Symbolic Factorization for
Sparse Gaussian Elimination with Partial Pivoting

Alan George
Esmond Ng

Department of Computer Science
University of Waterloo
Waterloo, Ontario, CANADA

CS-84-43
November 1984

Symbolic Factorization for
Sparse Gaussian Elimination with Partial Pivoting!

Alan George

Esmond Ng

Department of Computer Science
University of Waterloo
Waterloo, Ontario, CANADA

CS-84-43
November 1984

t Research was sponsored by the Canadian Natural Sciences and Engineering Research Council under
Grant A8111, and was also sponsored by the Applied Mathematical Sciences Research Program, Office of
Energy Research, U.S. Department of Energy under contract DE-AC05-840R21400 with the Martin
Marietta Energy Systems Inc., and by the U.S. Air Force Office of Scientific Research under contract

AFOSR-ISSA-84-00056.

ABSTRACT

Let Az=0 be a large sparse nonsingular system of linear equations
to be solved using Gaussian elimination with partial pivoting. The
factorization obtained <can be expressed in the form
A=PMP;M, - -P,_M,_U, where P, is an elementary
permutation matrix reflecting the row interchange that occurs at step k
during the factorization, M, is a unit lower triangular matrix whose k-
th column contains the multipliers, and U is an upper triangular matrix.

Consider the k-th step of the elimination. Suppose we replace the
structure of row k of the partially reduced matrix by the union of the
structures of those rows which are candidates for the pivot row and then
perform symbolically Gaussian elimination without partial pivoting.
Assume that this is done at each step k, and let L and U denote the
resulting lower and upper triangular matrices respectively. Then the

— — n—1

structures of L and U respectively contain the structures of Y] M, and
kw1

U. This paper describes an algorithm which determines the structure of

L and U , and sets up an efficient data structure for them. Since the
algorithm depends only on the structure of A, the data structure can be
created in advance of the actual numerical computation, which can then
be performed very efficiently using the fixed storage scheme. Although
the data structure is more generous than it needs to be for any speci fic
sequence P;, Py, -+, P, _,, experiments indicate that the approach is
competitive or superior to conventional methods. Another important
point is that the storage scheme is large enough to accommodate the
QR factorization of A, so it is also useful in the context of computing a
sparse orthogonal decomposition of A. The algorithm is shown to
execute in time bounded by IE | + | U |, where | M| denotes the
number of nonzeros in the matrix M.

1. Introduction

Let A be an n Xn nonsingular matrix and b be an n-vector, and consider the
problem of finding an n-vector z such that

Az = b

A standard approach for solving the problem involves reducing A to upper triangular
form using elementary row eliminations (i.e., Gaussian elimination). In order to
maintain numerical stability, one may have to interchange rows at each step of the
elimination process (i.e., use partial pivoting). Thus, we may express the elimination as
follows:

A = PIM\PM; - P, (M, _,U

where P, is an nXn elementary permutation matrix corresponding to the row
interchange at step k, M, is an n Xn unit lower triangular matrix whose k-th column
contains the multipliers used at the k-th step, and U is an nXn upper triangular

matrix. When A is sparse, it is well known that fill-in occurs during the triangular
n-—1

decomposition. That is, there may be more nonzeros in 3} M, and U than in A. Our
k=1

objective is to develop a scheme that can create from the structure of A and prior to

the numerical decomposition a data structure which can accommodate all the nonzeros
n=—1

in }'M, and U. This process is known as symbolic factorization. Note that for
k=1

sparse Gaussian elimination with partial pivoting, the positions of nonzeros in the

triangular factors M, and U depend not only on the structure of the matrix A, but

also depend on the row interchanges. Since the row interchanges are not known until

the numerical decomposition is performed, the symbolic factorization process must be

able to generate a data structure that is large enough to accommodate the nonzeros for

any possible (and valid) sequence of elementary row permutations P,, Py, - -+, P,_;.

There are important reasons why it is desirable to perform such a symbolic
factorization. First, since a symbolic factorization produces a data structure that
exploits the sparsity of the triangular factors, the numerical decomposition can be
performed using a sfatic storage scheme. There is no need to perform storage
allocations for the fill-in during the numerical computation. This reduces both storage
and execution time overhead for the numerical phase. Second, we obtain from the
symbolic factorization a bound on the amount of space we need in order to solve the
linear system. This immediately tells us if the numerical computation is feasible. (Of
course, this is important only if the symbolic factorization can be performed cheaply
both in terms of storage and execution time and if the bound on space is reasonably
tight.)

el

In [6] we have proposed an implementation of Gaussian elimination with partial
pivoting for sparse matrices using a static storage scheme. The approach is based on
the following results. Assume the diagonal elements of A are nonzero. Then it can be
shown that the structure of the Cholesky factor Ly of ATA contains the structure of
UT. That is, if U;; is (structurally) nonzero, then (Lg); will also be (structurally)
nonzero. Furthermore, the structure of the k-th column of L, contains the structure
of the k-th column of M. These results are independent of the choice of the pivot row
at each step. Thus we can use the structures of L; and L& to bound the structures of

”Z'IM,, and U respectively. The advantage of this approach is that if ATA is sparse
k=1

(and this is the case in some classes of problems), the structure of the Cholesky factor
Lo of ATA can be determined from that of ATA efficiently [4], and hence a data
structure which exploits the sparsity of L, and Lg can be set up. Thus this provides
an efficient symbolic factorization scheme for sparse Gaussian elimination with partial
pivoting. Notice that permuting the columns of A corresponds to ordering the rows
and columns of ATA symmetrically. It is well known that for sparse ATA, the
sparsity of the Cholesky factor Ly depends very much on the choice of this symmetric
ordering. Thus we may choose a column ordering for A so as to reduce the amount of
fill-in in L,. Numerical experiments have shown that an implementation using the
static storage scheme described above, together with a good column ordering for A, is
competitive with existing methods for solving certain classes of sparse systems of linear
equations [6].

However, in the approach described above, it is often true that the structure of L,

substantially overestimates the structure of nZ'le or UT. The objective of this paper
k=1

is to propose a better approach for predicting where nonzeros will appear in sparse
Gaussian elimination with partial pivoting, and to present a symbolic factorization
algorithm that will generate a tighter data structure which exploits the sparsity of the
triangular factors. The basic idea is to allocate space for nonzeros that would be
introduced by all possible pivotal sequences that could occur when Gaussian elimination
with partial pivoting is applied to a matrix having the structure of A.

An outline of the paper is as follows. In Section 2, the new approach for
predicting fill-in and a symbolic factorization algorithm are described. The complexity
of the algorithm is also considered. Some enhancements to the algorithm are presented
in Section 3, and in Section 4, some numerical experiments and comparisons are
provided. Finally, some concluding remarks and open problems are given Section 5.

..4._

2. A symbolic factorization algorithm

In the following discussion, it is convenient to assume that the diagonal elements
of the n Xn matrix A are nonzero (in which case the matrix A is said to have a zero-
free diagonal). If A is nonsingular and does not have a zero-free diagonal, it is always
possible to permute the rows (or columns) of A so that the permuted matrix has a
zero-free diagonal [1}. We will use the notation Nonz(B) to denote the structure of a
matrix B; that is,

Nonz(B) = {(i,j)| B;;#0}

When M is a matrix, | M| denotes the number of nonzeros in M, and when M is a
set, | M| denotes the number of elements in M.

