MENT

o

EbA
EPARTMENT
EPARTMENT

ER SEIENGE B
cE SCRNGE

|
Ut
UT
uT

MPp
MP

AERS &8

VU
UNIVERSITY OF WATERLOO CO

;

HNIVER
UNIVERSITY

Turtle Polygons

Joseph Culberson
Gregory Rawlins

Data Structuring Group
CS-84-41

November, 1984




Turtle Polygons

Joseph Culberson
Gregory Rewlins

Data Structuring Group
Department of Computer Science
University of Waterloo
Waterloo,Ontario
N2L 3G1 Canada

ABSTRACT

In this paper we present an algorithm to create simple
polygons with a particular sequence of exterior angles, given only
the sequence of angles. The algorithm has worst case time
complexity O(Dn), where n is the number of angles and D is
dependent on the angles. As a bonus, the algorithm proves an
interesting converse of the ancient theorem that the sum of the
exterior angles of a simple polygon is 27 radians.

1. Introduction

A turtle, in the sense of [ 4] , placed in the plane either walks directly
ahead in a straight line or makes a turn to the right or left through some fixed
angle 8€(0,x). If the turtle is given a sequence of “turn left” (!} and “‘turn right”
(r) commands, can the turtle execute the sequence of turns so as to return to its
starting point without at any time intersecting its path? Clearly if this happens
then its path describes a simple polygon all of whose interior angles are 74,

Let #1 (#r) designate the total number of left (right) turns the turtle is
asked to make. If the path described is a simple polygon then 8=2x/(7#!— #r),
since the sum of the turning angles of any simple polygon must be 2a. From now
on we assume that the basic angle of turn is #/D , D an integer greater than 1.
We denote this angle by 6. Also, we assume that we may cyclically shift any
turning sequence since this just corresponds to rotating the path drawn.

Observe that if 8=7/D and the turtle makes only left turns (or only right
turns) then after 2D of them it will be back where it started (assuming equal
distances between turns). Of course, in this case it would have described a regular
polygon with 2D sides in the plane. Now if we allow exactly one right turn there
must be one more left turn to match it, since #i=#r+2D. Also, observe that
after a right turn followed by a left turn the turtle is oriented in exactly the same
direction as before, the only difference being that it has moved some distance in
the plane.



2 Culberson and Rawlins

Given a sequence of turns we describe a way to pair up the right turns with
the excess left turns so that the turtle effectively traces out a regular polygon of
2D sides with some ‘“‘detours” to match some of the right turns. Given this
technique we will describe an algorithm to solve the stated problem, then
generalize it to handle a much larger class of turning sequences.

2. The ri-Algorithm

Before giving the algorithm in detail, it is helpful to consider a simple
example. Consider the turning sequence o = (I,r,l,,l,l,l,l) with turning angle
0=n/3. The turtle begins at the origin facing along the positive z-axis and it
generates a closed nonintersecting path by attempting to draw an edge of unit
length before turning left or right & degrees and drawing the next edge.

Figure 1.a Figure 1.b
o=(l,r 1L o=(11,2r,21,11,11,11,11,11)

Thus, in figure 1.a, it starts at O and proceeds towards d. It is drawing the
edge which has endpoints corresponding to the first ! (in o) at its left end, and
the r at its right end. If there were no r's in o, then the regular hexagon Odefgh
would be the desired path. However, the r indicates that the turtle must make a
right turn. To facilitate this detour, the turtle stops short of its original
destination (d) at the point ¢. The ratio of Oa to Od is designated R and is 1/2
in this example. ‘

To keep its path from being self-intersecting, when the turtle makes a right
turn the length of subsequent edges of the detour are reduced by an appropriate
scale factor S. After a right turn, a single left turn points the turtle back in its
original direction. Thus we think of a (r,l) pair as forming a completed detour.
The scale factor is so chosen that ab=bc and ¢ lies on an extension of the side
ed. At this point the vertices O,a,b,c correspond to the first four turns in o.

