HOUSEHOLDER REFLECTIONS VERSUS GIVENS
ROTATIONS IN SPARSE ORTHOGONAL DECOMPOSITION*

J.A. George
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3Gl

J.W.H. Liu
Department of Computer Science
York University
Downsview, Ontario, Canada
M3J 1P3
Research Report CS-84-42
November 1984

Householder Reflections versus Givens Rotations
in Sparse Orthogonal Decomposition*

Alan George

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3Gl

Joseph W.H. Liu

Department of Computer Science
York University
Downsview, Ontario
Canada M3J 1P3

ABSTRACT

It has been generally assumed that the use of Givens rotations
provides significant advantages over the wuse of Householder
transformations for the orthogonal decomposition of sparse matrices. It
is also generally acknowledged that the opposite is true for dense
matrices. In this paper, a way of applying Householder reflections is
described which is competitive or superior to the use of Givens rotations
for sparse orthogonal decomposition. In other words, the advantage of
Householder over Givens for dense matrices can carry over to the sparse
case, provided that the implementation of the Householder scheme is
done in a certain way. The approach relies heavily on the idea of general
row merge trees developed by Liu [12]. Results of numerical experiments
are provided which demonstrate the advantages of the new scheme. The
method also appears to be attractive for use on vector computers.

*Research supported in part by Canadian Natural Sciences and Engineering Research Council under grants
A8111 and A5509, by the Applied Mathematical Sciences Research Program, Office of Energy Research, U.S.
Department of Energy under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems Inc., and by
the U.S. Air Force Office of Scientific Research under contract AFOSR-ISSA-84-00056.

Table of Contents

3. The Algorithmcccccccceiiriiiiiiireecrreeeceereee,
3.1. Row Merge Treeccocviieireiirieniiriinnerirnrnennnnns
3.2. Row-oriented Version of Householder Transformation

3.3. Preliminary Submatrix Reduction

4. Experimental Results and Concluding Remarks

RefErencCes ...cooeveveiieiviieiieeeeeeeeeeesereesossoreernsesssssssnsnses

..

...

...

..

1. Introduction

Householder reflections and Givens rotations are standard basic computational
operations which are used to compute the orthogonal decomposition of matrices. For a
given m by n matrix A, a sequence of n—1 Householder transformations can be applied
to reduce A to upper triangular form. Alternatively, a sequence of m—1 Givens row
rotations (that is, a sequence of mn—n(n+1)/2 actual rotations) can be used to achieve
the reduction.

When the matrix A is dense, Householder transformations have been employed
almost exclusively (LINPACK [2]). However, if the matrix is large and sparse, Givens
rotations are generally used or recommended [4,5,9]. The scheme proposed by George
and Heath [5] makes use of Givens rotations and has the advantage of using a static
predetermined data structure for the upper triangular factor matrix. The rows of A are
processed one by one, gradually forming the factor matrix, the storage of which has
been pre-allocated. ‘‘Intermediate fills’’ are restricted to the working row, and they are
annihilated during the processing of this row.

On the other hand, Householder transformations have been generally regarded as
quite inappropriate for sparse QR decomposition [3,8,9]. The application of
Householder column reflections can cause severe intermediate fills. Although they will
eventually be annihilated, temporary storage is required to accomodate them, which
often turns out to exceed greatly the number of nonzeros in the final factor matrix.

The following 8 by 4 matrix example serves to illustrate the problem with
Householder transformations. The letter ‘i’ is used to denote intermediate fills.

X X X X X X X X X X X
X X X X
X X X X X
X X X X
x x [X00x

X X x 0 x

x x

Figure 1.1: Sequence of Givens row rotations

X X X X X X X X X X X X X X X X
[x] X X X X X X X X X X X
X 1] x x X X X X X
X il x X X
X X ili x X
X X il x 1 i
X| X x{1 1 i
x]x x x x| x x X

Figure 1.2: Sequence of Householder column reflections

-9 =

One of the main objectives of this paper is to propose a way of applying
Householder transformations so that it becomes competitive with Givens rotations for
sparse orthogonal decomposition. We hope that this will lead to a re-examination of
the role of Householder transformations in sparse computations. Indeed, if this new
approach is used, most of the advantages of Householder reflections for the dense case
now carry over to sparse systems, while its main disadvantage is removed.