G %)
A =15 B) -

and consider applying one step of Gaussian elimination to A with partial pivoting.

& 47 a uT]
PfA = P sl =

Now partition A into

Our goal is to be able to allocate space for the nonzeros in [, u and A,, regardless of
the choice of the pivot row (that is, the choice of P;). Our approach is based on the
observation that only the first row of A and rows j of A, where 6]-# 0, are involved in
the elimination. For convenience, row 1 and rows j of A, where 61-#0, are referred to
as candidate pivot rows. Thus only the structures of the candidate pivot rows may be
affected after the first step of Gaussian elimination with partial pivoting. Moreover,
the new structures of these rows depend only on their original structures. In fact,
assuming structural and numerical cancellations do not occur, the new structure of
each of these rows must be contained in the union of the structures of all the candidate
pivot rows.

The discussion above also explains why we prefer & to be nonzero. Suppose & is
zero. Then we know that the structure of ¢ is not affected during the elimination
except that it is moved to another row in the matrix. However, in order to have
sufficient space to store the nonzeros, we have to treat the row (& t'iT) as a candidate
pivot row as well. Thus the prediction of fill-in may be too generous. This problem is

-5 =

eliminated if we arrange the rows of A so that & is nonzero.

Assuming structural and numerical cancellations do not occur, the union of the
structures of the candidate pivot rows is identical to the structure of

i = a7+ Th
Hence the discussion above can be summarized as follows.
Nonz(l) = Nonz(v)
Nonz(uT) € Nonz(#T + $TB)
Nonz(A,;) C Nonz(é - G(z‘iT + ﬁTé)) = Nonz(B — #(47 + 6T Bya)

It is convenient to denote ¥ by I, and é—ﬁ((iT+ 6Té)/& by A,. We should emphasize
that the right hand sides, which can be computed easily from the structure of A, are
independent of the choice of the actual pivot row (i.e., the choice of P;) even though
the left hand sides are. Hence we can use the structures of I, # and ;1-1 to bound those
of I, u and A, respectively, regardless of the chotce of P,.

It is interesting to note that the decomposition

[1 o] & ul

[1J{o A,

can be obtained by applying one step of Gaussian elimination without row interchanges
to the following n X n matrix A.

_ [a aT+aT1§]
A=1; B

Just in terms of structures, what we have done effectively is to replace the first row of
A by the union of the structures of the candidate pivot rows and then apply one step
of Gaussian elimination without partial pivoting.

Since B has a zero-free diagonal, A;=B—-#(#7 +#' B)/& must also have a zero-
free diagonal under the assumption that exact cancellation does not occur. Thus the
argument and idea above can be applied recursively to A; and Zl, yielding a procedure
for generating a sequence of vectors whose structures can be used to bound the
structures of the triangular factors (M, and U). As we are going to see later, this
approach often generates a storage scheme which is much tighter than that provided
by the method in [6].

An important advantage of this new approach is that at each step of the symbolic
factorization, all we need is the ability to identify the candidate pivot rows and their
structures, and the ability to update the structures of these candidate pivot rows by
the union of their original structures. Notice that we do not have to be concerned with

-6 -

the actual numerical values or the actual row interchanges that may occur during the
numerical factorization. Thus the symbolic factorization procedure can be used to set
up a static data structure in advance of the numerical computation, which can then be
performed using the fixed storage scheme.

The success of the symbolic factorization procedure described above relies heavily
on the efficiency of identifying the candidate pivot rows and updating their structures
at each step. As we are going to show below, these can be done very easily and
efficiently. The symbolic factorization procedure can be implemented without even
modifying the structure of A! Consider the first step of the symbolic factorization.
The structure of row j (5 >1) of A_l is either unchanged (if the row is not a candidate
pivot row and is not involved in the elimination process), or the same as that of @~ (if
the row is a candidate pivot row and is involved in the elimination process). Thus, all
we need is an indicator mask(s) for each row j that tells us whether row j is involved
in step 1. In subsequent steps, if mask(j) is set, then it means that the structure of
row j has been used and its new structure should be obtained from (in this case) u T,

The other information we have to maintain is when the new structure of the
modified rows will be used again and where the new structure can be found. Suppose
I-a(l), ia(2), e ia(p) are nonzero, and Eﬂ(l), t_[p(z), IR i'[p(q) are nonzero. Since the
diagonal elements of A (and hence of A) are assumed to be nonzero, A,1),1)#0,
A,1),,1)*0, and p(1)=0(1). Note that A;; must be zero for 2= j <p(1), i =0(1), o(2),
---,0(p). See Figure 2.1 for an illustration. Thus the new structures of the modified
rows will be used again (at the earliest) at step p(1). We should emphasize that the
new structures are identical to that of @~. Also, at step p(1), the candidate pivot rows
will include those (whose row indices are greater than p(1)) of step 1, but the candidate
pivot rows of step 1 could be conveniently found by examining the structure of [. To
summarize, the only other information we have to record is the fact that at step p(1),
we have to look at { and # to obtain the correct structure of the modified matrix. In
the algorithm described below, we have used a set S ;) for this purpose. After the first
step, we have Sp(l)={l}.

At this point, it is appropriate to present the entire symbolic factorization
algorithm which is a generalization of what we have just described. The structure of A
is represented by two sets.

(1) C; contains the structure of column j of A.
c; = {i|lA;#0}
(2) R; contains the structure of row ¢ of A.

R, = {jla;#o0}

p(1)
F ¥ FF
p(1)
o(1)|+ + + +
+ + o+ +

Figure 2.1: Position of nonzeros after the first step of symbolic factorization.

Similarly, the structures of the sequence of vectors obtained from the symbolic
factorization algorithm are represented by sets.

(1) Ek contains the structure of a column vector that bounds the structure of column
k of Mk

(2) Ek contains the structure of row vector that bounds the structure of row &k of U.

The algorithm
(1) Global initialization

(1.1)Set mask(k)=0, for k=12, ---,n to denote that no rows have been
considered yet.

(1.2)Set S,=J, for k=1,2, - ,n to denote that step k has not yet been
influenced by any previous steps.

(2) For k=1,2, - - n, do the following:
(2.1)Local initialization: Set L, = and U,=@.
(2.2) Obtain structures of those unprocessed rows: _
For i €Cy, if mask(i)=0, then set L,=L,y {i} and U,=U,y R;, and set
mask(i)=1 (to indicate that row ¢ has been looked at already).

(2.3)If S,=, then go to Step (2.5). (Step k is not influenced by any previous
steps.)

—_8 -

(2.4)If S, #J, then Ek and U, should include Ij, and U; respectively, for 1€S;.
Hence, for ¢ €5, collect influence caused by step ¢:

L, =L,y L -{1, - k-1}

ﬁlc = ﬁku (—j, —{1,”‘,k"l}

(2.5)Update S: _ _
Let o=min{t|t€L,—{k}} and p=min{t|t€U,—{k}}. Since p=o, the
structure of L; and U, will influence the determination of the structures at
step p (if | L, | >1). Hence set S,=8,y {k}if | L, | >1.

