable annota-
* tions. . For example, if we know that append always takes two lists as mput to its first two arvuments and
return a third list as output we can use the mode declaratlon :

: , ~ mode append( ?,?, ") :
without speclfxcally annotatmg the variables in the head of the append clauses In this way, append is not
invoked until it has the first two arguments instantiated and the last one free."

Clark and Gregory pomt out two major differences between IC-Prolog and the Relatlonal Language
- [Clark & Gregory 81]. The first is that, due to the semantics of the guard and the fact that every clause
must have a guard, there is no backtracking: in the Relational Language. Only. shallow backtrucking,
wherein clauses whose guard sequence fail are discarded, is present. - The other major difference is that the.
OR-parallelism. in the Relational Language requires all clauses with the same head predicate and arity to
be tried simultaneously. In IC-Proleg, clause selection is sequential.

3.1.4 Concurrent Prolog: o ’

-Concurrent Prolog"isk'very similar to the Relational Language. A few tidy constructs are borrowed
from the Relational Language, making Concurrent Prolog syntactically and semantically simple and yet -
expressively powerful. It accommodates AND-parallelism, OR-parallelism and stream parallehsm ~

A clause in Concurrent Prolog has the followmg syntax:
’ P G’l, le Sl:v"' » Sy
The guard sequénce Gy, e , Gp) is defmed much hke the guard sequence of the Rehtmnal Language

except the G;’s need not be executed sequentially. In fact, all literals wnthm a sequence {either the goal or

guard sequence) are executed concurrently with the order of execution determined dynamically by anno-
tated variables and special built-in system predlcates There is no mode declaration. A clause that suc-
cessfully completes the guard sequence eliminates all other alternatives; it is known as the candidate
clause. Another major- difference between the Relational Language and Concurrent Prolog is that Con-
current Prolog has only one annotation for its variables: the read—only R symbol contrasting thh t,he
Relational Language’s input *?"” and ontpu«t “*" annotations. '

The programming style of Concurrent Prolog is to group each set of clauses into a perpetual process
— that is, the clauses i m a group are recursive so that the group acts as a ‘‘process” which takes requests -
from other * processes »

3.2 Executxon Models

This section surveys the execution models underlying some pa.rallel loglc programming systems
Included are University of Maryland’s PRISM system, Bowen’s model based on the ABC Algorithm,
Conery and Kibler's AND/OR model, and Shapiro’s distributed Concurrent Prolog. All these models rely
on the concept of processes. Though brief, these descriptions should be sufficiently detailed to outline the
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general algorithms.

Bowen's model and the distributed Concurrent Prolog description are proposals. An interpreter
which simulates the AND/OR model has been written in Prolog [Conery & Kibler 82]. It supports only
OR-parallelism; AND-parallelism is not exploited by the interpreter. PRISM has been implemented and
supports independent AND-parallelism and OR-parallelism [Kasif et al. 83].

3.2.1 PRISM

There are three components in the PRISM model. [Eisinger et al. 82]: problem solver (PS), exten-
sional database (EDB — assertions or facts), intensional database (IDB — clauses or rules).

Solver Component

The PS controls the search space of a goal. It selects a literal from the goal literals to be expanded
and sends it to be unified with clause heads in the database components (EDB and IDB). The EDB/IDB
returns all necessary information for generating all successors of the literal. While waiting for the
EDB/IDB results, the. PS expands other clauses (search parallelism). Built-in predicates are evaluated by
the PS. The goal selection strategy depends on the user’s control specifications.t

Processor- Allocation

All processors are viewed as individuals in a pool of processors. At system initialization time, this
pool is divided into three groups: PS machines (PSMs), IDB and EDB machines (collectively know as the
database machines or DBMs). It is natural to use a processor for each node in the search tree. The PSMs
are selected’ from the pool of PSMs, or DBMs if no PSMs are available. A new PSM is started every time
a branching of the search tree takes place and there is 2 PSM available. The branching of the tree is done
at the OR and independent AND branches so that no interprocessor communication is necessary until the
results are available. -

Database Components:

The database is separated into EDB and IDB because the EDB contains only ground clauses (no vari-
~ables or calls) and hence does not require an ‘“occurs check” in its unification algorithm. The basic func-
tions of the EDB/IDB are to store clauses and to perform unification.

For databases that.are small enough to fit into the memory of a single machine, Eisinger et al. pro--
pose duplicating the database over all DBMs to promote search parallelism and to-avoid communication
bottlénecks. The degree of parallelism is dependent upon the number of DBMs available. For large data-
bases, all clauses defined for one predicate are grouped and whole groups are placed on one machine.
Groups may be duplicated over several DBMs. A group that cannot fit into one machine employs a
master/slave tree relationship, with one DBMs controlling others which contain clauses in the same group.

When a PSM sends a request to the DBMs, the request is passed along until a DBM agrees to handle
that request. For small databases, the first idle DBM processes the request. For large databases with .
non-tree structures (i.e. groups are small enough to fit into one DBM), the first idle DBM containing the
matching clauses processes the request. For large databases with tree structures, if a slave picks up the
‘request, then the master-is informed and the slave awaits instructions from the master. If the master
picks up the request, then it allocates a slave to process the request.: ' :

3 2.2: A Model based on the ABC Algorithm

A model similar to'the PRISM approach of using identical processes (PSMs) to represent nodes. in the
search tree is Bowen’s model of a concurrent Prolog interpreter based on the ABC algorlthm [van Emden
82]. We begin with a- descnptlon of the ABC" a,lgorzthm :

t See the description of the _PR‘I'SM language in thé previdus seétion Section 31
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Figure 3-1: ABC. algorithm

cn is the current node.

cn .« root
A: if P{cn ) then
halt with success

else :
initialize son() for cn
goto B

B: if son( ¢n, z ) then

{ z is next son of cn }
cn o~z
goto A

else

{ all sons of cn have been tried }
goto C'

C if father( cn, z ) then
‘ { 2'is the father of cn } -
. n <
» goto B
else
{ en is the root }
_halt with failure

The ABC Algorithm. . . :

* The ABC algorithm is a simple algorithm for interpreting Prolog programs. It is ‘“‘derived from a
mathematical description of the SLD theorem prover:”"f It is a depth-first, left-to-right tree traversal algo-
nthm for fmdmg leaf nodes. with the ngen property P. In the case of Prolog, P is a subgoa]

There are two main functions used son( z,y }and father( z,y). leen a node z, suppase z has n

sons; son( z, y ) returns TRUE the first n times and successively binds y with one of the n sons. FALSE
is retumed after n calls. This ﬁmction can be 'viewed as a generator of sons. Given a node =z,

father( z,y ) returns FALSE if z is the root otherwise, it returns TRUE and binds y to the father of z.
The: basic ABC algorithm is given in Figure 3-1 {van Emden 82]. This algorithm can be considered as
-Prolog’s theorem prover — it can be applied to a Prolog program tree with the initial goal as the root.

A Concurrent Interpreter

Bowen. describes the design of a multiprocess interpreter .for- Prolog based or the ABC algorithm
[Bowen 82]. ‘This design uses no shared memory and processes communicate via message-passing. The

interpreter allows both AND and OR parallelism. Figure 3-2 gives the process structure of the system - -

[Bowen. 82]. The USER agent process interacts with the human user to ‘‘generate” the problems.
SCHEDULER allocates EXPLORERS to problems and -coordinates the EXPLORERs and USER AGENT.
The database component DBM, manages the database of Prolog clauses while the EXPLORERS traverse

£ {van Emden 82] page 56.
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Figure 3-2: Process structure of a concurrent Prolog interpreter

EXPLORERs

<<—s communication path

the program tree, looking for a node with property P.

The concurrent “ABC” algorithm, glven in Figure 3-3, is carried out by each EXPLORIS R. 1t the
EXPLORER finds that its node satisfics property P, it then informs its parent and awaits further instrue-
tions. Otherwise, the EXPLORER tries to expand its node by generating all its sons. If there is no son,
then the node fails and the EXPLORER informs its parent of its failure. The EXPLORI R-asks the
SCHEDULER for an EXPLORER process to solve each son node. If no EXPLORER is available for a
son, then the EXPLORER recurses and acts as the son to traverse that son’s search tree. This design is
flexible in that it does not d:stmgulsh between a process and a processor An EXPLORER can be either a
Process or’ a Processor. : : L

An EXPLORER can receive three types of message stop, fmlure and success.

®:stop. stop messages are sent from parent to child processes. When a procebs receives a stop
message, it forwards the message to its children and then halts.- : :

®:failure. failure messages are sent from a child process to its parent to indicate that it has
failed to find a solution. ~

®'success. A child process sends its parent a success message to inform it that it has found a
solution; when the message has been sent, the child then awaits instruction from the parent to either
-find another solution or stop. '

‘To handle AND-parallelism; the mterpreter depends - on the expllcﬂ: notations of the language (llke'
those in IC-Prolog) to tell it how the different AND branches are to interact. 'Literals which are conjuncts
are passed separately to child processes to be evaluated. When a child-indicates that it has succeeded, the
parent must check the validity of the solution according to the results of other children.
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- . Figure 3-3: Concurrent algorithm

A: if P{cn ) then

inform parent of success

wait for parent’s instructions

{ parent can request solution and

- instruct ¢n to find more solutions }

else : ‘ )

generate sons of cn
goto B

B:  if no sons then
inform parent of failure
else. '
for each son:
’ request a process from SCHEDULER
if process available then
pass generated son to process
else
explore the most recently
generated son as a new problem ,
(1 e. recurse)

The database machine (DBM in the figure) is not clearly defined. If vit consists of only one machine
as depicted in the figure, then it may turn out to be the bottleneck of the system If it consists of several_ '
machmes then search parallelism is possd)le (asin PRISM)

3.2.3 AND/OR Model

Like the previous models, the AND/OR model of Conery and Kibler is also based on the concept of
representing the search tree of a logic program as processes, except that the processes in this model are
heterogeneous [Conery & Kibler 81]. The search tree of Prolog is an AND /OR tree with alternating levels
of AND-nodes and OR-nodest. An AND-node contains a conjunction of literals — the literals in a Prolog
clause; an OR-node contains a Iltera} and a.l} tbe alternatlve clauses thh the same head predlcate name
and arity as the literal. =~

Thls model represents ‘more mtult,lvely the concepts of AND and OR parallehsm than any other
model surveyed. The other two models discussed so far merge the components for controlling. AND. and
OR parallelism into one process; hence, it is difficult to identify the algorithms used to handle each type of
parallelism. In this model, the AND-process handles the AND-paraIlehsm and the OR-process handles the
OR-parallelism: The distributed Concurrent Prolog model, as' we shall see in the next subsectlon isa ver- '
sion of this AND/OR model. :

AND-Processes

Given a conjunction of hterals the AND-process spawns an OR-process for each literal and then
awaits the results of the OR-processes.§ Incompatlble bindings result in “backtracking” — OR-processes

+ See [lesson 79}, pp 99-112 for a definition of AND /OR trees.

t The. actual implementation uses the ‘left-to-right”’ evaluation scheme. An OR-process. is
spawned to solve a literal, then when it succeeds, another OR-process is spawned for the next
hteral and so on. , ‘
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Figure 3-4: AND/OR process tree

AI,AZ,...Am

Given a conjunction of literals
Ay, Asz,...An to solve,
suppose As unifies with the
clause heads B,C,...H and

B «~ B,,Bs,...B; )

C « (C1,C5...C,

H « Hy,H,,...H,

O. ANJD‘k-proce‘ss
D'i’OVR-f)roeessi 1

that had previously replied with success must redo their task and try to come up with a different answer.
The failure of any OR-process or unresolvable binding inconsistencies will cause the AND-process to “fail’’;
in which case the AND-process sends a fail message to its parent OR-process. If all the descendant OR-
processes reply with consistent bindings, the AND-process sends a success along with the bindings (if any)
to its parent and awaits further instruction. If the bindings sent to the parent process prove unsatisfac-
tory, then the parent sends a redo to this AND-process, in which case the OR-processes are made to work
again (i.e. the AND-process sends redo to its OR-processes). :

OR-Processes

Given a literal to solve, an OR-process spawns an  AND-process for every clause whose head unifies
with the literal; the bodies of these clauses (with the unification substitutions of the head applied) are sent
to the AND-processes. The OR-process then goes into waiting mode. In waiting mode, an OR-process
must return an answer to its parent as soon as it gets a successful result from one of its descendants.
When that happens, the OR-process goes into gathering mode: it simply collects the results from its des- -
cendants and waits for the parent to issue a redo. A redo causes the OR-process to re-enter waiting mode.
Any descendant AND-process that sends the OR-process a fasl message is recorded as having no more
answers. When all descendants have sent-fail messages, all possible solutions for that literal has been
exhausted. Under such circumstances, if the parent of the OR-process requires an answer (the OR-process
is in waiting mode), then the OR-process fails. It can also fail if there is no unifiable clause for the literal
that it is trying to solve. Upon failure, the OR-process sends a fail message to its parent and destroys
itself. ‘ ,
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Stream parallelism in this model is achieved by slightly modifying the functionality of the OR-
process. When an OR-process receives a success message from a descendant, it records the answer and
immediately issues a redo to the descendant, forcing it to look for another answer even though one is not
needed yet. This can be used, for example, to successively process items from an input stream in a “plpe-
lined” fashion.

3.2.4 Distributed Concurrent. Prol‘og

In his paper, “A Subset of Concurrent Prolog and its Interpreter,” Shapiro gives a sketch of a distri-
buted Concurrent Prolog machine. This sketch strongly resembles the AND/OR model. Instead of using
AND-processes and OR-processes this model uses three types of process: conjunction-process, goal-process
and clause-process.

Given a conjunction of hterals the conjunction-process spawns a goal-process for every literal and
terminates when all the goal-processes terminate. A goal-process is initialized with a literal; it then
spawns clause-processes for every possibly unifiable clause of the given literal {i.e. all clauses with the same
head predicate name and arity). Each clause-process is given the literal and a clause which it tries to
unify. If the unification is successful, then it spawns a conjunction process to try to solve the guard
sequence.} Successful termination of the descendant conjunction process results in the successful termina-
tion of the clause-process.  When one descendant clause-process of the goal-process terminates successfully,
the goal-process in turn terminates successfully.

From the above description, we can see that the conjunction process is very similar to the AND-
process and that the functionalities of the goal-process and clause-process are contained in the OR-process.
The goal-process and clause-process are separated so that umficatwn can be attempted simultaneously (by
each clause—process) at the cost of more processes.

Some. issues are not well-defined in this description. For example, how is the “goal sequence” to be
executed? Wh&t does it mean for a process to terminate successfully? What does it mean for a process to
terminate unsuccessfully? What happens to the variables that have been instantiated by a process? More
generally, how are bindings represented and communicated? These questions are addressed in the next
chapter by Port Prolog’s' model of computation. ‘ :

T See Section 3.1 in this chapter for a description of the Concurrent Prolog langunge.
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Model of Computation

v ~This chapter presents the computational model of Port Prolog We first. elaborate on  the notion of
processes and communication between processes that are used in the remainder of this thesis.. We then
describe the Port Prolog model which is a formalization of the distributed Concurrent Prolog model. 'We
propose a more precise process structure and also define the communication paths, variable bindings, and
s'ynchronization-procedtires. The handling of system predicates is also discussed.. :

4.1 The Port Process Abstraction

In the discussion of parallel systems, it is often useful to descnbe them in terms of processes. A
process is the execution of a self-contained piece of code and its associated data structures. It shares no
. memory with other processes, regardless of their kinship. The abstracti_on that we are interested in is a
- message-based system in-which data is shared between processes only via iﬂessag&passing [Cheriton 82,
Cheriton et al. 79} Processes are identified’ and addressed by : a process identifier, or id for short. Every
process has a unique id. ‘ : e

Process management is performed dynamically via two primitives: create and destroy Any process
can: cregte any: other process the creator-is called the: parent process and the newly created process the
child process.” There is no special relationship between parents and children. Process destruction, which is-
* performed upon process termination or by a destroy- primitive, involves both the abortion of execution and
dissolution of all data structures belonging to the process A process can destroy any process, including
itself.

4.1.1 Communication T rlmltlves

There are three basic message-passing primitives: send, receive, and reply. These pnmmves are syn-
chronous — that is, they provide synchronization between commumcatmg processes.

Figure 4-1: Process communication primitives

send( proc}ess_id, request, reply_msg )

_receive( process_id, request)
process_id = receive_any( request, )

reply{ process_id, reply_msg )

The process that issues a send is suspended until the destination process, identified by process_id,
receives request and replies with reply_msg. The destination process may execute any number of instruc-
tions before it replies. '

There are two types of receives: a specific and a general receive. A process issuing the specifie

17
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receive is blocked until the process identified by process_id decides to send to it. When the send does :
occur, the receiver is-free to execute. When the receiver subsequently does a reply, the sender process
(specified by process_id) which is awaiting a reply is unblocked.

The semanties for the general receive, receive_any, is the same‘as that for the specific receive except
the process doing. a receive_any is suspended until any process sends to it. This primitive returns the pro-
cess identifier (process_id) of the sending process so that the receiver knows who to reply to.

4.1.2 Process Structure

Process structure refers to the processes in an application and how they interact. Many issues are
involved in the design of an-application’s process structure; some consrderatrons are process load and func-
tronahty, concurrency, memory usage, and communication cost.

The appropriate assignment of duties to processes is vital to avoid overloading processes with too
many or unrelated capabilities. . For example, a heavily loaded process that manages files and-several win-
dows should probably be partrtxoned into two processes, one for handling files and the other for windows.

An apphcatron can improve its response by enlisting the aid of several processes to complete a task.
For example, suppose an application needs to update some files and its window; the order of updates to
the files and updates to the window is unimportant. These: two devices can be updated ¢ srmultaneously
by using two processes, one for each device. As one process is updating the files and awaiting the file sys-
tem to perform the actual updates, the window process can update the screen, and vice versa.

