BEBARTMENT

DEPARTMENT
DEPARTMENT

E
E
CE

5

:

ER
ER

]
uTt
UT

T

LS S

3

I
Iy

VEES
VER
VERSITY OF WATERLOO

i

A Model for
Storage Structures,
Encodings, and
Robustness

J.P. Black
D.J. Taylor

Data Structuring Group
CS-84-45

December, 1984

A Model for Storage Structures, Encodings, and Robustness
~ James P. Black

David J. Taylor

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada. N2L 3Gl

_ ABSTRACT

We present a model which unifies the treatment of data structure
robustness at the storage structure and encoding levels of
abstraction. The model provides a sufficiently precise definition of
storage structures for robustness analysis to be meaningful, and yet
remains sufficiently general that such analyses are useful for widely
different encodings of the storage structure. It also permits precise
analysis of a large class of combinations of storage structures, based
on the interactions between their encodings.

The basic concepts of storage structure robustness are presented in
terms of the model, including changes, detectability, and valid state
hypotheses. New concepts are introduced for the encoding level,
and some results are given relating storage structure and encoding
detectability. The utility of the model is illustrated with an
example of 2 combination of three storage structures.

2 Black and Taylor

1. Introduction

Over the last several years, it has become increasingly clear that complex
computer systems must be tolerant of both hardware and software faults.
Anderson and Lee [1] give a comprehensive treatment of the current state of the
art; the proceedings of the Fault Tolerant Computing Symposia and of the
Symposia on Reliability in Distributed Software and Database Systems should be
consulted for more recent work-in the field.

Our work on storage structures has been concentrated on exploiting
structural redundancy in data to detect and possibly correct errors in:storage
structures. The techniques involved can be incorporated at different levels of
abstraction in a computer system, resulting in a significant degree of tolerance to
hardware and/or software faults which damage important data.

In other papers [5,10,11], we have presented many of the basic notions
concerning robust storage structures, in which some number of erroneous changes
to structural information can be guaranteed to be detected and possibly
corrected. Those papers were somewhat informal regarding the underlying
definitions of storage structures and encodings, the system state surrounding an
instance of a structure, and the conditions under which a general analysis of the
robustness of a storage structure would indeed be applicable to the robustness
analysis of an actual implementation. In this paper, we not only give a firmer
foundation for robustness analyses, but also show how the robustness of complex
systems of storage structures can be precisely determmed for realistic
implementations and error models. Although intended primarily for robustness
analysis, we believe the model we present provides some important insight into
the differences between the storage structure and encoding levels of abstraction.

This paper assumes very little prior knowledge of robustness theory and
practice, although some prior acquaintance would certainly be useful in
understanding the motivation behind the model we present. The interested
reader is referred to [2,3,4,12] as well as the references cited above. However,
we will be defining some of the most basic concepts in terms of the formal model
we develop. ‘

Section 2 gives our definition of a storage structure, and defines the notion of
an instance of a storage structure and its correctness. Section 3 uses this to
define the basic robustness concepts of detectability, correctability, error models,
and valid state hypotheses. Section 4 describes the encoding level of abstraction,
and its relation to the storage structure level. This is exploited in Section 5 to
provide a method for the analysis of systems of encodings and storage structures.
Section 6 presents an example and some conclusions.

Storage Structure Model 3

2. Storage Structures

We identify three levels of abstraction associated with the organisation of
data in a computer system: data structures, storage structures, and encodings.
For example, a binary tree might be considered to be a data structure, a storage
structure for a binary tree might consider the tree to consist of a graph with
certain properties, while an encoding of such a graph might organise a set of
memory locations to contain data fields, memory addresses, and pointer tags.

A data structure thus describes the organisation of data at a high level of
abstraction, often by means of the operations which may be performed on the
data. Formal specifications of data structures are often in terms of abstract data
‘types [7]. At the storage structure level of abstraction, attention is more often
focused on how the data is stored, rather than how it may be operated upon. As
such, it is often convenient to adopt some sort of graph model for storage
structures, and to consider them largely in isolation from procedures which access
them. The designer of a storage structure is often concerned with the classic
space-time tradeoff, which we feel should be extended to consider robustness as a
third dimension of storage structure design. The encoding level of abstraction
concerns the properties of a particular implementation of a storage structure (and
hence a data structure).

Our overall philosophy is that careful use of redundancy in storage structures
and encodings can be used to complement all the other various techniques
normally used to increase software system reliability. With thls in mind, we will
now present our definition of a storage structure.

A storage structure consists of a set of nodes connected by edges. However,
as we wish to model the way structures are stored and used in computer systems,
the mathematical notion of a graph as an ordered pair (N, E), with N a set of
nodes and E a subset of NXN representing (directed) edges, requires some
modification for our purposes. In particular, we wish to associate arbitrary
information with each node, treat this information identically to the edges in
terms of “‘changes’ or errors, and be able to access all nodes in the instance from
one or more ‘“header’” nodes.

Intuitively, a “change” is a fixed-size modification to all or part of a node;
changes may or may not be erroneous. Programs which modify a structure do so
by making a sequence of changes which are intended to transform one correct
instance into another. In this paper, we consider the effects of erroneous changes
on encodings and storage structures. Such erroneous changes must ultimately be
caused by hardware or software faults, but we do not examine the complex
manner in which this may occur.

