A
EPARTMENT

ENCE BERARMENT
IENCE [D)EPARTMENT

ER 88
1%

Q000

|
WATERIER €
WATERLSS &

o
OF

IT

II¥

ITY
SITY

i
ER
R

Fault-Tolerant Schemes

for

Some Systolic Systems

Karel Culik II
Sheng Yu

CS-84-39

October, 1984

FAULT-TOLERANT SCHEMES FOR SOME SYSTGCLIC
SYSTEMS"®

Karel Culik II & Sheng Yu

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT

Fault tolerant schemes for several types of systolic systems are
proposed. By fault tolerant scheme for certain type of systems, say
unidirectional rings, we mean an algorithm that converts any given
system of this type into an equivalent fault tolerant system of the
same type. We consider a specific type of fault tolerance introduced
by Kung and Lam. It is assumed that the faulty cells of a given
system can be detected and 'switched’ so that each of them passes
its inputs to its outputs in specified order. To specify the degree of
fault tolerance we introduce the notion of fault tolerance with
respect to a collection {2 of subsets of the cells of a system. To be
fault tolerant, the system must tolerate the failure of all the cells of
any of the subset in 2. We device fault tolerant schemes for trellis
networks, one-way (unidirectional) cellular automata, one-way rings
and two-way cellular automata and iterative arrays.

1. INTRODUCTION

The production of increasingly large and complex integrated circuits on a
single chip leads to a decrease in integrated circuit yield, that is, the percentage
of correct circuits. A strategy which can dramatically improve the yield is the
design of “fault-tolerant’ integrated circuits, that is circuits whose correctness
does not require all constituent circuits to be correct. For more details see [11].
As in [11] we will study “fault-tolerant” systolic arrays. A systolic array is a sys-
tem consisting of a large number of regularly interconnected synchronized

* This work was supported by the Natural Science and Engineering Research Council of Canada
under Grant A-7403.

2 Karel Culik II and Sheng Yu

processors called cells. We will design systolic arrays which globally will function
correctly even when some cells fail. By failure we mean that a cell just passes its
inputs to its outputs {in certain order). Thus no cell really fails completely,
rather we assume that each cell is designed so that it has this “‘bypassing’ capa-
bility. We also assume that “faulty” cells can be detected and “switched” to
bypass mode. The goal is to design a fault-tolerant system which will perform,
essentially, the same computations as the original perfect system without faulty
cells. Moreover we require it to do this with a minimal time delay. This is rela-
tively easier to do for systems without feedback or with a simple feedback struc-
ture such as uni-directional, 2-dimensional arrays and rings considered in [11].
We study some additional types of systolic arrays including bi-directional linear
arrays, that is, cellular automata which have rather complex feedback structure.
Fault-tolerant cellular automata from a different point of view have been con-
sidered in [7] and [13]

We define a new notion of a systolic network N being fault tolerant with
respect to 2 where 2 is a collection of subsets of the cells of N (for a fixed
bypass function). Intuitively this means that N will perform, with no more than
linear delay, essentially the same computations whenever the set of its faulty cells
is in 2. Obviously, we cannot ask that N performs the same computations if all
its cells fail. It is also clear that it is easier to make N fault-tolerant with
respect to a ‘“‘small” rather than a “large” 2.

We say that we have a fault-tolerant scheme for a given type of network if
we give an algorithm which converts every network of this type into an equivalent
fault-tolerant network of the same type. In Section 3 we show a fault-tolerant
scheme for trellis networks [3] which are a generalization of trellis automata
introduced in [4]. In order to be able to formalize our results we will use the
notion of systolic network:and simulation between networks as introduced in [3].

We illustrate our technique for the design of fault-tolerant trellis networks
with a simple example. Figure 1.1.a shows a trellis network. Every cell performs
the same function and it has no memory and every edge represents a unit delay
(register), see Section 3 for details. If there is a faulty cell as in Figure 1.1.b, we
can cut the network and reconnect it as shown in Figure 1.1.c. By the Cut
Theorem of [11] the newly formed network is equivalent to the original one. But
we can design a fault-tolerant system, i.e. a system which requires neither recon-
nections nor changes of the transition function for the nonfaulty cells. We only
assume that the faulty cells are detected and made to “bypass” the data. The
system will essentially create cuts automatically whenever there are faulty cells.
It will work correctly no matter where the faulty cells are located. Also, it does

Fault-Tolerant Schemes for Some Systolic Systems 3

not require any rearrangement of the input data.