Processes can:-be used to minimize the overall memory usage of a program For example, an activity
that uses a large buffer during initialization and has no need for the buffer in subsequent computation can
save memory by creatmg a worker process to. do the initialization and manage the buffer. When the -

buffer is no longer needed, the worker is destroyed and its resources freed; hence a permanent buffer is

avoided.

Communication costs and context swrtchmg are considerations that must be addressed in the desrgn
of a process structure,. The synehmnous nature of” the message-passing primitives reqmres context switch-~
iig ‘between commumcatmg processes. Because message-passing is sagmﬁcantly more :costly time-wise
than a local procedure call, its usage should be minimized.f This suggests an autonomous approach in
which processes are very lndependent and communrcate minimally with other processes. ’

4.2 Overview

Port Prolog is an interpreter developed according to Shapiro’s definition of the Concurrent Prolog
language: Chapter 3 contains an overview of the language features of Concurrent Prolog. We first review -
some definitions that are important for the understanding of the model.

®©:-clause components. A Concurrent Prqlog clause has the following format:
| . P"L:l”L_Z’"erh | L, +'13Lm +2,L,-.,Ln.'
P is the kfedd of the clause. L;(1=i=<n), is a literal. A conjuncﬁon of literals is called a literal-list.
The literal-list L1y,Lo,....Ly, is referred to as the guard sequence. 1If t‘hére is no- literal in the guard

sequence, t‘hkerl the guard sequence is empty and the “|” may be omitted. L., 4+1,Ly, +9,....Ly is called
the goal sequence. The goal sequence may also be empty. '

® candidate clause. A clause whose head unifies with a literal and whose guard sequence executes
successfully is eligible to become that literal’s candidate élause. The undxd ate clause is the clause whose
guard sequence is first evaluated successfully.

®:read-only variable. Evaluation of a literal containing read-only varnbles is su\p(‘nded until the
" vartables are instantiated. A var.m,ble is read-only if it is has a “?”" as a suffix. For example, X? is a

~ 1 In Port, a null function call requires approxrmately 0.02 ms where'xs the minimum cost of a
send/receive/reply cycle is 2.54ms |Vasudevan 84].
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read-only variable.

' 4.2.1 Process Structure

Port Prolog’s execution model is based on- Shaplro s informal description of a distributed Concurrent
Prolog machine [Shapiro 83]. This model uses three types of process: conjunction-process, goal-process,
and clause-process. The purposes of these processes are similar to those in distributed Concurrent Prolog
proposal but their means of achieving their objectives are different and more concise. The following
presents a brief overview of the interactions between the three types of process, which are described in
more detail in later sections. :

Given a -conjunction of literals L’I,LQV, -+« Ly, to solve, the conjunction-process creates a goal-
process for every L;, (1=i=m). Each goal-process is responsible for finding a solution to its L;; it does so
by creating a clause-process for every clause which has the same predicate name and arity as L;. The

clause-processes then attempts to unify L; with the clause heads. The successful cla,uSe-processes proceed

to solve the guard sequence of their clause by spawning a conjunction-process to evaluate the literals in
their guard sequence. The conjunction-process solves the sequence by the method described above — that
is, spawning goal-processes for each literal in the sequence. When it succeeds, it notifies its parent clause-
process. . The first clause-process to inform its parent goal-process of its success becomes the candidate
clause-process and all other clause-processes are destroyed by the goal-process. The goal-process then des-
troys. itself. The candidate clause-process proceeds to solve the goal sequence of its clause by spawning a
_conjunction-process and giving it the goal sequence. When the goal sequence is successfully evaluated, the
candidate clause-process-notifies its grandparent conjunction-process and destroys itself. The grandparent

comunctlon-process succeeds if 1t receives 2 “success’’ message:from: every L s candidate clause-process.

Each: type of process can fail. A con]unctlon-process fails 1f any of its descendant goal-processes or
candidate clause-processes fails. A goal-process fails. if all of ﬂ.s descendant clause-processes fail or if it

cannot find any clause with the same predicate name and arity as the L; that it is supposed to solve. A

clause-process falls if it cannot unify its L; with the ngen clause or if its child con;unctmn-procesq fails.
Upon failure, a process notlﬁes its parent process and then destroys-itself.

4.2.2 Communication

Port Prolog’s execution model is based on independent processes which do not share memory. This
attribute contributes greatly to the distributive nature of the model; however, it also requires the defini-
tion of an explicit communication scheme. All messages passed between processes can be classified as
either control messages or binding messages. Most of the messages are of the latter kind, either to obtain
or to make available variable instantiations. The rest of the messages are control messages that convey
the status of the sender: ‘ ' B

4.3 Conjunction-Processes

- The purpose of a conjunction-process is to oversee the proof of a given literal-list. To this end, the
_conjunction=process creates a goal-process for every literal in the literal-list and passes the literals to their
corresponding goal-processes. When the conjunction-process has completed these initialization duties, it
enters into service mode. In service mode, it may receive messages from any other process, although some
messages (fail, success, commit} can ouly come from its descendants. A conjunction-process keeps track
of the values of the variables in its literal-list. It is designed to always record and then pass on whatever
,bmdmgs it receives 1mmedmtely to its parent to make available- bindings for non-read-only variables which
may be shared. When all literals have succeeded, the conjunction-process returns any variable- bmdmgb '
not yet sent to its parent process and destroys itself.

During service mode, the con;unctlon-process must also remember the state of execution of each
literal. The possible states are: UNCOMMIT, COMMIT, SUCCEED, and FAIL. A literal is in the
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Figure 4-2: Port Prolog process structure

(a) Before ANY commits
L]_,Lz ...Lm

Given a conjunction of literals Ly,...Ln
to solve, suppose B,C,...H have the same
predlcate name and arity as Le and
1\ B « BB, gﬁ’ ol So: )
2 C--—Cl,Cg,....' ,

Cj+1; F+ 200 Cﬂ.
“()H «HyHo,..H; | Hiv1,Hi+s,..H,

le,(r)’

LQ’V(I) '2)('2
Bi.Bi|  |C1.C Hy..H;
O conjunctioh-prdce,ss
c o [] goal-process
\ ] A clause-process
(b) After ALL L,’s have been committed

Ly, Lg,...L;m

and QL‘&p?ose is the
candidate clauae for Lo

COMMIT state if the evaluation of clauses with the same predicate name and arity as it produces a candi-
date clause. A literal is UNCOMMIT if a candidate clause has yet to be found. A COMMIT literal is
always associated with its candidate clause-process whereas an UNCOMMIT literal is always associated
with its goal-process. Initially, all literals are UNCOMMIT. The state of a literal is SUCCEED if the can-
didate clause has been solved successfully. The fourth state, FAIL, is the only state which is not recorded
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Figuré 4-3: Synchronization of variable ‘bindings

conjunction-process

P(X?)q(X)

binding for X

D( X?) a( X)

goal-process candidate
waiting for value of X clause-process

because once a literal in the literal-list fails, the con]unctlon-process 1tself falls and states are no longer
needed.

Figure 4-4:. Conjunction-process messages

(a) incoming: o ‘

commit (from goal-process)
success’ (from clause-process)

- fail (from goal- or clause- process)
new binding
need binding
patch binding

(b) outgoing: .
. success (to parent process)

fail  (to parent process)

new binding ’

need binding

patch binding.

4.3.1 Incommg Messages ‘

Variables may be instantiated via the new binding message and updated via the patch bmdmg mes-

sage.
®:new binding. When a new binding message comes in, the conjunction-process records the
binding and passes it onto any process that was waiting forit. ; )
®:patch binding. A patch binding message is used when the variable has already been instan--
tiated but contains unbound sub-components. ‘ :
An example of the use of new bmdmg and patch binding is the mstantlatlon of a variable to a list. Usu-
ally, the variable is initially bound to a list using new bmdzng with only the head instantiated. The tail is
later bound using a patch binding message.
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Figure 4-5: Binding message formats

(a) The new and patch binding message format

variable

identification \ ___________

fe  mae e e o —r ——— —— o]

=1 per message
binding

(or pointer to
binding)

fe . g o - . — - — ]

(b) The need binding message format

must be bound

variable

identification do not HaVe

to be bound

® need binding. Other processes may obtain binding information from the conjunction-process by
sending it a need binding message. A need binding message contains two parts: the first identifies the
variable (say, X) must be bound and the second contains a list of variables that has yet to be instan-
tiated. If there is no binding for X, then the requester is suspended until the binding becomes available.
‘When X is instantiated, its binding is returned along with any other ava.llable bindings for variables speci-
fied in the second part of the need binding message.

®:commit. When a commit message arrives from a goal-process, the conj‘un-ction-pro,cess changes
the state of the literal from UNCOMMIT to COMMIT and records the candidate clause-process.

- ®success. A success message (from the candidate clause-process) indicates that a literal has been
evaluated successfully;  the conmjunction-process changes the state of the literal from COMMIT “to
SUCCEED. , :

®-fail. A fail message indicates that a literal cannot: be solved. It can come from either a goal-
process or a candidate clause-process. When a conjunction-process receives a fail message, it immediately
halts the evaluation of all literals in its literal-list (by destroying the processes which are domg the evalua-
tions), informs lts parent of the failure, and destroys itself.

The messages new binding, and patch binding may “fail” if the bmdmgs they contain are incon-
sistent with: those stored in the conjunction-process;. in this case, the effect of the message which intro-
duced the inconsistency is the same as a fail message. The sender is informed.of the failure also. The
bindings in these two messages, as shown in Figure 4-4, are stored as pairs with the first element
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identifying the variable and the second element containing the binding.

4.3.2 Outgoing messages

‘ The conjunction-process sends messages to its parent and other conjunctlon-processes A success
message (which may be accompanied by bindings) is sent to the parent process when the conjunction-
process have received a success message for each literals in its literal-list. A fail message is sent to the
parent when the conjunction-process receives a fail message. When the conjunction process sends a new
or patch binding message to another process, this message fails if its binding is inconsistent with those of
the receiving process; in which case, the conjunction process sends a fail message to its parent.

Since all variable bindings that the conjunction-process receive are commztted any bmdmg which 1t
receives may be forwarded immediately to its parent via the new binding or patch binding message. need
binding messages could be issued periodically to poll the parent process for any newly instantiated non-
read-only variables.” The polling frequency depends on many factors such as the available processor-power
and the degree of stream parallelism desired. The implementation described in Chapter 6 does not have
this feature.

4.4 Goal-Processes

The objective of a.goal-process is to locate a candidate clause for a given literal. Given a literal to

solve, a goal-process spawns a clause-process: for every clause whose head has the same predicate name

~and arity as the literal. This is done, instead of spawning a clause-process for every clause whose head

unifies with the literal, so that unification may be done simultaneously. For literals with read-only vari-

ables; the creation of clause-processes is suspended until all read-only variables have been instantiated in

order to minimize the number of message passes which would have been necessary due to the read-omly
variables if the suspension is relega,ted to the clause-processes

The goal-process gives the literal that it is trying to solve: and a clause which: may unify with: ther
literal to each clause-process. When all clause-processes have been created, the goal-process waits for one
of the clause-processes to send it a commit message to indicate that .the particular clause-process has suc--
cessfully solved: its guard sequence. This clause-process becomes the candidate process. The goal-process
then identifies the candidate process to its parent conjunction-process and destroys all other descendant
clause-processes. The goal-process then destroys itself as.its service is no longer needed.

If there is no clause with the same predicate name and arity as the literal or no candidate clause-
process is found, the goal-process sends a fail message to its paremt conjunction-process and destroys
itself. o

" Figure: 4-8: Goal-process messages-

(a) incoming: (fromclause-process)
commat :
fail

(b) outgomg (all to parent conjunctlon-process)
commit
Jail
need binding.




24 Goal-Processes ' : Chapte} 4

4.4.1 Incoming Messages

The goal-process is the simplest of the three process types and its messages reflect this simplicity. It
only handles two types of message: commit and feil, both from its descendant clause-processes. During
its lifetime, a goal-process receives at most one commit message but may receive several fail messages.
Suppose -a goal-process has spawned n°clause-processes. Then, it receives either n fail messages or

(where 0=<i <n) fail messages and one commit message. The reception of a commit _méssage from a des-
cendant clause-process will result in the goal-process ignoring all subsequent messages sent to it.

4.4.2 Outgoing Messages . _
All messages from a goal-process are directed towards its parent conjunétioﬁ-process. ;
0;'cdm.mit,.~ Upon- the reception of a commit message, the goal-process issues a commit message of

its own to its parent conjunction-process. This commit message contains information which identifies the
candidate clause-process. : :

¢ fail. If and when the goal—process has received fail messages from every descendant clause-
process, it responds by sending a fail message to its parent conjunction-process.

®:need binding. When a goal-process finds uninstantiated read-only variables in “the hteral that it
is trying to solve, it sends a need bmdmg message to its parent n such vanables w1ll result in n need
binding messages

4.5 Clause-Processes

A clause-process is responsible for the evaluatlon of the given literal using the given clause. The first
thing that a clause‘process does is attempt to umfy the glven literal with the head of the clause. If ulllfl-»
cation is successful, it is ready to attack the guard sequence of the clause; otherwise, it fails. If there is no
guard sequence; (m which case ‘unification ‘act as the guard) the clause-process sends a commit message to
its parent goal-process unmed;ately, otherwise; it spawns 'a conjunction-process to solve the gua.rd
sequence. When: the guard sequence is. successfully solved, the clause-process sends a ‘committ message to
its parent.goal-process. If it is the: first of its brother processes ‘to send such 2 message to its parent then

it ‘becomes the candidate clause—precess

. Immediately after ,becommg a candidate cl-ausé-proceés, the p’rocess sends the bindings obtained
from unification and evaluation of the guard sequence to its grandparent conjunction-process (see Figure
4-7). It then spawns a conjunction-process to solve the goal sequence. The candidate clause-process must
remain (unlike the goal-process) to maintain the mapping between the variables in the literal being solved
and the candidate clause. When its child conjunction-process has terminated successfully, the clause-
process..sends _binding messages of variable values not yet forwarded to its- grandparent conjunction-
process. It then sends a success message to its grandparent.

A clause-process fails. if its child conjunetion-process cannot solve the sequence given to it. Upon:
failure, the clause-process sends a fail message:to its: parent goal-process if the sequence is 2 guard
sequence, or to its grandparent conjunctlon-process if the sequence is a goal sequence. Then, the clause-
process destroys itself. :

4.5.1 Incommg and Outgoing: Messages

A clause-process receives all of its messages from its child con]unctlon-process It receives a success
or fail message depending on the evaluation of the literal-list sent to its child. A success message from
the child conjunction-process solving a guard sequence causes the clause-process to send a commit mes-
sage to its paremt goal-process, which in turn replies with the identity of the grandparent conjunction-
process. When a need binding message is received, the variables contained in the message are “mapped”
to variables of the variables of the grandparent process and a need binding message is sent to the
grandparent; patch binding and new binding messages are similarly handled. This mapping is described
below in Section 4.6. patch binding and new binding are received only when the ¢hild conjunctlon-process
is solving the goal sequence (not the guard sequence).
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Figure 4-7: Candidate clause-process

grandparent conjunction-process

bindings parent goal-process

Zl candidate clause-process
O child cénjunction-process

Figure 4-8: Clause-process messages

(a) incoming: (from child conjunction-process)
success ‘ ‘
Jail
new binding
need binding
patch binding

(b) oﬁtgoing—:

Jail : »
success (to grandparent conjunction-process)
commit (to parent goal-process)

new binding (to grandparent conjunction-process)
need binding {to grandparent conjunction-process)
patch binding (to grandparent conjunction-process)
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4.6 Binding of Variables |

The binding of variables in Port Prolog is done distributively — in other words, there is no central
ized source (cf. the stacks in Sequential Prolog) which keeps track of all variables. This non-centralized
approach makes the system less dependent upon tightly-coupled processor architectures, and less prone to
communication bottlenecks and consistency problems due to different processes instantiating the same
variables simultaneously. There are also, however, disadvantages associated with this method.

First, redundancy of bindings is an inevitable consequence. In a centralized scheme, parts of bindings
can refer to other bindings easily (for example, by using pointers). In a distributed scheme, such reference
is expensive in terms of storage and retrieval time — as reference must include the process that has the
bindings as well as directions as to how to query the process for them. Therefore, Port Prolog will copy
bindings whenever they are referenced, so that future references by the same process need not go through
the costly routine of extracting them from other processes.

 Another disadvantage to the distributed binding environment is the difficulty of creating and deter-
mining the binding references. Which process does a process inquire when it contains uninstantiated vari-
ables that need to be bound? The answer to this question requires not only a correct algorithm, but also
one which takes communication and time costs, memory costs, and number of intermediate processes into
consideration. Moreover, read-only variables must be distinguished from unannotated variables for syn--
chronization purposes; and in order to support stream parallelism, variable bindings must be distributed
promptly. :

The design of Port Prolog’s binding mechanism hinges on three concepts: (1) creation and distribu-
tion of a tag for uninstantiated variables, from which processes can derive information on how to eventu-
ally obtain bindings; (2) classmcatlon of uninstantiated variables; (3} an algonthm for retrieving bindings
for umnsta.ntlated variables. : '

4.6.1 Tags.

The retrieval and broadcast of a variable’s value are simplified by addmg to an unmstanuated vari-
able information about how to find the value for the variable in the future. This information, which is
referred to as a tag, is analogous to a pointer in a program; however, because references must be made
between processes in different address spaces; a tag includes process identification as well as variable iden-
tification within' the process. Tags provide a more direct method for accessing the variable’s binding.
Without this information, a process must go thr,oi;gh its parent process which would, in turn, propagate
the query to its parent (or children) and so on until a process is willing to handle the query. Tags are used
for both read-only and unannotated variables. Read-only variables are distinguished from other variables
for synchronization purposes. A process requiring the instantiation of a read-only variable asks the process
identified by the tag and waits until an answer becomes available. For an unannotated unbound variable,
the process identified by the tag is polled for the value of the variable. ‘ ‘

 Figure 4-9: Types of variables v

BOUND

REFERENCE

FREE
READ_ONLY_REFERENCE
READ_ONLY_FREE

’Variables- are classified into five types as listed in Figure 4-9. There are essentially two groups:
read-only and normal variables, with further distinction between their “state of uninstantiation” (FREE or
REFERENCE). Once a variable is bound, its annotation, whether it existed or not, becomes meaningless;
hence, no distinction is made between read-only variables that are bound and normal bound variables.
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FREE means that the fag associated with the variable has not been set {i.e. the tag is empty). Processes
requiring values for FREE variables must ask their parents. REFERENCE variables are those that con-
tain tags indicating which process is likely to have values for the variables.