In view of robustness analyses based on ‘“‘changes”, we will say that a node is
a tuple of components. Components may be of arbitrary type, such as integer,
real, or string. Some components indicate edges in the graph; others may be
data, or structural information such as counts, identifiers, tags, keys, heights.
Note that the edges are parts of nodes, not distinct elements as in the graphs
discussed above. All nodes of a storage structure instance are assumed to be
accessible by following some sequence of edges from one or more distinguished
“header” nodes. (We will reserve the term “root” for trees; in some structures,
the root node is different from the header node or mnodes.) Finally, each

4 Black ard Taylor

component of a node has a name (e.g., “forward pointer”), and a value (e.g.,
“node 3").

It is important to draw a clear distinction between the storage structure
considered in general, and an instance of it. The storage structure itself consists
of a set of instances; instances belonging to the set can be described by a
predicate which correct instances must satisfy. The use of a predicate description
is a convenient way to avoid having to enumerate the possible instances. In this
paper, we will say that an instance is correct if and only if the given predicate is
true when applied to the instance. We would normally give the predicate as a list
of azioms, the predicate simply being the conjunction of the axioms. ‘This
approach to storage structure description is elaborated in [2].

We require -a notation for storage structure instances. We will denote a
storage structure instance S by

S=ssi(SS; N; H; I),

where SS represents the storage structure description and component names; N
is a node space or set of node names in which the instance may be found; H is a
tuple of header nodes specified by node names from N; and I is an instance
mapping. The instance mapping takes a node name and a component name, and
returns the value of the named component of the node. More formally, if CN is
the set of component names of SS, and CV the union of the ranges of
components in SS, then we have

I NXCN - CV.

For an edge named en stored in a node nn, I(nn, en) is a node name in N. In
general, N contains nodes which are part of the instance (accessible by a path
from:a node in H), as well as nodes which are not. :

In many cases, it is convenient to think of I as a partial function, in that not
all nodes contain every type of component, and in that some nodes of N are not .
part of the instance. As an example, Figure 1 shows two forms for the instance
mapping of ‘

S=ssi (Single-Linked_List; {4, .., H} (A); I).

The list consists of a header node, A, and four data nodes C, B, G, and H.
Nodes D, E, and F also belong to the node space, but are not part of the
instance. Every node in the instance contains an identifier component, and an
edge component (pointer) to the next node in the list. In addition, the header
contains a count of the number of nodes on the list. ' As examples, the instance
mappmg shown in the figure has ’
I(A, count) =4, and
I(B, next)=G.

Note that the figure does not define the instance mapping I for nodes D, E,
or F nor for the count component in any node other than the header.
Informally, the header node is of a different type from the others: it alone
contams a count component.

Storage Structure Model 5

C é v B @

id | count | next
A|D 4 C
B-|'ID G
c| DD B
D
E
G| D : H
H|ID : A

Figure 1. Two forms for an instance mapping

More formally, the type of a node is a tuple of component names, indicating -
what information is stored in the node in a correct instance. In storage structures -
which have more than one type of node, any procedure manipulating instances of -
the structure must be able to determine the type of each node it encounters. 'If
this determination is subject to error, the instance mapping may well be applied
to arguments for which it is intuitively undefined. The actual values returned for .
‘“undefined”’ arguments will most likely be related to the underlying encoding
being used. Hence; we require that I be total in order to perform robustness -
analyses and to model realistically- the operation of procedures mampulatmg
storage structures subject to error. .

One further point concerns identically-named components in different node
types.. In order to make the instance mapping unambiguous, we will assume that
all- identically-named components appear in the same tuple position in all. node
types, or that component names are qualified by node type where required.

In the example of Figure 1, the single-linked list nodes all include a
component called “id”, whose value is assumed to uniquely identify the type of
the node and the instance in the node.space to which the node belongs. Such
identifier components provide useful redundancy which often improves the
detectability and correctability of a storage structure. An identifier component
in a node of a correct instance has a value which is sufficient to determine the

6 Black and Taylor

node type and the instance to which the node belongs. They thus serve to detect
changes of node type and the presence of nodes not part of an instance.

3. Error Models and Storage Structure Robustness

The objective in designing a robust storage structure is to guarantee that
some number of erroneous changes to any instance of the structure can be
detected, and possibly corrected. In order to determine whether a given structure
is robust, a formal analysis of its properties must be undertaken. In this section,
we will discuss how the storage structure model of the previous section is used as
a basis for robustness analyses.

We first discuss the basic notion of a change to a storage structure instance,
which is used to define the distance between two instances and the detectability
of -a storage structure. As this results in a very pessimistic value for detectability,
one of a number of “Valid State Hypotheses’’ may be made in order to calculate
a more realistic value for. detectability. Notions of storage structure
correctability follow directly from the definitions of distance and detectability.

At the storage structure level, a change modifies the value of exactly one
component in a node space, that is, the value of I(nn, cn) for one (nn, cn) pair.
In structures with more than one node type, the effect of a single change is more
complicated. As the instance mapping can be interrogated for a component
which does not logically occur in a particular node, any single change to a
component appears to change the corresponding component in all other node
types. These corresponding components occur at the same position in all tuples
defining the various node types of the storage structure.

