EBAF
EPAR

i1
D

QO00O

AERRS &

WAL
W,
IVERSITY OF WATERLOO C

S &

IVER
IVER

|

EPARTMENT

Local Correctability
in Robust
Storage Structures

J.P. Black
D.J. Taylor

Data Structuring Group

CS-84-44

December, 1984

Local Correctability in Robust Storage Structures
James P. Black
David J. Taylor

ABSTRACT

Robust storage structures contain sufficient structural redundancy
to permit the detection and possibly the correction of errors in
structural information. Such structures and their detection and
correction algorithms can be incorporated into a computer system
at various levels of abstraction in order to increase its reliability and
fault tolerance. An important property of some robust storage
structures is local correctability, which permits the correction of an
arbitrary number of errors, provided the errors are in some sense
sufficiently separated from each other. We present examples of
such structures, a general definition of local correctability, and a
practical approach to designing and exploiting locally correctable
robust storage structures.

1. Introduction

There is a growing interest in techniques to assist in the design and
implementation of fault tolerant software, that is, software which is capable of
detecting failures in hardware or software components, and reacting
appropriately. Two examples of software structuring or design techniques which
address this problem are recovery blocks [7] and N-version programming [5].
Some systems, such as SIFT [15], use N-modular redundancy of software
components on independent hardware to detect and mask hardware failures. The
use of atomic actions [8] or tramsactions [6] mormally provides for automatic
backward error recovery. At a lower level in most systems, checksums and error
detecting/correcting codes [9] have long been used to guard against undetected
communications and hardware failures.

The study of robust storage structures [3,12] attempts to suggest ways of
using redundancy in data structures to detect and possibly correct errors in them.
As such, robust storage structures and their detection/correction algorithms can
be used with most of the techniques mentioned above to increase the fault
tolerance and reliability of a software system. Our intent is not to discuss storage

2 Black and Taylor

structure robustness in general; the interested reader is referred to [2,13,14].
Rather, we wish to discuss a particular property known as local correctability.
The results presented in this paper are revisions and generalisations of similar
ones in [2].

Intuitively, we will say that a storage structure is locally correctable if it is
possible to correct an arbitrary number of errors to structural components of an
instance of it, assuming that the errors are “sufficiently separated” from one
another. Thus, it may be possible to correct O(n) errors in an instance
containing n nodes. Similarly, a storage structure is locally detectable if the
insertion of any set of ‘“sufficiently separated” errors results in a detectably
incorrect instance. Unfortunately, these characterisations, while capturing the
essence of local correctability and detectability, are neither precise enough nor
general enough for our purposes.

Before developing formal definitions, we present a brief general background
to storage structure robustness. Section 3 discusses various robust storage
structures, and informally analyses whether they could be termed locally
correctable. This motivates the formal definition in Section 4, which has the
disadvantage of not being constructive. This is remedied to some extent in the
succeeding sections, which present a practical approach giving sufficient
conditions for local correctability. Section 8 contains a discussion and some ideas
for further work.

2. Robust Storage Structures

A robust storage structure is one in which some number of errors to
structural information is guaranteed to be detectable in any instance of it.
“Structural information” is intentionally vague; typical examples include pointers,
counts of nodes, height fields in trees, and identifier components. (In a correct
instance, the identifier component of each node in the instance has a value which
uniquely identifies both the type of the node and the instance to which it
belongs.) This notion of robustness relies on that of the correctness of an instance
of the storage structure. While we will only use English to describe correct
instances in this paper, more formal treatments have been based on an axiomatic
description method [2], or the implicit description embodied in the code of a
“detection procedure”, which is used as a final authority to decide whether a
particular storage structure instance is correct [13].

For this paper, we will consider an instance of a storage structure to consist
of a set of nodes connected by edges or pointers. Each node has a unique name.
A component is a pair consisting of a node name and a component name, and has
a value which is obtained by an instance mapping, denoted I, applied to the
component. Components which are edges have values which are node names. An
instance of a storage structure consists of a tuple of distinguished header nodes,
denoted H, and all nodes accessible from them (via I) in the node space in which
the instance is stored.

In order to quantify robustness, it is necessary to assume some particular
model for changes (or errors), and their possible effects on an instance, and to
make some assumptions about the validity of the node space (or system state)
surrounding a correct instance. For the purposes of this paper, we will assume

Local Correctability 3

that a single change affects only a single component of structural data in a node
of a storage structure instance. Thus, a single change will affect, for example, the
value of a single pointer, count, or identifier component. We will assume that the
following Valid State Hypothesis holds:

With respect to quantifying robustness (or ‘“‘counting errors”), no node
external to a correct instance contains information which could be
interpreted as a pointer into the instance, and no external node contains
information which could be interpreted as a valid identifier value for this
instance.

Effectively, the hypothesis allows us to consider an individual instance in
isolation, without concern for the contents of nodes external to the instance but
within the same node space. For a more detailed discussion of various change
models and less restrictive valid state hypotheses, see [2].

Given that single errors affect single storage structure components, it is
possible to quantify the detectability of a storage structure. Let the distance
between any two correct instances be the smallest number of changes to single
components required to transform one instance into the other. If the minimum
distance between any two correct instances is j+1, say, then the storage
structure is j-detectable, as any smaller set of changes will leave the structure
detectably in error (the detection procedure would reject such a structure, or the
instance does not satisfy the storage structure axioms). Similarly, if any set of j
or fewer changes can be corrected by some correction algorithm, the structure is
J-correctable.

3. Examples

In this section, we will examine several robust storage structures in an
attempt to decide whether they should be thought of as being locally correctable.

Consider first what is perhaps the simplest structure with non-zero
correctability: a double-linked list with identifier components in each node, and a
count in the header node containing the number of nodes on the list. A single
pointer error can be detected by traversing the list in the forward direction, say,
until 2 mismatch between forward and back pointers is detected. In the presence
of a single error, this detection procedure always halts within one node of the
erroneous component. This erroneous component can then be corrected by
traversing in the reverse direction from the header until corresponding symptoms
are observed, at which point enough information is available to correct the
pointer in error. (This algorithm was first given in [14], and is also discussed in
[12].) As far as local correctability of this structure is concerned, a second pointer
error anywhere in the list can render the first uncorrectable, implying that one
can never guarantee that two errors, no matter how “separated”, can be
corrected. Intuitively, double-linked lists are not locally correctable, although
single errors can be detected locally.