Tags are built by clause-processes as a result of unification and clause evaluation. They are initial-
ized under the assumption that the descendants are more likely to bind uninstantiated variables in the

future. For example, if p( X } is the call and p( ) «¢(Y) is the procedure, then the unification of
p( X ) and p{ Y ) results in the creation of a tag for X. This tag specifies that X is a REFERENCE vari-

‘able and contains the variable 1dent1f1catlon for Y and the identifier of the process solving p(Y)«q(Y)
Y remains FREE. :

Because of the impossibility of correctly predxctmg which: process will be the ° producer of the bind-
ing, tags may not always be ‘‘correct.” That is, they may not identify the relevant process directly, but
rather indirectly. However, even when they do not identify the producer process, tags can still be useful
for providing 2 means of notlfymg the process named in the tag when another process has performed the
instantiation.

4.8.2: Storage of Bindings

Bindings. of variables in a literal-list are stored in both :conjunetion-processes and clause-processes
Environment tables are built by a process to store the bindings and information pertaining to the mapping
‘of variables in this process to these in-other processes. :

Bindings of variables in a literal-list are stored: in the conjunction-process that is solving the literal-
list. . This-enables descendant processes.to access. (via message—passmg) va.rlables shared among hterals in
the literal-list. For example; for the hteral—hst ‘ v

father( Child, Father ) & mother( Child, Mother ),
a conjunction-process: would keep track of the bmdmgs for Child, Father, and M’other “The descendant

processes evaluating father( Chzld Father ) can ask thls con]unctxon-process to mstantlate or retrleve ‘the
bindings of Child and Father. . , :

Clause-processes also store bindings. For umflcatlon two envn'onment tables are set up to house the
bindings of variables in the clause and those in the goal literal. These environments are also used to map
- variables in the clause to those in the literal. This mapping is necessary for “‘tracking down’’ a variable’s
value. For example, if a clause-process is given

- literal: father( Child, Father ) ’
_clause: father( C,F)« male( F) & parent( C, F) , , , -

The instantiation. of F by the descendants of this clause-process (say, by the evaiuatlon of parent( ¢, F))
would require a mapping between F' and Father so that Father can also be bound correctly.

4.6.3 Retrieval of Bindings -

Two types of process initiate retrievals of bindings: ‘gdal-'procés'ses and conjunction-processes.
Retrieval of bindings for read-only variables are initiated by goal-processes. Conjunction-processes poll
their parent clause-processes to update its vanables so that unannotated variables may be instantiated (for'
stream parallehqm) :

A process initiates a retrieval by querying another process {using a need binding me%sage) this
“other” process (the target process) is determined using the variable's type and tag information, and is
either a conjunction- or a clause- process. The target process is. the parent if the variable is FREE and the
process named by the tag if the variable is REFERENCE. . The target process first checks if the named
variable has been instantiated yet. If it has, then the value is returned; otherwise, for a read-only variable,
the target process suspends the sender until the variable that the sender needs is available. The sender is
not suspended for normal variables, instead, it is informed that the variable is unbound. If the target pro-
cess is a clause-process, the unbound variable is mapped into a variable know to.its grandparent
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conjunction-process and forwarded to. its grandparent: -The grandparent then becomes the target process ,
and follows the same procedure as descrrbed above:

4.7 Synchronization

Synchronization in the Concurrent Prolog language is achleved through the use of read-only variables
(see Figure 4-3). Execution of a literal that contains read-only variables cannot proceed until its read-only
variables become instantiated. In the Port Prolog model, read-only variables are handled exactly accord-
ing to the language definition: the execution of a literal is suspended until all read-only variables (if any)
are instantiated. This suspension involves the goal-process sending a neced binding message to a
conjunction-process for every unbound read-omly variable. Suspension is possible due to the blocking
nature of the send prmntlve, as a.ssumed by our process abstraction. ' ‘

4.8 System Predicates

System predzcates or buzlt‘m predzcates are ht;erals that are evaluated by making special system

calls. For example, put( Char? } is a system predxcate that is evaluated by making a system call to print
out the character Char. In this section, we describe how Port Prolog handles bmlt-m predxcates and com-
pare its method with those from other systems.

- PRISM’s model evaluates system predrcates in the sclver process (PSM).+ This can lead to very

- “large” .PSM’s if the number of system predicates is large — the code for handling all the system predi-

cates must be duplicated for every PSM. In-order to avoid this space problem Port Prolog handles built-
in predicates i in processes outside the solver processes.}

System predicate processes- (SPP) handle all system predicates. - Each time-a built-in- predicate‘is
used, an SPP is created to solve the predicate. Using several SPP’s instead of one has several advantages.
First, several SPP’s may be active at the same time; hence, several system predicates can be executing
concnrrently Secondiy, system predzcates that need to be synehromzed can be easily accommodated For

example, the SPP evaluating put( Char?) Wlth Char unmstantrated can suspend by sendmg ‘a need
binding message to the produter of Char until Char becomes bound. Finally, the function of an SPP is
not fixed by the model. Each SPP need not be identical to other SPP’s. This flexibility leaves the deci-
sion of how' to organize system' predicates to assign to SPP’s up to the designer of the interpreter. For
example, if only a small set of system predicates is available, one might use identical SPP’s, each contain-
ing all system predicates. This would simplify the procedure that decides which SPP to use. Larger
libraries of system predicates may warrant a more complex decomposition involving several different types
of SPP. This distribution of built-in predicates avoids the problem of duplicating large SPP’s.

SPP’s are related to. the proc'ess tree of conjunction, goal, and clause processes in the following

~manner. A clause-process is responsible for recognizing that its given clause is a built-in predicate. This

recognition is -done after:-successful unification of the given literal and clause.- The clause-process then
checks whether the body of the clause is-a system call. If so, it creates an SPP ~— the type of which is

-possibly determined by the type of system call — to execute the call. The SPP then asks the clause-

process for variable bindings, evaluates the call; and returns any variables bound during the evaluation.
The' clause-process. is chosen as the interface between the SPP: and the solver process tree bec: ause it pro-
vides the necessary mapping of variables in the literal and the clause head.

The SPP -concept fits well with Port Prolog s.computation medel.” The clause-process uses an SPP,
instead of a sub-tree of processes, to solve a literal-list. In the case of a system predicate, the literal-list
happens to be -a number representing-a system call. Hence, system predicates in Port Prolog h ave no
guard sequence; unification act as the guard and the s:ystem call'is the goal-sequence. .

Shapiro’s sequential implementation of Concurrent Prolog [Shapiro 83] requires extra sy nrhrommtmn
predicates to ‘provide the necessary: interface to syqtem functions like input/output. For example,

t For a discussion of PRISMs PSM see Sectlon 3.2 in Chapter 3.
f By “solver processes” in Port Prolog, we mean goal-processes, conjunctlon-processes, and
clause-processes.. " - , ,
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Figure 4-10: System predicate process

put( hello')

conjunction:

put( hello )

goal

put( hello )
put( Char ).« PUT_SYSTEM_CALL:

-

PUT_SYSTEM_CALL, Char =hello

system
predicate
process

wart( X ) is a special predicate that suspends evaluation until X is instantiated. This predicate is used

frequently to ensure the‘correct,execution of predicates such as write{ X ). In Port Prolog, this level of
~ interface is obviated; all predicates, whether built-in or normal, use the same means for synchronization —
namely, the read-only annotation (X9). o ’
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The Port Prolog Language & User Interface

This chapter describes the syntax and structure of Port Prolog programs and the interpreter’s user
interface. We first provide an overview of the Waterloo Port implementation environment.

5.1 The Waterloo Port Environment

This section briefly describes the environment, Waterloo Port, which was used to implement Port
Prolog. Waterloo Port is an operating system developed by the Software Portability Group at the Univer-
sity of Waterloo. The name ‘Port” refers to the portable nature of the system across different machine
configurations; that is, it can be made to run with different processors and peripheral devices without
major overhauls to the system. The development of Port Prolog was done on a Port system configured
for an IBMt personal computer workstation with a monochrome display and a mouse. The following dis-
cussion successively addresses Port’s user interface, processes, and networking capabilities. We also
describe some features of the Port programming language that influenced the design of Port Prolog.

k kaguré 5-1: The Port screen format

activity names : )
; \oom Message Edit Browse ‘ / title line

Browse 0/ugers/RKSLee
Browser/% [G.J]\@ [ DESCEND] lMIRE\@VEHOOPYTO[MvE'IqM

operations

‘Browser’s window B

i / title line
Edit 0/users/RKSLeejmisc ] o ’
QUI] FAVE [FIGK UF] FUT DOWN] [CERVTEN [SFLIT] iom [P or |

Editor’s window

Editor
operatio ns/

blank area

t IBM'is a trademark of the International Business Machines Corporation.

30
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5.1.1 The Port User-Interface

Port has a screen-oriented user-interface [Didur et al. 84]; interaction with the system is performed
by pointing at and selecting objects on the screen with a cursor driven by the mouse. Port supports mul-
tiple windows on a screen and concurrent execution that enables several programs to be not only executing
simultaneously, but also being viewed simultaneously. Figure 5-1 illustrates a screen occupied by windows.
The top line of the screen is reserved for activity names; each name corresponds to a: window. A window -
can be vertically enlarged or shrunken but cannot overlap other windows. A window that is not visible on
the screen is iidden and is brought onto the screen by selecting its activity name. In Figure 5-1, Room
and Message are hidden.

A Port activity, which is made up of one or more processes, may or may not use a window.. A Pro-
log interpreter is an activity, for example. An activity that uses windows usually formats its windows to
conform to ‘“‘standard’”’ Port windows. The top line of a ‘window is called its fitle iine. The title line con-
tains the name of the activity and some parameters used by the activity. The second line of the window
contains a row of operations. Selecting an operation starts the corresponding action. For example, select-
.ing QUIT causes the activity to terminate and the window to disappear. The activity can present the rest
of the window in any format. Displaying the title line and operations, interpreting the selection of an
operation, growing and shrinking of a window, buffering and echomg of input, and dlsplaymg of output are
"handled by the activity that owns the window.

5.1.2. Port P‘rocesses

Port is a multi-process operating system that supports concurrent activities. Process communication
and synchronization is-achieved with blocking interprocess comrunication primitives: send, reccive and
reply. Dynamic process creation and destruction are performed using two process management primitives:
create and destroy. These prlmmves and the notxon of a process” are described in more detail in Section
4.1 in Chapter 4. : B ’ ' :

There are several t}pical process structures that prevade the system They are named after the

anthropomorphlc structures that they closely resemble [Chenton 82]. This structurmg clarlfms the reron- SR

sibilities of a process ‘Some sample processes are: S .
®:server. A server is a process. that handles requests (uqu'illv from any other proc c»)

®'proprietor. A proprietor is a process. which owns-a resource. All access to:that resource
must be made through this process. ( ;

®:worker. A worker is a process whose sole purpose is to offload the work of another process
(usually its creator). ,

® administrator. An administrafor is a process that coordm%tes the ‘{(’tl\lLIPS of other
processes. - It usually enlists the help of worker processes: to service requests.

These definitions are useful in Chapter 6, when we examine the process structure of Port Prolog.

5.1 3 Networkmg in Port

One of the research dlrectlons of Port is to. mvectxgate various aspentq of network opemtmg systems.
Several Port workstations may be connected together to form:a network that permits resource sharing.
Synchronous message-passing for local process communication is also available for remote process com- -
munication. However, the syntax of the local and remote interprocess communication primitives differ.
This distinction forces the programmer to decide at programming time the physical locaticn (cither local
or remote) of each process in his -activity. This problem may be circumvented by having all processes use
local interprocess communication primitives and relegating the local-to-remote *nessage-passmg translation
procedure to special worker processes :

5.1.4 The Port Fxle System

Port’s file systems are tree—structured There can be as many as ten file systems each numbered -
from 0 to 9. Each file system has a root file from which the rest of the flles in the system branch. Files -
that are dxrect descendants of the root file can themselves have descendant files, and so on. Any file in
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Figure 5-2: An exé,mple of a Port file tree

. prolog_broé,ra.ms ;

the tree may contam data. Figure 5-2 shows a portion of a file tree. Every file has a file type. -Some
sample file types are tezt, commands, holon, Junction, code86 and predicate. A file type indicates. the
nature of a file’s contents. The behavior of certain file manipulating operations is dependent upon file
types. For example, they permit the operatmg system to choose an appropriate editor when the user:
~ wishes. to edit a file. File types may also impose restrictions on a file’s name. This property is a conse- -

quence of the integration of the Port programmmg language and the file system The Port language is
described in the next section. :

A file in a Port, file system is identified by its unique pathname. For example in Flgure 5-2 the left-
most file is ldentlfled by the pathname
: O/users/RKSLee/prolog_programs/hanaz :
The pathname shows the location of the file with respect to the root of file system ““0.” Each crossing of a
level in the hierarchy is denoted by a “/.” The last component in the pathname (‘“hanoi” in the example)
is the filename of the file. ’ - , - : : -

5.1.5 The Port Programming Language

The Port programming language is a descendant of the BCPL family of languages [Bonkowski et al.
84]. It is similar to the C language in both syntax and semantlcs, although Port is more strongly typed
than C. The language is closely tied to the Port operating system. For example, the message-passing
primitives are an .integral part of the language The Port language also makes: extenbxve use of the file
system e

In the Port language components of a program such as a functlon or an external variable are placed
in individual files which are hierarchically arranged. The hierarchy is used to portray the relationships
between the program components. For example, pl:icing a component beneath a function “‘hides” it from
all other parts of the program outside the function’s subtree. Also, the name and type of a component is
represented by the filename and file type of the file in which the component resides.

Components of a program can be grouped into a holon (a module). A holon is a set of logically
related components. It.consists of a subtree of files, the root of which is of type “holon.” The root con-
tains an export list that specifies which componeuts in its subtiee can be referenced by othor components.
For ‘example, a floating point pac}.age ‘may be made into a holon that- cont'nns and exports functions’
which perform l‘loatmg point arithmetic; special buffers and mtemal routines can be hidden and used only
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within the holon. Holons may exist within a program or be imported. A special file, called the ¢ holons”
file, allows a Port program to. include other holons not defmed in the program; the .holons file contains the
pathnames of all holons to be imported. ‘ :

5.2 The Port Prolog Language |

5.2.1 Syntax

The syntax of Port Prolog follows Shapiro’s language defmltxon of Concurrent Prolog. The Port
Prolog syntax differs in that comma’s in functors and calls are omitted. Figure 5-3 contains the Backus-
Naur-Form productions of Port Prolog syntax. An example of Port Prolog syntax'is illustrated by the
partition clauses in Figure 5-4. It contains the definition of the partition predicate used in a Port Prolog
implementation of quicksort.f The definition consists of three clauses.~

A clause in Port Prolog has the i'ollowmg format;:
<procedure head> <guard sequence> | <goal sequence> 3

<procedure head> is a call representing the head of the procedure. A sequence consists of a {possibly
empty) list of calls. <guard sequence> contains the guard calls while <goal sequence> contains the
goal calls. If the guard sequence is empty, then the wln ‘may be- omitted. During clause execution, the
calls in the guard sequence are evaluated concurrently. The goal sequence calls, which are also evaluated
concurrently, are processed only if the calls in the guard sequence all succeed. A query has no procedure
head nor guard sequence; it only consists of the goal sequence. An assertion is a clause with no guard or
goal sequence.

The following are definitions of the terms of Port Prolog

®:name.. A name is a sequence of at most 32 characters The first character of 2 name must
be a:lower case letter.

®ivariable. A variable is a sequence of at most 32 characters. The first charaeter. of a vari-
able must be an upper case letter, or a. *“_.”" A variable can be annotated by a “?” suffix, in which
case it is called a read-only variable: Evaluation of a call is suspended until its read-only variables
are instantiated. A void variable is denoted by “_."”

@ string. A string is a sequence of at most 256 characters A string is delimited by double
quotes, :

®:integer. An integer is a strmg of numeric characters. The vahd number range is -32767 to
32767.

®-character. A character is a single character enclosed by smgle quotes.

®:functor. A functor has the form: ) o
<name> ( <argument Zzst> ).
<argument list > contains at least one term and at rnost twenty terms.

®:list. A [list has the following syntax:

[ <list head> | <list tail>]

[ <list of terms> ]
<list head> can-be any term. <lzst tatl> must be a list. <list of terms> may contain one or
more terms separated by comma/’s. An empty list denoted by “[] ”

5.2.2 Program StructUre

- This section describes how clauses are structured in a Port Prolog program. Port Prolog adopts the
Port language’s phxlosophy of mtegratlon with the file system The advantages of this integration are also
discussed. :

t Tramlated from a Concurrent Prolog 1mplementa.txon of qu1cksort found in [Shapiro. 83] page
11.
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Figure 5-3: Backus-Ndur-Form productions for Port Prolog syntax

<clause> k::=f"<calvl> [<sequence> "] [<sequence>] ;.
’<quvery>‘ n= [<sequence>] .
<sequence> == <.c‘al‘l’> {i <call> }.
<call> = <ﬁf~ﬁn¢tor’> | <name>. .
<functor> = <na:mé> ‘(‘” .<term> {<term$} Y.
| <list> ="' <term> { <'listkt‘ail'>‘ } ‘];‘| 1
<list tail> ::= ( "’ ‘<list> Ty <term> })

<Lterm> ;= <name> | <strmg> l <mteger> I <character>
‘ | <vana~ble> | <hst>] <functor>

<n#me-> 1= <lower case letter> {<valid symbol>}. |
~<variable> 1= ‘<nor\mal‘ v.»arvi-ablé>n| | <readv-only" variable>.