For example, a CTB-tree [6] contains three types of node: the header node,
leaf nodes, and branch (interior) nodes. If the root pointer in the header node,
the “thread” pointer in leaf nodes, and the first tree pointer in branch nodes all
happen to occur in the same tuple position, a single change to I(H, root) also
appears to change I(H, thread) and I(H, P[1]). For a given node H, however,
only one of these components “actually” occurs in H in a correct instance. - At
this level, components are assumed to be mtegers, reals, strings, edges, etc.; the
size of a component is known only to be the same as the size of a change In
Section 4, we show how to analyse particular encodings of a storage structure for
varying component sizes and implementations. It is also possible to consider a
model for errors in which a single “‘macro change’” arbitrarily alters the instance
mapping for an entire node. We will not discuss this here for reasons of brevity,.
and because the development is quite similar to that for single component
changes. For more detail, the reader is referred to [2], Chapter 4.

Let Sl-asa(SS N; H; 1)) and S,=3si(SS; N; H; I,) be two storage-
structure instances in the same node space, with the same headers, but with
different instance mappings. Then the distance between the two instances,
d(S;, S5), is the smallest number of changes to I, which can make it identical to
I,. Note that this is the same as the number of changes to I, which can make it
identical to I,, and that none of the changes is necessarily to a node which is
connected to H. We will say that S; and S, are indistinguishable if their
instance mappings are identical on the set of nodes connected to H. Given the

Storage Structure Model ‘ 7

distance metric, d, and the notion of indistinguishability, we will say that a
storage structure is k-weak-detectable if, for any correct S; and S, which are not
indistinguishable, d(S,, S;)>k. This form of detectability is ‘“weak” in that it
assumes nothing about the contents of nodes not conmected to the headers, and
hence is a pessimistic value. Unless stated explicitly, we will only use the tenn
distance (and the metric d) with respect to distinguishable instances.

The definition of detectability relies on the ability to decide whether an
instance is correct. As mentioned above, this correctness criterion is equivalent to
deciding whether an instance satisfies the set of axioms describing the storage
structure. Although our intent is not to discuss the complexity of error detection
in storage structures, almost all robust storage structures known to the authors
have linear-time detection procedures which are easily constructed from the
storage structure axioms. We currently know of no robust storage structure
requiring more than O(nlogn) time to detect errors in an n-node instance.

- The definition given above for weak detectability is unnecessarily pessimistic,
as it assumes nothing about the contents of nodes outside the instance but within
the same node space. In this case, any calculation of detectability must assume a
worst case: nodes outside the instance contain precisely the worst possible values,
so that an “intelligent adversary’ can make a small number of changes to nodes
in the original correct instance, in order to transform it into.a different correct
instance. . The new correct instance may contain nodes which were originally
outside the instance, but which have been easily incorporated into it due to the-
fortuitous values which they contained. If this ‘“‘worst case’” analysis is to be
made less pessimistic, some assumption must be made about the contents of
nodes outside the original instance. Such an assnmption is termed a Valid State
Hypothests (VSH).

One VSH which might be made is that no: node external to the correct
instance contains an identifier component whose value is valid for this instance.
While this would only impose restrictions on identifier components, we will make
a slightly stronger VSH in order to be compatible with the original definitions
made in [12]. Our Valid State Hypothesis will be:

1. No node outside the instance (i.e., not connected to the headet(s)) appears to
“have a valid identifier component for this instance, and

2. No node outside the instance appears to have an edge component whose
value is 2 node name in the instance.

A correct storage structure instance in a node space which satisfies this VSH will
be termed valid. Neither of the restrictions of the VSH absolutely-prohibits the
storing of such values elsewhere in the node space; the only requirement is that
they not be stored in component positions which could be interpreted as identifier
or edge components for this instance. Note that the storage structure model uses
- a node space identical to the range of edge components; implementations in which
pointer fields may contain values which do not necessarily correspond to node

. boundaries are mcorporated by considering the encodmg level of abstraction in
the next sectlon

8 ‘ Black and Taylor

Given the VSH made above, we will say that a storage structure is k-
detectable if, for any two distinguishable, correct instances S; and S,, such that
the node space surrounding S, satisfies the VSH (S, is valid), d(S,, S;)>k. Note
that only one of the instances is required to be valid. This reflects, for example,
the operation of an erroneous update routine which, although given a correct and
valid instance, may make some erroneous changes to the instance which leave
identifier values or edges into the instance in nodes external to it.

-, A-yet more optimistic definition of detectability, called absolute detectability,
assumes that both S; and S, satisfy the VSH; equivalently, an intelligent

adversary seeking to make undetectable modifications must “clean up” the
surrounding node space.