After completing the detour, the turtle moves to d, and continues its tour
from there (i.e. just as if it had not encountered an (r,!) pair in between). If the
r had been followed by another r in this example, then the turtle would have
been forced to make a sub-detour on the edge ab. (Of course, another ! would
also be required to complete that detour). Alternatively, if o had been
(L,r,i,r,l,..) then the turtle would have made a sub-detour on the edge bc. This
nicely illustrates the pairing idea; after any r we may either have another r or an
. If the r is followed by an ! then they are paired together and represent one
detour. If on the other hand the r is followed by another r then we must first find



Thurtle Polygons 3

an | to pair with the second r before we can pair the first r. Logically, an (r,l)
pair corresponds to a pair of left and right brackets, and the process just
described corresponds to finding a ‘‘proper nesting’ of the brackets.

Algorithm 1 (RL)

INPUT:

A positive integer D and a sequence o, of r's and I's, with #/=#r+2D.

OUTPUT:

A sequence of co-ordinates of the vertices of a polygon with turning
sequence 0.

begin

end.

{Parse o into properly nested pairs of r's and I’s.}
Initialize Stack to empty;

Scanning & from left to right (wrapping around if necessary)

if current unpaired turn is r

then push current location in ¢ on Stack

else If current unpaired turn is [ and Stack not empty

then pop top location and pair with current location;

{This process halts when all r’s are paired. Since #I's > #r’s this step
must halt in at most two scans of 4.}

Select one of the 2D unpaired !'s as the first vertex. Cyclically shift o
so that this vertex is at the start;

{Generate the vertices of the polygon using the recursive procedure Edge. }
Calculate the basic turning angle 8=n/D and the scale factor
S=(1—R)/(2cos(8)+1);

{R is the ratio of the actual distance travelled to the intended
distance, and is fixed.}

Indezx =2;

{ Indez is an index to o indicating the next vertex to be drawn. The
first vertex is assumed to be at the origin.}

Edge(Origin,1 ,0;2D Jndez);

Procedure Edge(Start ,Length ,Turns,Number var Indez)

{Edge draws Number edges (Number =2 or Number=2D), with recursive
calls if a right turn is encountered in ¢. Essentially, Edge attempts to draw
a regular polygon with 2D sides; however, it may have to make (recursive)
detours on any of the 2D edges. The first edge begins at the point Start.
Each edge is of length Length (or Length XR if it ends at a right turn ).
The first edge has direction Turns X9, that is, it is Turns turns away from
the horizontal. Subsequent (non-recursive) edges have directions
(Turns+i), 15i <N. Indez is incremented after each edge is drawn. }



4 Culberson and Rawlins

begin
for 1 =0 to N—1 do}
begin
{Compute the Start for the next iteration.}
Start = Start + a distance of Length in the direction (Turn: +1)6;
if o|Indez|=r
then
{The turtle is forced to make a detour, hence the curient edge
must be truncated. Make the truncation point the
Currentvertez, which becomes the Start point for the recursive
call. The scale is reduced by S, the direction is one turn to the
right relative to the current direction, and the recursive call
draws 2 edges (to complete the detour).}
Currentvertez := the end of a line from Start in the direction
(Turns +1)8 with length Length XR;
output Currentvertez;
Indez:=Index +1;
Edge(Currentvertez , SXLength , Turns+i—1, 2,Indez )
else
output Start;
Index.=Index +1,
end;
end.

It is straightforward to show that step 1 of the ril-algorithm properly pairs
the r's and !'s and assigns a unique ! to each r. Further, exactly 2D [’s are left
unpaired in this process and these correspond in an obvious way to the vertices of
a regular polygon with 2D sides. Between any two consecutive unpaired !’s there
will be a (possibly empty) balanced subsequence of r’s and I’s which Edge draws
as ‘‘detours” on the side corresponding to those two unpaired {’s.