The complexity of the algorithm is linear in the number of elements in |y I_,t and
_ i
U U; as the following discussion shows. Since each ¢, {=1,2 - - - n, will be included in
£

at most one S, S,N S pr=®, for p#p'. Thus we access the elements of I_:, and (7, at
most once for each ¢ (see Step 2.4). Furthermore, we access the elements of C; and R;
at most once in this algorithm (see Step 2.2). Hence the complexity of the algorithm is

n—-1 _ -—
o(lAl, X1 L] +1U|)
k=1
The overhead in storage is very small in this algorithm too. There are n elements
in mask for marking the rows. Since at step k, k is included in at most one set S po

ZI S;|Sn.
1

For convenience, we define a lower triangular matrix L so that f,z-j#o if iEEj and
L;;=0 otherwise. Similarly, let U be an upper triangular matrix such that U;;#0 if
J€U; and U;;=0 otherwise. Hence,

Nonz(U) € Nonz(U)

and

n—1 —
Nonz()] M) € Nonz(L)
k=1
In other words, a static storage scheme that exploits the sparsity of Land Uis always

large enough to accommodate the fill-in in M} and U, regardless of the choice pivot
rows.

It is interesting to note that the static data structure obtained from the symbolic
factorization algorithm not only has enough space to accommodate the fill-in created
in sparse Gaussian elimination with partial pivoting, but also has enough space to
accommodate fill-in produced in computing an orthogonal decomposition of A using

-G -
Householder transformations. Partition A into
A=1s B

Suppose H is an n Xn Householder transformation that reduces [

S R

(w19

-) o

49

pointed out in [5], H has the form

wer-2()6)

where Nonz(v)= Nonz(9). Thus,
aT]
B

HA = 1-—[][13,, [

(

S

al- -L(ﬂzﬁT+ﬂle§)

a
T
0 ‘—%(ﬁvﬁT+val§)
Hence
Nonz(v) = Nonz(4) = Nonz(l)
Nonz(ﬁT—%(ﬂzﬁT+ﬁvTé)) = Nonz(¢T+47B) = Nonz(a’)
and

Nonz(é—%(,@vﬁT+vaé)) = Nonz(é—‘(u +3TB)&) = Nonz(A,)

The argument can again be applied recursively to El and to é——:?(ﬂvﬁT+ vaé).

Thus, the symbolic factorization algorithm described above can be used to generate a
static storage scheme for sparse orthogonal decomposition using Householder
transformations. Note that both the upper triangular matrix and the Householder
transformations can be saved in the data structure.

Although the symbolic factorization algorithm has been described in terms of
n Xn matrices, with some slight modifications it can also be applied to rectangular
matrices. The lower trapezoidal portion of L and the upper trapezoidal portion of U
are stored respectively by columns and rows. If the matrix A is m Xn, then the mask
vector will be of size m and the number of elements in the sets S; will be min{m ,n}.

3. Enhancements

3.1. Subscription compression

From the sets {I_:,-} and {l—f;}, we can generate a storage scheme for storing the
nonzeros of I and U (and hence the nonzeros of M, and U). For example, consider
the upper triangular matrix U. One way to represent U is to store the nonzeros row
by row in a floating-point array UNZ, since the structure of Uis generated row by row.
Thus we need an integer array XUNZ to store the beginning positions in UNZ of the
nonzeros in the rows of U. More speclflcally, the nonzeros of row i of U are found in
UNZ(p), for p=XUNZ(¢), XUNZ(¢)+1, ---, XUNZ(s+1)—1. (It is assumed that
XUNZ(n+1)=1+]| I_J—,l .) It is also necessary to store the column subscripts of the

1
numbers in UNZ. Hence we need an additional integer array SUBU where SUBU(p)
contains the column index of the nonzero stored in UNZ(p). The lower triangular
matrix L is represented column by column using a similar storage scheme. We refer to
this storage scheme as the uncompressed storage scheme. Thus, if we use this
uncompressed storage scheme, we need approximately 3| Ij,l + | (7‘ |) floating-point

— — s
locations for the numerical values, 3(| L; | + | U;|) integer locations for the subscripts,
i
and 2n +2 integer locations for the pointers. If an integer location and a floating-point
location have the same number of bits, then the total number of locations required by

the uncompressed storage scheme is approximately
22(|L;| + | U;])
t

It has been observed from experiments that very often the set of subscripts of a
row (say row t) of Uisa subsequence of the subscripts of a previous row (in particular,
row i —1). This is also true for the columns of the lower triangular matrix L. Thus, it
makes sense to remove these redundancies using a process we call subseript
compression, so that the total number of subscripts that have to be stored is smaller
than 3| L;| +]U;|). The use of subscript compression is common in storage

schemes for solving sparse symmetric positive definite systems [8].

On the other hand, if the subscripts are compressed, there is no longer a one-to-
one correspondence between the numerical values in, say UNZ, and the subscripts in
SUBU. We need additional information in order to be able to retrieve the subscripts.
For example, consider the upper triangular matrix U again. We now need an extra
integer array XSUBU of size n with XSUBU(¢) indicating where we can find the
beginning of the subscript sequence for the nonzeros in row ¢. That is, the nonzeros of
row ¢ are stored in UNZ(p), for p=XUNZ(s), XUNZ(¢)+1, - - -, XUNZ(i+1)—1. The
corresponding column subscripts are stored in SUBU(q), for ¢=XSUBU({),

XSUBU(#)+1, ---. Of course, the length of the subscript sequence is simply given by
XUNZ(¢t +1)—XUNZ(i). We refer to this storage scheme as the compressed storage
scheme. As we will see in the numerical experiments presented in the next section, the
additional storage required by XSUBL and XSUBU is usually more than offset by the
saving in storage for the subscripts. However, since additional indexing is needed in
order to retrieve the nonzeros of a row of U or a column of L_, the numerical
computation phase using the compressed storage scheme is expected to be slower than
that using the uncompressed storage scheme.

There are two techniques employed in subscript compression. First, after we have
determined the structure of the k-th row of U (or k-th column of L), we can compare
it with that of the (k—1)-st row of U (or (k—1)-st column of L) to find out if the
“tail” of the latter sequence is the same as the “head” of the former one. If they are
the same, then we do not have to store the ‘“head” of the subscript sequence for the
current row (or column).

Another observation not only allows us to compress the subscripts, but also
improves the performance of the symbolic factorization algorithm in terms of the
execution time. Very often, some of the sets S; have only one element and there are no
unprocessed rows at step ¢. (In particular, after the symbolic factorization algorithm
has gone through a number of steps, say k <n, when all the n rows of A have been
processed, the situation above occurs very frequently.) Suppose S;={l}. This simply
means that the structures of L; and U; are determined entirely by L- {¢} and U,—{i}
respectively. Hence we do not have to access the elements of L, and U; at all. This
allows us to compress the subscripts and it would also reduce the execution time of the
symbolic factorization algorithm.

The techniques described above have been incorporated into our implementation,
and numerical experiments have indicated that there is indeed a significant reduction in
both the speed of the symbolic factorization algorithm and the total number of
subscripts that have to be stored.

3.2. Column ordering

At each step of the symbolic factorization algorithm, we replace the structures of
the candidate pivot rows by the union of their original structures. This operation is
independent of the initial row ordering. That is, the number of nonzeros (|L| and
| U|) determined by the symbolic factorization algorithm is constant, regardless of the
choice of the initial row ordering, as long as this row ordering preserves the zero-free
diagonal. (However, the choice of row ordering may have an effect on the extent to
which subscript compression can be achieved.)