Given these deflmtlons, analysing the detectability of a stdrage structure can

proceed along one of two lines. For a particular structure, it may be possible to
argue its detectability directly from the storage structure axioms. When this is
feasible, it results in the determination of the largest value of k for which the
structure is k-detectable. Such an analysis is often based on a partitioning of the
set of undetectable modifications into those which do not change the set of nodes
in the instance, those which replace some nodes with previously foreign nodes,
and those which change the number of nodes in the instance. The other approach

is to- attempt to use some general bounds on detectability which are easily -

determined from properties of the storage structure. More information on
calculating detectability may be found in [2,11,12]. T

The most general bounds on detectability are based on the notion of a
determining set of components. A storage structure is k-determined if any
instance of it contains k disjoint sets of components (determining sets), and there
exists a ‘‘reconstruction algorithm” for each set which can entirely reconstruct
the instance, examining only components belonging to the seti:: Each
reconstruction algorithm may use any means at its disposal, but may only
interrogate the instance mapping for components in the corresponding set. -

We will discuss one easy result based on determining sets: a storage structure
which is k-determined is (k—1)-detectable. No set of k—1 or fewer changes can
alter all determining sets. If the k reconstruction routines are invoked, one of
them must recreate the original, correct instance; the error(s) can be detected by
comparing this instance against the actual erroneous instance. For example, a
double-linked linear list is 2-determined: the two sets conmsist of the forward and
back pointers respectively.

For completeness, we will briefly discuss the correctability of robust storage
structures. A storage structure is ‘termed r-correctable if, given an erroneous
instance of the structure assumed to contain at most. r_errors (changes) there

exists a procedure which can recreate the original, unchanged instance given only .

the (erroneous) instance mapping. Roughly, 2r-detectability is sufficient for r-
correctability, as in the case of binary codes [8]. However, as the set of all
possible instances of a storage structure is much less structured than the set of all
possible code words in the binary code case, it may be quite difficult to find an
efficient correction procedure. Nevertheless, we have shown in [2] that there exist
linear-time -multiple error correction procedures for several generally useful
storage structures. Correction procedures are also discussed in [5] and [9].

Storage Structure Model 9

4. The Encoding Level

The storage structure model of robustness developed in the two previous
sections allows storage structures to be designed and analysed with robustness in
mind. The process of implementing a robust storage structure results in an
encoding of it. Depending on many external considerations, the encoding may
well introduce complexities and extra storage structure inter-relationships which
require careful evaluation before the robustness of the storage structure as an
abstraction can be claimed for the actual encoding level. Consider the following
list of problems. : :

1. How do changes at the encoding level involving 32-bit words or 512-byte disk
sectors (for example) relate to the single component change or macro change
models at the storage structure level?

2. What if several components are packed into a single “location’ affected by
~an encoding change?

3. What if erroneous pomter values can point to locations. whlch are not node
boundaries? : -

4. What if one encoding depends on another? An example is when pointers in a
data base system are encoded as a pair (page no., record no.), and the
correspondence between logical page numbers and physwal disk addresses is
itself. maintained in some encoding of a storage structure. A similar example
is the splitting of logical records across physical page boundaries, but with
logically contiguous pages not necessarily physically adjacent.

5. What is a meaningful measure. of the robustness of a structure such as a
double-linked list, if each node in the list also contains a header for some
other structure, or even an entire storage structure instance?

6. To what extent is it appropriate to use a storage structure detection or
correction procedure for a particular encoding?

Our solutions to these problems involve careful definition of the relationships
between the encoding and storage structure levels, and analyses of the
interactions between encodings. The results which we derive permit robustness
analyses of encodings for an arbitrary fixed-size change to the stored
representation of the data, and for quite general combinations of structures. As
the results make use of robustness analyses for storage structures, they permit
software system designers to use robust storage structures in an “off the shelf”
manner, in a way which can guarantee the robustness of the resulting operatlonal
software system. :

In the remainder of this section, we first define encodings more precisely, and
then consider relating encodings and encoding changes to the storage structure
level. This is followed by a formalisation of some possible relationships between
encodings and encoding instances in an operational system, and a brief discussion
of the main results for encoding-level robustness.

We will define an encoding to be a triple
’ E=(F, T, A).

F is an interpretation function, T a translation function, and A a set of

10 Black and Taylor

addresses. The interpretation function corresponds to the storage structure
instance mapping, the translation function relates bit strings to storage structure
component values, and nodes of an encoding instance are named by addresses.
An encoding instance is encoded in a data epace, which consists of a set of
locations. Each location is a fixed-length string of bits, with the size of a location
being the same as the size of an encoding change used for a robustness analysis of
the encoding. We will refer to the contents of a data space D by contents(D),
and to the contents of a location loc by contents(loc).

Then an encoding instance s of a storage structure SS will be denoted by
s=ei(SS; D; H; E),

where D is the data space containing s, H a tuple of header addresses belonging
to A, and E=(F, T, A) the encoding used for s.

The interpretation function, F, of an encoding uses the contents of the data
space D to return a (bit string, type indication) pair which corresponds through
the translation function T to a component value. Such a
(bit string, type indication) pair will be termed a field. More formally, we have

F: AXCN X{contents(D)} = {fields}.

Thus, given an address, a component name, and the contents of the data space, F/
returns a field. In particular, as addresses are the encoded versions of edges in
the structure, they are fields. We will also assume that F may return one or
more fields denoted error, in the case of incorrect or inconsistent arguments.

On a component by component basis, the translation function T is used to
transfer between the encoding and storage structure levels:

T: {fields} = {component values}.