- <normal vazl_e> = <upper gé,sg letter> {{valid symbol>}.
t<}’r§ajd'-on«t_y va‘ri"‘ablé'} = 'é‘ﬁOrmél va&rié;bié}» P, ‘ | ‘

- <integer> = | ‘;k’ | <] <dig;vitv“> {<digit>}.

<character> = * <ascii éharacter> o,
‘<string>‘ = > <a,scii‘ character'>-{<ascii character>} <<,
< ascii bcha‘r,a;cter> 1= any éymbol from the ASCII character set.

<valid symbol> = <lower case letter> | <upper case letter>
' | <digit> | ‘.

<dlglt> coam &0,7 | t11’| c2~a | (3v I (41 ‘ :5! l (6) l :7~s l ‘8’ ‘ ¢gs ‘
<lower case >let;ter> s g I‘b’ | e’ ] ‘| ve? ] ‘ ] ‘g’ | “h’

[ ‘ia l xja |“k’ |,;¢m) I ‘D’ I l z ] . I ‘T’

‘ ‘g’ l_"t’l ‘u,‘ ‘V" ‘wyl I3 al y l
< upper case letter> = ‘A’ | Bl«c|D|E|F|GC|H

I qJ ' ‘J,vl‘ ‘K,I M l N ' Q' I ‘P’rl ‘Q’I ‘R"
! g I «Ta‘ ‘U’! nV)I ‘Wsl ‘le ‘Ys ‘ A
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| Figure 5-4: An example of Port Prolog syntax

partition( [X|Xs] A Smaller [X|Larger])
A<X | partition( Xs? A Smaller Larger );

partition( [X|Xs| A [X|Smaller] Larger )
A2X'| partition( Xs? A Smaller Larger );

partition( || _ 0% ,

5.2.2.1 Source Frles

A predicate must be stored in a file that has the same filename as the predicate name. For example,
the clauses that define the append predicate must reside in a file with the filename “append’ and the file
type “predicate.” In other words, all clauses in that file must have the head predicate name append, but
the arity of the clauses may differ.

By isolating predicates in this way, Port Prolog forces the user to orgamze his Port Prolog provrams
The naming convention of the file makes predicates easy to locate. The user no longer needs to search
through several large files looking for predicates with the same name. This naming scheme also catches
errors: caused” by mis-typing the head predicate mame of a clause. Since Port allows several editors to
_ display their contents -on:the screen snmultaneously, the user can view several groups: of predrcates at the
same time: : : N :

5.2.2.2 Modules

A module is a collection of logically related: predlcates A module in Port Prolog is a subtree of l‘lles .
each file contains clauses belonging to the module. For example, the append predicate may belong to the
lists module, which may contain other predicates for list manipulation such as reverse, sort, etc. A predi-
cate within' a-module ean be referenced by any other predicate within the module, but may be hidden from
predicates in other modules. A predicate can be used by predlcates in another module only if*it is bemg
ezported by its home module. :

The global nature of Prolog programs have been under attack for its insensitivity to the needs of
managing and debugging large Prolog programs. Modules in Port Prolog provide a 2-level organization
" structure: by ‘which: the user can use to manage large Port Prolog programs. Predicates in Port Prolog
may be local or .global. Local predicates- cannot be referenced outsxde the module while global predlcates
can be referenced by any module. ‘

5.2:2.3 Exportingz P-i-edi”cates : : ; ~ ,

 The root file of a module subtree may be of file type ‘“‘predicate” or ‘“holon.” If the file type is
“predicate,” only those predicates in the root file are exported; all other predicates defined beneath the
root file of the module are local. This structure of a module can be used in the case where only one predi-
cate needs to be global and. the rest local.. For example; a-module that sorts a list needs to only export
the sort predicate; hence, this module can be structured with the clauses defining sort located in a file of
type “predicate” and the remainder of the predicates defined in files located beneath sort’s file. A root
file with file type “holon’ contains an export list specifying all predlcates in the module that are global :
For example if the export list is

append( ) reverse( 2 )
then only the predxcates append with three arguments and reverse with two arguments are global. An
export list consisting of only “* indicates that all predicates in the module are global.
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'5.2.2.4 The Source Tree

The tree of files that is given as the “source” to the Port Prolog interpreter is referred to as the
source tree. Predicates in the source tree form a module. This module is always searched first when the
interpreter receives a query. If the query cannot be answered by predicates in this module, then other
modules (if any) are consulted. i

5.2.2.5 Inclusion of Other MOdules

A user may include other modulés with the source module by creating a file with the filename
‘“holons” directly beneath the root file of the source tree. The pathnames in this .holons file specify the
modules to be included. This inclusion is done at the source level — the pathnames refer to the source of
the modules. For example, a .holons file may contain

0/users /RK SLee/prolog_programs/system

0/users/RK SLee/prolog_programs/lists

0/users/RKSLee/prolog_programs/graphics. ; »
This results in the inclusion of three modules: system, lists, - and grephics. Predicates in a source tree
that has this .holons file can reference any predicate exported by these three modules. In general, predi-
cates in all four modules ‘may- reference any predicate in. 1ts own module plus: any predxcate exported by
the other three.. : :

5.2.3 Compilation

Port Prolog transforms 1ts source into internal code that is used while the interpreter. is running and
kept in files when the imterpreter is terminated. This internal code is a syntax error-free, compact
representation’ of the source.}- When the interpreter is started up, the source (source tree plus modules:
included via the .holons file) is compiled into- this internal code and stored in files in_the .code tree. The
.code tree files are referenced when predicates defined in them are required for solving queries entered by
the user. Because the compilation process is time-consuming (depending on the number of source files),
‘the .code tree can exist between interpretive sessions so that the entire source need not be re-compiled
each: tlme the mterpreter is invoked. " :

5.3 The Port Prolog User Interface

The Port Prolog interpreter requires two parameters: the pathname of the source tree and a flag
indicating whether the source requires compiling. "If the compile option is specified, the interpreter exam-
ines the files in the source tree and included modules and compiles them into internal code. This code is
then stored into the .code tree. During compilation, the mterpreter displays the pathname of the each file
as it is bemg processed

When the compilation is completed or if the compile- option is off, the interpreter-is- ready for

- queries. - The  interpreter prompts. the user for mput .accepts input from the 'user, . and replies -with -

appropriate answers. The mterpreter prints a ‘“yes” if the query entered is successful; if the query fails,;

the interpreter responds with a “‘no.” If the query is successful and variables are preeent in the query, Lhen
the query is reproduced with the variables replaced by their correspondmg instantiations. - ’

5.3.1 The Port Prolog Window

The Port Prolog window conforms to the format of other wmdow-orlented activities on Port. It has
a title line, a set of operations, and an input/output area. The title line contains the activity name “Pro-
log" and the pathname of the source tree. There are six operations as shown in Figure 5-5.

® QUIT terminates the interpreter and causes the interpreter’s window to disappear from the screen.
All'processes belonging to the /interpreter are destroyed.

®-END INPUT sends a ‘“‘end-of-input’’ signal to the mterpreter This also terminates the in‘terpfeter,
except the wmdow remains until QUIT is selected. This allows the user to view the contents of the window

+ This internal code format is discussed in ‘Chapte;r 6, Section 6.2.
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Figure 5-5: The Port Prolog window

title line «_
Prolog 0/users/RKSLee/prolog_programs/lists
operations 1|QUIT| 2|END INPUT} 3EON'I‘INUE‘ 4|»PAUSE| 5|s0R0LL| s[PAGEJ
output area (" Waterloo Port.Prolog-
?append( a,bic] [1,2,3] A');
append( {a,b,c] {1,2,3] [a,b,¢,1,2:3] };
prompt ?

reverse(- [a,b,c]
input area /

w1thout tying up (memory) resources used by the loaded mterpreter

@ PAGE and SCROLL are “control” operatlons They do not actwate any operatxon when: selected;
rather, they set the window into a “mode.” Only one of PAGE and SCROLL is operative at any one time
(i.e. can: be selected). When PAGE is in effect, the window continues to scroll as new lines are displayed
until a window-full of output is displayed: The: wmdow can be switched into page mode: by selecting: the
PAGE. operation. This has the efi‘ect of rendermg the' SCROLL operation operatlve and the PAGE operation
inoperative.

®-CONTINUE automatxcally becomes operatwe when the window is in page mode and full. Selecting -
CONTINUE resumes the scrolling of the window until another window-full of output is acqmred

®:PAUSE suspends output to the wmdow The wmdow resumes scrolling when the CONTINUE oppra- :
tion is selected. :

Queries may be entered when the cursor is anywhere within-the window and\ is echoed in the inpuf
area — the last line of the window. The rest of the window is reserved for output. Input is not processed
by the interpreter until a.carriage return: is pressed. Local line editing may be performed before the car-
riage return is pressed.  When the carriage return: is pressed, the input line is displayed on the line just
above the input area and the output lines scroll up by one line. The input area is then emptxed and ready
for more: input.

The input- area.is reserved for the user to enter: queries The intérpreter attempts to: so]ve these
queries using the clauses stored in the .code tree. There is: no facxhty for addmg assertions or clauses
dynamically. : : - S

5.3.2 The Errors Window -

If a syntax crror is encountered during compilation, an errors window appears and explains the
error. Figure 5-6 depu ts an errors wmdow Sul)sequent syntax errors are viewed with the same errors

. wmdow :

The errors window contains the customary title line and four opc-mt‘ions: QUIT, EDIT FILE, NEXT
ERROR, and:PREVIQUS ERRORA. The rest of the window is used to display four items: (1) the message
describing the error, (2) the line of text and column position showing where the error occurred (8) the line
number of the text in the source file, and (4) the pathname of the file in which the error occurred
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“Figure 5-8: The errors window

‘Errors
1/QUIT] 2EDIT FILE| 3NEXT ERROR] 4[PREVIOUS ERROR|
filename: 0/users/RKSLee/ prolog_programs/lists/reverse

line number: 1

| predicate name must be same as filename
revers E] AB) '

©:QUIT makes the errors window disappear.
®-EDIT FILE invokes an editor to edit the file containing the error displayed.

®:-NEXT ERROR and PHEVIOUS ERROR cause the next and previous errors (xf any) to be dlcpla} ed,
respectively.

5.4 Preparlng and Runmng a Port Prolog Program

The typnca] sequence of operatlonq for mteractmc with the Port Prolog interpreter is:
(1)  prepare the source tree; ST

(2)- supply the Port Prolog lconi w1th the appmpnate parameters;

(3?)' start the Port Prolog actmty, '

(4) enter queries to the interpreter;

(5) terminate the Port Prolog activity.

The following discussion assumes the reader is familiar w1th the Port Browse, Edit and Room activities
[Didur et al. 84].

The source tree is prepared using the Port Browse and Edit activities, Depending. on the predicates
to be exported, create a file of type “‘holon” or ‘‘predicate” using the DBrowser.” If the file is ol type
“holon,” use the Editor to put in the export list. If the file is of type “predicate,” use the Editor to enter
the clauses with the same: predicate name as the filename. Then; descend using the Browser and create
files of type “‘predicate’ for each predicate in the program. If there are other source modules that need to
be referenced, use the Browser to create a “.holons” file {of type “‘text”’) and put in their pathnames.

Before the interpreter is: started, it must be supply with ‘the appropriate parameters. Using Room,
examine:the Port Prolog icon and enter the pathname of the source module and a flag indicating whether
the source needs compiling. The interpreter is started by activating the Port Prolog icon. The interpreter
then displays the Port Prolog window. If the compile option was specified, the interpreter prints the

predicates being compiled; any error encountered during compilation results in the creation of the errors =

window from which the user can view the error(s) and possibly edit the guilty file(s). The interpreter then
prompts the user for input; the user respond by entering the queries to be solved. Output from the inter-
preter can be controlled by selecting the CONTINUE, PAUSE, PAGE and SCROLL operatlons Finally, the
interpreter is termmated by selectmg the QUIT operatlon ,

1 See [Didur et al. 84] for a description of icons and how to start activities in Port.
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Implementation

In- this chapter, we describe the implementation of the Port Prolog interpreter. We start with an
overview of the interpreter by presenting the- process structure of the system, the files used, and the for-
mat of the internal code. We then give detailed descriptions of the major components of the system.

6.1 Process Structure'

The Port Prolog mterpreter 15 a muitl-process Port activity. - Not only is the run-time solver
comprised of several processes, so is the rest of the system. For example, a group of processes manages
the database while other processes provide services such as parsing, window management, etc. This divi-
sion of responsibility among several processes has notable advantages.

~Because ‘each logical component of the interpreter is lmplemented as.a. process, the interpreter: as a
whole ‘becomes. flexible and easier to maintain. Slnce information sharing is possible only through
message-passmg, the interfaces between the processes are very distinct. Consequently, it is easy to replace
one process with another.. For example, the solver processes could be replaced by others that implement
different run-time-strategies. The database component could be replaced- by one that uses another search- -
ing. algorithm, a different file structure, or even a. different physical device. In fact, the process structure
. used-by Port Prolog was: adopted from a.sequential Prolog on Port. The difference between the two struc-
tures lie in the solver processes and the parser; sequential Prolog’s parser need not handle guard sequences.
and its solver implements the ABC algorithm.

We give a brief overview of each process in the mterpreter here; these processes are-detailed. in subse-
quent sections. When the interpreter is started up, the coordinator process is created. The coordinator
creates the rest of the interpreter and oversees the-handling of queries-from the user. Queries are entered
‘via the Port Prolog window, which is managed by the io server. The io server passes the query in clear
text to the parser, which transforms the input into internal code understandable by processes in the rest
of the system. During this transformation, the parser enlists the help of the errors worker and the string
server. If errors are encountered, the parser asks the errors worker to inform the-user of his mistakes.
Strings of characters are bulky and inefficient. .to handle. - To.compensate for these unfortunate charac-
teristics of strings, the string server maintains a string table that maps strings to compact representations:
that are easier to manage. Processes that manipulate strings use these compact representations. The
mtemal code produced by the parser is passed on to the solver component for evaluation.

- In. Port Prolog, the solver component: consists of a hxerarchy of processes with. three generic process.
types: conjunction-process, goal-process -and  clause-process.. The  functions of these’ processes are
described in' Chapter 4. In order-to evaluate a'query, these processes require-information from-the data-
base of clauses. » :

Mana,gement of the database is the recponsxbxhty of the modules administrator and the module
proprietors. Each module of source is managed independently by a module proprietor. There are as many
proprietors as there are modules in the source. The solver component asks its local module proprietor to -
search for a predicate. If it is not found, then the solver asks the modules administrator to name the
module proprietor which exports the predicate. If such-a module proprietor is found, it becomes the new
local proprietor and the solver converses with it until another swntch” is necessary.

The  interpreter is terminated at the request of the user.. The io server calls. upon the vulture

39
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Figure 8-1: Genealogical process structure of Port Prolog
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process to destroy all the processes created during the invocation of the interpreter.

6.2 Internal Code

The - parser translates ‘source “into internal code that is used by other processes in the system
Because this intermal code is:used by and communicated between processes its design must be modular '
compact, and efficient to use by dlfferent processes..

The following discussion describes the objects of internal code format and how they relate to each
other: - The first byte of an object identifies its type. There are two’ categories of objects — those with.
fixed sizes and those with variable sizes.  The second field of a variable size object contains the size of the
object as measnred in bytes. All “pointers’’ embedded in'an-object are relative offsets.

® clause. The largest object of internal code format is a clause. All other objects are embedded in
clauses. A clause contains either the definition of a procedure or'a query. It consists of four major com-
ponents: procedure head; guard sequence, goal sequence and accounting information.  Accounting informa-
tion refers to the size of the clause (in bytes), number of variables in the clause, and pointers to the loca-
tions of the guard and goal sequences. ‘A pointer field (NEXT_PROCEDURE) is reserved so that clauses
belonging to a predicate can later be put into a lmked list in the predicate table.

®:call. A call ob;ect, contains the body of a call. The call body is either an atom or a functor. The
body can also be.an'integer; in- which: case it is a system call and the number denotes the code identifying
the system call.
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Figure 6-2: Processing of a query
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®:list. A list object cons:sts of two main halves: the head and tall of the list. The head is a term .
while the tail may contain one or more sequentially packed terms.

®:functor. A functor ob]ect contains the predicate name, arity and 'u'guments of the functor The
name is in string descriptor form. The arguments are stored sequentially in the object.

®:integer, atom, character. There are three simple objects: integer, atom, and character. An
integer object stores the value of a decimal number; an atom object stores the string descriptor of the
atom’s name; and a character object stores the ascii code of the character.

®:variable. A variable object stores information about a variable — this includes the type of the
variable (read-only or normal), the numeric offset of the variable with respect to other variables in the
clause, and the string descnptor of the variable's name Variable objects are used for variables that have
not yet been. instantiated. .