The approach uses the idea of general row merge trees as developed by the second
author in [12]. In section 2, a matrix interpretation of the general row merge scheme is
given. We also relate the use of the submatriz annihilation technique to some previous
work in the literature.

The basic algorithm is described briefly in section 3. The main difference between
this algorithm and that of [12] is the use of Householder transformations instead of
Givens rotations in the core of the numerical @R factorization module. A row-oriented
version of Householder reflection is presented to adapt to the computational scheme. A
minor modification to the overall merging scheme, motivated by the use of Householder
transformations, is also given in this section.

Numerical experiments are provided in section 4 to compare Householder to
Givens. Based on the experimental results reported, Householder reflections do have a
role to play in sparse orthogonal factorization. It is consistently faster (in terms of
operation counts), and more accurate, in exchange for a very modest increase in
working storage. Section 4 also contains our concluding remarks. It is interesting to
point out that the row-oriented version of Householder transformations can be adapted
to vector computation. Its performance for vector machines, however, will be explored
elsewhere.

2. Selective Submatrix Annihilation

A conventional Givens method is usually implemented as a row-oriented scheme, in
which rows are annihilated one by one using the partially formed upper triangular
factor. On the other hand, the Householder method is always treated as a column-
oriented scheme, and the lower triangular portion of each column is annihilated, column

by column.
LN

Givens Householder

The proposed scheme in this paper can be viewed as one using a submatriz
annthilation technique. Instead of anmihilating an entire row or an entire column, a
sequence of submatrices within the given sparse matrix is annihilated one after another
so that eventually the matrix is reduced to upper triangular.

—_ 3 -

The added flexibility in the choice of objects to annihilate can lead to major
savings in terms of intermediate fills and arithmetic operations. In order to achieve this
saving, care must be exercised in the choice of the sequence of submatrices, so that
zeros created at one point will not become nonzero again as an intermediate fill at a
later stage.

The example in Figure 2.1 is designed to illustrate possible gains by using
submatrix annihilation. The submatrix processed at each step is enclosed by rectangles.
Only two intermediate fills (labelled by “i”’) occur in this example for this sequence of
submatrices. An ‘‘f”’ is used in the figure to represent actual fill in the factor matrix.

X X X X X X X X X x f f x x| xffxx
X X X 0 X X X X X X X X
X X X 0 0 x X X X
X X X 0 00

X X X X X X X X X O0xxTT1 xxff
X X X X X X 0xx oxff xff
X X X X X X 00x 0 i 00
X X X X X X 000

Figure 2.1: Selective submatrix annihilation sequence.

This new approach of submatrix annihilation originates from the general row
merging scheme [12] for the sparse QR decomposition using Givens rotations. It was
shown there that the numerical computation in the row merge scheme can be organized
as a sequence of reductions of two upper triangular (strictly speaking, trapezoidal) full
submatrices into another upper triangular full matrix. Indeed, submatrix annihilation is
simply another snterpretation of this scheme, whereby the reduction of two upper
triangular submatrices is performed by Householder reflections. For details of the row
merge scheme, the reader is referred to [12].

It is interesting to note that this idea of submatrix annihilation has been used
implicitly in previous work in the literature. Reid [14] provides an efficient scheme to
perform the QR decomposition of a banded system by Householder reductions. It may
be interpreted as a wise choice of submatrix annihilation sequence, based on the
structure of the band. Figure 2.2 provides an example.

In [11, Chapter 27|, Lawson and Hanson consider an algorithm for the QR
decomposition without requiring the entire matrix be in computer storage at one time.
That again can be interpreted as a sequence of submatrix annihilations, and in this case
the choice depends on the size of the matrix and the amount of available core storage.

X X X X X X X X X X X X
X X X X 0 x x x X X x |
X X X X 0 0 x x x x f
X X X X 0 00 x x f
X X X X 0000
X X X X X X X X 0 00 x
X X X X X X X X 0000
X X X X X X X X 0000
X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X
x x x f x x x f
x x 1 T x x f f
x f f x T T T
x f x f f
0 00 x x f
0000
X X X X 0 0 0 x
X X X X 0000
X X X X 0000
X X X X 0000

Figure 2.2: Selective submatrix annihilation for a band matrix.