Figure 1.1

After giving the basic definitions in Section 2, we will describe the design of
fault-tolerant trellis networks in Section 3. Then in Section 4 the fault-tolerant
one-way cellular automata and one-way cellular rings are discussed. Finally in
Section 5 we design fault-tolerant linear two-way cellular automata and iterative
arrays.

In the first five sections we require that a fault tolerant scheme must con-
vert a given systolic system of certain type into a fault tolerant system of the
same type. In the last section we drop the requirement of the same type. We
show that every linear bidirectional array (cellular automaton) or ring can be con-
verted into a fault tolerant system of even a simpler type, namely a unidirectional
systolic ring. We show this using the result of [3] that every bidirectional linear
_array or ring can be simulated by a twice slower unidirectional ring.

2. BASIC DEFINITIONS

Following [11] we consider fault-tclerant systolic systems which maintain
‘the original data flow pattern and regular communication by bypassing faulty
(defective) cells. In a faulty cell the normal computation (same for all cells) is no
longer performed. Instead the data are simply passed from inputs to outputs ir a
fixed pattern and normal delay. Formally, we define a faulty cell (with m inputs
and n outputs) as a special cell which performs the (bypass) function

4 Karel Culik I and Sheng Yu

play, ...,a,) = (a,-l, - ,ain), where man 211=<i,,...,i, <m, ie.

every component of the output vector is a replica of a componen! of the input
vector.

Our goal is to design systolic systems so that even with faulty cells they will
perform the same computations or accept the same language as they do without
faulty cells, possibly with some delay. ‘

A necessary step in formalizing the notion of fault-tolerance is to make pre-
cise what it means that two systolic systems ‘‘perform the same computations’.
We will use the notion of systolic network and simulation between networks
from [3]. Informally, we say that network N, simulates network N, if there is a
mapping of the space-time diagram (unrolling) of N, to the space-time diagram
of N, such that every computation on (unrolling of) N, can be recovered from
the corresponding computation on (unrolling of) N,. Intuitively, N, is said to
(m,k)-simulate N, if any cell of N, corresponds to at most m cells of N, and
if every cell of N, takes at most k time units to simulate one computation step
of N,.

In the above definition of (m,k)-simulation, k is locally constrained, i.e.,
every step of computation should be simulated by no more than & steps. We call
it local (m,k)-simulation. If any n steps of computation started from the begin-
ning can be simulated by no more than kn steps, then we call it global (m,k)-
simulation. Notice that local (m,k)-simulation implies global (m,k)-simulation,
and they both imply general simulation. But this is not in general true vice versa,
except (1,1)-simulation which is the same being either local or global. Notice that
(1,1)-simulation is a transitive and reflexive relation. If N, (1,1}-simulates N,
and N, (1,1}simulates N,, then we say that N, and N, are equivalent.
Clearly, mutual (1,1)-simulation is an equivalence relation. =

In this paper, if there exists an m and k, m,k > 0, such that N, (1,1)-
simulates N,, we will simply say that N, simulates N,. Obviously, simulation
implies linear delay by this definition. A systolic network (system) without any
faulty cell is called a perfect network (system).

Let A be a systolic network (system) with the set of cells Q@ and let £ be a
collection of subsets of @, ie. 2C 29, We assume that a bypass function p is
fixed. Let Ag be the systolic network obtained from A by replacing a subset S
of its cells by faulty cells. If for each S € 2, Ag simulates A, then A is called
Jault-tolerant with respect to 2. When 2 is the set of all finite subsets of @, we
simply say A is fault-tolerant.

Fault-Tolerant Schemes for Some Systolic Systems 5

Notice that in the above definition all the cells of A5 except those in S are
unchanged, i.e., they still perform the same transition function. And generally the
pattern and timing of the input string should not be changed either.

Informally speaking, an (infinite) systolic network is fault-tolerant if it per-
forms, with no more than linear delay, essentially the same computations when-
ever any finite number of its cells are faulty.