®:reference. A reference object is used for a variable that has been instantiated to another
unbound variable. " There are also two types of reference object, one for read-only variables and one for
ordinary variables. A reference object contains both the numeric offset that identifies a variable within a
clause and the process id of the potential producer of values for the vanable (For a description of
processes as potential producers, see Chapter 4, Sectlon 4. 6) ' »

6.3 The .code Tree

The interpreter creates a .code tree of files immediately beneath the source root file. This tree is
used by the interpreter to store information about the source so that the source need not be referenced
(and re-compiled) every time it is used. This external storage is also used to avoid having=to load the
entire source into memdry. Only clauses that are accessed are loaded. Though not implemented, an algo-
rithm could be devised to delete from memory those clauses not in use and loaded them when referenced.
This means that Port Prolog programs whose total size exceeds mainstore can still be executed. The
current physical memory limit in the IBM PC Port environment is 64 Kbytes of memory for the data of a
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Figure 6-3: Internal code format
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process.

There are three kinds of flles in this .code tree: strings fxle, table files, and code ﬁles Files in this
tree have the Port file type “code86.'t :

Figure 8-4: The .code tree

strings file

table files

code files

These files are arranged hi'erarchicall’y (as shown in: Figure 6-4) with the strings file as the root, the table
files as the children of the strings file, and the code files as the grandchlldren (leaf nodes). The following
discussion defines each type of file and its purpose.

@®:strings file. The strings file has the filename code and is located directly beneath the source root
file. It contains. the string table used by the rest of the files in this tree. All strings in the table and code
files are in the form of a string descriptor — a unique, compact, coded representation of a string,(see’Sec-
tion 6.6). This file contains one-to-one mappings of string descriptors to strings.

® table files. For every module referenced by the .holons file and the source module, there is a
table file (located under the strings file) that contains information about the clauses stored in' that code
files of the module. There is an entry in the table for every code file in the module (i.e. for each code file
located underneath the table file). This table is loaded into memory at initialization time and is used to
determine whether a predicate is in the module. In this way, since the table prov1des an accurate picture
of what is stored in the code files, no superfluous file activity is required. :

~ ®code files. There is a code file for each predxcate in the module. A code file stores the code for
all the clauses of a predicate. The format of a clause in a code file is- as specified for the internal code
object clause. ‘

'+ The only criterion for choosing a file type for these files is that it be different from “holon’ and
“predicate’ so that the process that compiles a Port Prolog program can distinguish between files
that contain predicates and those with internal code format. The.type “‘code86” was chosen be-
cause it was the only type available at the time the interpreter was designed whose name vaguely
described the nature of the contents of the files. The new Port flle type “binary’’ may be more
appropriate.
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6.4 Coordinator

When the interpreter is started up, a coordinator proceqs is created which 15 responsible for-creating
and coordinating all other processes in the interpreter. The coordinator creates the vulture, the string
server, the parser, the modules administrator, and the io server. Each of these processes is then initialized
by the coordinator.

After the initialization phase, the coordinator is ready to collect queries from the user. The coordi-

‘nator obtains a conjunction of goals from the user via the parser. It then forwards the goals to the solver

process(es) for solving. When an answer is produced, the coordinator translates it to an ascii representa-
tion and asks the io server to print it in the window. The coordinator is then ready for another conjunc-
tion of goals from the user. When the user decides to terminate the session, the coordmator tells the io

server to destroy the interpreter’s window and processes

6.5 Vulture

The vulture process, as the name suggests, is a process that waits for other processes to die and then
“cleans up” after them. It is created by the coordinator process when the interpreter is started up.

The main task of the vulture is {o keep track of the kinships among processes so that a family of
processes can be identified and destroyed. A family of proeesses is defined as a process and all of its des-
cendants. Destruction of a family of processes is necessary for eliminating process trees of clause-processes
when a candidate clause-process is found. This destruction mechanism also facilitates destroying the

~ interpreter’s processes when it terminates.

8.5.1 Data Structures.

Figure 8-5: Vulture process tree » .

root
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®: vulture process tree. Relatlonshlps among processes are remembered using a threaded n-ary

~ tree. Subtrees of the vulture’s process tree correspond directly to Port process “family” trees. Nodes in.

the n-ary tree are added as processes are created and deleted as processes are destroyed. The root of the -
vulture’s process tree is reserved so that more than one tree of processes can be maintained. In other
words, several disjoint families that are not created by the same parent process can be accommodated by
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naming processes that are smrtmg new process trees as the root’s .children. Hence, the vulture can record

fh 1

up to “n’’ independent families.

Each node in the vulture process tree has a process id identifying 1ts corresponding process, a list
containing pointers to son nodes, and a thread pointing to its parent node. The thread is to facilitate
updates to the parent node when son nodes are deleted. .

8.5.2 Requests

Processes of the interpreter that do the creation and destruction are responsible for sending requests
to the vulture so that the tree can be updated. The vulture handles four types of request:
CREATE_PROCESS, DESTROY_PROCESS, DESTROY_FAMILY, and DESTROY_ALL.

¢ CREATE_PROCESS. Given a process id, the vulture considers the sending process (the one
that sent the CREATE_PROCESS request) to be the parent of the named process. An entry in the tree is
created for the new child process. If the parent process does not own a node in the tree, then it becomes
- one of the root’s sons. The clients of the vulture are responsible for ensuring that no cycles develop in the
tree. The vulture does not check for loops in its tree. -

, ¢:DESTROY_PROCESS.. Given a victim’s process id, the vulture removes. the victim’s entry in.
the tree and destroys it. The victim can only be destroyed if it has at most one son. If it has a son, then
the son is promoted to its position. — in other words, the victim’s son: becomes the son of victim'’s parent.
This request is used when a goal—process is no longer needed (i.e. when a candrdate clause-process for the
'goal has been found).

&:DESTROY_FAMILY. Given a process 1d the vulture removes the subtree rooted: by the given
id and destroys all processes in that subtree.

o: DESTROY_ALL. The vulture destroys all processes recorded and destroys itself.

These requests may be issued by any precess. Requests are processed: usmg tree traversal functions
whxch insert and delete entries from:an n-ary tree

6.6 String Server = e

The- string server maps- sequences of ascii characters to string descriptors and string descnptors to
sequences of characters. A string descriptor is a 16-bit value that uniquely identifies a string. For exam-

‘ple, “‘this is a string”’ may be mapped to the string descriptor “2AB4},0x.”

At initialization time, the string server is given the name of a file — the strings file — and ‘a bit indi-
cating whether the specified file contains -an up-to-date string table. A string table contains the mapping
between strings and string descriptors. If the strings file is up-to-date, its table is read in and transformed
into an internal string table; otherwise, the name of the strmgs file is remembered for later reference and
the internal string table is initialized as empty.

8.8.1 Requests

When- mltlahzation is: completed the string server is ready to handle three types of request
GET _STRING, SAVE STRING and WRITE_ STRING -TABLE. :

& GET_ STRING. Given a strmg descriptor, the strmg server returns the sequence ‘of characters
identified by the string descnpt;or A null string is returned if the string descriptor is not in the string

®:SAVE_STRING. Given a sequence of characters, the string server saves the sequence in the
string table and creates a string descriptor for it. No new entry is created if the string is already present
in the string table. The string descriptor is returned to the sender. An “invalid” string descriptor is.
returned if the string table is full. : -

, ¢ WRITE_STRING_TABLE. The string server writes out its mtemal string table mto the:
strmgs file specified at 1mtmhzat.lon time. This request is usually issued after compilation of the source.

These requests may come from any process. The strmg server is’ destroyed when the mterpreter is
terminated. ‘
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6.6.2 Data Structures

' @ string table. The major data structure is the string table; it is an array of character arrays. Ini-
tially, only one array is allocated; other character arrays are created as needed. The first two bytes of a
ch aracter array is reserved for the number of bytes being used in the array.

Figure 8-8: String table and string descriptor format
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(c) String descriptor format
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Each entry in a character array is represented by a length byte followed by the strmg Entries are
stored sequentially in the order they are saved.

®: string descriptor. Strmg descriptors are used for- easy equality companson and compact
representation of strings. A string descriptor uniquely identifies a string and helps locate the string so
that the mapping of string descriptor to string can be done as efficiently as possible. A string descriptor-
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consists of two parts: identification of the character array that contains the string; and the location of the
string in the array. : : :

6.6.3 Flles '

The string server reads (writes) from (to) the strings frle The strmgs file contains the string table of
all the strings that the string server has been asked to permanently record. Each entry in the file has the
following format:

<string descrz'ptor> <string length>  <ascit strz'ng>.

6.7 IO Server |
The io servert manages the Port Prolog window. The form of the Port Prolog window is outlined in

Section 5.3.1 in Chapter 5. Any process wrshmg to do-any mput (output) from (to) the window must go
: through the io server. - e ;

 The io server is created by the coordinator process at interpreter start-up time. The io server is
given the pathname of the source tree so that it canput the name on the title lme of the window.

8.7.1 Requests:

The io server then starts serving requests from either the keyboard or’ chents wrshrng to dok
mput/output

& INPUT_ARRIVED. This request is sent by the keyboard. Upon recervrng this request, the io
server checks the contents of the message, which may contain cursor posrtron mformatlon and keys
pressed by the user, and:act appropriately to update the window. :

¢:READ. _BYTES. This request is sent by any process that wants to recerve input from the key-
board. Input i 1s returned line by line — the io server must wait until the user hrts a carriage return before
forwarding the text. This allows: the user to edrt the mput line before submrttmg it to the interpreter. If
a line of input is available, it is drspatched to the sender of the READ BYTES request Otherwxse the
requester is suspended until the user enters a. new.line. '

e: APPEND BYTES. This request is sent by any process that wants - to output to the wmdow
The string of. bytes that accompanies the APPEND_BYTES message is displayed on the window.

& TAKE_OFF_EH. This request is sent by the coordinator to the io server to terminate the mter-
preter session. The io server destroys the window, then tells the vulture to destroy all processes reglstered
with it. ThlS termination procedure is also followed when the user selects the QUIT operatxon

6.8 Parser

The parser is- responsible for transforming user input (and source) mto an internal format that is
compact and can be efficiently handled by other processes of the interpreter.. The syntax of the Port Pro-
log language is given in Chapter 5. There are four main components to-the parser: syntactic analyzer; lex-
ical ana.lyzer error-handler, and request processor

6.8. 1 Lexrcal Analyzer

The lexical analyzer, lex, transforms user’ input mto tokens. Symbols, which may be composed of
several characters, are recognized by lex and translated into tokens. Invalid symbols that cannot be
mapped onto tokens are noted but not explicitly reported; instead, an “invalid”’ token is generated. All
€ITorS: are reported during the syntactic phase. A token 'is made up of a token type and optionally, a

¥ The io server is a version of the Invoker program wrrtten by the Software Portabrhty Lab. The
major difference is that the io server has been relegated the additional task of asking the vulture
process to destroy all processes when the user hits the QUIT operation. The Invoker, however,
responses to QUIT by destroying its creator and itself, which is insufficient for this case. Another.
difference between the Invoker and the io server is therr initialization procedures. Having a pro-
cess to manage the Port Prolog window, instead of just using the Invoker; has the advantage that
,operatrons such as TRACE, COMPILE, LIST could be added later on: v
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token value. For example, a token of type “INTEGER” has a decimal number as its value. Tokens are.
generated upon demand. The interface to lex is through a function that retrieves the next token in the -
current input stream. :

In addition to generating tokens from the input stream, lex also remembers a token’s position with
respect to the current input state to aid in the diagnoses of possible lexical and syntactical errors. This
information includes the input line containing the token, and the line number and character position at .
which the token is found.

8.8.2 Syntactic Analyzer

The syntactic analyzer employs a top-down recursive descent algorithm for parsing Port Prolog
clauses. The control flow of the analyzer follows strictly that of the syntax. For example, at the highest
level, it is looking for a clause. A clause may be either a procedure or a query. In order to find a pro-
cedure, it must first locate a head and subsequently guard and goal sequences. To locate the head; the
analyzer must obtain a literal that is either an atom or a functor, and so on. The simplicity of Port
Prolog’s syntax permits the analyzer to use such a straight-forward algorithm. The BNF production rules
for Port Prolog syntax is given in Section 5.2 in Chapter 5. o

The syntactic analyzer acquires tokens from the lexical analyzer and checks for their comp’lian‘cei
with the syntax rules. Tokens are translated into internal code. The format of this internal code is given
in Section 6.2.

6.8.3 Error Handlmg

Errors may be enconntered durmg parsing and tokemzmg Tn lexical analysis, only one type of error
can occur — an invalid symbol in the input stream. While parsing, the syntactic analyzer may -be con-
fused by the incoming stream of tokens if they do not’ conform to the syntax rules. When an error is -
encountered (regardless of its type or where it occurred) remammg tokens are discarded until a clause ter-
minator is found, at which. point 'parsmg of a new clause begins. If input is being accepted from the Port
Prolog window when the error ‘occurred, the mput line contammg the error is echoed with the offending
* token highlighted and accompanied by an error message erlammg the cause of the error. If the error
occurred in a source file, the parser sends an error code and sufficient information to describe where the
error occurred to an ‘errors worker. The parser creates an errors worker if one does not exist. It is-then
up to the errors worker to inform the user of his mistake.

This approach of notifying the user (cf messa.ges in the Port Prolog window) was adopted because
(1) it ensures that the error message is visible, and (2) it provides more help to the user than simply a mes-
sage. During compilation, the interpreter may produce many lines of output showing the predicates being
compiled.. Oftentimes, the user would set the window into “scroll” mode and let these messages scroll off
the window. If an error was encountered and the corresponding message appears in the Port Prolog win- '
dow, -the. message: scroll off the window before the user metices:it. Making the error message visible
through a separate window which only appears when an error-is encountered ensures that the error mes-
sage is not overlooked. Because the errors worker is dedicated-to displaying messages, it can also aid the
user in correcting the error. The function of the errors worker is described in Section 6.9 in thls chapter;
the layout of the errors window is described in Section 5.3.2 in Chapter 5

8.8.4 Requests ‘

At 1mtlahmtmn tlme the parser is given the string server’s process id and the io server's process id,
The parser then awaits requests from-any process. - Its clients are the coordinator and the module proprice-
tors. The coordinator wants to parse queries from the user whereas the module proprictors wish to parse
source files. The parser handles three types of request: SET_INPUT PILE, PARSE_INPUT, and
PARSE_EXPORT. '

¢ SET_INPUT_FILE. The parser makes thefile speclﬁod in this message the “current input
stream.” If no file is specified, the Port Prolog window is the default stream. Input is obtained from this
stream until another SET_INPUT_FILE request is received or until the end of this file is reached. When

~the end of a file is reached, the current input stream is switched to the Port Prolog window until another
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-SET_ INPUT _FILE is received. Thrs message also contains a bit telling the parser to expect either querres
or procedures.

¢ PARSE_INPUT. The parser reads from the input stream and transforms a clause into internal‘
code. The parser then returns to the sender of the request the internal code, and the name and arity of
the clause’s head predicate. If input is exhausted, the sender is notified of the condition.

® PARSE_EXPORT. The parser reads the export list from the mput file-and returns it to the
sender. There is one export list per file.

The above requests are used in the following predefined way. During compilation, a module proprie—
tor that encounters a module with a root. file of type “holon” first sends the parser the pathname of the:
root file along with a SET_INPUT_FILE request. It then sends a PARSE_EXPORT request in order to
obtain the-export list. - Finally, for each source file; the proprietor sends a SET_INPUT_FILE request to
set up the file as input, and then repeatedly sends:PARSE_INPUT requests until the file is exhausted. To

- accept queries from the user, the coordinator first sends to the parser a SET_INPUT_FILE request with a
null pathname and 2 bit indicating queries are to be parsed. This ensures that the parser takes its input
from the Port Prolog window. The coordinator then sends PARSE_INPUT requests to receive the queries.

8.8.5 Files. k r
‘ The parser reads from source files of type “predicate.” The contents of these files follow the syntax
of the Port Prolog language as described in. Chapter 5. The parser also reads export lists from frles of

type “holon.” The format of a holon file is a sequence of terms with the form
<name> { <arity> ).

~ 6 9 Errors Worker

 The errors worker is created by ‘the parser when the parser encounters a syntax errorin a’ frle The
errors worker does not know about any process in- the .interpreter. When: it is created, it. puts: an.errors.
window on: the screen. The format of this window is descnbed in Chapter 5. The errors worker s duties
are to buffer error messa,ges sent by 1ts creator and to drsplay them as- dlrected by the user..

6.9.1 Data Structures

®:error descriptor. Error messages sent to the errors worker are recorded in a doubly lmked list of

error descriptors. An error descriptor contains sufficient information to drsplav an error message in the
format shown in the errors window. This includes an error code that describes the nature of the error.
The error code is mapped to a corresponding error message when the descriptor is displayed. Data per-
tinent to where the error occurred are also in the descriptor. This includes the name of the file containing
the error, the error’s (x,y) coordinate within the file, and the input line that contains the error. Finally, an
error descriptor has forward and backward pointers to doubly hnk it to the list of error desmptors This
enables the user to forward and backward traverse over the errors.

6.9.2. Requests | r ; :
* The errors worker handles requests from the parser and- from the keyboard

¢ APPEND_BYTES. This request is sent by the parser when an error is encountered The mes-
sage consists of an error code, input line in which the error resides, the name of the file containing the line,
and the error’s (x,y) position in the file. This information is packcd into an error dex«,nptm’ and. appended
to the list of descriptors. :

o INPUT _ARRIVED. This request is sent l)y Lhe keyboard on boh'ﬂ! of the user. There :m- four
operations that the worker has to process: QUIT, EDIT FILE, NEXT ERROCR, and PREVIOUS ERROR.

®:QUIT. The errors worker dcstrnvs the window and itself. If the parser encounters subse qucm
errors, a new errors worker-is created. ~

@EDIT FILE The worker starts up.an edltor to edit the file- specified by the pathmme of the '
current message being displayed.

O:NEXT ERROR (PREVIOUS ERROR) is only operatlve 1f a next (previous) message exists. The
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worker responds by displaying the next (previous) message in the list.

6.10 Modules Administrator

The modules administrator is responsible for setting up the: module proprietors w1th modules to work
on and for providing name look up service of modules.