T will be assumed to be “invertible”, in that given a component value and a type
indication, T~ ! returns a field. Error fields are translated into components also
denoted error. Thus, T specifies the correspondence between bit strings of the
encoding instance and the abstract values (such as node names, integers,
strings, ...) of the storage structure components. When convenient, we will extend
T to take a set or tuple of fields, and to return the corresponding set or tuple of
component values.

Our aim in defining all of this formalism is to be able to relate storage
structures and storage structure instances to encodings and encoding instances.
The essence of this relationship is that from an encoding instance
ei(SS; D; H; E), it is possible to recover the corresponding storage structure
instance with the use of the interpretation and translation functions. This
instance is :

83i(SS; T(A)=error; T(H); I),
where, for a node name nn and a component name cn,
I(nn, cn)=T(F(T"'(nn, address), cn, contents(D))).

Storage Structure Model _ ' 11

Intuitively, the node space is constructed from addresses in A for which T
does not return error; the header nodes of the storage structure instance
correspond to the header addresses of the encoding instance; and the instance
mapping translates node names into addresses, retrieves the field corresponding to
the desired component, and translates this into an abstract component value.
(For simplicity, we will often write ssi(SS; T(A), T(H); I), ignoring the
possibility of error being returned by T'.) Notationally, we will use a lower case
identifier, such as &, to refer to an encoding instance, while the corresponding
storage structure instance will be denoted by the same identifier, S, in upper case.

Note that the storage structure node space depends entirely on the set of
addresses for which the translation function does not return error. The larger the
set, the more nodes and possibilities for invalidity at the storage structure level.
For example, if pointers are encoded as byte offsets in a file, and nodes are
encoded into a contiguous sequence of bytes, each possible value for a pointer
field has an image under T in the node space of the storage structure instance.
Most of these nodes would not be part of the instance, nor even part of the
intended node space; in such cases, the validity of a robustness analysis relies to a
critical extent upon the Valid State Hypothesis being satisfied.

Figure 2 depicts the conceptual correspondence between storage structures
and encoding level concepts more graphically.

Encoding Storage Structure

, T , -
Addresses Lo > Node Names
(Data Space) - ~ (Node Space)

_ T ;
Header Addresses - K eemmee>> Header Node Names
Fields Lo > Components
Component Names L —— Component Names -

T, F

Interpretation Function <——v> Instance Mapping

Figure 2. Encoding and Storage Structure Levels

Before developing the results for systems of structures in the next sectlon we -
give an example of a storage structure instance, its implementation in a data
space, and a tabular form of the storage structure instance corresponding to the
contents of the data space. We will use the single-linked linear list of Figure 1,
and assume that each field in a node is one location in size. In view of this, we
can implement this instance using ﬁxed-length records of three locations each.
We will assume that the data space, D, is exactly the size of 8 records, with
addresses from the set {0, ..., 7} corresponding to relative record numbers in D,
and that contents(D) are

12 Black .and Taylor

00 5 4 2
1. 5 12 6
2: 5 5 1
3: 6 9 8
¢ 5 0 0
5: 10 0 100
6: 5 0 7
72 5 15 0

In order to completely specify the single-linked list encoding instance, we will
assume that the interpretation function maps the identifier component onto
location 0 of a record, the count or data component onto location 1, and the
“next” edge component onto location 2. The translation function maps addresses
in [0..7] onto [A..H| respectively, 5 into ID (the valid identifier component value
for this instance), and represents the count as a standard binary integer.
Denoting the encoding by E, the encoding instance in the data space is

s=cei(Single-Linked_List; D; (0); E).

The complete storage_strﬁcvture instance mapping of
S=ssi(Single-Linked_List; T({0, ..., 7}); T((0)); I)

is the following:

Node id count/data next
A: D 4 C
B: ID 12 G
C: D 5 B
D: error 9 error
E: D 0 A

F: error 0 error
Gr ID 0 H
H: ID 15 A

Note that this storage structure instance does not satisfy the valid state
hypothesis: node E=T(4) contains both the appropriate identifier value, and a
pointer to the header A =T(0). However, none of nodes D, E, or F are part of
the instance.

The definitions given above imply that any one data space may contain
many related and unrelated encoding instances, and that each encoding for which
an instance occurs in the data space may have a different set of addresses as well
as node names to refer to its own nodes. The interpretation function may- be
arbitrarily complex, using other supporting encodings and encoding instances to
construct the field returned for a given component. Together, the interpretation
function F and the translation function T allow the abstraction of the storage
structure instance from the unstructured set of locations which is the data space.
The purpose of the next section is to show how it is possible to perform
robustness analyses based on encoding changes to locations in the data space.

Storage Structure Model 13

5. Robust Implementations of Storage Structures

The main difficulty which we are trying to solve can be summed up in the
term ‘“‘change multiplication”: a single change to a location in a data space can
appear to cause a very large number of changes to those storage structure
instances which can be abstracted from encoding instances in it. This can be due
to component packing within a. (large) location, as well as to ‘“‘dependencies”
between instances, such as the encoding of pointers using page numbers which
themselves must be interpreted via some encoding which supports the abstraction
of a file as a sequence of pages. ' '

The following three results can be used when the relatlonshxp between the
encoding and the storage structure is relatively straightforward.