It is a simple exercise in analytic geometry to show that the choice R=1/2
and S=(1—R)/(1+2cos(f)) guarantees that the polygon drawn by the ri-
algorithm is closed and non self-intersecting. We sketch the proof in the
following four steps: (1) and (2) hold by construction, (3) and (4) follow easily.

(1) Each detour is an isosceles trapezoid with base angle & and side lengths
(S/(1—R)) times the length of the base. For example, in Figure 2.a, bedc is
a detour on the edge ac and de=ed=be=(S/(1—R))Xbc,
be=(1—R)Xac, ed||bc and Lebe=~Lbcd =4.

(2) A sub-detour on a detour with base length z has base length z XS. Hence
the side lengths of any nested set of detours form a geometric progression
with common ratio S. For example, in Figure 2.a, the sub-detour fhge on
the detour bedc has base length ef =bc XS, similarly the sub-detours on
fhge each have base length ef XS =bcX $2.



Turtle Polygons 5

(3) Since the algorithm is recursive, it is only necessary to prove that a
sequence of nested detours does not intersect the side of the regular polygon
on which it is drawn. (All other cases are similar except for a change in
scale and orientation).

(4) Observe that eb||gi, ab|lge and that we may add more detours onto the
edge 13. The resulting polygon is non-intersecting only if

eb = gh+hi+ ---
& acXS = acXS%+acxS3+ - -

oS = S & Ssi2 & R+cos(f)=172
=2
When D=3, 0s8=<n/3, cos(f)=1/2 and hence any R€(0,1) will do. When
D=2, 8=n/2 cos(6)=0 hence we must choose R €[1/2,1).

We observe in passing that although the particular scale factor chosen
guarantees simplicity it may not be the ‘““weakest’ possible scale necessary; i.e. it
may be shrinking the lengths of recursive edges more than is necessary (they
decrease exponentially with S). A more intelligent algorithm could well rectify
this.

3. The General Algorithm

It is easy to generalize the problem to that of drawing a simple polygon
where the turtle may be asked to turn some integral multiple of the basic turning
angle. Turning sequences will now be made up of multipliers (m,) times an ! or
an r to indicate a turn of m,; X4 to the left or right (m; €[1,D —1]). For example,
the ri-algorithm applies only to turning sequences where each m;=1.

To handle the general case we will create a copy of o which has m; I’s (or
r's) in sequence wherever o has a turn of m; X! (or m; Xr). Then draw (using the
rl-algorithm) a simple polygon with that turning sequence (the rl-polygon).
Finally we create the actual turning angles required by ‘‘merging” the appropriate
edges of the ri-polygon.

Consider the turning sequence ¢ = (11,2r,21,11,11,11,11,11) of Figure Lb.
First the 2r is replaced by the pair r,r and the 2! by the pair [,l, then the
resulting sequence is plotted using the rl-algorithm (dotted line polygon in Figure
1.b). A representative polygon with turning sequence o is then created by
projecting the appropriate edges of the rl-polygon to their intersection point,
effectively merging the angles to form the correct angles (straight line polygon in
figure 1.b). Observe that the two polygons in Figure 1.b are the same except that
one edge of the dotted polygon has been ‘“pushed in” and another “pushed out”.
This is the result of the re-merging of the two !’s back into one 2! turn and the
two r’s back into one 2r turn.



6 Culberson and Rawlins

Algorithm 2

INPUT:
A general turning sequence 0.

OUTPUT:
A sequence of co-ordinates of the vertices of a polygon with turning
sequence 0.

begin

{Construct an ri-sequence for 4.}
Beginning with an empty rl-sequence,
for each multiplier m in o,

if a left turn then append m I’s to the sequence
else append m r’s to the sequence;

Use the rl-algorithm to generate a representative polygon of the resulting
rl-sequence;

{Construct the appropriate turning angles.}
Initialize next vertex N=1;
for each multiplier m in o,

output the intersection point of the edges ending at N and
N+m;

{That is, find the intersection of the edges corresponding to the
pairs of turns in positions (N—1,N) and (N+m—1,N+m).
Note that this effectively deletes m—1 edges from the ri-
polygon.}

N=N+m;

end.