At initialization time, the administrator acquires the vulture’s id, the string server’s id, and the
pathname of the source tree. It then ‘‘sets up” a module proprietor with the source tree’s pathname.
This involves creating the proprietor and supplying it with the appropriate parameters. When this first
proprietor  has been-initialized, the administrator proceeds to initialize other modules used by the Port
Prolog program. It looks in the .holons file of the program to find the pathnames of the other module
d‘irectories. The administrator sets up a module proprietor for each pathname in the .holons file. To *“‘set
up’’ a module proprietor, the administrator first creates a-module proprietor and informs the vulture of
the creation. The administrator then sends the proprietor two pathnames: (1) the module’s source tree (2)
root of the tree of where the “code’” of the module is or is to be stored.t

"When a module proprietor finishes its initialization duties; it replies to the modules administrator
with a linearized (or flattened) export table containing all predicates that are exported by the module.

6.10.1 Data Structures

‘The modules admlmstrator uses three major data structures modules list, predzcate table, and flat-
tened predicate table. ‘

® modules list. A modules list is a lmea.r lmked-lxst that keeps track of all modules in the Port
Prolog program. Each node in the linked-list has four fields: the module’s name in string descriptor: form,
the corresponding module proprietor’s process id, a pointer to a predicate table containing the predicates
being exported by the module, and a pointer to the next entry in the modules list. The order in which the
modules list is sorted i is ummportant because the- }ength of the hst is not. expected to-be very large. -

. predlcate table. A predicate table consnsts of a ta.ble skeleton and clauses. To facilitate the
~ .search for a predicate, the skeleton of the tablé is separated into predicate name entries a.nd arity entries.

The predicate name entries form a linear linked-list; each predicate name entry has a llnked-llst of arity
entries — one- entry for each unique anty Clauses are accessible via arity entries. o

A predlca.te name entry contams four fields: the string descriptor of the predlca.t,e s name, a pointer
to the head of the list of arity entries, the length of the arity list, and a pointer to the next predicate
name entry in the list.

Arity entries are ordered in a hnked—hst by their arity values. An arity entry contains pointers to
the first and last clauses of the predicate, the arity of the clauses, and a pointer to the next arity entry in
the list. Since the size of the arity is limited to twenty arguments, the upper bits of this field can be
reserved for recording the properties of the clauses in this entry. Only one bit has been defmed so far —
the global/local bit. The clauses are global if the bit is on. :

®:flattened predicate table. The flattened predicate table is introduced in order to facilitate the
transmission of predicate tables between processes and the storing of predicate tables in files (see Section
6.3 in this chapter). Figure 6-7 illustrates the format of a flattened predicate table. Basically, a flattened
table is an array of bytes. The first two words are reserved for the size of the table and the name of the
module. (in string. descriptor form) that owns the table. The rest of the array contains flatiened predicate
table entries. Each such entry consists of a predicate name {in string descriptor form), the number of
‘arity entries, followed by the arity entries. An arity entry is an 8-b1t value that contams the global/local
bit and the arity.

h(") is the name of a table file located immediately below the strings fl!e See Section 6. 3 in this
chapter. . :
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, Figure 8-7: Flattened predicate table

(a) Flattened predicate table

flattened predicate table entries

table

. dule’ (string descriptor)
cize module’s name (string descriptor)

(b) Flattened predicate table entry

. global/local bit

A\ /

: : : anty entnes
predicate .
name

number: of arity entries

6.10.2 Requests

After settmg up all the module propnetors the a.dmlmstrator is ready to hand]e two. types. of
request: FIND_MODULE and NAME_LOOK_UP. These requests come from the solver process(es).

'© FIND_MODULE. Given a predicate’s name and arity, the administrator searches through its
export predicate tables and replies to the sender with the modules list entry of the module that exports
the target predicate. The administrator replies with an “invalid” modules list entry if the predicate is not
found, ‘ ’

®: NAME_LOOK_UP. Given a module’s name (in string descriptor form) the administrator
replies w1th the corresponding module propnetor s-process id. If the given name is not in the modules list,
~_then an “invalid” process id is returned.

The modules administrator is terminated when the rest of the processes of the interpreter are des-
troyed (when the user exits the mterpreter) :

8.10.3 Files

The administrator reads from the _holons file of the Port Prolog source- tree The. .holons file ‘is
located immediately beneath the source root flle Each line of the file contains a pathname-of a module
which is to be included to the program. :
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6.11 Module Proprietor
A module proprietor is responsible for compiling the source of a module and for storing the code of

the compilation so that other processes can access them. Several module proprietors may be created (by
the modules admlmstrator) depending on the number of modules used by a program.

When a module proprietor is created, it receives two pathnames from the modules administrator: (1)
the root of module’s source tree, and (2) the root of the tree of where the code is stored (i.e. the pathname
of the module’s table file). It also receives information on whether the source needs compiling.

For source that requires compilation, the proprietor first checks the file type of the module’s root.
file; it may be one of two types: “predicate” or “holon.” If it is of type “holon,” the proprietor asks the
parser to parse and to report the export list in  the root node. The proprietor then creates entries in its
predicate table for every predicate in the export list and marks them as being “global.”” The proprietor
then traverses the source of the module and successively asks the parser to process each file. The internal
code generated by the parser is shipped back to the proprietor, which stores the code for each predicate in
a separate code file. . The code file's filename is obtained by concatenating the name and arity of the
predicate into a string. For example, the clauses for the predicate append with three arguments are stored
in the file “append.03.” Code files for a module are stored underneath the table file of the module. When
the entire source has been compiled, the proprietor creates a flattened predicate table from its predicate
table and writes the flattened version into the table file. - o

If the source does not require compiling; the’ proprxetor reads the ﬂa.ttened predlcate table from the
table-file and builds a predicate table from the flattened versxon

The module proprietor then returns the flattened pred:cat,e table- to the modules administrator. The
flattened table can now be destroyed as it is no longer needed. The predicate table, however, remains
because it can be searched more efficiently than the flattened table. The predicate table is used to process
subsequent search requests Ifa predlcate is-not-in: this ta.ble then it is not in thxs meodule.

l6.11 1 Requests

After the mxtlahzatlon phase, the proprletor awaits requests to search for a predicate, These
requests come from' the solver process(es).

" ®:SEARCH. Given the name and arity of a predicate, the proprietor searchs through its predlcate
table for the predicate’s entry. If the entry is not present, the search (request) fails. If the entry is found,
the proprietor checks whether there are any clauses stored under the entry. If there are, these clauses are
returned to the sender of the SEARCH request. Otherwise, clauses are loaded into memory from the
corresponding code file and then returned to the sender. For example, if the target predicate is append
with three arguments, the file ‘‘append.03” is read and the clauses stored in memory

The propnetor is: destroyed when the mterpreter termmates ‘

6.11.2. Data Structures

‘The major data structures. used by a module- propnetor are the predxcate table and the flattened
~ predicate table.  These are described in Section 6.10 in this chapter R :

6.11.3 Files. R . , ‘
A module proprietor reads source files of type “predicate’” and possibly an export list from 2 file of
type “holon” in the source tree. The formats of these files are described in the previous chapter.
A proprietor reads and modifies the table file and code files belonging to its module. The table file

has the same format as the flattened predicate table data structure. A code file contams clauses whose
format is descnbed in Section 6.2 in"this chapter. : : : : ~ ~
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6.12 Solver Processes -

There are three types of solver procésses: cOnjunctidn-processes, goal-processes, clause-processes.
Their functionalities are described in detail-in Chapter 4. The following describes their implementation -
and may contain redundant information already discussed in Chapter 4. They are included here for com- .
pleteness.

‘ Figure 6-8: Solver processes data structures

environment literal map ' - clause list
OFFSET - | LITERAL PROCESS
TYPE PROCESS ' CLAUSE
'PROCESS : STATE k CLAUSE_LENGTH
BINDING 5 NEXT_LITERAL NEXT_CLAUSE -
SIZE '
‘WAIT_LIST :
NEXT_VARIABLE |

6.12.1 Data. Structures of the: Solver Processes

®:environment. The major data structure is the environment. It is. used. by all three: types of
processes. Goal processes make only temporary use of environments to store bmdmgs for read-only vari-
ables. An environment is a.linked-list of entries. ‘that record information about' a single-variable. Each
entry consists of the variable’s offset within its clause, its type (FREE, REFERENCE, etc), the process id
of its producer, a.pointer to its binding, the size of its binding, a pointer to a list of processes waltmg for.
the variable’s binding, and a pomter to the next variable in the list. :

@®: literal map.. The literal map is a linear linked-list used by the conjunction-process. For each
literal, it stores a pointer to the internal code of the literal, the literal’s state (of evaluation), the process id
of the process solving the literal, and a.pointer to the next literal in the list. The process specified by the
id is either the goal-process or the candidate clause-process of the literal.

®:clause list. The clause list is a linear linked-list used by ‘the goal-process. to remember all of its
child clause-processes. The CLAUSE and CLAUSE LENGTH fields are used temporarily to store the -
clauses as they are accumulated by requests to the module proprietor, and before they are sent to their
corresponding clause-processes. The PROCESS field stores the process id of the clause<process.

6.12.2: Comunctlon-l’rocess

To solve.a query from- the user, the coordmator creates a conJunctlon-process ~This conjunction-
process-then initiates other processes to help solve the goal.” Subsequent conjunction-processes are created
by clause-processes. The conjunction-process first gets the literal-list from its parent and creates an
environment for all the variables in the literal-list. It then breaks up the literal-list and creates a go'a.l-
process for each literal. A hteml map is constructed to store information about each literal. .

6.12'.2’.1 Requests ‘ . ;
The conjunction-process, after creating the goal-processes, is ready to handle five types of request:

_."NEW_BINDING-. Given the variable’s offset, the conjunction-process searches for the variable
in its environment. If the variable is found, the binding and size of the binding is recorded.

¢: NEED_BINDING. Given the offset of a variable, the conjunection-process searches: for the:
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variable in its environment. If the variable has a binding, it is returned immediately to the sender of the
request. Otherwise, the sender is added to the waiting list of the variable.

®: FAIL. The conjunction-process terminates by sendmg a FAIL message to its creator, and des-
troys itself and all of its descendants.

®-SUCCESS. The conjunction-process searches through its literal map for the entry containing the
process id of the sender. If found, the STATE of this entryis set to SUCCESS. The conjunction-process
then decrements its count of the number of literals yet-to-be solved. If this counter is zero, then the
conjunction-process terminates successfully by sending a SUCCESS message to its parent and destroymg
itself and its descendants.

®:COMMIT. The conjunction-process searches through its literal map for the entry containing the -
process id of the sender. If found, the STATE of the entry is set to COMMITTED. The conjunction-
process also records the accompanying process id (i.e. the candidate clause-process) in its PROCESS field.

6.12.2.2 Status

The above description of the. coujunctlon-process is a: partial 1mplementatlon of the conjunctlon-
process described in Chapter 4. It handles all but the patch binding incoming message. It handles need
binding messages, but can only deal with one variable per message. The conjunction-process implemented
does not send need binding messages to poll other processes for newly instantiated non-read-only vari-
ables. This means that a goal-process needing a variable binding for a read-only variable may have to
wait until the process producing the variable binding decides to send to the conjunction-process, instead of
having the conjunction-process polling the producer process for the binding. This may mean a longer
delay period betweenft»he time the variable gets bound and the time the goal-process receives the binding.

8.12.3 Goal-Process

- A goal-process is created by a conjunction-process to solve a literal. The goa.l-process first gets the
literal from: its parent and creates a temporary environment for the variables in the literal. For every
read-only variable, it sends a NEED_BINDING: request to the producer of the variable. The producer is
the parent if the variable is free (i.e. not reference), and the process named by its tag if it is 2 reference
variable. - After all read-only varxables are bound, their: bmdmgs are apphed to the rest of the hteral and
the environment is freed.

+ The goal-process then retrieves all clauses from the-database that may unify with the literal. These
clauses are stored in" the clause list. Then, for each clause in the clause list, the goal-process creates a
clause-process and records its process id in an entry in the clause list. A clause-process is not created
immediately after each clause retrieval because that would make the order of clause retrieval important.
For example, the: first clause-process may already be executing before the last clause-prousa -Was:even
created. Hence, our creatlon order tries to promote fairness and mdetermmacy

8:12.3.1 Requ-ests ‘
‘ The goal-process then waits for messages from'its children.

& FAIL. H the goal-process has received a FAIL message from all of its chlldren it sends a FAIL
request to its parent and’ destroys itself. Otherwise, the gOal—process decrements the counter of the
number of messages ‘to expeet. : :

s CO‘VIMIT. The goml—proceﬁs traverses its clause list and for every entry whlch does not contain
the process id of the sender COMMIT, the goal-process destroys the entry’s process tree. The s nder of
the COMMIT request is now the candidate clause-process. The g,tml -process then sends a COMMIT
request, along with the process id of the candidate clause-process. to its parent. It then destroys itsell.

6.12.3.2 Status -

" The goal-process as described in the computation model in Chapter 4 has been fully implemontod
However, the goal-process has yet to integrate the features of modules. In other words, it only queries one
module proprietor for clauses. B : :
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8.12.4 Clause-Process

A goal-process creates a clause-process for every clause whose head -has the same predicate name and
arity as its literal. When created, a clause-process first tries to unify the clause head with the goal literal.
If unification fails, it informs the goal-process. Otherwise; the clause-process applies the substitutions to
the rest of the clause and then tries to solve the guard sequence. S

- To'solve the guard sequence, the clause-process creates a conjunction-process-and passes it the guard
sequence. The clause-process then awaits a message from the conjunction-process. In the current imple-
mentation, it handles NEW_BINDING, SUCCESS and FAIL requests. If a FAIL request is received,. the
- clause-process sends a FAIL message to the goal-process. A SUCCESS request causes the clause-process to
send 'a COMMIT request to the goal-process, from which it receives the process id of its grandparent
conjunction-process. The clause-process then sends a NEW_BINDING request to that grandparent for
each variable that has been instantiated. The clause—process handles a. NEW_BINDING request -in the
same manner as the conjunction-process does.

After the guard-sequence has been successfully solved, the clause-process ‘creates another
conjunction-process and passes it the goa]-sequence It then awaits the conjunction-process to finish solv-
ing the goal sequence. When this child conjunction-process is done, the clause-process gathers the variable
bindings and forwards them to its grandparent conjunction-process: Finally, it reports the status of the
evaluation to its grandparent con;unctlou-process and destroys itself.” The above procedure is described in
detail in-Sections 4.2 and 4.5 of Chapter 4. :

8.12.4.1 Sta.tus

The implementation of the c\lause-process lacks several features described in Chapter 4. It does not
have a complete unification procedure. The cases that it does not handle yet are: free-free, reference-free,
‘variable structure-free, variable structure-reference It also does not handle incoming need binding and
patch binding messages. This means that Port Prolog cannot handle quenes in which variables- umfy each
“other or unify- structures contammg variables.
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Some Performance Measurements

This chapter presents some measurements made to evaluate the performance of Port Prolog. It
includes a brief analysis of the measurements. We then compare them with corresponding measurements
made on a sequential Prolog mterpreter on Port, These measurements hopefully will provide the neces-
sary information for a second lteratxon on the design of a concurrent Prolog mterpreter :

7.1 Measurement Techniques

The measurements presented in this chapter were made using a Four C'hannel Event Oounter/szer
[Rapsey 78, Jurchuk 79]. They were obtained by inserting measurement stubs into the program to count
and time “events’ — events being determined by where the stubs are placed. These stubs. are procedures
that write bits to the Counter/Timer device. - There are two counters and two timers; all four are refer-
enced via the same address. The position of the bit determines to which channel the bit is sent. The
counters/timers can be examined dynamically. while the program is running.

The- figures. .in- thls chapter contain measurements made using the Counter/TImer device. The
numbers in each category are the result of ten independent trials which were made with Port Prolog as
the only active program in the system. The raw measurements for the trials are given in Appendxx A.

The numbers given in this section are based on tests performed on the stack program (see Figure
7-1) [Shapiro 83]. This simple program demonstrates OR-parallelism, which is a major contributor to the
cost of evaluating a goal. Measurements made on this program also give a calibration of factors such as
process management and communication, which are applicable regardless of the benchmark used.

Figure 7-1: Benchmark program

‘stack( S ) |
stack( S? [] );

stack( [pop(X)]S] [XIXs] )
stack( S? Xs };

stack( [push(X)|S] Xs)
stack( S? [X|Xs] );

stack( [| {1 );

benchmark:: stack( [push(1),pop(1)] );

benchmarkq:  stack( [push(1),push(2),push(3),pop(3),pop(2).pop(1)] );

56
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7.1.1 Limita_tions of the Device Interface

All channels on the Counter/Timer are referenced through a single address. A 0-bit sends a low sig-
nal whereas a 1-bit sends a high signal. Therefore, to:send a 0-bit to one channel, we would have to know
the states of the other channels and provide an appropriate mask so as not to disturb their signals.
Because of this limitation and the fact that our measurements involve disjoint processes that do not share
global knowledge about the device, we could only use one channel at a time. For example, we can either
count the number of process creations or time the length of a process destruction, but cannot do both -
simultaneously. Since the measurements were taken separately, comparlson and correlation of measure- -
ments in different categones are subject to small errors.

7.2 B’reakdown- of Executlo;n Time

Figure 7-2: Evaluation of benchmarks.