On the other hand, reorganisation of the redundancy in double-linked lists
can produce a structure which is truly locally correctable. The appropriate
reorganisation is to make each back pointer point to the second preceding node,
rather than the immediately preceding ome. In [14], such lists were termed

4 Black and Taylor

modified(2) double-linked lists, the parameter referring to the distance spanned by
the back pointer. In fact, they are also ‘‘2-spiral” lists: a k-spiral list has k
pointers in each node; one points to the k’th preceding node, and the others point
to the first, second, . . ., k—1'th succeeding nodes. As was argued intuitively in
[11], 2-spiral lists are locally correctable. More generally, a (k+1)-spiral is k-
local-correctable, as defined below.

For this paper, we will take a 3-spiral as a slightly more general example.
Figure 1 shows part of a 3-spiral, drawn to emphasise the “spiral” structure:
nodes linked by the back(3) pointers are drawn in the same column, while the
forward(1) and forward(2) pointers link nodes from top to bottom, following the
left-to-right descending spiral between the columns. A 3-spiral list has three list
headers, one of which (H) contains a global count of the number of nodes on the
list. The forward(1) pointer from H,, points to the first non-header node on the
list. For reasons of uniformity, all header nodes store three pointers which are
required to be set, even though some of the pointers must always point to one of
the other header nodes.

Consider the following basic step in a (local) correction algorithm. The
algorithm has corrected some number of previous nodes in reverse order to that
defined by traversing the structure using forward(1l) pointers. At each step, it
follows a back(3) pointer, and examines the node reached to verify that the two
forward pointers there are set to the two nodes last encountered. If this is the
case, the algorithm repeats with the next node in reverse order. For example, as
the algorithm reaches node 3 from node 6, it checks that pointers in node 3 are
correctly set to nodes 4 and 5. If not, diagnosis is performed by attempting to
reach the same node by two alternate paths: back(3) forward(2) from the last
node considered correct, and back(3) forward(l) from the node which was
encountered two steps ago. In the example, the algorithm would attempt to
reach node 3 from node 4 via node 1, and from node 5 via node 2. In the
presence of a second error in the locality, the algorithm could be faced with a
choice between three different nodes as the next node which should be traversed.
However, assuming at most two errors in the locality, the values in the forward
pointers of the candidate nodes can be used to correct the inconsistency observed
initially, and the algorithm can correct any number of sufficiently separated single
or double errors appearing further down the list. Figure 2 shows the components
used in one step of this algorithm. Such sets of components will later be referred
to as substructure instances.

Although the preceding description is couched in terms of a correction
algorithm (containing an embedded 2-local detection algorithm), it would also be
possible to use a “‘conservative” detection algorithm which always performed the
diagnosis step described above, even if no error was detected initially. Such a
routine would be able to halt in the vicinity of an error umless it encountered
more than four errors at once. An even more conservative algorithm can achieve
5-local-detectability.

We do not pretend that the discussion above is a formal proof of local
correctability: we will return to that in Section 7. Rather, we wish to illustrate
two important aspects of local correctability: one is that the notion of 2-local-
correctability is essentially that the correction algorithm can guarantee the

j_)

e nam——
| \
9
g Part of a 3-spiral list

6 Black and Taylor

|
I

Figure 2. Instance of general substructure, 3-spiral list

correction of any number of errors, providing that it never encounters more than
two at once. The other important characteristic which we wish to include in local
correctability is that of a constant-sized ‘locality’”’ around an error, which
formalises the concept of the algorithm ‘“‘encountering’ an error.

Other classes of linear lists can be analysed for their local correctability; this
is discussed in more detail in [2]. In a sense, a (k+1)-spiral has “maximal” local
correctability, being both k-correctable and k-local-correctable.

The chained and threaded binary tree, or CT-tree [12], was designed to
provide a binary tree storage structure which was 2-detectable and 1-correctable.
From the point of view of implementing an algorithm for 1-correction, the
principal difficulty is that there is only a loose and obscure relationship between
any given tree pointer and the chain and thread redundancy which permits
correction of an error to that pointer. This same difficulty in relating tree
pointers and chain/thread pointers precludes local detectability and correctability,
as the locality of a tree pointer error could include an arbitrary number of
chain/thread pointers, and single pointer errors could effectively prevent
correction of any other error. A more detailed discussion may be found in [11].

CTB-trees [4] are B-trees [1] incorporating similar chain and thread
redundancy, and are much more tractable than chained and threaded binary trees
because of their regular structure. In trying to repair a pointer error, the
correction algorithm need only scan slightly more than the subtree which was
pointed to in order to diagnose and repair the error correctly. (The scan is an in-
order scan using either tree pointers or chain and thread pointers.) In this
structure, it would be possible to correct multiple errors, provided (roughly) that
they occurred in separate subtrees. Thus, the locality associated with an error
has a size which depends upon the height of the error above the leaves of the tree.
While one could consider this structure to be locally correctable, we will not do
so, as we wish to insist upon the requirement for a constant-sized locality.

Local Correctability 7

Figure 3 shows an example of a “linked” B-tree, or LB-tree [10], which is a
storage structure designed specifically to be locally correctable according to the
definition formalised in the next section. The basic redundancy incorporated is a
pointer from each interior or leaf node to its right sibling, and a pointer from
each rightmost son to its father. A separate header for each level contains a
pointer to the leftmost node at that level, and a pointer to that header is stored
in the sibling pointer of the rightmost node. The use of these level headers and
associated circular lists provides a path to each node which is edge-disjoint from
the tree pointer path to the same node. In a practical implementation of an LB-
tree, care must be taken with this variable number of list headers. While not
wishing to ignore this problem, discussing it here is beyond the scope of this
paper; the interested reader is referred to [10].