1. Let s=¢i(SS; D; H; E). If SS is k*j-detectable, and any encoding change '
to D results in at most k changes to S, then s is j-encoding-detectable.
(Recall that S is the storage structure instance corresponding to s.)

2. If SS is j-macro-detectable (any set of errors mvolvxng j or fewer nodes can
be detected) and any smgle encoding change to D results only in changes to
one node in T(A), then s is j-encoding-detectable.

3. If no single encoding change modifies more than one determining set in a k-
determined storage structure, then the encoding is (k— 1)-encod1ng-
detectable.

As an example, Figure 3 shows part of a linked list structure, in whlch
pointers are encoded as (page no., record no.). Let us ignore for the moment any
lower-level encodings supporting the page abstraction, assume each page always
contains a 64-entry record index, and that all components shown are stored in
single locations. If a 2-detectable double-linked list is used, what is the encoding
detectability of the result? The only location changes which are multiplied are
those to record index entries. If these changes are viewed as changing both of the
two incoming pointers to. a record om the list, Result 1 gives
1-encoding-detectability. However, such a single encoding change can also be
viewed as a macro change, affecting only one node of the storage structure. As a
slightly different implementation of a double-linked list can be made 2-macro-
~ detectable, Result 2 gives 2-encodmg—detectab1hty The viewpoint adopted may

- well affect the (lower bound on) encoding detectabllxty obtained from the analysis:
this is one aspect of a more general tradeoff between the effort required for a
detailed analysis, and the tightness of the resulting bound.

Result 3 gives an interesting perspectwe on pointer tagging, under the
assumption that the tag associated with a pointer often reflects the membership
of that pointer in one of a number of determining sets. If this is the case,
‘encoding the tag in the same location as the pointer implies that a smgle
encoding change can alter both the pointer and its memberslup in a determining
set. On the other hand, encoding the tag of a pointer in the same location as,
say, the previous pointer in the same determining set would allow Result 3 to be
applied, poss1bly mcreaslng the encoding detectabllxty obtained. However, this
may require an increase in the total number of tag components stored.

Black and Taylor

14
LENGTH OFFSET Page 462
0
1 | U
2| 48 — e
3 Nl
[}
(291, 23)
3
!
'
27| 48 — !
'
!
!
!
'
63| 48 | ,
!
]
]
]
!
]
!
!
(462, 63)] !
S
7’ !
/, '
’ !
Il t
’ !
e H
£ :
(462, 2) |} -------- 4

Figure 3. Page numbers and a linked list

Storage Structure Model 15

Up to this point, we have not given a formal definition of ‘“‘encoding
detectability”, relying instead on the reader’s intuitive understanding. In order to
define the concept properly, and to have a precise idea of dependencies between
encodings, we need to introduce the following ideas. :

Let c=(nn, cn) be a component of S=23si(SS; T(A); T(H); I), with I{c)==z.
Define the dependency set of ¢, denoted dep(c), to be the set of all locations such
that changing that location makes I{c)#z. Inversely, with each location in a
data space, we may associate those components of S which are dependent upon
it. Thus, we will say that a location supports zero, one, or more components of S
according to the number of components depending upon it. The set of all
locations supporting one or more components of S will be denoted support(S).
We note in passing that this set is exactly the union of the dependency sets of all
components of S. :

Given the supporting set, support(S), of a storage structure instance, it is
useful to partition it according to the number of components supported by the
locations. Define kernel(S) to be the set of locations supporting exactly one
component in one or more node types of the structure, and contezt(S) to be the
set of locations supporting more than one component in some node type of S.
We will say that an encoding instance s (and hence the encoding itself) depends
‘on another encoding instance ¢ (or encoding) if some location in contezt(S) also
belongs to kernel(T). When contezt(S) is empty, s is independent; an encoding
is independent if all possible instances of it are independent. The encoding of the
single-linked linear list in the previous section is independent: no encoding change
-affects more than one component in any node type of an instance.

Figure 4 reproduces Figure 3, with the kernel and context of the double-
linked list indicated for that part of the list. The supporting set of the linked list
storage structure instance is all the marked locations on this and other pages
* containing records of the list.

It is important to note that this simple partitioning of the supporting set into
kernel and context is somewhat coarse, as more subtle relationships between
locations and components can be identified. For example, contezt(S) is
intuitively most meaningful when all the locations in it are part of some
supporting structure, as illustrated by the record index example. However,
locations which pack together fields for more than one component also appear in
the context; such cases may well make a formal analysis using the dependency
relationships difficult, as the encoding instance in question may be neither
independent nor dependent on some other instance. As a further conceptual
complication, locations may fortuitously belong to kernel(S) because they only
happen to support a single component of S, whereas the same location supports
multiple components of other instances, and is conceptually “part of’ some
distinct structure. Nevertheless, the simple partitioning of the supporting set into
kernel and context is sufficient for our needs.

The results which follow use the dependency relation to determine the
encoding detectability of an instance based on those of instances on which it
depends. In general, the graph of this dependency relation may be cyclic. In such
cases, it may not be possible to construct a detection procedure for the encodings
from the storage structure detection procedures, due to the arbitrary change

16

Black and Taylor

LENGTH OFFSET Page 462
0 |
1| : 1"?
2| 8 VI AT

3 r’

AN\ ??11::\?:?5
21\ 48
63| 48 |, ///////

Kernel:

\\\\\\@6\2\\9?