{a) Execution time

L ‘ bcnchmafk*l (ms) . benchrriarkg (ms)
.| Process Management : - ' I :
create 1124.60 5.40% |  270.59 5.37%
setup : 17443 - 7.65% | 368.16 7.30% |
destroy 821.14 35.61% | 1749.63 34.70% |
‘Subtotal | 4866% |  41.31%
. | Communication =~ | 32877 1421% | 70250  13.93%
{Others | 85488  37.07% | 195130  38.70% |
([Total "2306.14  100.00% | 5042.07  100.00%

~ (b) Number of processes used

benchmark, | benchmarks
conjunction-process 4 8
goal-process _ , 4 8
clause-process - 10 22
Total -~ 18 | 88

Figure 7-2a shows the breakdown of the time Port Prolog takes to solve the:benchmark queries given
in Figure 7-1. Each category of measurements {e.g. “create,” “‘destroy”’) was collected separately. *Oth-
ers” and “Sub total” are calculated from the other entries. “Total” is the time the solver processes need
to solve the goal: This does not include time for parsing (t’ransfdrming the user input into internal format)
or printing ‘the answer. Each category is explamed ln detall below. Figure 7-2b shows the aumber of
processes used in each benchmark.

7.2.1 Process Management

The Port process administrator is a proce« which wcnpts requests to create.a process and destroy a
process. The cost of using a Port proeess includes (1) the process administr: ator creating a proc ess, and-(2)-
initializing the new process' state (data space). The latter is referred to as the “setup’ time; it is depen-
dent on the size of the data space and the complexity of the data structures that must be initialized. The
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create times shown in Figure 7-2a involve processes whose code are -already in memory; hence no
input/output is required to load the code; only data space need to be allocated. :

The creation time is obtained by placing stubs in. the Port process administrator. The destruction
time is calculated similarly; except the time for a message-pass is added to each destroy because a destroy
request is processed through an intermediate process -— the exception handler. The time required to ini-
tiate the create/destroy request is not recorded in this category; rather, this cost is accounted for in the
communication category. For example, before the process administrator handles the create request, a
message-pass must be made to forward the create message from the creator to the process administrator.
The initiation of a destroy request involves a more complicated procedure which we will not detail here.

From Figure 7-2a, it is evident that process management incurs a large cost. In Port Prolog, a des-
troy request requires approximately 45ms, a. create request 7ms, and process setup 9.5ms.f Collectively,
these three operations comprise over 47% of the total time the interpreter spends evaluating a goal. This
is unacceptably high and suggests the need for a different approach to dynamic process management that
uses fewer Port create/destroy operations (see Section 8.4 in Chapter 8). ‘

7.2.2 Communication

The communication entries shown in Figure 7-2a is calculated by counting the number of sends that
occur and multiplying that number by the “average’” cost of a send (see Appendix A-1). This average is
an average based on the priority of the process and the load of ‘the system, and not on the size of the mes-
sage; the length of the message is assumed to be one byte. There is a cost of 0.03ms for each extra byte
sent. Therefore, the values from our trials given in Flgure 7-2a are under—estlmates because they do not
_account for the length of the messages being sent. :

Commumcat.lon takes over 13% of the time required to solve a goal. The true communication cost
may be as hagh as 15% or more. Ignoring the process management cost, this is approximately 25% of the
total time required to.solve a goal. Furthermore, the current version of Port Prolog handles only simple
variable bindings, a full scale version which handles more sophisticated bindings (as described in Chapter

4} will push the communication cost higher. Althouvh it is expected that communication will be a major
cost factor, and that the Po.rt interprocess communication (IPC) primitives are efficient, considerations
must be given to minimize this already substantial percentage, especially if the interpreter is to be distri-
buted over several machines. IPC between processes on different machine is 7 times the cost of local ones
[Vasudevan 84]. ’ '

7.2.3 Other Components ’

Appendix B contains program “traces’ of a conjunction-process, a goal-process, and a clause-process.
A trace shows the number of instructions executed by each function in a process. The trace is started
right after the process has been setup and terminates when the process is destroyed. '

As evident from the 'tr:acesv, a substantial number of instructions are used for memory allocation,
which uses the functions: Zero, Alloc, _Alloc, _Grow_data_segment, Find_a_vector. This is not surprising
as all three types of processes construet many data structures dynamically. This allocation cost can be
lowered by statically building the data strmtums at proce\ss setup ilm( but the cost of mltnhu e 1 pro-
cess would then be hlgher o ‘ it

Of the three tvpe< of piucoes the clause-procese is the busiest. The chu%c-prmus qp( ‘nds a mnwd( -
able portion of its time mterpretmg the internal code (Get_procedure_ info, Get_function_info, ete), and
performing unification. The performance of the clause-process can be 1mproved by optmuzmg the code for
these functions, possibly by writing them i in assembly language.

The goal-process spends most of its time creating clause-processes, retnevmg clauaes from the data-
base (via the module proprietor), and interpreting the internal code. The performance of the goal-process =
can be improved by tuning the interface between the goal-process and the database component. In the
current version of Port Prolog, clauses are retneved one at a time from the module proprietor. The

 These figures are not atypical in Port, see Appendlx A-2.
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number of message-passes and process switches can be reduced by packaging all clauses to be transported
into one buffer and sending this buffer only. This, however, implies more sophisticated. buffer manage-
ment is needed and may incur more memory allocation costs.

The conjunction-process is the least busy process. This is because it has not been asked to do much.
The literal-list in the example that it has to solve consists of only ome goal. The conjunction-process
spends a. major portion of its time interpreting internal code, creating the environment to store the bind-
ings, and creating the goal-process. Like the clause-process, its performance can be improved by optimiz-
ing the functions that interpret the internal code. ‘ :

A measurement which was not taken but which would be very useful is the number of processes com-
peting for the processor. By recording the maximum or average number of solver processes in the ready
queue of the Port kernel, we can approximate how much speed up can be attained if multiple processors
were used. This statistic could be collected by adding a new Port kernel primitive to “mark” a process (in
our case, we would mark Port Prolog processes) and then modifying the Port kernel to count the number
of marked processes in the ready queue each time a context-switch occurs:

7.3 Comparisons with a Sequential Prolog Interpreter |

Figure 7-3: Sequential Prolog vs. Port Prolog

(a) Program size

o : - Code Size (bytes) | Data Size (bytes)
"|' Sequential Prolog- ' '

solver . . - | 28553 . 10704
Port Prolog. » ‘ y
conjunction-process. . | . 12684 ' 4144
‘goal-process S 14412 4688
clause-process . 16364 ' 5296 .

support processes

coordinator ’ 12499 4000
vulture 4107 ' 1760
io server ’ 9528 - 6544
string server ' 8248 4672
parser : 16282 5312
modules administrator 7619 ’ 3088
modules proprietor © 14942 - 4896
errors worker : 9135 2960

(b) Execution speed ‘

benchmark, (ms) | benchmarks (ms)
Sequential Prolog | 50.38 R 143.20
Port Prolog 2306.14 5042.07

A multi-process structured, multi-window sequential Prolog interpreter has been developed on Port.
This interpreter has a sequential run-time solver that uses the ABC Algorithm; other components were
separated into processes to provide a more responsive and friendly user-interface. This sequential
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interpreter actually: shares the support processes used by :Port' Prolog, with slight modifications made to
account for the differences in syntax and internal code. Figure 7-3 shows some measurements comparing
the program sizes and-execution times of the sequential Prolog interpreter and Port Prolog. Neither inter-
preters are tuned (i.e. implemented to optimize execution speed, minimize code and data sizes, etc).

7.3. 1 Program Size

“Code Size” shown in Flgure 7-32-includes both- the program code and data. These values were
obtained by using the Port Fstats (File Status) command. These numbers are on a per process basis. For
example, the entries for “goal-process” are for one goal-process, and not for all the goal-processes that
were used. Port supports “code sharing,” which means that only one copy of the program code exist at ‘
any one time in memory; each process has its own data space.. “Data Size’” entries were obtained by using
the Port Pstats (Program Status) command while the interpreters were evaluating the benchmark pro-
gram in Figure 7-1. The data sizes depend on the size of the Prolog/Port Prolog programs bemg inter-
preted and the size of the database. :

Examining the code and data sizes and the number of processes used, Port Prolog obvious]y expends
much more memory than docs sequential Prolog. This partially accounts for the slowness of Port Prolog
because a major portion of time is spent searching for free memory. The fact that the Port operating sys-
tem supports code sharing helps Port Prolog tremendously; otherwise, the memory usage would be much
higher. Because many solver processes are used in solving a Port Prolog goal some means to reduce the
size of the solver processes should be investigated.

7.3.2 Execution Speed -

Figure 7-3b. contains the execution speeds for the two benchmark queries as they are ev.mluab(d by
“the two interpreters. The time used for parsing and input/output is not recorded.

The execution time of Port Prologas«compared w1th~ sequentxml; Pmiog is almost 50 times slower. If
is still over 10 times siower Thrs remammg differenre, after ignoring: pr&cess mmagement 'md cOmmuni-
cation overhead, is likely due to process synchronization overhead and‘overhead incurred because of multi-
ple processes competing for one processor. Furthermore, if each” Port Prolog solver process is viewed as a
“stack frame’” in a sequential interpreter; these stack frames-are much: larger and more complicated than
those in a sequential interpreter, and hence require more time to initialize.
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Conclusions

8.1 Summary

In this thesis, we investigated the use of processes to develop a loglc programming system — Port
Prolog.

Chapters 2 and 3 provided the background. First, we identified the different ty pes of parallehsm in
logic programs. We then surveyed various logic programming systems, examining how each tried to incor-
porate the different types of parallelism. We examined the language features designed especially to con-

“trol parallel execution of logic programs and the exécution models employed to support. these languages.

In Chapter 4, we adopted one of these models -~ an.informal proposal for Ll_dlstrl])llt( «} Concuarrent
Prolog machine — and formalized it as the computation model for Port Prolog. This medel similarly uses
three types of processes: goal-processes, conjunction-processes, clause -processes. We defined-the duties of
each type of process, how they synchronize and communicate via. me%ago—pasmng, the binding environ-
ment for variables, and how system predicates are accommodated

Chapter 5 ‘introduced the implementation environment — Waterloo Port — a multi<process, mu]tl-,
window. programmmg environment - that. supports processes and svnehronous message-passing  between

processes. Several of Port’s user interface ideas, process structuring techniques, and- (langufige) source -

structuring techniques were used in the implementation of Port Prolog. The l'-mguage featurec of Port
Prolog programs and the user interface of the interpreter were described.

In Chapter 6, we described the implementation of Port Prolog. Port Trolog uses the model of com-
putation defined in Chapter 4. ‘The interpreter is a multi-process program which not only uses many
processes as its run-time solver, but also many processes. to. manage its other components. There is a
group of processes that manage the database of clauses; these processes are structured so that the data-
base (and corresponding server processes) can be distributed over several machines. Other processes
manage windows, the string table and parsing of the source. The solver component is a partial implemen-
tation of the model defined in Chapter 4. Its implementation status is discussed in the next section.

Finally, we took some measurements to evaluate the: performance of Port Prolog. Among these
data, we found that process management utilized appronmately 46% of the time required. to solve a goal
while communication took about 13%. This information tells us where the bottlenecks of the system are:
As one would expect, it indicates that we should tune the current model to reduce the communication and
proceés costs. We also discovered from measurements made on some benchmark programs that Port Pro-
log is almost 50 times slower than a sequentlal Prolog interpreter runnmg on Port..

8.2 Implementatlon Status

The processes described in Chapter 6 have been implemented. In addltlon 2]l the support processes

_have been integrated with a sequential Prolog solver process with minor changes to the parser and coordi-‘

nator. The changes are due to the dlfferences in syntax and the fact that sequentlal Prolog takes some
parameters as maximum stack sizes.

The goal-process as described in the computatlon model in Chapter 4 has been fully implemented.
However, the goal-process has yet to integrate the features of modules In other words, it only queries one
module proprietor for clausesT A

t To complete this feature for the goal-process, the component of the goa]—process which com-
municates with the module proprietor needs to be modified. The following algorithm, which is

61
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The conjunction-process as described in Chapter 4 has been partially implemented. It handles all but
the patch binding incoming message. ‘It handles need binding messages, but can only deal with one vari-
able per message. The conjunction-process implemented does not send need bmdmg messages to poll
other processes for newly instantiated non-read-only variables.

The implementation of the clause-process lacks several features described in Chapter 4. It does not
have a complete unification procedure., The cases that it does not handle yet are: free-free, reference-free,
variable structure-free, variable structure-reference. It also does not.handle incoming need binding and
patch binding messages.

The system predicate process has not been implemented. This would require an interface to handle
system predicates in the clause-process, but would not disturb the functionality of the clause-process or
the rest of the interpreter. :

To avoid the drawbacks of a centralized binding environment, Port Prolog supports a distributed-
‘binding environment (see Section 4.6 in Chapter 4). As in sequential Prolog, the unification of two free
variables must resolve which variable is destinated the eventual “producer” of the binding. Although such
a decision cannot be made accurately because it involves future knowledge, some heuristic must be applied
so that when one of the two variables is bound, regardless of whether it was destinated the ‘“‘producer,”
the other varmble will also get the same binding. In sequential Prolog, a vanable can refer to another
variable by using a pointer. In Port Prolog, because variables may be located in different processes, and
hence in separate address spaces, a “pointer” must indicate the process containing the variable as well as
uniquely identify the variable within the process. This “pointer” is. known as a’ tag in Port Prolog. The
binding mechanism is further complicated by the fact that variables in Port Prolog are also used for syn-
chronization (in the form of read-only variables). =~ "

Variable bmdmgs are stored in conjunctxon-pmcebses and clause-processes. Considering the problems.
noted above, the following information is kept for each mnable (see Section 6.12.1 in C lnpte r G).

@ the type of the variable (e-g. read-only) o
® the process. id of the producer process’

'®  the o!’&ét of the variable within the clause
®  alist of processes waiting‘“fdr the ‘varia‘ble"'.s binding
® the varmble s binding o v

A process needing the binding of 2 vanable first sends to: the V'i.l‘l'lbk‘ s producer process. The pro-
ducer examines its binding. environment; if -the binding is available, it. is returned to the sender. If the
variable references another variable, the producer queries the process named in the variable's environment.
This forwarding of queries is stopped either when a binding is found, or wlien the variable is determined to
be free. If the variable is free and is a read-only variable, then the sender is placed in the waiting list of
the variable. If the variable is free but nermal, the sender is replied to with po binding. Dindings are.
copied from the producer whenever they are referen(ed S0 that future relcrenceq need not go through the
costly routme of extracting them from other _processes.

In .the 1mplementatlon the envu'onments created by conjunctlon-processes and clause-pmrec:qee have
- the contents listed above. Synchronization using a read-only variable is implemented by inserting the
sender process into the waiting list of the read-only variable until the binding becomes available. Bindings
are sent to the conjunction-process by . a.clause-process. when the clause being solve is committed and
when the clause has been successfully evaluated. Bindings are sent to the clause-process {and coordinator)

used by the sequential Prolog interpreter on Port, could be applied. . A ‘goal-process first queries a
module proprietor (made known to. the goal-process through its parent) for the predicate. If the
predicate is. found, then the goal-process proceeds as usual; otherwise, the goal-process sends a
look-up request to the modu}es administrator to find which ‘module proprietor exports the predi-
cate. If the predicate is not being exported by any proprietos, the search fails; otherwise, the
modules administrator replies to the goal-process with the process identifier of the approprnte’
module proprietor. The goal-process then queries this proprietor for the predicate. This proprie-
tor is used (by the children of the goal—process) until 2 predicate which is not handled by the
propnetor is encountered, at whlch time the above algorithm is applied.
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by -the conjunction-process when all the literals being managed by the conj:unct,i(‘m-process. have been suc-
cessfully evaluated. Currently, only goal-processes query other processes (conjunctionfprocesses) for bind-
ings. The “forwarding’ of queries from one process to another has not been implemented.

‘The implementation demonstrates that variable bindings can be passed between processes, and hence
shared variables are possible in our model. Synchronization between dependent literals in a clause can be
achieved if the variable involved does not contain other free variables. Section 4.6 in Chapter 4 proposed
an heuristic for electing a producer process for the unification of free-free variables. By incorporating this
into the unification procedure of the clause-process, we can determine the success of the heuristic by
measuring the number of “hits.”” Also, different strategies can be tried and evaluated against the proposed
scheme. By completing the unification- procedure and properly forwardmg queries. from one process to

another; we can test whether deadlocks or other complications arise from the binding retrleva] algorithm

described above. Also, with fully 1mplemented retrieval and umflcatlon algorithms, we can measure the
communication overhead on a more realistic set of concurrent Pro]og programs and observe the cost of
shared variables.

The following provides some .examples. of the features of Concurrent Prolog supported by Port Pro-
log. ‘ r ’ ,
Invocation of choose( A ) given the followmg clause definitions:
choose( dummy }-
predl{ A? )}
pred2( A );

predi1( bad_choicel );
pred1{ bad_choice?2 );
predi{ A )

pred2( choicel J; - i T .

pred2( choice? ); ‘ s ‘ T

pred2( chozc&’? ko ‘
results in-a ‘“‘yes” answer with A mstantlated to dummy. This demonstrates: variable synrhromzatmn :
albeit with- one level of variable indirection and with only one variable. ‘The predicate pred! does not get
to execute until A? is instantiated by pred2. When predl does get to execute, although they are tried
simultaneously (OR-parallelism) the first two predi clauses fail and the third succeeds. This program also
shows how a variable binding is passed from a clause-process (the one that solved pred?2) to its
grandparent conjunction-process (which is taking care of choose( dummy )}, then to a goal-process (ml\mﬂ
predl), which passes it onto another clause-process {to solve predif A )).

The stack: program given in Section 7.1 of Chapter 7 is another example of a Port Prolog program.
Because Port Prolog does not have a full unification procedure, the replacement of any of the arguments
of the benchmark: queries by variables causes the queries to fall For example, both 3tack( /push(] ) pop( 1)/
) and: stack( [push(1),A] ) fail. : ‘ .