(#

7 /\ (/17

LN

L FC I

Figure 3. A linked B-tree

In addition to being 1-correctable and 3-detectable, LB-trees are 2-local-
detectable and 1-local-correctable. The correction algorithm traverses the
structure in breadth-first order, that is, the root, its sons from left to right, their
sons from left to right, and so on. In general, the algorithm deals with a part of
the structure at each step, as shown in Figure 4. Nodes A and B have already
been ‘‘validated”, and the algorithm is attempting to validate the sibling pointer
from B to C. This is achieved by comparing it with the ¢’th pointer in A. If a
discrepancy is observed, diagnosis consists of comparing the pointer from C to D
with the i +1’th pointer in A. If these latter two agree, the problem is with the

8 Black and Taylor

¢'th pointer in A; otherwise, the pointer in B must be corrected. Note that the
number of storage structure components investigated in the locality is bounded by
a constant for this structure. Obviously, the algorithm must deal with several
other possible ‘‘substructures” during its operation; these correspond to
initialising the algorithm at the root of the tree, starting and ending the traversal
at each level, and crossing from the subtree rooted at A in Figure 4 to A's
sibling.

A

i+1

.

il

Figure 4. LB-tree general substructure

In the next section, we will make use of the intuitive discussion of these
examples of storage structures to motivate our general definitions of local
detectability and correctability. This will be followed by a more constructive
approach to local correctability based on the notion of substructures.

4. General Definitions of Local Detectablility and Correctablility

As we have mentioned, we wish to define local correctability of a storage
structure to mean that any number of errors can be corrected in an instance of
the structure, provided only that the correction algorithm never encounters too
many errors at once. Once a satisfactory definition of encountering a set of
errors has been made, we will be able to quantify local correctability by the size
of the set of errors. Unfortunately, these ideas seem very intimately related to an
algorithm to perform correction, rather than to the storage structure itself.

While local correction based on substructures such as those used in the
examples above is appealing, it does. not appear necessary to restrict local
correction algorithms to this ‘‘substructure-at-a-time” approach. We would not
wish to exclude an arbitrarily complex global algorithm which performed
correction subject only to the “separation constraint” imposed upon correctable
sets of errors.

Yet, any meaningful definition of separation between components (or errors)
seems dependent on some conceptual order of traversal of a storage structure
instance. This is particularly true if we wish to restrict local correction
algorithms to following pointers from the header(s) of a structure rather than
making arbitrary ‘“stabs” at system memory. As a further requirement of the

Local Correctability 9

definition, we would wish that it be ‘“fair”’, in the sense of not making some
components or component types ‘‘more correctable” than others. For example,
given a double-linked list, we wish to exclude an algorithm which will correct any
number of back pointer errors by blindly setting back pointers to agree with
whatever forward pointer structure the algorithm observes. Finally, we would
like the separation required between errors or sets of errors to be bounded by
some constant, which excludes CTB-trees from being locally correctable.

With these requirements in mind, we will present our definition of local
correctability, which is unfortunately rather more complex than we would have
wished. It is based on an abstract model of the operation of local detection and
correction algorithms. As defined below, local detectability is equivalent to the
existence of a “linearisation function” with certain properties. Intuitively, a
linearisation function produces a sequence of components which is guaranteed to
terminate in the vicinity of an erroneous component unless the vicinity contains
too many errors. Thus, the linearisation is used to measure the distance between
errors. Local correctability is then defined in terms of an algorithm which can
correct at least one error in the linearisation of an erroneous instance.

We define a linearisation of a (possibly incorrect) instance of a storage
structure to be a sequence of components from the instance, that is, of
components in nodes connected to the header(s). In general, a linearisation need
not include all components in an erroneous instance. We will assume that a
linearisation of an instance can be obtained by applying a linearisation function
to a tuple H of header node names and an instance mapping. An r-local
linearisation function L(H, I) » s produces linearisations satisfying

1. Completeness: The linearisation of a correct instance is a permutation of all
the components of the instance.

2. Determinism: If two instances of a storage structure have linearisations
whose first n components (n=0) are the same, and the values of those
components are the same in the two instances, then the two linearisations
have the same next component (or both linearisations contain exactly n
components).

3. Locality constraint: There is an integer k such that, in an incorrect instance,
either

a) all erroneous components of the linearisation are in the last k&
components,

or b) there is a subsequence of length k containing more than r erroneous
components.

The first requirement simply means that, for a correct instance, all
components are included in the sequence, and no repetitions are allowed. For an
incorrect instance, neither of these conditions is required. The second
requirement corresponds to the notion that the (n+1)'th component of the
linearisation depends only on the first n components. Thus, the first component
of a linearisation must be a header component; if two instances have the same
value for that header component, they must have the same second component in
the linearisation, and so on. The third requirement means that the linearisation
function must terminate the sequence shortly after an erroneous component is

10 Black and Taylor

included, unless there are ‘‘too many” errors close together. The occurrence of
case 3(b) will be referred to as a violation of the locality constraint.

While our formal definition of an r-local linearisation function does not allow
the function to return an indication of the correctness of the instance, we will
assume that this is available. If it is not, a detection procedure can always be
invoked on the instance.

As is the case in coding theory and the global theory of storage structure
robustness, the definition of ‘‘erroneous component” is subjective. There is some
instance which should exist and any differences are considered to be errors. Thus,
even a correct instance will contain erroneous components if some other correct
instance should exist. Of course, in such cases, the erroneous components will
cause 3(b) to occur, because the linearisation function will simply observe a
correct instance.

We can easily derive the following two properties of an r-local linearisation
function from the above definition.

4. Detection: The linearisation of an incorrect instance includes at least one
erroneous component.

Proof: Consider the correct instance corresponding to a given incorrect instance.
At least one component of the correct instance must have a different value in the
incorrect instance. Select the first such component in the linearisation of the
correct instance. By the determinism property, the linearisations must agree up
to and including this component, and hence the linearisation of the incorrect
instance includes an erroneous component. O

5. Reasonableness: Every non-header component (nn, ¢cn), with node name nn
and component name cn, appearing in a linearisation is preceded (not
necessarily immediately) by an edge component whose value is nn.

Proof: Suppose to the contrary that for some storage structure and instance, an
r-local linearisation function returns a linearisation containing a component,
(nn, cn), of a node not previously named by an edge in the linearisation. We can
construct another instance with the same headers and the same values for all
components preceding (nn, cn) in the linearisation, but which does not contain
node nn. Then (nn, cn) does not occur in the linearisation of this instance, but
the linearisations match up to the component preceding (nn, cn), contradicting
the determinism property. O

Each r-local linearisation function can thus be implemented by an algorithm
which only examines components of nodes connected to the headers, that is, by
what can be termed a reasonable procedure [13]. Furthermore, the linearisation
contains all components which the r-local linearisation function used in making
its decision.