3. The Algorithm

3.1. Row Merge Tree

The crucial factors in the proposed approach of submatrix annihilation are the
choice of the submatrix sequence and the implementation (or data organization) of the
annihilation process.

The notion of row merge trees is introduced in [12]. For an m by n matrix 4, a
row merge tree is defined to be a strictly binary tree with m leaves, each corresponding
to a row in the matrix. It can be used as a basic structure to determine a submatrix
sequence, where each submatrix corresponds to a (rooted) subtree. It has the desirable
property of preserving zeros created in previous annihilations. Of course, different row
merge trees induce different submatrix sequences.

-5 =

The algorithm proposed here is basically the same as the one in [12], except that
Householder reflections are used instead of Givens rotations. The defining row merge
trees will be generated by the same heuristic algorithm as described in [12]. In view of
the different nature of column reflections and row rotations, there are basic
implementational or organizational differences in the process of “‘merging” or reduction
of two upper triangular submatrices. They will be considered in the next subsection.

3.2. Row-oriented Version of Householder Transformation

Householder transformations have been described and implemented almost
exclusively in the form of a sequence of inner products (LINPACK [2]). This is not
suitable for our purpose of merging two upper trapezoidal matrices, since in our
scheme, it is more appropriate to store an upper trapezoidal matrix row by row as
shown in Figure 3.1.

aaaaa aaaaabbbbcecec
bbbb
ccc
Trapezoidal Matrix Storage Array

Figure 3.1: Storage of an upper trapezoidal matrix.

In this section, we employ an observation in [10] to show how to re-organize the
determination and application of Householder reflections in a row-oriented manner.
This new scheme is ideally suited for our computation of reducing two upper
trapezoidal matrices stored row by row. It should be noted that it is also suitable for
general orthogonal decomposition by Householder transformations on vector machines.

Consider the following m by n matrix

A= u FE '

where v and v are (m—1)— and (n —1)— vectors respectively. Let & be the 2-norm of the
first column of A. That is, let

o= V(@+uTz).

Assume that ¢ is nonzero. Then, a Householder reflection can be used to annihilate the
vector u in the matrix A, where the Householder vector h is given by

It
JE—
g8 W™
s

h
with A= 1+i,
aq

U

w=—

and o4 = sgn(d) * o.
Here sgn(d) is a function whose value is +1 if 4 is non-negative, and —1 otherwise.

The Householder transformation is then given by

It can be readily verified that
d
rT [u] = foy.
Theorem 3.1:

%)

7T = —(—‘LvT + wTE)
94

E'= E—w(pvT+wTEYS

where d'= —g,

Proof: Consider the application of the Householder transformation to the first

column of A:
[d] Y [d]
Ul g \u

fll) -
SR

On the other hand, applying P to the remaining columns of A, we have

Ple)=)~ 5 &
{ T\
v kot T
= - = (T +

E)™ 5 (Bv +w E)
4

)

)3 e
(vI = (BT +uwTE)
E-w(pT+wTEYS
Hence, E'= E—w(fvT+wTEYS,

and o7 = vT—(gT+w7E)

-(—d—vT+ wTE) .
94

-7 -

The results of Theorem 3.1 suggest the following version of Householder
transformations that access the entries of the matrix in a row by row manner.

Algorithm: Row-oriented Version of Householder Trans formation

Step 1: Computation of o,
o= Vd&+(ulu)

g = sgn(d)*o

Step 2: Computation of factor row (d’, v/T)
a) d' = —04
b)

u
Form w = —
04

¢) Form the linear combinations from rows of A (except first column)

UT
o7 = —(%, wT) [E]

Step 3: Determination of the “pivot row’ by computing

(1+:j7 , vI=vT) = (8, pT+wTE)

Step 4: Gaussian elimination using pivot row from step 3

[ﬁ ﬂvT+wTE] [ﬂ ﬂvT+wTE]
w E I [E!

where E'= E—w(ﬂvT-l-wTE)/ﬂ

Here, we distinguish the factor row as the row in the resulting factor matrix R,
from the pivet row as the row used in the elimination step. It should be pointed out
that one temporary vector is required to store the computed pivot row in step 3.