N (462, 2}\

Context:

!
!
!
]
!
1
!
!
1
I
I
!
i
!
[}
)
!
!
!
!
i
!
!
I
!
i
!
i
!
!
1
!
I
[}
1
!
!
1
i
1

[

Figure 4. Kernel, context, and supporting set

Storage Structure Model 17

multiplications which may occur. Two possible means of resolving the difficulty
are to find a partitioning of the data into storage structures which removes the
circularity, or to devise an ad hoc detection procedure which obviates it. In
practice, cases of cyclic dependency are expected to be rare, especially when a
“reasonable’” hierarchical system design is followed.

In order to define encoding detectability precisely, let s, and ¢, ..., {, be
encoding instances whose corresponding storage structure instances S, T}, ..., T,
are correct and valid, and let s depend only on ¢,, ..., {,. Consider a set of j
encoding changes which appears to transform S, T}, ..., T, into S', T, ..., T',.
Then s is j-encoding-detectable if any set of j or fewer encoding changes applied
to support(S) causes at least one of S’, T', ..., T', to be incorrect, or S and S'to
be indistinguishable. We will apply the term both to encoding instances, and to
their corresponding storage structure instances for the given implementation.
Generalising, we will say that an encoding is j-encoding-detectable if every
instance of it has that property. ‘

We make the following observation.

4. An independent encoding of a j-detectable stora.ge structure is j-encoding;
detectable. This follows directly, as an independent encoding has no context.

Another simple result is the following.

5. Let SS,, ..., SS,, be storage structures with detectabilities jy, ..., j,, and let
Jj=min(j,, ..., Jm). Then any set of instances of these storage structures
which are in the same data space and whose encodings are independent is (at
least) j-encoding-detectable.

This latter result applies both to ‘“unrelated” set of instances occuring in the
same data space, and to independent composition, such as double-linked list of
CTB-trees, in which each list node contains a header for a CTB-trec. Formally,
each CTB-tree encoding instance is independent from the double-linked list, as no
encoding change to the list can change a component of one of the trees. Even if
some set of errors to the list caused one of the trees to become inaccessible, that
tree would be unchanged and still correct. (More formally, its instance mapping
has not changed.) The intuitive dependency of the CTB-tree instances on access
paths to their headers is nevertheless reflected in the minimum expression of the
result. ‘

'The main result based on dependency defines one way in which the encoding
detectability of a structure can be calculated from its storage structure
detectability and the encoding detectabilities of instances on which it depends.

6. Let SS be a j-detectable storage structure and s=ei(SS; D;H ; E) an
encoding instance depending only on encoding instances ¢,, ..., ¢,. Let {;
have encoding detectability k;. If every location in contezt(S) is also in the

supporting set of some T}, then & is min(j, ky, ..., k, }-encoding-detectable.

Let p=min(J, k,, ..., k,), and consider a set of p. or fewer encoding changes to
the -data space. If all of these changes are to affect 3, then they must be to
locations in support(S), which itself consists of contezt(S) and kernel(S). As
every location in contezt(S) belongs to the supporting set of some T;, and as the
T; are individually p-encoding-detectable by assumption, any set of p or fewer

18 Black and Taylor

changes to contezt(S) will make at least one of the T; incorrect. If no changes
are made to contezt(S), then all must be to kernel(S). Any set of p or fewer
changes to locations in kernel(S) appears as at most p changes to S, which would
leave S incorrect as it is p-detectable..

6. Example and Conclusions

In order to illustrate the ideas in previous sections, we wxll give a brief
example showing how design and analysis of a robust system of storage structures
might proceed. We will consider an application which wishes to maintain 2 linked
list of keys (perhaps with other data) in a file on external storage. The reliability
specifications for the application require 2-encoding-detectability of the keys and
the list structure itself, with a locatlon defined to be a 32-bit word on external
storage.

The abstraction of a flle to be provided by the file system, is that of an
unstructured byte sequence of arbitrary length, with random access by relative
byte addresses within the file. This abstraction is created by allocating an
appropriate number of 512-byte physical disk blocks, and associating with these a
tree structure used to translate relatxve byte addresses into disk block addresses
and offsets.

A natural decomposition of the problem suggests the implementation of three
distinct robust storage structures: one for the keys, one for the list, and one for
the tree of physical block addresses supporting the file abstraction. This
decomposition implies a dependency hierarchy of three structures. The list
depends on the file tree, as a change to a physical block address can arbitrarily
alter the contents of a logical block of the file, with arbitrary effects on the list.
The key structure can conveniently be viewed as a “Fixed-Length List”, with the
length a parameter of the storage structure. (This storage structure is similar to
the Robust Contiguous List described 1 in [6], except that the number of keys in
the list is fixed by a parameter of the structure, with the intent that it be stored
in an encoding on which the list is dependent.) This implies dependency of the key
array on the list structure implementing the logical contiguity of array elements.