A storage structure is r-local-detectable if it has an r-local linearisation
function. For example, the correction algorithms discussed above for 3-spiral lists
and LB-trees are easily seen to incorporate local detection. The linearisation
function is obtained by traversing the instance until an error is encountered, at
which point a sequence is emitted containing all components for which the
instance mapping has been interrogated. Although we will not provide formal
proofs in this paper, double-linked lists are 1-local-detectable, 3-spiral lists are 5-

Local Correctability 11

local-detectable, and LB-trees are 2-local-detectable. Neither CT-trees nor CTB-
trees are locally detectable, as it is impossible in both cases to bound the length
of the trailing subsequence containing an error.

An erroneous instance is P-improvable, (with respect to a linearisation
function L) if procedure P can correct at least one of the errors in the
linearisation produced by L. A storage structure is r-local-correctable if there is a
procedure P, an r-local linearisation function L, and an integer k, such that every
incorrect instance of the storage structure is P-improvable unless the linearisation
produced by L violates the locality constraint (has a subsequence of length k
containing more than r erroneous components).

It may seem odd that the definition appears to indicate a correspondence
between r-correctability and r-detectability rather than between r-correctability
and 2r-detectability, as is the case for global robustness properties. This is
because a ‘‘diagnosis phase” seems necessary, either as part of a 2r-local
detection procedure, or as part of the improvement procedure. The sufficient
conditions for r-local correctability which we develop below require 2r-local
detectability, but we are currently unable to prove the necessity of this.

The definition of local correctability is phrased in terms of correcting at least
one error under certain conditions. Once this error has been corrected, it is
possible to apply the linearisation function to the modified instance. The
resulting linearisation will have more correct components because of the
determinism property. We can correct an error in this linearisation as well, and
thus continue until all errors have been corrected or a violation of the locality
constraint is encountered. Note that a given application of the improvement
procedure does not necessarily correct the first error in the linearisation.
However, because of determinism, if the first error is mot corrected, it must
appear in all subsequent linearisations, each of which contains more correct
components following the first error. The improvement procedure cannot
“ignore” such an error indefinitely, because an attempt to do so will eventually
produce a linearisation containing only this one error, at which point it must be
corrected.

Although direct application of the definitions requires a complete recreation
of the linearisation after each error correction, in practice it is possible simply to
discard the end of the erroneous linearisation and then extend it until another
error is encountered (or the entire instance is processed). Thus, local correction
will normally be performed in linear time, with each error adding a constant to
execution time, rather than adding O(size of instance) to execution time.

Clearly, the definition of local correctability given above is not constructive.
It requires that a linearisation function and an improvement procedure be
exhibited in order to show that a structure is locally correctable. The following
sections describe practical techniques for constructing a linearisation function and
an improvement procedure. Throughout, the fundamental idea of “voting” on
the value of a component will be used.

12 Black and Taylor

5. Votes

We wish to derive sufficient conditions for local detectability and
correctability based on a certain style of algorithm. Essentially, we wish to
develop iterative algorithms for correction based on correcting one small
“substructure” at a time. However, as we have argued in [11], we also have a
clear need to avoid a combinatorial explosion if we wish to implement procedures
for correcting multiple local errors. For this reason, we make use of the notion of
a ‘‘vote’ to structure our correction algorithms.

The development which follows will result in a class of algorithms which
perform correction by correcting substructure instances which only depend on
components already assumed to be correct. This approach seems intuitive in view
of the reasonableness of a linearisation function. The substructure instances will
be composed of components evaluated by votes, and will overlap each other in an
instance. Each substructure instance will contain a small set of target
components upon which rather stringent requirements will be placed, as well as
diagnostic components which are much less constrained. The resulting sufficient
conditions for local detectability and correctability of a storage structure seem to
provide a natural characterisation of the intuition behind the two terms.

Consider a local detection algorithm which has placed some collection of
components in the linearisation, believing some of them to be correct, and has not
yet detected an error. Those components which the detection algorithm has
checked sufficiently to believe them to be correct will be called trusted. Assume
also that the algorithm has reached a “stable” state, in the sense that there are
no other components whose values can be deduced from trusted components.
Clearly, there must be fewer than k untrusted components in the linearisation at
this point.

The detection algorithm must now begin a new detection step by selecting a
component, ¢, to check next. Presumably, if there are components which have
been used in detection but are not trusted, one of those will be selected. Because
the algorithm cannot predict the value of ¢, it must expand the set of untrusted
components to include at least r other components in order to guarantee the
detection of r or fewer errors. In the worst case, r errors might have been
inserted to ¢ and r—1 other untrusted components, all agreeing on the incorrect
value of c.

We will call ¢ a principal component; the target associated with ¢ will be the
set of components whose values can be calculated using only the values of ¢ and
trusted components already in the linearisation.

In a 3-spiral, a principal component is a back pointer and the target
components are the identifier and two forward pointers in the node pointed to. In
an LB-tree, either of the two pointers to a node may be selected as the principal
component. The target consists of the other pointer to the same node and the
identifier component in that node.

As indicated at the beginning of the section, we wish to describe this
detection activity in terms of voting. A vote will examine trusted components
and untrusted components other than c itself in reaching a decision about the
value of ¢. A vote is a predicate of three arguments: a tuple of header node

Local Correctability 13

names, a component, and a component test value. We will say that a predicate
V(H, ¢, z) is a vote on ¢ if, assuming there are no erroneous trusted components,

1. V does not evaluate I(c),

2. V{(H,UI(c)) true implies zero or multiple errors in ¢ and untrusted
components, and

3. V(H,c,I(c)) false implies one or more errors in ¢ and untrusted components.

A vote thus performs l-detection on a set of components, assuming the
correctness of trusted components. If V(H, c, z) is true we will say that V is a
vote for z (as the value of c). Note that the Valid State Hypothesis is implicit in
the 1-detectability of a vote: violations of it can have the same effects on votes as
do multiple errors.

Since we assume each target component has a value which can be computed
from c and other trusted components in the linearisation, a test can be associated
with each target component, of the form g(H, ¢, z)=u, where u is the target
component value and g(H, ¢, z) is a function which generates u given that the
value of ¢ is z. If ¢ is correct, an error in the target component will always be
detected, but if ¢ is incorrect, the test may be satisfied even if the target
component is correct. In many cases, this test will also be a vote with the target
component as the only untrusted component in it. In our examples, all pointers
in targets have this property.