Column orderings, on the hand, may affect the sparsity of the triangular matrices

- —_— n=1
L and U which is indirectly related to the sparsity of the triangular factors 3 M, and
k=1

U. (Again, the column ordering has to preserve the zero-free diagonal.) Consider the
two matrices A and B below, where B is obtained by interchanging the first and the
last columns of A.

(X X X X X)) X X X X X))
X X X X
A = X X B = |IX X
X X X X
| X X) [X X

The union of the structures of the matrices L and U in each case is displayed below.

\ ¢ \

(X X X X X X X X X X

X X X X X X X X X

Lya+U, : X X X Ip+Up : |x x x x %
X X X X X X X

(X X X X X)) (X X X X X

Hence it is important to choose a column ordering for A so that the triangular
matrices L and U are sparse.

In our experiments, since we want to compare the storage scheme generated by
the new symbolic factorization algorithm with that created using the approach
described in [6], we have decided to use a column ordering that is in general effective
for the method in [6]. Recall that in [6], one uses the structures of the Cholesky factors

n—1

of ATA to bound the structures of the triangular factors 3,/ M, and U of A. Hence it
k=1

is the sparsity of the Cholesky factors of ATA that has to be preserved. It is well

known that, when AT A is sparse, a minimum degree ordering is an effective ordering in
reducing fill-in in its Cholesky factors [7]. Hence we use that ordering to permute the
columns of A before we apply our symbolic factorization algorithm to A.

A natural way to order the columns of A is as follows. Consider the first step of
the symbolic factorization algorithm. Since we have to replace the structures of the
candidate pivot rows by the union of their original structures, a p X ¢ dense submatrix
is introduced into the matrix, where p is the number of candidate pivot rows and ¢ is
the number of nonzeros in the union of these candidate pivot rows. By rearranging the
columns of A, p and ¢ will be changed. Thus we could permute the columns (and
rows) before we carry out this step of symbolic factorization so that p, ¢ or even the
product pg is small (or minimized). Efficient implementation of these ideas is under
investigation.

3.3. Dense rows and dense columns

In some applications, the resulting matrix may have a few rows or columns that
are relatively dense. In the method proposed in [6], since we are working with ATA,
dense rows of A form large dense submatrices in A7A and this is not desirable. In our
present approach, the effect of having some dense rows in A may not be very severe, as
long as when one of these dense rows becomes a candidate pivot row, the number of
candidate pivot rows at that time is small. However, since we order the rows and
columns of ATA to obtain a column ordering for A, these dense rows may affect the
quality of the column ordering because the sparsity of the remaining rows of A may be
lost when we form ATA. One technique which we have found useful is to remove these
dense rows from A when we order the columns of A and then to put them back into A
when we carry out symbolic factorization. Some of the numerical experiments
presented in the next section will illustrate the improvement that may be achieved.

The effect of dense columns is not as clear as that of dense rows. Suppose the last
column of A is dense. It should be clear that such a dense column should have no
effect on the sparsity of L and U. On the other hand, suppose the first column of A is
dense. Then the number of candidate pivot rows at the first step of symbolic
factorization is large and the union of these candidate pivot rows may be dense. Even
if the union is sparse, more nonzeros will likely be added to this union as the symbolic
factorization algorithm proceeds. In other words, it is desirable to have any dense
columns appear last.

Instead of working with ATA and A, we may work with AAT and AT, since a
triangular factorization of A is as useful as a triangular factorization of AT. Dense
rows and dense columns in A now become respectively dense columns and dense rows
in AT. In terms of applying the symbolic factorization algorithm to A and AT, the
effect of having dense rows and dense columns in each case is in general different.
Thus, depending on how severe the fill-in is, we may prefer to work with AT rather
than A. As an example, suppose all the rows of A are sparse, but the first column is
dense. Then applying the symbolic factorization algorithm to A may result in a lot of
fill-in in L and U. However, if we work with AT, then the first row of AT is now dense
and AT has no dense columns. We can apply the symbolic factorization algorithm to
AT Together with the row withholding strategy in determining a good column
ordering, this latter approach may generate a sparse L and U.

Clearly, the key problem is to decide when a row or column should be considered
dense. This is an interesting topic for future research. A related question is how to
decide whether to work with A or AT. The answer is probably problem dependent, and
needs further study.

4. Numerical experiments

In this section, we present some numerical experiments to illustrate the efficiency
of our symbolic factorization algorithm and to compare the performance with the
method proposed in [6]. The experiments involved the solution of sparse systems of
linear equations

PT(QA)PPTz = PT(Qb)

where A and b are respectively the coefficient matrix and the right hand side vector, Q
is a permutation matrix chosen so that QA has a zero-free diagonal, and P is a
permutation matrix corresponding to a minimum degree ordering of ATA. (We
premultiply QAP by PT since we want to preserve the zero-free diagonal.) Symbolic
factorization is applied to the matrix B=PTQAP to create a data structure for the
numerical decomposition of B. The triangular factors M, and U, which are computed
using Gaussian elimination with partial pivoting, are stored in the fixed storage
scheme.

All experiments were carried out on a DEC VAX 11/780 computer. The programs
were written In ANSI standard FORTRAN using single precision floating-point
arithmetic, and were compiled using the Berkeley FORTRAN 77 compiler. In the
discussion below, storage requirements are expressed in terms of number of storage
locations required and execution times are in seconds. (Note that one floating-point
location and on integer location have the same number of bits.)

There are three sets of test problems in our experiments. These problems arise
from typical scientific and engineering applications. The first set consists of nine finite
element problems which are described in [3]. The numerical values were generated
using a uniform random number generator. The second set is a collection of problems
arising from chemical engineering calculations. The third set is a set of problems
arising from various applications, such as surveying and linear programming. The last
two sets of problems were kindly provided by Iain Duff, Roger Grimes, John Lewis and
Bill Poole [2]. Numerical values were provided for most of the problems in the last two
sets. For problems that do not have numerical values, we generated these numerical
values using a uniform random number generator. The right hand side vector for each
problem was chosen so that the solution vector consisted of all ones. The
characteristics of the problems are summarized in Table 4.1.

In presenting the results, we have employed the following notation.
(1) “store” denotes the number of storage locations required.
(2) ‘“time” denotes the execution time (in seconds) required.