We must now show that the ‘‘merging’ process does not introduce any
intersections. There are only two types of merges, those which merge !’s and
those which merge r’s. Let us call the former “external” merges and the latter
“internal” merges. Figure 2.b shows examples of both types. Here the ri-
algorithm had to make two recursive detours in drawing the detour bimn (the
sub-detour dikl and the sub-subdetour fghi). Then (in the merging phase) the
vertices b, d and f were merged to the vertex ¢ (an internal merge), and the
vertices g, h and k were merged to the vertex j (an external merge). We will
sketch the proof for internal merges only since the same argument applies to
externals by “‘exchanging” the interior and exterior of the polygon.



Thurtle Polygons 7

d <
Figure 2.2
A nested set of detours

.k
Figure 2.b

Examples of merges

Consider the internal merge on edges ab and gf shown in Figure 2.b. Here
D=4 and we are merging the maximum possible number of vertices (3). Since we
are merging D —1 angles, the exterior angle produced at the intersection point is
6 (in Figure 2.b Zbcf =6=n/4). This means that the second edge of the merge is
parallel to the last edge of the base detour (in Figure 2.b gf||mn). Hence the
merge cannot produce an intersection. Suppose now that bd is used as the “‘start
edge” of a D—1 merge. Now the intersection point must lie on dl by the same
argument as before (since the other extended edge must be parallel to kI).

In general, for any sequence of D—1 consecutive r’s, there corresponds a
sequence of D —1 edges, the last of which is parallel to the last drawn edge of the
detour on the first edge of the sequence. Since the extension of the last edge of
the sequence must lie in the detour (proved previously) then there can be no
intersections caused by merging the first and last edges of the sequence. If we
merge less than D —1 edges then the extension is clearly less. Finally, it is easy
to see that an internal merge cannot intersect another internal merge; similarly,
an internal merge cannot intersect an external merge.

To give worst case time bounds we choose the usual (RAM) model of
computation in which any arithmetic operation costs O(1) time and overall
execution time is proportional to the number of times the input is scanned.
Suppose that o is an arbitrary turning sequence of length n and 6=#/D. Each
step of the general algorithm costs O(Dn) (since the ri-algorithm is given a string
of length at most (D —1)n and Edge examines each vertex exactly once). Hence
the overall worst case cost is O(Dn). Note that the normal input to the
algorithm may not necessarily be turning sequences with explicit multipliers. The
sequence of interior angles of the polygon to be drawn is sufficient. To convert all
we need do is find the lowest common denominator (D) of the angles in the
sequence (this costs O(nlogD)).



8 Culberson and Rawlins

4. Discussion

In the polygons drawn by the algorithm deeply nested edges rapidly shrink
in length with the consequence that some polygons have an ‘“‘unnatural” look.
Although it is, of course, impossible to formalize precisely what is meant by
“ynnatural” it seems reasonable to say that a polygon looks “natural” if all its
edges are of approximately equal length (alternately, we could require that the
edge lengths follow a Gaussian distribution). It is an interesting unsolved problem
to characterize those polygons for which it is possible for the edges to be of
exactly equal length.

We say that an angle is rational if it can be expressed as a rational number
times 7 radians. The algorithm constitutes a proof of the theorem that for any
finite sequence of rational angles summing to 27, there exists a simple polygon
with that turning sequence. Thus, not only must the turning angles of a simple
polygon sum to 27, but also, if a sequence of angles is rational and sum to 27
then some simple polygon has that sequence of angles.

Note that we may think of a turning sequence with #=7/D as a necklace
where beads may be coloured in any of 2(D —1) colours (the integers 1—D..D—1,
except zero, represent the colours) and the numbers of beads of each colour is
constrained so that the sum of the colours is 2D. This observation, together with
the techniques in [ 1] , can be used to create an ‘‘encyclopaedia” of
representatives of each non-isomorphic (in terms of angle sequence) simple
polygon on n angles. This collection can be used to provide insights into or
counter-examples of geometric conjectures. Indeed, the desire for just such a
collection was the main reason for this research.