It is interesting to note that this formulation of Householder transformations can
be regarded as a special kind of Gaussian elimination, where the pivot row is computed
from a linear combination of the rows of the matrix, rather than being taken directly
from it. The numerical stability of the process can be seen from the fact that
| w;| =1=p for every entry w; of the vector w . As usual, care must be exercised in
computing ¢ in order to avoid overflows. The standard method involving the scaling of
(d, v)T was employed [2].

The reduction of two upper triangular or trapezoidal submatrices into another
upper trapezoidal matrix can now be organized as a sequence of Householder column
reflections, where the submatrices are stored in a row by row manner. The basic steps
involved can be best illustrated by an example. The following are two such submatrices
with column subscript sets {1,3,4,6,8} and {1,3,6,9} respectively.

-8 =

The merging involves three steps, which are given below.

134638 1 369
X X X X X X
X X X X X X X
X X X X X
X
Step 1: Union of column subscripts:
1346289
Step 2: Extension of the submatrices:
134689
X X X X X
X X X X
X X X
X X X X
X X b'e
X X
X
Step 3: Sequence of Householder reflections:
[r rrrrr r T T TITrT r rrrer
X X X rrrer
X X X X X X r rrr
(0 f f x f x| 0 f x f x 0 x f x
X X X 0 f x f x 0 x f x
X X X X X X
X X X
rrrrrer rrrrrr FTTrCrTrer
rrrrr rrrrr rrrrer
rrrr rrrr rrrr
rrr rrr rrr
0 f x rr rr
0 f x 0 x ‘
. :

3.3. Preliminary Submatrix Reduction

It is well known that the reduction of a matrix with two rows to upper trapezoidal
by a Householder reflection is computationally equivalent to the reduction by a Givens
rotation [7]. There is, from a practical point of view, no advantage of Householder over
Givens in such situations.

-9 -

On the other hand, Householder reflections will be comparatively more effective if
the matrix to be reduced has many rows. In this case, one reflection can be used to
reduce all nonzeros under the diagonal in the first column as opposed tc the use of
many rotations. In view of this, the row merging sequence given in [12] is modified so
that the algorithm will accumulate as many rows as possible before reduction by
Householder reflections is performed. The criterion used is that the algorithm will take
the next incoming row if it does not enlarge the subscript set.

In Figure 3.2, a row merge tree is specified for the given 8 by 5 matrix example.
This means that seven reductions of submatrices are to be performed. Since the first
four rows have the same set of nonzero subscripts, it will be more advantageous to
reduce them together by Householder transformations. The same applies to the last
four rows. The row merge tree structure can hence be depicted in Figure 3.3. Note
that if one is using Givens rotations, the two row merge structures are equivalent from
a computational point of view.

rl
r2
r3
r4
rd
b
r7
r8

Eo T T
® oK o X

r4 r8

Mo M K M M X X
oM XX
Mo X

rl r2 ro5 rb

Figure 3.2: A matrix and its row merge tree

rl r2 r3 r4 r5 r6 r7 r8
Figure 3.3: Modified row merge tree

4. Experimental Results and Concluding Remarks

In this section, experimental results for sparse orthogonal decomposition using
Householder reflections and Givens rotations are provided. The times reported in the
tables are in seconds on a VAX 11/780 having floating point hardware. Only
multiplicative operations are accounted for in the operation counts. The method
labelled ‘‘Preproc Hholder” in the tables refers to the one with the preliminary
submatrix reduction as described in Section 3.3.

Our experiments involved two sets of test problems which display a considerable
variety of structures. For test set #1, the matrix values were obtained directly from
the application, while for test set #2, the numerical values of the nonzeros in the
matrices were uniform random numbers from [-1,1]. In all cases, the solution was
arranged to be a vector of all ones by setting the right hand side equal to the sum of
the columns of the matrix, computed in double precision.

The first test set consists of the ten problems used by George, Heath and Ng in
their comparison paper on methods for solving sparse linear least squares systems [6].
Readers are referred to it for details about the problems. We list them in Table 4.1 for

reference.
-—-number of ---
Problem | Rows Cols Nonz | Problem Description

1 313 176 1557 | Sudan survey data

2 1033 320 4732 | Analysis of gravity-meter observations
(well-conditioned)

3 1033 320 4719 | Analysis of gravity-meter observations
(ill-conditioned)

4 1850 712 8755 | Similar to Problem 2, but larger

5 1850 712 8638 | Similar to Problem 4, but larger

6 784 225 3136 | 15x15 grid problem

7 1444 400 5776 | 20x20 grid problem

8 1512 402 7152 | 3x3 geodetic network with 2 observations per node

9 1488 784 7040 | 4x4 geodetic network with 1 observation per node

10 900 269 4208 | Geodetic network problem provided by U.S.