In the following, we will distinguish two types of votes: constructive votes
and diagnostic votes. A vote V(H, ¢, z) will be called constructive if there is a
function, f, of trusted and untrusted components such that V is equivalent to
evaluating the predicate

J(H,c)=z.

For convenience, we will extend the definition of constructive vote to allow I(c)
as a constructive vote. (Note that this trivial constructive vote does not
correspond to any vote. The corresponding vote would be I(c)=1I(c), which
detects nothing.) Any vote which is not a constructive vote will be called a
diagnostic vote.

To perform r-local detection we not only need r votes on the principal
component; we also require that the votes be sufficiently independent that no
single error can adversely affect more than one of them. The concept we wish to
define will be called distinctness of votes, but we first define distinctness of
applications of votes. Consider two votes, V, and V,, applied to the same
component, c, and test value, z. The applications V,(H,c,z) and Vo(H ,c,z) will
be called distinct if the untrusted components of the two votes do not intersect or
at least one of the votes evaluates false. Two votes, V, and V,, will be called
distinct if, for all instances, components, and test values, the applications of the
votes are distinct. Thus we may show that votes are distinct by showing that
their untrusted components never intersect, or by showing that whenever an
intersection does occur, at least one vote evaluates false.

Since in a correct instance all applications of votes must yield true, the
untrusted components for distinct votes do not intersect in a correct instance.
Superficially, it might appear that if two votes are non-intersecting in a correct

14 Black and Taylor

instance, they must be distinct. However, as the set of components evaluated by
a vote may change due to the presence of an error, this is not the case. Clearly,
it is necessary but not sufficient for distinctness that votes be non-intersecting in
a correct instance.

As an example, we may consider the distinctness of votes used when
performing 4-local detection in a 3-spiral. Referring to Figure 2, the four votes on
the principal component ¢ are the following:

Vy(H,c,X)=X.f,=A
Vy(H,c,X)=X.f,=B
Vy(H,c,X)=Ab.f,=X
V(H,c,X)=Bb.f,=X

(Y':p denotes component p of the node named Y; b is the back pointer, and f,
and f, are the two forward pointers.) V, and V, use untrusted back pointers,
but these pointers and c are necessarily in three different trusted nodes. Thus, no
vote evaluates ¢, and the only possible intersections of untrusted components
involve the [, pointers evaluated by V; and V,, or the f, pointers evaluated by
V, and V;. Considering the first case, the same f, pointer will be used by both
votes only if ¢ and B.b have the same value, X. V, and V, both return true iff
A=X.f;=X, implying A.f,=A. But A.f, is already trusted and known to
have the value B. (Note that this reasoning can be considered to use an arbitrary
assignment of components to trusted and untrusted sets. This assignment must
be made in such a way that each component can be checked before it must be
trusted. This issue is addressed by the theorem appearing in the next section.)
Exactly the same reasoning may be applied to show that V,, and V; are distinct.
Thus, all votes are distinct. '

6. Substructures

We define a substructure of type t to be a set of votes on a component with
component name t. (The intuition behind the definition is that the components
evaluated by the votes are a subset of the overall structure, but formally the
substructure consists of votes not components.) If a substructure contains r
distinct votes, it will be called an r-detectable substructure.

We define a substructure instance with principal component ¢ to be the set
of components evaluated by the votes in a substructure when the votes are
applied to ¢. Clearly, ¢ must be of the same type as the substructure. We divide
the components in a substructure instance into three subsets:

1. Trusted components: the union of the trusted components of all votes.
2. Target components: as defined above, including c itself.

3. Diagnostic components: all non-target components in the union of untrusted
components of all votes.

It is now possible to show that a storage structure is r-local-detectable if it
can be appropriately covered by substructure instances, as stated in the following
theorem.

Local Correctability 15

Theorem: A storage structure is r-local-detectable if corresponding to every
correct instance of the structure there is a sequence of r-detectable substructure
instances satisfying

1. the targets of the substructure instances partition the instance, the size of all
targets being bounded by a constant, m,

2. the trusted components of each substructure instance appear in targets of
preceding substructure instances, and

3. all diagnostic components of each substructure instance appear in targets no
later than the j’'th succeeding instance in the sequence, for some constant j.

Proof: We must show how to construct an r-local linearisation function given the
assumptions. It is claimed that the following is such a function: simply take each
substructure instance in order, adding to the linearisation any of its target and
diagnostic components which do not yet appear in the linearisation; for each
substructure instance, evaluate all votes and test any target components which do
not have a corresponding vote; if an error is detected, stop.

This satisfies the completeness property of the definition of an r-local
linearisation since the targets partition the instance. Provided a deterministic
ordering is chosen for the target and diagnostic components of each substructure,
determinism will also be satisfied, since all decisions are based on components
already placed in the linearisation. (Actually, it is possible that two or more
sequences might satisfy requirements (2) and (3), but this can be resolved by
picking a particular sequence according to some deterministic algorithm for
selection of a ‘“‘next” substructure instance.)

Finally, we show that the locality constraint is satisfied with k=m=*(j+1).
This proof is given in three stages. First, we show that any error in a target will
be detected if the substructure instance contains no more than r errors. Second,
we show that if no errors are detected, all errors are in the last m*j components
of the linearisation. Third, we show that an erroneous instance terminates the
linearisation with all errors in the last m*(j+1) components. For the second and
third stages, we assume that no subsequence of length k¥ contains more than r
errors.

We first show that any substructure instance containing at least one error in
its target components and no more than r errors in all of its target and
diagnostic components causes an error to be detected by the above algorithm. If
the prinicpal component is incorrect, then a vote can evaluate {rue only if it
contains another erroncous untrusted component. But for r distinct votes, this
implies at least r +1 errors in total for all votes to return {rue erroneously. If the
principal component is correct, any test on an incorrect target component will
yield false, and at least one target component is assumed to be in error, so an
error will be detected.