3. FAULT-TOLERANT TRELLISES

Since the trellis networks, trellises for short, are the basic tools to facilitate
the study of iterative arrays, one-way systolic rings, cellular automata etc. and
they themselves are a useful model too, we will start with the design of a fault-
tolerant scheme for trellises.

Trellises have been introduced in {4], and studied in [5}], [2], [9]. We use a
definition which is similar to that in [9]. A trellis network is a system consisting
of an infinite planar array of identical cells with unit time propagation delay
between the cells. Each cell has two inputs, called left and right input, and two
outputs, left and right output. Each output is a function of the two inputs. An
input to a trellis is a string w =a,...a, where a,,...,a, are the left
inputs to n- consecutive cells of the same row of the planar array. See Figure 3.1.
The formal description follows:

Figure 3.1

6 Karel Culik II and Sheng Yu

A trellis network is a system A = (I',Z,f) where I' is the working
alphabet with a special quiescent symbol # € I'; £ C T is the input alphabet
with blank symbol B € X; f :T? «T? is the transition function for every cell
with the property that f(B,B) = (#,#) and [(#,#) = (#,#).

A trellis network with a subset of states A specified as accepting states is
called a trellis automaton. It defines a language in the following way. A string
w = ¢, ...a, is accepted by a trellis automaton if the left output of a cell in
the column where a, enters is in an accepting set A C I'. A language is said to
be accepted by A if it is exactly the set of all strings accepted by A.

Let us assume that ¢, $ are in T and that every input string starts with
¢ and ends with $. A trellis network is called bounded if its transition function
J satisfies the property that f(¢,e)= (¢,#), [(s,¢)=(#,¢) and
J($,B) = (#,¢), for any a € I'. Intuitively, a bounded trellis has only finitely
many columns of cells. These columns are the ones where input symbols are read
and the ones between them. The inputs in the remaining columns are always
‘B’s. The bounded trellises can be considered 2s the unrolling of the networks in
Figure 3.2 or Figure 3.3. We will see later that the network in Figure 3.3 can be
fault-tolerant but the network in Figure 3.2 cannot.

SO

Figure 3.2

We now introduce a fault-tolerance scheme for trellises. A direction bit is
added to every working symbol. The normal left and right input to a cell should
have direction bits ‘=" and ‘=", respectively, and the cell produces a left output
with “«” and right output with “-". Inputs with wrong direction bits to a cell
result in the simple bypass of the input symbols (i.e., ' f(a,b) = (e,b) if a or b
has wrong direction bit). An example is shown in Figure 3.4. A computation on

Fault-Tolerant Schemes for Some Systolic Systems 7

L

Figure 3.3

a perfect trellis is shown in Figure 3.4.a. The direction bits are omitted here.
Figure 3.4.b shows how the same computation is simulated when the cell marked
by “X is faulty.

Figure 3.4

8 Karel Culik II and Sheng Yu

Theorem 1 For any trellis network A = (I, X, f) there exists an equivalent
fault-tolerant trellis network A' = (I'',LZ,f') with ‘bypass function

p(a,b) = (a,b).

Proof: There are three steps in this proof:

(2) to construct A’,
(b) to prove A’ is equivalent to A,

(¢) toprove A’ is fault-tolerant.

Without loss of generality, we assume that
XYNdomf =3.

A’ is constructed as follows:

I"'={aa|e€lr-X}UL;

(¢d), if a=a €%, =B and[(s,B)=(c,d),
['(a,B) = or a =g, g = band f(a,b) = (c,d)
(®B)

otherwise.

If A is bounded, then

(¢, #)if a=3€T";

1,0 = .
(¢,0),if a € Zora=2a €T’

Fault-Tolerant Schemes for Some Systolic Systems 9

(#,¢)if a=a€I;

J'(a,e)= . .
(a,¢),if a=a¢€T.

To prove (b), it suffices to show that for any input word, a cell U of A

has input (a,b) and output (c,d) if and only if the cell v;; of A’ has input (a,})

((a,b),if a€ Zand b = B) and output (a,d), where u,; and v;; are the cells

in ¢th row and jth column of A and A’, respectively. This can be easily proved
by induction on the number of rows. We leave this part of the proof to the
reader.