(3) ““lower” and ‘“‘upper’ refer to the lower and upper triangular portions of a matrix
respectively.

number nrumber of nonzeros number of nonzeros
problem order of perrow per column comment
minimum maximum minimum maximum
1 938 0264 4 7 4 7 small hole square (finite element mesh)
2 1009 6365 4 7 4 7 graded L (finite element mesh)
s 1089 7861 s 7 s 7 plain square (finite element mesh)
4 1440 9504 3 7 3 7 large hole square (finite element mesh)
5 1180 7750 3 7 3 7 <+ shaped domain (finite element mesh)
[1877 8998 -] 7 s 7 H shaped domain (finite element mesh)
7 1138 7450 4 7 4 7 8 hole problem (finite element mesh)
8 1141 7465 4 7 4 7 6 bole problem (finite element mesh)
9 1349 9101 4 7 4 7 pinched hole problem (finite element mesh)
10 156 871 1 7 1 [] simple chemical plant model (chemical
engineering problem)
11 167 507 1 9 1 19 rigorous model of a chemical stage (chemical
engineering problem)
12 881 2157 1 25 1 &0 multiply fed column, 24 components
(chemical engineering problem)
18 132 414 1 9 1 19 rigorous flash unit (chemical engineering
problem)
14 67 204 1 8 2 10 cavett problem with & components (chemical
engineering problem)
16 855 2854 1 12 1 35 16 stage column section, some stages
simplified (chemical engineering problem)
16 479 1910 1 12 1 85 8 stage column section, all sections rigorous
(chemical engincering problem)
17 497 1727 1 28 1 &6 rigorous flash unit with recycling (chemical
engineering problem)
18 989 3537 1 12 1 26 7 stage column section, all sections rigorous
(chemical engineering problem)
19 113 656 1 20 1 27 unsymmetric patterm supplied by Morven
Gentleman
20 199 701 1 [} 2 9 unsymmetric pattern of order 199 given by
Willoughby
21 130 1282 1 124 1 124 unsymmetric matrix from lagser problem given
by A.R. Curtis
22 0663 1712 1 426 1 4 unsymmetric basis from LP problem (Shell)
28 363 3279 1 33 1 34 unsymmetric basis from LP problem (Stair)
24 822 4841 1 304 1 21 unsymmetric basis from LP problem (BP)
25 541 4285 1 11 5 541 unsymmetric facsimile convergence matrix

Table 4.1: Characteristics of test problems.

(4)

(5)

“factor time” and ‘‘solve time’ are respectively the execution times (in seconds)
required for the numerical factorization and numerical triangular solutions.

‘““percentage utilization” is the ratio of the actual number of off-diagonal nonzeros
obtained in the numerical factorization to the number of off-diagonal nonzeros
accommodated by the static data structure which is obtained from a symbolic
factorization algorithm.

Also for convenience, the approach described in [6] is referred to as “SF-ATA”, and the
new symbolic factorization algorithm described in Section 2 of this paper is referred to
as ““SF-A’. The new symbolic factorization algorithm with subscript compression as
discussed in Section 3.1 is abbreviated as “SFC-A".

For comparison purpose, we first summarize in Table 4.2 the results of using SF-
ATA,

Symbolic factorisation Numerical solution Pe.rc'ent..age
utilisation
Problem number number of nonzeros factor | solve
store time of store lower | upper
subscripts | lower upper time time

1 30620 1.017 7713 37554 37554 91247 | 55.817 | 1.600 || 50.36 | 68.82
2 34159 1.150 8914 46945 46945 111887 | 78.483 | 1.983 || 50.13 | 67.29
3 36244 1.200 9227 47484 47484 113998 | 82.650 | 2.100 || 50.50 | 66.865
4 45900 1.600 11317 49273 49273 122825 | 63.717 | 2.167 || 50.01 | 65.52
5 36751 1.200 8588 26570 26570 72350 | 20.833 | 1.233 || 49.28 | 64.03
6 42304 1.333 9699 28556 28556 79206 | 21.117 | 1.367 || 49.24 | 64.61
7 36507 1.200 9460 35291 35291 90286 | 40.500 | 1.533 || 50.43 | 65.14
8 37169 1.200 10040 38748 38748 97807 | 51.633 | 1.700 || 50.42 | 66.82
9 43842 1.433 10465 53161 53161 128930 | 74.567 | 2.333 || 49.34 | 63.55
10 2348 0.050 417 566 566 2955 0.133 | 0.033 || 29.68 | 38.52
11 3276 0.100 559 875 875 3814 0.267 | 0.067 || 30.51 | 40.11
12 23172 1.133 6993 18334 18334 47092 | 17.917 | 0.983 || 32.47 | 36.27
13 2645 0.083 466 742 742 3140 0.183 | 0.033 || 27.49 | 40.57
14 1746 0.050 385 843 843 2676 0.367 | 0.050 || 34.99 | 42.35
15 21058 0.767 5143 12906 129806 36852 8.467 | 0.667 || 24.14 | 39.12
16 13617 0.517 3118 7383 7383 22197 4800 | 0.417 || 31.79 | 38.48
17 15416 0.583 2223 6363 6363 19424 1.917 | 0.367 || 13.30 | 24.96
18 23907 0.750 4746 8143 8143 29935 2.883 | 0.467 || 23.04 | 37.34
19 3702 0.117 557 1322 1322 4220 0.500 [0.050 || 22.54 | 64.45
20 4364 0.133 1143 2194 2194 7324 1.067 | 0.117 || 36.46 | 56.61
21 16829 2.083 260 7763 7763 16958 | 10.250 | 0.350 || 67.51 | 48.78
22 188207 | 62.300 064 81080 91080 189093 | 14.850 | 4.050 0.55 1.54
23 15420 0.683 4007 7772 7772 22820 5.167 | 0.433 || 24.14 | 49.83
24 118904 | 22.833 6809 57817 57817 129843 | 38.883 | 2.600 || 11.79 | 15.02
25 24429 0.883 6634 16600 16600 44705 | 13.650 | 0.800 || 40.37 | 46.77

Table 4.2: Symbolic factorization using ATA (SF-ATA).

The first experiment we did involved implementing the symbolic factorization
algorithm described in Section 2, and used the algorithm to generate a static data
structure for sparse Gaussian elimination with partial pivoting. Numerical
factorization and triangular solutions were performed using that a fixed storage
scheme. The results are presented in Table 4.3. By comparing the results in Tables 4.2
and 4.3, we have the following observations. First, the number of nonzeros in the
lower triangular matrix | L| determined by the SF-A symbolic factorization algorithm
is smaller than that in the Cholesky factor L, of ATA predicted in SF-ATA. This is
true in all test problems, and the reductions are large in some cases. As a result, the
percentage utilization for the lower triangular matrix Lis significantly improved using

-1

the SF-A approach. That is, in terms of accommodating the fill-in in n)_';‘ M,, the
- k=1

structure of L is much tighter than the structure of the Choleksy factor L, of ATA. It

is interesting to note that the number of nonzeros in the upper triangular matrix U
determined by the SF-A symbolic factorization algorithm is either identical or close to
that in L% in SF-ATA. This suggests that the structures of the upper triangular
matrices U in SF-ATA and Lg in SF-A may be close to each other. This is supported
by the fact that the values for the percentage utilization in both cases are almost the
same.

Second, the SF-A symbolic factorization algorithm described in Section 2 is in
general slower than the SF-ATA symbolic factorization algorithm. (There are
instances in which the SF-A algorithm runs faster than the SF-ATA algorithm. See
Problems 22 and 24.) In most cases, the execution time of the SF-A symbolic
factorization algorithm is about twice to three times that of the SF-ATA symbolic
factorization algorithm. In the SF-ATA algorithm, the structures of the Cholesky
factors Ly and LY of ATA are used to bound the structures of the triangular factors
nZ’lM,, and U. Only one set of subscripts is needed to describe the structures of L,
k=1
and Lg. However, in the SF-A symbolic factorization algorithm, the structure of L is
in general not the same as the structure of UT. Thus two sets of subscripts are needed,
one set for describing the structures of the lower triangular matrix and another for
describing the structure of the upper triangular matrix. Consequently, extra work is
done in the SF-A algorithm to generate these two sets of subscripts, so it not
surprising that the SF-A algorithm runs slower than the SF-47A algorithm. The
discussion above also explains why the storage requirements for the symbolic
factorization and numerical solution in Table 4.3 are larger than those in Table 4.2,
since in SF-A, there is exactly one subscript for every nonzero stored. This is not the
case in SF-ATA because subscript compression is employed in the symbolic
factorization algorithm.