National Geodetic Survey (ill-conditioned)

Table 4.1: Matrix Problems for Test Set #1

Various performance results of the different methods applied to test set #1 are
tabulated in Tables 4.2 and 4.3. The column ordering used was that provided by the
minimum degree algorithm, as suggested in [5]. A modified form of the minimum
degree algorithm due to Liu [13] was actually used in the experiments.

Factorization Opcount Factorization Time

Preproc Preproc

Problem | Givens Hholder Hholder | Givens Hholder Hholder
1 51732 51306 50556 2.13 2.39 2.42
2 141744 149068 121936 6.68 7.16 6.31
3 143764 149049 121778 6.36 7.19 6.73
4 472198 440872 398964 14.27 16.55 14.99
5 477920 445960 404826 14.17 16.17 15.42
6 138320 120002 109066 5.17 5.58 4.64
7 357444 285182 262640 10.71 12.42 9.36
8 330884 333970 249058 10.76 14.67 9.38
9 382936 365286 315420 11.84 14.98 11.12
10 561156 465598 455772 11.05 13.33 11.48

Table 4.2: Comparison of Factorization Operation Counts and Time
for the Different Schemes Applied to the Problems in Test Set #1.

Relative Error Residual

Preproc Preproc
Problem | Givens Hholder Hholder | Givens Hholder Hholder
2.86E-6 1.67E-6 1.19E-6 4.90E-8 5.61E-6 5.51E-6
0.89E-5 0.68E-5 1.43E-5 | 299E-6 3.13E-6 3.30E-6
0.35E-3 0.27E-3 1.01E-3 | 3.21E-8 3.73E-6 3.04E-6
3.81E-6 3.52E-6 1.79E-6 | 443E-6 4.95E-6 4.36E-6
1.04E-4 0.99E-4 0.84E-4 | 4.78E-6 5.13E-6 4.58E-68
1.25E-6 1.19E-6 0.83E-6 | 7.07E-6 7.43E-6 7.48E-6
1.31E-6 1.25E-6 1.43E-6 1.03E-5 1.09E-5 1.10E-5
1.79E-6 1.79E-6 1.19E-6 1.48E-5 1.56E-5 1.23E-5
2.15E-6 3.46E-6 1.67E-6 1.20E-5 1.37E-5 1.14E-5
10 3.87E-3 8.18E-3 5.64E-3 | 0.76E 0 1.01E 0 095E 0

Table 4.3: Comparison of Numerical Results for the Different Methods
Applied to the Problems in Test Set #1

The second set of test problems are typical of those that arise in the natural
factor formulation of finite element methods [1]. Consider the & by k regular grid with
(k—1)? small squares. Associated with each of the k? grid nodes is a variable, and
associated with each square is a set of four equations involving the four variables at the
corners of the square. The assembly of these equations results in a large sparse
overdetermined system of equations

© 00 =3 O UV WD

Az =15

where the matrix A has k% columns and 4(k—1)? rows. The columns of the matrix were
ordered by the minimum degree scheme as in [5]. The different schemes were tested on
values of k=10, 20, 30, 40, and 50, and the results are tabulated in Tables 4.4 and 4.5.

Factorization Opcount Factorization Time
Preproc Preproc
k Givens Hholder = Hholder | Givens Hholder Hholder
10 38624 37036 33378 1.93 2.08 1.80
20 357436 285182 262640 10.62 11.08 9.34

30 1 1177632 863562 810704 28.51 28.57 24.64
40 | 2897088 1987730 1890948 57.57 57.35 49.83
50 | 5692656 3742930 3591612 | 100.48 100.28 87.02

Table 4.4: Comparison of Factorization Operation Counts and Time
for the Different Schemes Applied to the Problems of Test Set #2

Relative Error

Preproc

k Givens Hholder Hholder

10 | 1.07E-6 1.19E-6 0.72E-6
20 | 1.67E-6 1.19E-6 1.07E-6
30 | 1.43E-6 1.07E-6 1.07E-6
40 | 2.26E-6 1.25E-6 1.79E-6
50 | 2.03E-6 1.67E-6 1.31E-6

Table 4.5: Comparison of Numerical Results for the Different
Schemes Applied to the Problems of Test Set #2

The results of the numerical experiments demonstrate that the use of Householder
reflections in sparse matrix decomposition can be organized so that they are very
competitive with Givens rotations. For the variety of problems in test set #1, their
overall performance is at least as good as that of Givens. The factorization operation
count is always smaller, while the actual CPU time is always comparable.