Let @ and Q' be the set of cells in A and A’ respectively. And let S be
an arbitrary finite set of @’. We now prove that there exists a & such that A’s
(1,k) simulates A for any input string w (Jw| = n).

We first define a 1-1 mapping p : Q - Q, where Q; is obtained from Q'
by replacing every cell of S by a faulty cell. p is defined recursively. ’

(i) p(ul,j) =wk= min{t | t = 0 and vy 4 d Sl for j=0,2,...,2n.
(i) plu;) = v k=minft|t >I,t >m, vy ¢ S} where

V-1 = Pei—yj-y) (orl=0ifj=1) and v, iy, = o2y j+)
form =0if j = 2n). :

Claim 1 Let v; ; be cell of A, and (a,b) (or ((¢,B) if @ € L) be the pair of
inputs to v; ;. Let k = min(t |t =i and v, ; § S}. Then v, ; will have input

(a,5) and output (3,b) for all i <! <k. And v, ; will have input (,b) and

output (¢,d) if f(a,b) = (c,d) and undefined otherwise.

Intuitively, Claim 1 says that any pair of inputs to a cell of A; will eventu-
ally be passed to the first nonfaulty cell of the same column starting from that
cell and this cell will perform the computation which was supposed to be done by
the faulty cell.

If v; ; is not faulty itself, then Claim 1 is true trivially. If v; ; fails, both

10 Karel Culik II and Sheng Yu

a(a) and 5B) will be bounced back by the two neighboring columns because the

orientation of the direction bits. By the definition of f’, a(a) and b(B) will be

passed forth and back to evéry next cell of the same column until the first non-
faulty cell v § which will do the supposed computation. See Figure 3.5.

Figure 3.5

Claim 2 3, ; has input (a,b) and output (c,d) if and only if p(u; ;) has input
(a,8) ((¢,b) if ¢ € £ and b = B) and output (c,d).

We prove the claim by induction on the number of rows of A. It holds for
i = 1 by simply applying Claim 1 and the definition of p. Assume Claim 2 is
true for all i = n. Consider i = n+1. Let :’“n+1,j has input (a, b). Then a is

the right output of u, ;_, and b is the left output of u, ;4,. Therefore aand b

should be the right and left output of P(“u,j—l) and p(u“'jﬂ), respectively.
Assume vy i—1 = Py j-1) vy i+1 = Pty j+1)- Let
k=minft|t >p,t >gq,v, ;¢ S}. By the definition of p, v ; = p(up 4y,)-

By Claim 1, v ; has input (¢, }) and output (¢, d) if u, 4, ; has input (o, b)
and output (c,d)./p ¢ output (c,d). Let p has input (a,5) and output (c,d).
Assume u, ., ; has input (¢’,b'), and o’ #a or b’ # b. Then p(z,+y;)
would have input (a’,b’'), a’ # @ or I’ # b by the above proof and the definition

of A’. This is a contradiction. So, u, 1, ; must have input (a,b). The fact that

Fault-Tolerant Schemes for Some Systolic Systems 11

Uy +1,5 should have output (c,d) follows by the definition of f’. That com-
pletes the proof of Claim 2.

To complete the proof of Theorem 1 we define mapping I;: @’ - IN by

Il(v,-,j) = l., for v‘,j € Q'.Let

k= max{I,(p(u; ;)= y(o(t; -1 ;) | v; jiui—y ;€ Q}

Since S is finite, k exists. Therefore A, (1,k)simulates A, and A’ is fault-

tolerant. O

Figure 3.6

Figure 3.6 is a modified redrawing of Figure 3.4.b. From this diagram, we
can see that our fault-tolerant scheme for trellises actually creates a cut or cuts
when one or more cell fails. Two units of delay are added to every edge of a cut.
Figure 3.7 indicates the cuts formed when two failed cells are in different mutual
positions. Each cut divides the trellis into two parts, source and destination, and -
the source includes all the cells which have external inputs. The cuts are formed
not physically, but rather logically by the transition function because the
existence of the faulty cells.

12 Kaurel Culik I and Sheng Yu

Ny R

N
(/|
|
. |

Figure 3.7

In the next theorem, we will see that a trellis formed by the above scheme is
fault-tolerant with respect to a set 2 which properly contains the set of zll finite
subsets of Q.