Third, the execution times for the numerical factorization and triangular solution
in SF-A are smaller than those in SF-ATA. One reason is that there are fewer
nonzeros in L+U in SF-A than in LC+L£ in SF-ATA. In addition, the uncompressed
storage scheme created by the SF-A symbolic factorization algorithm is simpler than
the compressed storage scheme generated by the SF-ATA symbolic factorization
algorithm. We will return to this later.

The percentage utilization for Problem 22 is extremely small for both SF-47A
and SF-A. This is due to the existence of a few dense rows in the coefficient matrix A,
as one can see from Table 4.1. These dense rows effectively destroy the sparsity of
some of the other rows when we determine a column ordering from ATA. As we are
going to see later in this section, there will be substantial improvements when we
withhold these dense rows from A in determining a column ordering.

Symbolic factorization Numerical solution Pe.rc'ent.age
utilization
Problem number of subscripts | number of nonseros factor | solve
store time store lower | upper
lower upper lower upper time time

1 79755 | 3.500 | 20310 37554 20310 37554 124154 | 40.667 | 1.233 || 93.13 | 68.82
2 96533 | 4.133 | 25765 46945 25765 46945 154503 | 59.783 | 1.683 || 91.33 | 67.29
3 98974 | 4.233 | 25875 47484 25875 47484 156521 | 64.967 | 1.550 || 92.67 | 66.65
4 109146 | 4.900 | 26462 49273 26462 49273 164432 | 45317 | 1.617 || 93.11 | 65.52
5 68025 | 3.200 | 14152 26570 14152 26570 92066 | 15.000 | 0.933 || 92.52 | 64.03
6 75615 | 3.617 | 15300 28556 15300 28556 1001067 | 17.087 | 1.100 |} 91.91 | 64.61
7 80603 | 3.967 | 19029 35291 19029 35291 118884 | 30.250 | 1.183 | 93.53 | 65.14
8 86013 | 3.783 | 20922 38748 20022 38748 129611 | 36.983 | 1.283 || 93.38 | 66.82
9 113251 | 4.900 | 28395 53161 28395 53161 1756255 | 51.900 | 1.733 || 92.38 | 63.55
10 3105 | 0.150 256 544 256 544 3006 0.133 | 0.050 || 65.63 | 40.07
11 3866 | 0.217 349 830 349 830 3863 0.183 | 0.033 || 76.50 | 42.29
12 34446 | 1.717 8780 17539 8780 17539 56069 | 11.417 | 0.583 || 67.80 | 37.91
13 3109 | 0.150 268 690 268 690 3106 0.100 | 0.033 (| 76.12 | 43.62
14 2530 | 0.150 426 843 426 843 3143 0.200 | 0.033 || 69.25 | 42.35
15 29413 | 1.433 5358 11794 5358 11794 40201 5.500 | 0.450 || 58.16 | 42.81
16 19514 | 0.917 3698 7203 3698 7203 26115 3.233 | 0.267 || 63.47 | 39.44
17 15622 | 0.783 1447 5748 1447 5748 18865 0.933 | 0.200 || 58.47 | 27.63
18 27303 | 1.383 2771 7565 2771 7565 29575 1.683 | 0.317 || 67.70 | 40.20
19 4078 | 0.200 313 1322 313 1322 4289 0.317 | 0.050 {| ©5.21 | 64.45
20 6549 | 0.350 960 2194 960 2194 8101 0.783 | 0.100 || 83.33 | 56.61
21 19032 | 1.050 7402 7763 7402 7763 31502 9.217 | 0.317 || 70.81 | 48.78
22 112290 | 5.350 | 11153 91080 11153 81080 210435 6.567 | 2.333 4.52 1.54
23 19725 | 1.083 2562 6972 2562 6972 22337 2.433 | 0.267 || 73.22 | 55.55
24 91038 | 4.083 | 16574 56559 16574 56559 153666 | 20.100 | 1.617 || 41.14 | 15.35
25 38193 | 1.933 7610 16600 7610 16600 53291 9.467 | 0.567 (| 88.07 | 46.77

Table 4.3: Symbolic factorization algorithm of Section 2 (SF-A).
(Without subscript compression)

The analysis in Section 2 showed that the complexity of the SF-A symbolic
factorization algorithm is O(| A|,]| L,| +| U,|). That is, for large sparse problems,
k

the complexity of the SF-A symbolic factorization algorithm is essentially proportional
to the number of subscripts generated by the algorithm. To verify this, we apply the
SF-A algorithm to a sequence of finite element problems defined on graded-L meshes.
The results, which are given in Table 4.4, indeed suggest that the complexity of the
new symbolic factorization algorithm is O(| A|, 5| L | ,| U |).

k

In terms of the number of nonzeros accommodated by the data structure, the
results presented so far have shown that the symbolic factorization algorithm in SF-A
is much better than that in SF-ATA. However, in terms of storage and time required,
the SF-A algorithm is not as efficient as the SF-ATA algorithm. The high storage
requirement is due to the fact that there is one subscript for every nonzero determined
by the SF-A algorithm. If the number of nonzeros determined by the SF-A algorithm

number time number of subscripts ratio
order of
Ronzeros t lower upper | total (nz) t/nz

265 1753 0.783 3942 7088 11030 0.0000710
406 2716 1.683 7377 13104 20481 0.0000822
577 3839 2.200 11520 21058 82578 0.0000675
778 5272 3.050 18697 83433 52130 0.0000585
1009 6865 4.167 25765 46945 72710 0.0000573
1270 8668 5.483 34376 62783 97159 0.0000564
1561 10681 7.800 47797 86720 134517 0.0000580
1882 12004 9.317 57384 | 105836 163220 0.0000571
2233 15337 11.583 73112 | 134773 207885 0.0000557
2614 17980 15.217 91393 | 167508 258901 0.0000588
3025 20833 18.333 | 111237 | 203579 314816 0.0000582
3466 22896 20.483 | 132385 | 242870 375255 0.0000546

Table 4.4: Applying SF-A to a sequence of graded-L finite element problems

is 1, then we require at least 5 locations to execute the SF-A symbolic factorization
algorithm, since we need 5 locations to store the subscripts. Consequently, we need at
least 29 locations to perform the numerical solution. In Section 3, subscript
compression was proposed as a means to reduce the storage and execution time
required by the SF-A symbolic factorization algorithm. Our next experiment, which
involved incorporating subscript compression in the implementation of the new
symbolic factorization algorithm (SFC-A), is intended to illustrate the improvement
that may be achieved. The results are presented in Table 4.5. They show that the new
symbolic factorization algorithm with subscript compression performs extremely well.
The number of subscripts that have to be stored is much smaller than that required in
SF-A. Also note that even though the storage scheme in SFC-A now becomes more
complicated, the reduction in the number of subscripts is large enough to offset the
additional storage required for the more sophisticated storage scheme. As a result, the
storage requirements for both the symbolic factorization phase and the numerical
solution phase in SFC-A are much smaller than those required in SF-A. In fact, in
most cases, the storage required is even less than that required in SF-ATA.

