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ABSTRACT

We present an efficient algorithm for computing all pairwise
intersections in a given set of n polygons. The polygons have a
bounded number e of edges and a bounded number f of edge
orientations. The algorithm requires Of(e f nlogen +32k) time,
where k is the number of intersections, and O(en) space. This
improves an earlier algorithm and, moreover, requires
O(nlogn + k) time and O(n) space when ¢ and f are treated as
constants. In this case the algorithm is time- and space-optimal.

1. The Problem

Given a set S of polygons in the plane and an integer f = 2, wesay S is
f-oriented if the edges of the polygons in S have at most f distinct orienta-
tions. We say a set S is finitely oriented if it is f-oriented for some [ = 1.
Clearly a set S of polygons is always n-oriented, where n is the number of edges
in S. This notion was introduced in [Giil] and subsequently studied in [Gii2] and
[GiiO], where the term ‘C-oriented’ is used.

Rectilineart or orthogonal polygons, which have been well studied, see the
recent survey [Wo), are 2-oriented. The two orientations are orthogonal and

t Work carried out under the Natural Sciences and Engineering Research Council of Canada Grant
0. A-5692.
The choice of the adjective rectilinear is unfortunate in that it only means straight, rather

than orthogonal or rectanguloid. However it is 8o well entrenched that we continue to use it.
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appear in VLSI design and layout, floor plans, geographic databases, etc. How-
ever it is often the case in VLSI artwork that a 45° oriented lines are also used,
that is they are 3-oriented. While this was the original motivation for introducing
finitely-oriented polygons, we consider finitely-oriented polygons to be of interest
in their own right. They bridge the gap between rectilinear polygons and arbi-
trary polygons.

Similarly, given a set S of polygons and an integer e = 1, we say S is e-
bounded if each polygon in S has at most e edges.

We say two polygons intersect if they have at least one point in common.

Letting ¢ and f be two integers, we can state the e,/ Polygon Intersec-
tion Problem as:

Given a set S of polygons which is e-bounded and f-oriented, report
all pairs of intersecting polygons.

Since the problem has parameters e and f we refer to it as (e,f )PIP.

The reason for bounding the size of the polygons is to avoid having output
of size proportional to the total number of edges in the polygons of the given set.
This restriction is common, see [EKM] and [Gii2].

[Gi2] has obtained a solution to (e,f)PIP which requires
O(e f2nlog?en + e%k) time and O(en logen) space, where n is the number of
polygons, k is the number of pairwise intersections and e and f are as above.

In the next section we establish:

Theorem. FEach instance of (e,f )PIP containing n polygons can be solved in
O(e f nlogen +e%k) time and O(en) space, where k is the number of pair-
wige intersections.

When e and f are constants, for example for sets of orthogonally-oriented
rectangles, this yields O(nlogn + k) time and O(n) space, that is it is time- and
space-optimal. Optimality follows by the usual reduction to the element unique-
ness problem, see [BW] for example.
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2. The Solution

To solve (e,f)PIP for a set S of polygons we proceed in two steps. First,
we partition each polygon into triangles and rectangles and, second, we solve the
simpler problem of detecting intersections amongst these simpler objects.

The method of partitioning each polygon is particularly straightforward.
First, as in [Gii2], we vertically cut each polygon through each vertex, see Figure
1. This partitions each polygon into trapeziums with two vertical edges and, pos-
sibly, into triangles with one vertical edge. Second, we horizontally cut each tra-
pezium and triangle through each vertex, see Figure 2. This results in
orthogonally-oriented rectangles and triangles with one horizontal and one verti-
cal edge. By construction, the hypotenuse of each triangle must be part of an
edge of an original polygon and is, therefore, f-oriented. Moreover the number of
triangles and rectangles obtained from each polygon is Of(e) and, therefore,
O(en) over all.

Figure 1
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Figure 2

Rectangle-rectangle intersections can be found by any one of the methods in
the literature, for example [BW], [E], and [Mcl]. However right-angled triangle
intersections appear to be more difficult. We demonstrate that they are no more
difficult to handle than rectangles, thus providing a basis for the solution. Con-
sider the right-angled triangle A of Figure 3. The line which is colinear with A’s
hypotenuse satisfies a linear equation y = f4(z), say. The triangle determines a
vertical interval [y,f,(z’)] at each vertical line z’ which cuts the triangle.
Therefore to determine if a rectangle or some other triangle, which begins at z’,
intersects A we only need to test if A’s vertical interval overlaps the vertical
interval of the other object.
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Figure 3

This idea is used as a basis for a plane-sweep algorithm. We sweep a verti-
cal line, the sweep line, from left to right through the objects. At each left end-
point of a triangle or rectangle we determine any new vertical overlaps and also
add the object to the currently active objects. At a right endpoint of an object
we remove the object from the currently active objects. Noting that the vertical
interval of a rectangle R is also of the form [y, fp(z)], we require a data struc-
ture that represents intervals of this form, as well as providing for efficient inser-
tion, deletion, and querying for overlaps with such intervals. The priority search
tree of [Mc2] is such a data structure. It provides for efficient updating with
intervals and allows a query of the form [c,d] which returns all intervals [a,b]
which satisfy @ < d and ¢ < b, that is [a,b] and [c,d] overlap. The time
bounds are O(logn) for insertion and deletion and O(logn + k) for a query,
where %k is the number of reported intervals.

It is necessary that the intervals in a priority search tree (or, indeed, in any
similar structure), do not change their relative order during the plane sweep.
This implies that we keep 2f +1 priority search trees. For each orientation we
have the two kinds of triangles, displayed in Figure 4, resulting in 2f priority
search trees. The remaining priority search tree is for the rectangles.

On meeting an object for the first time during the plane sweep it causes two
actions: -

(i) 2f+1 queries of the 2f +1 priority search trees
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(i) One insertion into the corresponding priority search tree.

~J
N

The two kinds of triangles with the same orientation

Figure 4

On meeting an object for the last time during the plane sweep it causes one
action:

(i) One deletion from the corresponding priority search tree.

By the properties of the priority search tree we conclude that the plane-sweep
algorithm requires O(e f nlogn + ezk) time, where k is the number of pairwise
intersections. This is O(nlogn + k) time if ¢ and [ are treated as constants.
The space requirement is O(en), since while we have 2f +1 structures, there are
only O(en) objects, and each object appears in at most one structure.
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