.One solution for the tree structure is some type of 2-detectable perfectly-
balanced-tree. In this case, interior nodes only need to contain pointers, as the
relative byte address whose disk location is being sought implies the pointer to be
followed at each level of the tree. At the leaves, where physical block addresses
are stored, Robust Contiguous Lists can be used to protect their values. The tree
can be chained and threaded as a CTB-tree [6], with the difference that all nodes
are full except those on the rightmost path from the root. We will assume the
encoding of this tree to be 2-encoding-detectable, ignoring possible dependencies
of it on the structure used to find files and manage physical disk block allocation.

On this basis, a straightforward implementation of a double-linked list may
be used within the file. Each list node contains one key and one difference field
used for the higher level robust key array. The robust key array consists of a
number of key and difference pairs, related as in a Robust Contiguous List. For a
fixed number of data keys greater than one, such a list is 2-detectable (see [2])
In this dependent implementation, the actual number of keys i in the array is given
by the count component of the double-linked list. -

Storage Structure Model 19

For brevity, we will leave as an exercise to the reader the verification of the
fact that the robust key array depends on the linked list, which in turn depends
on the file tree. Two applications of Result 3 then give the required encoding
detectability of two.

The example shows that the use of robust storage structures can easily be
integrated with normal system designs. For the designer who wishes to work in
storage/time/robustness space, the results allow him to evaluate the robustness of
alternate designs, storage structures, and combinations. For the analyst who
wishes to determine the robustness of a given system of data structures, the
results allow him to decompose and structure his analysis in a manner which
reflects the “natural” structure of the system.

Taken together, these results make it possible to determine the encoding
detectabilities of a large class of complicated storage structures, including
independent composition and dependent implementation. They permit a
hierarchical approach to analysing combinations, as well as to synthesising
software systems to meet a specified reliability criterion. The underlying model
formalises the relationships between storage structures, encodings, and instances,
while keeping the concept of a storage structure sufficiently abstract that widely
different encodings may be used to represent different instances of the same
storage structure.

None of the results presented here achieve an increase in overall robustness
due to combination of several storage structures. Two classes of combinations
which may increase robustness have been identified in [2], and are generalisations
of the “compound” storage structure originally presented in [11]. However, it
appears that stronger results require quite significant restrictions on the
structures being combined, and are unlikely to be generally useful.

Using robust storage structures does not exclude using other techniques for
coping with faults. For example, stable storage at the disk block level could well
be complemented by a robust storage structure to create the abstraction of a file
from a set of disk blocks. Together, the two techniques could permit tolerance of
both disk hardware faults and of faults in the file system and operating system
software. Thus, the use of robust storage structures extends and complements
the set of programming and design techniques which can successfully be used to
increase fault tolerance in a computing system.

Acknowledgements

This research was generously supported in several ways by the Natural
Sciences and Engineering Research Council of Canada, NATO, and the University
of Newcastle Upon Tyne. The results presented are essentially those of [2)-

References

1. T. Anderson and P. A. Lee, Fault Tolerance: Principles and Practice,
Prentice-Hall, Englewood Cliffs, N. J. (1981).

20

10.

. Black_and Taylor

- J. P. Black, Analysis and Design of Systems of Robust Storage Structures,

Ph. D. Thesis, University of Waterloo, Ontario, Canada (July 1982).

J. P. Black, D. J. Taylor, and D. E. Morgan, “A compendium of robust data
structures,” Digest of Papers: Eleventh Annual International Symposium
on Fault-Tolerant Computing, pp. 120-131 (24-26 June 1981)

~J.P. Black D.J. Taylor, ‘and D. E. Morgan, “An introduction to robust data

structures,” Digest of Papers: Tenth Annual International Symposium on

- Fault-Tolerant Computing, pp. 110-112 (1-3 October 1980).

J. P. Black and D. J. Taylor, “Local correctability in robust storage
structures,” CS-84-44, Dept. of Computer Science, Umversnty of Waterloo
(December 1984).

"J. P. Black, D. J. Taylor, and D. E. Morgan, “A robust B-tree
‘implementation,” Proceedings of the Fifth International Conference on
' Software Engineering, pp. 63-70 (9-12 March 1981)

J. V. Guttag, “The speclficatwn and application to programmmg of abstract
data types,” . CSRG-59, Dept of Computer Science, Umversxty of Toronto

(1975).

R. W. Hauxmxug, “Error detectmg and error correctmg codes,” Bell System
Technical Journal 26 pp. 147-160 (April 1950). \

D. J. Taylor and:J. P. Black, “Principles of data structure error correctlon,

IEEE Transactions on Computers C-31(7) pp. 602-608 (July 1982).

D. J. Taylor, D. E. Morgan, and J. P. Black, “Redundancy in data structures:
Improving software fault tolerance,” IEEE Tronsact:one on Software

* Engineering SE-6(6) pp. 585-594 (November 1980).
11.

D. J. Taylor, D. E. Morgan, and J. P. Black, “Redundancy in data structures
Some theorétical results,” IEEE ﬁaneact:ons on Software Engmeermg

) SE-o(ﬁ) pp. 595-602 (November 1980).
12.

D. J. Taylor, Robust Data Structure Implementa.t:ons Jor Software

' Relzabzltty, Ph. D. Thesns, Uuwersnty of Waterloo, Ontarlo, Canada (August

1977).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