It is interesting to point out that the SFC-A symbolic factorization algorithm runs
faster than the SF-A symbolic factorization algorithm. This is because fewer
subscripts have to be generated in the former case. As noted earlier, extra indexing is
needed in using the storage scheme created by the SFC-A algorithm. Thus, we should
expect the execution times for the numerical solution in SFC-A to be larger than those
in SF-A. The results in Table 4.5 show that this is indeed the case; however, the
increase is not very significant. Furthermore, even though the execution times for the
numerical solution in SFC-A have been increased slightly, they are still less than those
in SF-ATA.

Symbolic factorization Numerical solution Perfent.age
utilization
Problem number of subscripts | number of nonszeros factor | solve
store | time store lower | upper
lower upper upper lower time time

1 35459 | 1.883 | 3981 7713 20310 37554 79858 | 45.467 | 1.283 || 93.13 | 68.82
2 39202 | 1.833 | 4445 8914 25765 46945 97172 | 66.850 | 1.650 || 91.33 | 67.29
3 42143 | 2.033 | 5121 9227 25875 47484 99690 | 66.600 | 1.667 || 92.67 | 66.65
4 53535 | 2.633 | 5925 11317 26462 49273 108821 | 51.883 | 1.750 || 93.11 | 65.52
5 42636 | 2.133 | 4383 8588 14152 26570 66677 | 17.800 | 1.050 || 92.52 | 64.03
6 49045 | 2.317 | 4831 9699 15300 28556 73537 | 18.083 | 1.183 || 91.91 | 64.61
7 42623 | 2.017 | 4602 9460 19029 35201 80904 | 32.517 | 1.250 |f 93.53 | 65.14
8 43461 | 2.050 | 4794 10040 20922 38748 87059 | 41.983 | 1.350 || 93.38 | 66.82
9 50791 | 2.483 | 5931 10465 28395 53161 112795 | 57.400 | 1.800 j| 92.38 | 63.55
10 3176 | 0.167 152 405 256 544 3077 0.100 | 0.050 || 65.63 | 40.07
11 3720 | 0.167 173 524 349 830 3717 0.167 | 0.050 || 76.50 | 42.29
12 17897 | 0.983 | 2462 6544 8780 17539 39520 | 12.100 | 0.567 || 67.80 | 37.91
13 2992 | 0.167 140 435 268 690 2089 0.133 | 0.033 || 76.12 | 43.62
14 1953 | 0.100 171 385 42¢ 843 2566 0.267 | 0.033 || 69.25 | 4235
15 20140 | 1.067 | 1579 4938 5358 11794 30928 6.167 | 0.417 | 58.16 | 42.81
16 13771 | 0.733 | 1158 3040 3698 7203 20372 3.733 | 0.267 || 63.47 | 39.44
17 12082 | 0.683 558 2101 1447 5748 15325 1.067 | 0.217 || 58.47 | 27.63
18 25026 | 1.283 | 1523 4556 2771 7565 27298 1.800 | 0.333 || 67.70 | 40.20
19 3351 | 0.183 111 569 313 1322 3562 0.333 | 0.067 || 95.21 | 64.45
20 5393 | 0.250 440 1158 960 2104 6945 0.983 | 0.083 || 83.33 | 56.61
21 4780 | 0.267 391 260 7402 7763 17250 | 10.283 | 0.333 || 70.81 | 48.78
22 14988 | 3.850 | 2638 965 11153 91080 113133 7.250 | 2.167 4.52 1.54
23 156337 | 0.800 800 3618 2562 6972 17949 2.700 | 0.233 || 73.22 | 55.55
24 29887 | 2.617 | 4195 6141 16574 56559 92515 | 23.183 | 1.600 || 41.14 | 15.35
25 23868 | 1.167 | 2167 6634 7610 16600 38966 | 10.867 | 0.550 || 88.07 | 46.77

Table 4.5: Symbolic factorization algorithm with subscript compression (SFC-A).

For the SF-A symbolic factorization algorithm, our analysis in Section 2 showed
that its run time is proportional to the number of subscripts generated. We do not
know if the SFC-A symbolic factorization algorithm behaves in a similar manner. The
analysis of the complexity of the SFC-A algorithm is under investigation. However,
preliminary experiments using the graded-L problems show that the execution time of
the SFC-A algorithm appears to be proportional to the number of subscripts generated
as well. See Table 4.6 for details.

Recall that the column ordering we used for a matrix A in the experiments was an
ordering obtained by applying a variant of the minimum degree algorithm to the
matrix ATA. As we have pointed out at the end of Section 3, dense rows in the matrix
A may affect the quality of the column ordering since they form dense submatrices in
ATA, and consequently the sparsity of some sparse rows may be destroyed, and this
may cause unnecessary fill-in in L and U. (Problem 22 is an example.) We have
suggested a solution to this problem. These dense rows can be withheld from A when
the ordering is determined from ATA. Then the column ordering is applied to the

st wg [T

v A

number || time number of subscripts ratio
order of
nonzeros t lower | upper { total (nz) t/nz
265 1753 0.483 1029 2087 3116 0.000155
406 2716 0.733 1667 3346 5013 0.0001486
577 3889 1.033 2459 5102 7561 0.000137

778 5272 1.400 3365 7003 10368 0.000135
1009 6865 1.800 4445 8914 13359 0.000135
1270 8668 2.400 6070 | 11639 17709 0.000136
1561 10681 3.050 7202 | 14543 21745 0.000140
1882 12904 3.700 9178 | 17118 26296 0.000141
2233 15337 4.383 | 11276 | 20864 32140 0.000136
2614 17980 5.250 | 12713 | 24933 37646 0.000139
3025 20833 6.033 | 15779 | 28270 44049 0.000137
3466 22896 7.117 | 18746 | 32280 51026 0.000139

Table 4.8: Applying SFC-A to a sequence of graded-L finite element problems

ortginal matrix A when we apply the symbolic factorization algorithm (with subscript
compression). This strategy has been implemented and applied to those problems in
Table 4.1 that have rows with more than 50 nonzeros. The results are given in Table
4.7. I we compare these results with the corresponding results in Table 4.5, we
observe that there are indeed significant improvements when dense rows are withheld
in determining the column orderings. In each case, there is a large reduction in the
number of nonzeros determined by the symbolic factorization algorithm.
Consequently, there is also a large reduction in the storage required by the numerical
solution phase. Furthermore, the factorization and solution times are much smaller
than those in Table 4.5. In some cases, the run time for the symbolic factorization
algorithm and the number of (compressed) subscripts generated are also smaller.

Symbolic factorization Numerical solution Pe.rc'entf;ge
utilization
Problem number of subscripts | number of nonzeros factor | solve
store | time store lower | upper
lower upper lower upper time time
21 4561 | 0.600 131 301 1213 7804 10883 1.133 | 0.217 || 54.33 | 11.38
22 13168 | 0.950 429 1354 617 2216 11913 | 0.317 0.133 || 86.87 | 29.78
24 28855 | 1.683 | 2164 7140 7501 18756 44607 | 8.150 | 0.633 || 56.14 | 37.09

Table 4.7: Symbolic factorization algorithm with subscript compression (SFC-A).
(With withholding of dense rows in determining a column ordering.)