Now, consider the linearisation immediately after processing a substructure
instance in which no error is detected. We show by induction that all errors are
in the last m#=j components. This is clearly true for the initial, empty,
linearisation, so assume it is true prior to the processing of a substructure
instance in which no errors are detected. At most m components are added for
this instance, hence all errors must now be in at most the last k=m#(j+1)

16 Black and Taylor

components. By assumption, there can be no more than r errors in this
subsequence. Hence, the linearisation contains no more than r errors. Thus, each
substructure instance in the linearisation contains no more than r errors. As
shown above, an error will be detected if any target component is in error, hence
all target components in all substructure instances are correct. By (3) in the
statement of the theorem, all but the last j instances have all their diagnostic
components in targets which are known to be correct, so errors can only exist in
those diagnostic components of the last j instances which are in targets of
instances not yet added to the linearisation. All of these are in the last m=*js
components of the linearisation, as required.

When an error is detected, at most m components will have been added
corresponding to the erroneous instance, and hence all errors will be in the last
m#*(j+1)=k components. (Since the targets partition the instance, an error will
be detected eventually. An error may be detected before the first erroneous
target component is examined. The above reasoning is independent of whether
the first erroneous component is a target or diagnostic component of the
detectably erroneous instance.) O

This result and the discussion of distinctness above can be used to show that
a 3-spiral is 4-local-detectable. The complete proof requires construction of
special “initial” and ‘‘terminal’”’ substructures, which we omit for brevity. In
Section 7, such special substructures are constructed to demonstrate 2-local-
correctability for 3-spirals.

Clearly, it is possible to perform local detection easily without explicit
reference to the voting procedure described in this section, but, given the voting
mechanism developed here, diagnosis and correction, which are very hard to
perform on an ad hoc basis, are also quite easy.

7. Local Diagnosis and Correction

Once an error has been detected, it is necessary to determine which
component(s) are in error and then correct them. In the case of local error
correction, it is only necessary to locate and correct at least ome erroneous
component. It is possible to view the diagnosis phase as determining the correct
value of the principal component, ¢. If the correct value is the current value of ¢,
then other target components (as defined in Section 5) can be corrected. If the
correct value is not the current value of ¢, then ¢ can be corrected and possibly
other target components as well.

If an r-local-correction procedure is using an r-local-detection procedure,
then the diagnostic procedure will need to examine additional components in
order to make this decision. (If a 2r-local-detection procedure is used, it is
possible that sufficient information is already available to make a diagnostic
decision.) In any case, the diagnostic procedure must make use of at least 2r
untrusted components since in the worst case, ¢ and the first r—1 untrusted
components examined might all be erroneous but in agreement with each other:
the “‘weight” of these r erroneous components must be counterbalanced by r+1
correct components.

Local Correctability 17

In order to perform diagnosis, as described above, within the framework of a
“vyoting” algorithm, we must first generate a set of candidate values for ¢ and
then select the appropriate value by voting. Constructive votes will be used to
generate the candidate values, and there must clearly be r+1 distinct
constructive votes if at least one of them is to remain unaffected in the presence
of r or fewer errors.

As we have indicated above, the votes used in selecting the correct value of ¢
from the candidates provided by the comnstructive votes are called diagnostic
votes. These diagnostic votes will be applied to each of the test values provided
by the constructive votes. That is, if the diagnostic votes are V,...,V,, and the
distinct values returned by the constructive votes are z,,..z,, we wish to
evaluate

V,-(H,c,a:j) (1=1,...r; 7=1,...t).

To guarantee a correct decision after the constructive and diagnostic votes are
applied, we require all of these constructive and diagnostic votes to be pairwise
distinct. Note that this does not actually place any restriction between diagnostic
votes used to test different candidate values, since distinctness concerns
application of votes to the same test value.

Referring back to the votes described for a 3-spiral at the end of Section 5,
the two non-trivial constructive votes for a back pointer, V5 and V,, are obtained
by following the two alternative paths to the destination of the back pointer in
the correct instance. The diagnostic votes available, V, and V,, involve checking
whether the forward pointers in the nodes reached by these paths match the last
two nodes traversed. As an example, consider the 3-spiral in Figure 1 with two
errors inserted. Assume the back(3) pointer in node 6 now points to node 2 and
the forward(l) pointer in node 2 points to node 4. We then obtain one
constructive vote for each of three nodes: the trivial constructive vote is for node
2; back(3), forward(1) from node 5 is a vote for node 4; back(3), forward(2) from
node 4 is a vote for node 3. There is one diagnostic vote for node 2, the
forward(1) pointer to node 4. There are no diagnostic votes for node 4. There
are two diagnostic votes for node 3, since both forward pointers are correct.
Thus, the error in node 2 has misled both a constructive and a diagnostic vete,
but there are still more votes for node 3 than for either of the other nodes
returned by the constructive votes.

For the LB-tree, if we select a sibling pointer as the principal component, the
non-trivial constructive vote is the tree pointer to the same node. The diagnostic
vote involves comparing the sibling of the node reached against the tree pointer
which should point to the sibling.

Intuitively, the appropriate correction to a principal component, ¢, should be
that value =z 5 for which there is the largest number of votes. Consider the
hypothesis that z 5 is the correct value of ¢c. Let n j be the number of constructive
votes returning z;, and m; the number of diagnostic votes for z;. Note that
nyt+ - Fa=r+l If z; is the correct value, then r+l—n1- errors must have
affected other constructive votes, and r —m 5 errors must have affected diagnostic

votes V,~(H,c,zj) ({=1,...,r), for a total of 2r+1—n;—m;. Clearly, this

18 Black and Taylor

hypothesis is only tenable if the number of errors implied is less than or equal
tor:

2r+l-n,~—mj <r+1, or equivalently
n; +m j>r-

If this condition is satisfied, we call z 5 an appropriate correction to c.
We are now in a position to prove the following:

Theorem: If a substructure instance with principal component ¢ satisfies

1. the substructure instance contains distinct constructive and diagnostic votes
as described above,

2. all trusted components are correct, and
3. there are r or fewer errors in the untrusted components,

then the original, correct value of ¢ is the single value z; such that n j+ m;>r.

J
Proof: Consider the ¢ distinct values ({=r+1) returned by the conmstructive
votes, and denote these by z, through z,. As above, let n; be the number of
constructive votes returning z; and m; be the number of diagnostic votes
V(H,c,z;) which return true. Assume, without loss of generality, that T, is the
correct value for ¢c. Then in the correct instance, we had nl—-r+1 m,=r, hence

n;+m;=2r+1, and n; +m,; =0 for i >1.