8.3: Experience using'the Port Pr.ocess Abstraction

The notion of independent processes communicating only via ‘synchronous message-passing is a
powerful tool for designing systems, especially in‘systems in which asynchrony and parallel execution have
“to be controlled. Port’s interprocess communication (IPC) primitives and its process abstraction greatly
influenced the design of our computation model and were found to be sufficient for our model.” The
independence of a Port process (i.e. no shared memory) would also lessen the work of re-designing a func-
tionally identical yet: multi-processor based implementation. However, the syntactic dlfference between
local and. remote IPC primitives may be a hindrance. ' :

The oné-to-one IPC pmmtlves provided by Port is adequate though sometimes limiting. For exam-
ple, the conjunction-process polls other processes to obtain variable bindings.  This is inefficient and,
depending on the polling frequency, may cause the system to thrash (doing context-switches): Further-
more, the binding mechanism is contorted to depend on the one-to-one IPC primitives. If the number of
indirections needed to. find the producer of a variable is large, many message passes through several
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- processes would be needed before the binding is finally retrieved. 'Shared memory would, of course, make
the binding ‘mechanism easier to define (cf. sequential Prolog), but. would defeat the purpose of a distri-
buted model. Something similar to the notion of “sharing” knowledge is the multicast {one-to-many) IPC
proposed by Cheriton and Zwaenepoel [Cheriton & Zwaenepoel 8—1} This may be the key to a simple to
cone eptuahze and easy -to implement binding environment.

Multicast IPC allows one process to sxmultaneously send to a group of processes; a group is identified
by a group id. The sendér is 'suspended until & replizs are received; £ is defined as 0, 1 or some integer.
Processes wishing to start a group use an allocate_group_id prlmltlve and those wishing to join a group
use a join_group primitive. :

With this multicast IPC facility, the bmdmg of variables could use the notion of a group to identify
the processes that share a variable. A process instantiating a variable could do a multicast send to the
group interested in this varmble In other words, the tagt would contain the group id instead of a process
id. A clause-process umfymg a variable with another free variable would elthfr form a group for the vari-
able with the owner of the free variable (if one does not already exist) or join the group associated with
the variable.  The unification of two variables that each already belong to its own group (i.e. a reference-
- reference instantiation) could be solved by introducing a new message to the solver processes, This new
message would ask members of a group to “change’’ to a different group; this is analogous to changing the
pointer of one of the variables to peint to the other variable in a reference-reference instantiation in
sequential Prolog. This group concept would make the producer’s identity irrelevant {(and thus we would
not have to worry about “incorrect” tags); all members of a group are treated equally. :

The use of multicast IPC for handling the binding of variables seems promising. The relnblht) and
efficiency of multicast IPC would ultimately determine its feasibility. :

Multicast IPC could also be used to speed up the searching of the database. We could eliminate the
modules administrator by introducing a new request to the module proprletor to handle searches for
exported predicates. In this gase, the goal-process would issue a multicast ‘“‘export search’” send to the
propr-ietors instead of asking the modules administrator to identify the correct proprietor.

- The Port process management pnmmves, though costly, were also adequate. For a distributed
_ implementation; creation: of processes on a remote machine- could be done by ‘having a special agent. pro-

cess on each machine to handle remote creates. This: specm.l process could be made known to processes on
other machines through the Port.-name server. :

If the Port kernel had more knowledge about the relationships ‘between processes, the vulture process
would not be necessary. For example, the kernel could provide a new destroy primitive that can destroy a
“family’’ of processes. However, this new primitive may be difficult to realize in a distributed implementa-
tion. ‘It would also imply the need for real remote create and remote destroy primitives, instead of accom-
plishing such tasks through agent processes. : o -

8.4 Future Work e e ,
¢:Completion of Interpreter. Before enhancements can be effectively attempted, the conjunction

and clause process abstractions of the proposed model must be completed and debugged. Better variable -
representation (both in terms of space and: access method) within' a process (the conjunction or clause--
process) is also desirable. To be generally useful, the interpreter requires the implementation of the sys-
tem predicates process(es) as described in Chapter 4, together with a sufficiently rich set of system predi- -
cates. ‘This would include meta level predicates, database manipulation predicates, list and functor mani-
pulation predicates and a debugging package.

@ Performance Analysis. The performance measurements presented in the previous chapter are
minimal and ‘are:-based on only a few benchmarks. Our measureinents on a more exténsive set of exam-
ples, followed by a detailed analysis of these numbers, would be helpful in examining the feasibility of the
computation model. These measurements should provide information such as the ratio of communication
to computatlon performed by each process, frequency distribution of message passes (e.g. whether most -

t See Sectlon 4.6 in Chapter 4.
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messages are exchanged during initialization or throughout evaluation}, types of messages passed fmostly
control? or mostly variable bindings?). a record of the activity during the life-time of a process (c.g.

whether it is suspended most of the time), the pfocessor utilization, and the number of processes compet-
mg for the processer.

An analysis of this information can help to define a better model to accommodate the shortcomings
of this model. Similar analyses can be applied to similar computation models and their performance with
respect to this model evaluated. ,

® Process Management. The evaluation of a list of goals using conjunction-processes, goal-
processes, and clause-processes with the model described in Chapter 4 requires a substantial amount of
dynamic process management. These processes are frequently created and destroyed; cost is incurred
every time a process is created (time is needed to find resources for creation), and likewise when a process
is destroyed (time is required for recovering resources). To reduce the overhead of process management,
the interpreter can keep a pool of processes and re-cycle them as needed [Bowen 82, Kasif et al 83, Birrell
& Nelson 83]. Instead of destroying a process when it is no longer needed, the process is kept in a ‘“‘pool,”
waiting to be re-used. When more processes are needed than can be supplied by the pool, the Port create
primitive can then be used to create new processes. When the number of processes in the pool gets large
and the processes are not being used, they can be freed by using the Port destroy primitive. Since
processes are re-cycled, fewer searches a.nd recoveries of resources by the Port operating system is neces-
sary. The cost of process management is hence reduced.

® Process Structures. The process structure of Port Prolog’s supporting components is but a first
attempt. Other structures which can shorten the initialization time or improve the responsiveness of the
system: should be investigated. For example, compilation of the source may be sped up by providing . each
module proprietor with 1ts own parser instead of having several proprietors queue up for one.

¢ Swapping. In our performance measurements, no account was kept of the activity of a process.
We do not know, for example, how long a.conjunction-process spends suspended waiting to serve requests.
But intuitively, the solver processes spend most of their time' suspended and exchange messages mostly -

“among its parent and children processes. Swapping — that is, moving processes out of main memory

when they are suspended —-would be useful in: this situation: This would allow more processes to co-exist
in the system at any one time; however, context switching might become more expensive as the operating
system may have to load the processes from external devices.

®:Tail-recursion Optimization. Another enhancement which can decrease memory usage is the
reduction of the number of processes being used. Tail-recursion optimization strategies in which processes,
rather than stack space, are being recovered and re-used are needed if Port Prolog is to be a usable sys-
tem. Such strategies will' draw experience from how tail-recursion optimization for stacks in’ sequential
Prolog is done.

- @ Multi-processors. Because the interpreter is designed using multiple processes, and since Port
supports inter-process communication of processes across machine boundaries, we may attempt multi-
processor experiments that distribute components of the interpreter over several machines: Such experi-
ments will be facilitated by the fact that a Port process is independent and has its‘own address space.
These can include distributing both the database processes and the solver processes. -Simulations on fixed
network configurations can give insight into an “optimal” configuration for executing concurrent Prolog.
More 1mportantly, these experiments wnll give a calibration of the potentlal of concurrent Prolog when the
environment is truly parallel. ' :

®:Prolog Kernel. Services that are often use by many processes can be “factored” and put into a
specially designed kernel. For example, every clause-process must do unification. By making unify a spe-
cial kernel request, a substantial amount of memory can be saved. Also, by isolating unify, it may be
easier in the future to speed it up by, say, coding it in microcode. In addition to the customary support
for-message-passing, this kernel can be designed to dispatch and queue solver processes, perhaps managing
the processes in methods similar to those suggested earlier. '

®:Integration with Sequential Prolog. Certain aspects of an application may require sequential

evaluation while other aspects may benefit from concurrent execution. With the availability of both

sequential Prolog and concurrent Prolog under the same operating system, the potential of integrating
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Port Prolog with sequential Prolog should be investigated. ‘ ;

® Development Tools. Finally, to make Port Prolog pleasant to use, the interpreter necds tools to
help the logic programmer develop his programs. Some predicates, such as the debugging predicates and
'some database manipulation predicates, should be implemented with the Port environment in mind. They
should not mimic corresponding predicates in conventional Prolog interpreters that only makeise of {ele-
type terminals.” By making use of the multi-windowing facilities of Port, predicates that Lst the databuase,
edit a set of clauses in the databasc, add and delete clauses in a session {not dynuamically during execu-
“tion), and aid debugging the execution of a.goal can be done in separate windows. :
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Appendix A: Counter/Timer Measurements

Breakdown of Execution Time for Port Prolog
Create/Destroy Times for Some Common Port Operations

Execution Times for Sequential Prolog
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Breakdown of Execution Time for Port Prolog

Total (ms) Create (ms) Destroy (ms) Setup(ms) Number of Sends
benchmark, 2316.17 127.10 768.18 174.42 118
2320.33 121.70 769.78 174.42 116
2298.77 126.61 764.86 174.45 117
2316.17 123.10 779.39 17445 117
2306.83 121.94 764.04 174.44 118
2289.86 126.55 776.40 174.42 118
2320.27 120.62 785.33 174.43 118
2292.60 127.91 776.28 174.45 117
2303.81 128.89 775.31 174.43 117
2296.60 121.55 746.06 174.43 117
‘average - 2306.14 124.60 -770.56 174.43 117
v + 50.58 ' x 281
821.14 328.77
benchmarks 5059.50 280.55 1643.22 368.16 251
5042.50 281.21 1645.84 368.17 249
5037.10 272.60 1636.37 368.12 250
5045.53 263.03 1662.10 368.15 249
5048.31 271.30 1629.38 - .36G8.20 249
5047.93 269.00 1635.97 368.16 249
5038.87 254.59. 1640.56 368.16 251
5032.17 269.04 1638.44 368.20 250
. 5038.90 289.79 1658.73 368.18 249
5029:93 25474 1637.92 368.14 249
average 5042.07 270.59 1642.85 368.16 250
+ 106.78 x 281
1749.63 702.50

number of processes created/destroyed in benchmark, = 18
number of processes created/destroyed in benchmarks = 38

average time for a send = 2.81ms [Vasudevan 84]

Destroy cost = destroy average + (number of destroys x 2.81)

Total communication overhe’ad = pumber of sends x 2.81

- Total process management overhead = Destroy + Create + Setup
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Create/Destroy Times for some Common Port Operations

The Port Process Administfator was modified to measure the time required to handle CREATE and DES-
TROY requests. The following are some measurements. Some creates require loading the code off the
hardisk.

v Create Destroy
Task Number Time (ms) | Number  Time {ms)
Initialization ' 71 724.11 - 37 2944.30
(i.e. boot) ‘ ) 1 28705
Enter Office - 23 - 226.70 23 1130.96
from Lobby
Enter Prolog - ,
room from Office ‘ 8 82.61 8 339.74
Start Port Prolog 19 219.97 9 952.76
Interpreter
Tried benchmark, 18 12710 | 18 768.18
in Interpreter 121.70 769.78
126.61 ) 764.86
123.10 o 779.39
121.94 ' 764.04
126.55 : 776.40
120.62 785.33
127.91 776.28
128.89 775.31
121.55 746.06
Tried benchmarks 38 280.565 . 38 1643.22
in Interpreter 281.21 1645.84
272.60 1636.37
263.03 1662.10
271.30 ‘ 1629.38 -
269.00 1635.97
'254.59 1640.56
269.04 1638.44
289.79 ' 1658.73
254.74 ' 1637.92
Kill interpreter ; 10 3279.07
Browser on Hardisk 8 109.47 5 375.51
Climb on Browser 1 12.07 1 28.55
Exit Prolog room 3 4513 | 3 125.42




Execution Times for Seque‘ntial Prolog

Benchmark Program:

stack( S )
stack( S [] |

stack( [pop(X)[S] [X|Xs] )
stack( S Xs ); |

stack( [push(X)|S] Xs)
stack( S [X|Xs] );

stack( [ 1)

Benchmark Goals:

benchmarky: s_ta.ék( [push(1),pop(1)] );

benchmarks:  stack( [push(1),push(2),push(3),pop(3),pop(2),pop(1)] );

benchmark, (ms)

benchmarks (ms)

Execution ‘Times 62.86 145.74
63.04 . 148.67
57.00 144.46
62.95 138.44
62.95 144.37
56.99 144.39
56.99 144 .47
57.00 14437
57.01 138.60
56.99 138.52
average 59.38 143.20
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Appendix B: Program Traces

1.  Program Trace of a Clause-proc‘ess
2.  Program Trace of a Goal-process

3. Program Trace of a Conjunction-process

The conjunction-process, goal-process and clause-process were traced with the following benchmark pro-
gram and goal as input. The trace of the conjunction-process is that of the first conjunction-process
created (by the coordinator). The trace of the goal-process is that of the first goal-process created by this
conjunction-process. The trace of the clause-process is that of the second clause-process created by the
same goal-process.

Benchmark Program

stack( S )
stack( S? | );

stack( [poi;(X)I S] - [X|Xs] ) |
stack( S? Xs ); '

stack( [push(X)|S] Xs)
stack( S? [X|Xs]);

stack( [ []);

Benchmark Goal:

stack( [push(1),pop(1)] );

~{



Trace of a Clause-process

Number of Instructions

Function Name

Executed ‘
7 _Fcn_prolog
7 _Fen_epilog
27 _Kernel_entry
2 Convert_to_pointer
7 Find_top_of_memory
996 Zero
150 Prolog
42 Epilog -
16 Clause_process
28 _Send
90 ‘Dereference
84 Get_list_info
30 _Transfer_from
168 Get_functor_info
75 Get_procedure_info
10 Reply
12 _Receive
-9 - _Get_registered_id
23 - Size_of_term
10 ~ Unsuccessful_termination
242 Unify ‘
94 Unify_functor
43 Unify_list’
. 28 Initialize =
10 Initialize_apply_stack
389 | _Alloe
22 _Grow_data_segment
10 -U_max
9 Create_literal_environment
27 Look_at_term
96 Record_new_variable
324 “Alloc
90 - Find_a_vector
55 ‘Create_clause_environment
75 - Get_literal_and_clause
8 . Initialize_vulture
21 Set_up_window
15 ~ Select_output
15 Select_input
1 - Display_message
96 _Allocate_frame

3,463

‘Total
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Trace. of a Goal-process.

Number of Instructions

Function Name

Executed
1 _Fen_prolog
1 _Fen_epilog
60 _Kernel_entry
63 Length -
2 Convert_to_pointer
660 Zero
7 Find_top_of _memory
23 Prolog
6 Epilog
34 -Goal_process
30 ~Reply
41 - Commmit
12 Destroy_process
112 _Send
30 Transfer_from
42 | Get_functor_info
12 -Receive_any
36 Initialize .
29 1 Create_clause_processes
51 Free
35. Create_a_clause_process
15 - Initialize_global
26 ~Receive ’
27 Create_process.
27 . Create
18 _Get_registered_id
52 | Get_call_info
31 Get_all_clauses
17 Find_next_clause
72 Alloc
20 Find_a_vector
187 ~Alloe '
22 _Grow_data_segment
10 | U_max
42 Find_first_clause
6 Free_environment
17 Wait_for_input_variables
18 . . Apply_substitutions
23 Size_of_term '
9 Create_literal_environment
27 Look_at_term
10 Initialize_apply_stack
67 | Get_literal
8 Initialize_vulture
21 ‘Set_up_window
15 ‘Select_output -
15 Select_input
1 Display_message
16 _Allocate_frame

2,106

Total




Trace of a Conjunction-process

Nutmber of Instructions

Function Name

Executed
1 _Fen_prolog
1 _Fcn_epilog
48 _Kernel_entry
61 Length
115 Zero
7 ) Find_top_of_memory
2 Convert_to_pointer
23. Prolog
6 " Epilog
34 Conjunction_process
30 _Reply
70 _Send
15 Success ,
10 Successful_termination
24 Find_literal _of
24 | Commit
24 _Receive
72 - Alloc
109 _Alloe
18- _Get_registered_id
11 _Grow_data_segment
5 U_max
20 Find_a. vector
.15 - _Transfer: from
24 1 _Receive_any
26 Initialize
33 Create_goal_processes
84 Get_call_info
45 - 'Create_a_goal_process
15 TInitialize_global
27 Create_process
27 Create :
31 Create_sequence_environment
27 - LLook_at_term :
23 Size_of_term
35 Get_literal _list
8 Initialize_vulture
21 Set_up._window
15 Select_output
15 Select_input
1 Display_message
16 _Allocate_frame
1,223 Total
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Trace of a Conjunction-process

Nuinber of Instructions

Function Name

Executed ,
1 _Fen_prolog
1 _Fen_epilog
48 _Kernel_entry
61 Length
115 Zero
7 Find_top_of_memory
2 Convert_to_poiiter
23 Prolog
6 Epilog ‘
34 . Conjunction_process
30 _Reply
70 _Send
15 Success
10 ‘Suceessful_termination
24 Find_literal _of
24 Commit
24 _Receive
72 Alloc
109 _Alloc
18 _Get_registered_id
11 _Grow_data_segment
5. U_max
20 ~Find_a. vector
.15 - _Transfer.from
24 - | _Receive_any
26 Initialize
38 Create_goal_processes
84 Get_call_info
45 Create_a_goal_process
15 Initialize_global
27 Create_process
27 Create - ,
31 Create_sequence_environment
27 Look_at_term :
23 Size_of_term
35 Get_literal_list
8 Initialize_vulture
21 Set_up_window
15 Select_output
15 Select_input
1 Display_message
16 _Allocate_frame

1,223

Total

77



	