Another strategy to possibly improve the performance of the symbolic
factorization algorithm is to apply the symbolic factorization algorithm to the matrix
AT and compute (numerically) a triangular factorization of it. This decomposition is
equally useful in solving Az =b. In Table 4.8, we have provided the results of applying
SFC-A to the transpose of some of the matrices described in Table 4.1. Rows with
more than 50 nonzeros are withheld when a column ordering for AT is determined.
(Row withholding occurs in Problems 17, 21 and 25.) Comparing the results in Table
4.8 with those in Tables 4.5 and 4.7, we see that it may be desirable to use the
transpose in some instances. For example, Problem 22 has a few very dense rows but
no dense columns. Applying SFC-A to the matrix itself results in low percentage
utilization, high storage requirement and large execution time. Another interesting
example is Problem 17 which has a few dense columns but no dense rows. Applying
SFC-A to the transpose with withholding dense rows in determining the column
ordering seems to be better than just applying SFC-A to the matrix itself.

However, the opposite can also hold. As an example, the results (including storage
requirements and execution times) of applying SFC-A (with withholding dense rows in
determining the column ordering) to Problem 21 are better than the corresponding
results in Table 4.8. At this point, we do not know an effective scheme for deciding
whether to use A or AT, other than simply applying the SFC-A symbolic factorization
algorithm to both A and AT, and choosing the one that requires the least storage.
Since the SFC-A symbolic factorization algorithm is very efficient, this is not an
unreasonable thing to do.

6. Concluding remarks

In this paper, we have described a new symbolic factorization algorithm for
Gaussian elimination with partial pivoting. Several enhancements have been proposed
to improve the performance of the symbolic factorization algorithm. Preliminary
numerical experiments have shown that the data structure created by the new symbolic
factorization algorithm (together with the enhancements) for sparse Gaussian
elimination with partial pivoting is much tighter than that generated by the approach
proposed in [6]. Storage required for the numerical solution phase is smaller in the new
approach than in [6]. There are also substantial improvements in execution times for
the numerical solution phase.

Several problems are still outstanding. First, preliminary results indicate that the
run time of the new symbolic factorization algorithm with subscript compression is
proportional to the number of (compressed) subscripts generated. Thus one of the
problems to look at is the analysis of the complexity of the new symbolic factorization
algorithm with subscript compression. Second, the column ordering that is used for A
in the experiments presented in this paper is obtained by applying the minimum degree
ordering algorithm to the matrix ATA. As we have pointed out in Section 3.2, there

Symbolic factorization Numerical solution Pe.r?ent'age
utilization
Problem number of subscripts | number of nonzeros factor | solve
store | time store lower | upper
lower upper lower upper time time

10 3074 | 0.133 128 327 204 444 2823 0.117 | 0.017 | 69.61 47.07
11 3860 | 0.200 224 613 507 1083 4268 0.300 | 0.050 {| 67.85 | 51.89
12 17624 | 1.067 | 2671 6062 11160 20204 44292 | 14.100 | 0.700 || 55.27 | 27.96
13 3123 | 0.150 195 511 481 293 3636 0.267 | 0.050 || 55.51 | 45.72
14 1915 | 0.083 171 347 381 764 2404 0.250 | 0.050 (| 74.54 | 39.01
15 19926 | 1.167 1696 4657 6942 16269 36773 | 11.583 | 0.550 || 73.93 | 50.45
16 13037 | 0.717 871 2593 3129 8035 19901 3.100 | 0.317 || 53.95 | 37.06
17 11944 | 0.633 480 2041 1304 5405 14701 1.167 | 0.200 || 60.58 | 31.51
18 26370 | 1.400 | 1717 5706 4675 13303 36284 3.850 | 0.533 || 53.67 | 30.94
19 3475 | 0.233 238 566 710 1522 4283 0.700 | 0.083 || 96.48 | 75.89
20 5393 | 0.267 488 1110 1355 2471 7617 1.050 | 0.117 || 80.37 | 51.19
21 4767 | 0.517 146 492 1325 8058 11455 1.233 | 0.200 || 78.49 5.85
22 12585 | 0.533 134 1076 174 1274 9955 0.100 | 0.100 || 89.08 { 78.73
23 17050 | 1.100 | 1235 4896 4358 12341 26827 5.233 | 0.383 || 53.85 | 36.58
24 26650 | 1.400 | 1396 5703 5189 16703 38037 7.317 | 0.567 || 71.71 | 43.69
25 22560 | 1.350 | 1957 5536 7614 16484 37546 9.933 | 0.550 (| 86.77 | 44.86

Table 4.8: Symbolic factorization algorithm with subscript compression (SFC-A).
(The transpose is used and dense rows in the transpose
are withheld in determining a column ordering.)

are other possibilities in determining ‘“‘good’ column orderings for A. We are currently
designing efficient algorithms for generating these column orderings. We will also
compare these column orderings with the minimum degree column ordering obtained
from ATA. Third, an important, but difficult, problem is the identification of “dense”
rows. This is a problem common to many sparse matrix computations. A related
problem is to investigate when we should work with AT instead of A. Finally, if the
matrix A is reducible, then A can be permuted symmetrically so that the permuted
matrix has a block triangular form. In this case, it is only necessary to decompose the
diagonal blocks. The ideas described in this paper can of course be applied to these
diagonal blocks. Efficient implementation of this generalization is under consideration.

6. References

[1] LS. DUFF, “On algorithms for obtaining a maximum transversal’’, ACM Trans. on
Math. Software, 7 (1981), pp. 315-330.

[2] LS. DUFF, R.G. GRIMES, J.G. LEWIS, AND W.G. POOLE, JR., “Sparse matrix test
problems”; ACM SIGNUM Newsletter, 17(2) (1982), p. 22.

3]

(4]

[5]

[6]

[7]

(8]

J.A. GEORGE AND JW.H. Ly, “Algorithms for matrix partitioning and the
numerical solution of finite element systems”, SIAM J. Numer. Anal., 15 (1978),
pp. 297-327.

J.A. GEORGE AND J.W.H. LIU, “An optimal algorithm for symbolic factorization
of symmetric matrices”, SIAM J. Comput., 9 (1980), pp. 583-593.

J.A. GEORGE AND E.G.Y. NG, “Orthogonal reduction of sparse matrices to upper
triangular form using Householder transformations”, Research report CS-84-05,
Department of Computer Science, University of Waterloo (1984). (submitted to
SIAM J. Sci. Stat. Comput.)

J.A. GEORGE AND E.GY. NG, “An implementation of Gaussian elimination with
partial pivoting for sparse systems”, SIAM J. Sci. Stat. Comput., 8 (1985), pp.
390-409.

JWH. LU, “On multiple elimination in the minimum degree algorithm”,
Technical Report No. 83-03, Department of Computer Science, York University,
Downsview, Ontario (1983).

AH. SHERMAN, “On the efficient solution of sparse systems of linear and
nonlinear equations’”, Research Report #46, Dept. of Computer Science, Yale
University (1975).

	