Suppose s errors are in components used by the constructive votes in the
correct instance. Then, because constructive votes are distinct, n,=r-+1-s.
The inequality occurs because a vote affected by multiple errors may fortuitously
return the correct value. In the correct instance, the components evaluated by
the constructive votes and the diagnostic votes on the (correct) value of ¢ do not
intersect, so, at most r —s diagnostic votes on z; can be affected by errors, and
potentially evaluate false. Thus

m =r—(r—s)=s,
n+m=(r+l1—s)+ts=r+1,

and z, is an appropriate correction. For ¢ >1, the distinctness required between
constructive and diagnostic votes gives n,+m;=<r. (Since we can evaluate
V(H,c,f(H,c)) for a constructive vote V(H ,c,z) and corresponding f(H,c), this
application must be distinct from the application of the diagnostic votes to the
test value z= f{H,c).) Thus, for any set of r or fewer errors affecting the votes,
z, will be the unique appropriate correction. O

The complete diagnostic voting algorithm for a principal component consists
of evaluating the constructive votes and counting them, evaluating all the
diagnostic votes and counting them, and determining whether a single appropriate
correction exists.

If the diagnostic voting yields a single appropriate correction, then the
principal component can be set to that value (if its present value is different) and
the values of target components can also be set to agree with the appropriate
correction.

Local Correctability 19

The definitions of substructure and substructure instance given in Section 6
do not depend on the use made of the votes, so we may define an r-correctable
substructure to be a substructure satisfying the following

1. The substructure contains at least 2r votes and at least r of these are
constructive. (Including the trivial constructive vote provides r+1
constructive votes in total.)

2. All of the votes are distinct.

For convenience, we will also say that a substructure is r-correctable (for any
r) if it consists only of constructive votes with no untrusted components. Such
substructures are used to set the principal component, and possibly other target
components, to values which can be determined entirely from previous
components. When a distinction is necessary, this will be referred to as a
degenerate substructure. Such substructures could be merged with other
substructures to meet the definition of an r-correctable substructure above, but
this makes such substructures unnecessarily complex.

We are now able to prove that the voting algorithm actually can be used to
perform local error correction.

Theorem: A storage structure is r-local-correctable if corresponding to every
correct instance of the structure there is a sequence of r-correctable substructure
instances satisfying

1. the targets of the substructure instances partition the instance, the size of all
targets being bounded by a constant, m,

2. the trusted components of each substructure instance appear in targets of
preceding substructure instances, and

3. all diagnostic components of each substructure instance appear in targets no
later than the j'th succeeding instance in the sequence, for some constant j.

Note that this is exactly the theorem of Section 6, with ‘“‘detectable” changed to
“correctable.”

Proof: We must show that an r-local linearisation function and an improvement
procedure can be constructed given these assumptions. Since each r-correctable
-substructure is 2r-detectable, and hence r-detectable, the existence of an r-local
linearisation function follows from the theorem proved in Section 6. The
improvement procedure simply performs the voting algorithm described and
proven above and then makes a correction or corrections as described. This
meets the conditions for an improvement procedure. O

In a 3-spiral, an instance of the general substructure consists of parts of six
nodes, as shown in Figure 2. The trusted components are the back pointers
. giving the node names of the three nodes in the bottom row. (Actually, the vote
must evaluate a whole sequence of back pointers, beginning at the headers, to
locate these back pointers. All of these back pointers are also trusted
components, but these ‘“‘subordinate” trusted components will be ignored for
simplicity in the example.) The principal component is the rightmost back
pointer, marked ¢. The other target components are the identifier and the two
forward pointers in the node marked X. The diagnostic components are the back
pointers in nodes A and B, and one forward pointer in each of nodes Y and Z.

20 Black and Taylor

It is easy to verify that the substructure corresponding to this instance is 2-
correctable, except for the distinctness of votes, however, the distinctness was
demonstrated in Section 5.

There are also two degenerate substructures: an initial one and a terminal
one. An instance of the initial substructure has a target containing the
forward(1) pointers in H, and H,, the forward(2) pointer in H,, and the identifier
fields in H, and H,. An instance of the terminal substructure has a target
containing the count, the back(3) pointers in the last two list nodes, and the
forward(2) pointer in H,. (H,, H,, H, denote the header nodes.) In a 3-spiral
list containing n non-header nodes, the linearisation contains an instance of the
initial substructure, followed by n+1 instances of the general substructure,
followed by an instance of the terminal substructure, in order to cover all
components with a target component in some substructure instance.

As a final remark, since an r-correctable substructure is 2r-detectable, a
storage structure which is r-local correctable by the method described above must
be 2r-local-detectable.

8. Discussion

The first part of this paper concluded with our formal definitions of local
detectability and local correctability. If a storage structure is locally detectable, a
detection procedure for the structure exists which is guaranteed to terminate in
the vicinity of an error unless this vicinity contains more than r errors. To the
extent that the traversal used by this detection routine matches that used by
normal routines accessing the structure, it is possible to incorporate detection into
“pormal” processing. This is clearly easy for linked lists, but is not as clear for
LB-trees. However, there exists a different 1-local-linearisation function for them
which could be incorporated into an algorithm which proceeded from the root to
a leaf node. This routine evaluates a constructive vote for each pointer on the
direct path to the leaf. Each vote is obtained by following the pointer
immediately to the left of the tree pointer, and comparing the value of the sibling
pointer in that node with the tree pointer. (Since the level headers may be
considered to lie along the left edge of the B-tree, there is always a pointer
“parallel to” and to the left of any tree pointer.)

In this paper, we have presented hardly more than a definition of local
detectability and some examples of storage structures which are locally
detectable. Much work remains to be done to develop a general theory of local
detectability which uses global properties of the storage structure to determine
bounds on local properties. The local detectability of a structure is bounded by
its global detectability, but it is not clear whether any of the global robustness
properties are of further use in determining the local detectability of a structure.
For example, a 3-spiral has a global detectability of 6, but is only
5-local-detectable.

For local correctability, the situation is somewhat better, as there do exist
some useful sufficient conditions for local correctability based on votes. The type
of algorithm required for local correctability in which an improvement procedure
is iteratively applied to partially corrected instances seems at first glance to be
from a much more restricted class than the algorithms which perform global

Local Correctability 21

correction in a storage structure instance. This is related to the notion of
distance between errors, and the problems which we have had with earlier
definitions of local correctability which were contradictory because they were
unable to model explicitly the way in which the instance changed as the local
correction algorithm operated. However, local correction algorithms are
inherently able to correct a number of errors which is ultimately dependent only
upon the size of the instance, while all global algorithms known to us have a
constant upper bound on the number of errors they can correct.