For test set #2, there is a more substantial reduction in the operation count.
Indeed, for k=50, the operation count was reduced by a factor of more than one third.
It should be noted that the reduction in arithmetic is not reflected in a proportional
decrease in execution time. This is probably because of larger computational overhead
incurred in the Householder version. Nevertheless, for k=50, the preprocess version of
the new scheme yields a reduction in execution time of nearly 25 percent.

In summary, the experiments do confirm that the widely-held view that
Householder transformations are inappropriate for sparse orthogonal decomposition
should be re-assessed. In particular, we have shown here that the preprocess version is
competitive and often superior to the use of Givens rotations.

It would appear that the row-oriented version of Householder reflections described
in this paper is readily adaptable to vectorization. We are currently attempting to
conduct such experiments on a Cray computer, and we will report the results of those
experiments when they have been completed.

References

[1] JH. ARGYRIS AND O.E. BRONLUND, “The natural factor formulation of the
stiffness matrix displacement method”, Comput. Meth. Appl. Mech. Engrg., 5
(1975), pp. 97-119.

2]
8]

(4]

[5]

[6]

[7]
8]

[°]
[10]
[11]

[12]

[13]

[14]

- 13 -

J.J. DONGARRA, C.B. MOLER, J.R. BUNCH, AND G.W. STEWART, LINPACK users’
guide, SIAM, Philadelphia (1980).

I.S. DUFF AND J.K. REID, “A comparison of some methods for the solution of
sparse overdetermined systems of linear equations’, J. Inst. Maths. Appl., 17
(1976), pp. 267-280.

W.M. GENTLEMAN, “Row elimination for solving sparse linear systems and least
squares problems”, in Proc. 1975 Dundee Con ference on Numerical Analysis, ed.
G.A. Watson, Lecture Notes in Mathematics (506), Springer-Verlag (1975), pp.
122-133.

J.A. GEORGE AND M.T. HEATH, “‘Solution of sparse linear least squares problems
using Givens rotations”, Linear Algebra and its Appl., 34 (1980), pp. 69-83.

J.A. GEORGE, M.T. HEATH, AND E.G.Y. NG, “A comparison of some methods for

solving sparse linear least squares problems”, SIAM J. Sci. Stat. Comput., 4
(1983), pp. 177-187.

P.E. GILL, G.H. GOLUB, W. MURRAY, AND M.A. SAUNDERS, “Methods for
modifying matrix factorizations’, Math. Comp., 28 (1974), pp. 505-535.

P.E. GILL AND W. MURRAY, “The orthogonal factorization of a large sparse
matrix”, in Sparse matriz computations, ed. J.R. Bunch and D.J. Rose, Academic
Press, New York (1976), pp. 201-212.

M.T. HEATH, ‘““Numerical methods for large sparse linear least squares problems”’,
SIAM J. Ses. Stat. Comput., 26 (1984), pp. 497-513.

J. JOHNSSON, “A computational array for the QR method”, in 1982 Con ference on
Advanced Research in VLSI, , MIT Press (1982), pp. 123-129.

C.L. LAWSCON AND R.J. HANSON, Solving least squares problems, Prentice-Hall Inc.,
Englewood Cliffs, N.J. (1974).

J.W.H. LIU, “On general row merging schemes for sparse Givens transformations”’,
Technical Report No. 83-04, Department of Computer Science, York University,
Downsview, Ontario (1983).

JWH. Ly, “On multiple elimination in the minimum degree algorithm”,
Technical Report No. 83-03, Department of Computer Science, York University,
Downsview, Ontario (1983).

JK. REDD, “A note on the least squares solution of a band system of linear
equations by Householder reductions”, Comput. J., 10 (1967), pp. 188-189.

	