As was pointed out by O’'Rourke [ 3] the technique outlined in this paper
may be used to generate “random’ simple polygons to test geometric algorithms.

The results in this paper suggest the following avenues of further research:

The Construction Problem:
Prove a lower bound of 2(Dn) for the problem of drawing simple
polygons or show that O(Dn) can be improved. Find a more
intelligent algorithm which draws more ‘natural” polygons in a
reasonable time.

The “‘Spline”” Problem:
We can generalize the drawing problem to that of drawing a polygonal
curve between two given points such that the turning angles of the
curve is a given turning sequence. Further, by analogy with splines, we
could ask for a polygonal curve which passes through prefixed “knots”
and has a fixed turning sequence.

The Decision Problem:

Suppose we generalize turning sequences even more by allowing a turn
of any angle at any vertex (still with the restriction that the angles
sum to 27). For which strings of these arbitrary turning angles is it
possible to construct a simple polygon? The only progress we have
made on this problem is the observation that any finite nonempty set
of irrational angles, I, can only occur in at most | 7] =1 distinct
turning sequences in which all the other angles are rational.



Turtle Polygons 9

The Identification Problem:
Characterize those polygons whose edge lengths can be made equal.
Generalize to those polygons whose edge lengths each belong to some
finite set.

Although this paper solves the problem of drawing a polygon given a
particular angle sequence it should be observed that it pays no attention to the
lengths of the edges. If we restrict the problem to not only drawing a polygon
with a particular angle sequence but also with edge lengths chosen from some
finite set we know of no polynomial time algorithm. On the other hand, if we
add the condition that all the vertices must land on lattice points (] 2] ), or that
all the edge lengths be integral ([ 7] ), then the problem is still not fully solved.
(It seems that there is far more to geometric figures than meets the eye!).

Acknowledgments

Sack ([ 5] see also [ 6] §3.1) independently came up with an idea similar
to the pairing scheme used in the rl-algorithm for the special case of rectilinear
polygons (D=2). O'Rourke [ 3] also solved the rectilinear problem but in a
completely different way.

We wish to thank Darrell Raymond and Professor Daniel Field for their
careful proofreading and useful comments. In particular, Professor Field
suggested the ‘‘spline” problem. We also wish to thank Professor Derick Wood
for improving an earlier version of this paper and for his continuing support and
encouragement.

This work supported in part by National Sciences and Engineering Research
Council of Canada Grant No. A-5692 and a NSERC 1967 science scholarship.

References

[ 1} Fredericksen, H. and Maiorana, J.; “Necklaces of beads in k colours
and k-ary DeBruijn sequences”, Discrete Math. 23 (1978) pp. 207-
210.

2] Honsberger, R.; “Semi-regular lattice polygons”, Two Year College
Math. J. 13 (1982) pp. 36-44.

[3] O’Rourke, J.; Personal communication.

[ 4 Papert, S.; “Mindstorms: Children, Computers and powerful ideas”,
Basic Books, New York, 1980.

[ 5} Sack, J.-R.; Personal communication.

[ 6] Sack, J-R.; “Rectilinear Computational Geometry”’, Ph.D. thesis,
McGill University, School of Computer Science, May 1984.

{7 Stewart, B.M. and Herzog, F.; “Semi-regular plane polygons of integral

type”, Israel J. of Math. 11 (1972) pp. 31-52.



10 Culberson and Rawlins

Appendix

Here are some example polygons drawn by the algorithm. We have made
the multipliers positive or negative to indicate left and right and dropped the I’s
and r’s.

(1-1,-1,1,1,-1,1,1,1,1),0=7/2 (2,2-2,2,2),0=7/3

@,

(1,-2,3,-3,2,1,3,1,2,2),0=n/4 (1,2-3,-2,4,1,3,2,1,1),6=1/5




	