We feel that the substructure approach to local detectability and
correctability is quite intuitive, in spite of the often formidable formalisms
surrounding it. The target components in a substructure are quite tightly related
to the principal component, while the loosely constrained diagnostic components
in any one substructure instance are dealt with more completely in some other
target. This overlapping property of substructure instances seems particularly
useful for reducing the complexity of multiple error correction. In particular, the
voting algorithm nicely avoids the combinatorial explosion of symptoms and
possible diagnoses which otherwise occurs in performing diagnosis of multiple
errors. The necessary votes seem to “occur”’ quite naturally, although proving
distinctness of votes can be tricky; both LB-trees and r-spiral lists were designed
before the notion of a vote became well-defined.

One of the interesting tradeoffs in local detection and correction is between
the use of a ‘‘pessimistic’” and an ‘“‘optimistic’’ algorithm. A pessimistic algorithm
always attempts to perform the greatest amount of detection or correction, at the
expense of more complex code and perhaps slower execution. An optimistic
algorithm, on the other hand, performs a minimal amount of extra checking at
the risk of being misled into proceeding (in the case of detection), or actually
making inappropriate corrections. As an example, we mentioned the 2-local
detection routine for 3-spirals used by the correction algorithm, the 4-local
detection routine which always evaluates the non-trivial constructive votes, and
the 5-local detection routine which is known to exist.

Rather curiously, it appears that the 2-local detection routine for 3-spirals
detects up to 5 local errors (in a larger locality). Thus, if used purely as detection
routines, the 2-local and 5-local detection routines seem to be equivalent. If used
in conjunction with the 2-local correction routine, there is a difference: delayed
error detection by the 2-local detection routine may cause improper ‘‘corrections”
to be made, in cases which would be diagnosed as uncorrectable with use of the
5-local detection routine. This apparent equivalence between optimistic and
pessimistic local detection requires further study.

For the moment, we have no good way of measuring the effectiveness of local
correctability. Obviously, the probability of a correction algorithm succeeding
depends critically on the distribution of errors within the instance. Unfortunately,
any analytical evaluation of this probability for a locally correctable structure is
intractable under even the grossest of simplifying assumptions, to say nothing of
attempting to model a “realistic”’ distribution of errors introduced by, say, a
misbehaving program. However, some simulation attempts have been made, and
experiments are still in progress to evaluate the “effective” limit of how many
errors can ‘‘usually” be corrected in particular storage structures. In particular,

22 Black and Taylor

the local correction routines for k-spirals and LB-trees have been implemented
and extensively tested.

Our main purpose has been to suggest the use of locally correctable storage
structures as a viable technique to aid in the construction of fault tolerant and
reliable systems. As such, we give examples of storage structures which are
simple enough to provide significant robustness at acceptable cost. Obviously,
the two main candidates in this regard are the 1-local-correctable 2-spiral linear
list, which we did not discuss in detail here as it has been described elsewhere [11],
and the LB-tree. Their use involves little overhead relative to ‘“standard”
implementations of linked lists and B-trees; their robustness can be exploited to
increase overall system reliability significantly.

References

1. R. Bayer and C. McCreight, “Organisation and maintenance of large ordered
indexes,” Acta Informatica 1(3) pp. 173-189 (1972).

2. J. P. Black, Analysis and Design of Systems of Robust Storage Structures,
Ph. D. Thesis, University of Waterloo, Ontario, Canada (July 1982).

3. J. P. Black, D. J. Taylor, and D. E. Morgan, ‘“A compendium of robust data
structures,” Digest of Papers: Eleventh Annual International Symposium
on Fault-Tolerant Computing, pp. 129-131 (24-26 June 1981).

4. J. P. Black, D. J. Taylor, and D. E. Morgan, “A robust B-tree
implementation,” Proceedings of the Fifth International Conference on
Software Engineering, pp. 63-70 (9-12 March 1981).

5. L. Chen and A. Avizienis, ‘‘N-version programming: A fault-tolerance
approach to reliability of software operation,” Digest of Papers: Eighth
Annual International Symposium on Fault-Tolerant Computing, pp. 3-9
(June 1978).

6. K. P. Eswaran et al, ‘“The Notion of consistency and predicate locks in a
data base system,” Communications of the ACM 19(11) pp. 624-633
(November 1976).

7. J. J. Horning et al, “A program structure for error detection and recovery,”
pp. 171-187 in Lecture Notes sn Computer Science, ed. E. Gelenbe and C.
Kaiser, Springer Verlag, Berlin (1974).

8. D. B. Lomet, “Process structuring, synchronisation and recovery using atomic
actions,” SIGPLAN Notices 12(3) pp. 128-137 (March 1977).

9. W. W. Peterson and E. J. Weldon Jr., Error-Correcting Codes, MIT Press,
(1972).

10. D. J. Taylor and J. P. Black, “A locally correctable B-tree implementation,”
CS-84-51, Dept. of Computer Science, University of Waterloo (December
1984). Accepted for publication in Computer Journal.

11. D. J. Taylor and J. P. Black, “Principles of data structure error correction,”
IEEE Transactions on Computers C-31(7) pp. 602-608 (July 1982).

12.

13.

14.

15.

Local Correctability 23

D. J. Taylor, D. E. Morgan, and J. P. Black, “Redundancy in data structures:
Improving software fault tolerance,” IEEE Transactions on Software
Engineering SE-6(6) pp. 585-594 (November 1980).

D. J. Taylor, D. E. Morgan, and J. P. Black, “Redundancy in data structures:
Some theoretical results,” IEEE Transactions on Software Engineering
SE-6(6) pp. 595-602 (November 1980).

D. J. Taylor, Robust Data Structure Implementations for Software
Reliability, Ph. D. Thesis, University of Waterloo, Ontario, Canada (August
1977).

J. H. Wensley et al, “SIFT: Design and analysis of a fault-tolerant
computer for aircraft control,” Prociedings of the IEEE 68(10) pp. 1240-
1255 (October 1978).

	