For a trellis network A = (I',Z, f) and an integer K > 0, let 2, be the
collection of all the subsets of I’ which do not contain & adjacent cells from any
single column.

Theorem 2 Given a trellis network A = (T, £, f) aend integer k > 0, we
can construct an equivalent trellis network A’ which is fault tolerant with
respect to (I

The construction of A’ is the same as in the proof of Theorem 1. It is easy
to prove by induction on the number of rows in A that any n rows of A can be
simulated by no more than kn rows of A’. Hence, A5 globally (1,k)-simulates A
for any S € 2, and thus A’ is fault tolerant. Now, we will consider how the
distribution of the faulty cells affects the delay in the simulation in Theorem 1.

Let S be the set of faulty cells. To calculate the delay caused by the faulty
cells of S, we define a relation “ <" between those cells in S. Let v;; be a cell

Vi < Yigd, for YiiyViods €5, if

and only if i,=i, > | Jo= j1| , i.e., they form two separate cuts or one cut of

on the ith row and jth column of a trellis. Let

two cells thick (see Figure 3.7). Adding two pseudo faulty cells v_, and vy
such that v_, < v < v, for any cell v € S, all the faulty cells of S involved
in a computation form a lattice with respect to the relation “<”. We call this
lattice the lattice of the faulty cells.

Fault-Tolerant Schemes for Some Systolic Systems 13

Theorem 3 Let A’ be a fault-tolerant trellis network constructed according
Theorem 1 from a trellis network A, and S be a set of cells in A'. Then the
delay of a computation by Ag in comparison with A is no more than 2(1—1)
where | is the length of the longest path in the lattice of the faulty cells. O

Instead of giving a detailed constructive proof, we show the construction on
an example, which explains the essential idea of the proof. Figure 3.8.a shows a
trellis with failed cells (only the ones involved in the computation are shown in
the diagram). Figure 3.8.b shows the faulty-cell lattice of the computation.
From the faulty cell lattice we predict the cuts formed in the computation by the
following rules.

(1) Al the cells directly above v_ form a cut.
(2) Al the cells directly above a cell of a cut form a cut.
(3) Repeat (2) and stop at v;,.

o O \G\f/ o o /65 Voo
» O ® O O ,@
o 0 o o &g o

o o0 © pza/ o YR
VAV AN

Q ;’j g o Va3 Vi Vae
@ % o o /a/ o) '

ot e \ X
o Q ® O O Vie V2,7

o & 0 0 © \/
e O O O O O O
[} 3

2 45 67 89 10U V-oo

-~

»

[]

a b

Figure 3.8

By u being directly above v we mean that v < u and there is no w
such that v < w < u.

14 Karel Culik II and Sheng Yu

Corollary 1 Let a set S in 2 contains a whole column of a trellis network
N. Then N is not fault-tolerant with respect to 12

This is true since the faulty cells of the whole column will form a infinite
path in the faulty-cell lattice.

Corollary 2 Let a trellis network N be fault-tolerant with respect to 2 and
S €12 be a set of cells of a whole diagonal line of N. Then the delay of the
computation of Ag is no more than two time units.

No two cells of a diagonal line are in the relation ‘“<"’. Thus, every path
from v, to v_, is of length 2.

The unrollings of both the networks in Figure 3.2 and Figure 3.3 are trel-
lises. By Corollary 1, the network in Figure 3.2 is not fault-tolerant. The net-
work in Figure 3.3 uses twin cells to simulate one cell of the above network. This
network can be fault-tolerant if there is no pair of twin cells with both its cells
faulty.

The results on trellises are easily extended to some other regular systolic
systems as shown in the next section.

4. FAULT-TOLERANT ONE-WAY CELLULAR AUTOMATA AND
ONE-WAY CELLULAR RINGS

A one-way cellular automaton (OCA) is a system shown in Figure 4.1.a.
Every cell of the system is a finite state machine with an input and an output.
The output is the function of the current state and the input. The system has
parallel input, i.e., the input symbols initiate the same number of adjacent cells at
the same time. An OCA can also be considered as a synchronous network dep-
icted in Figure 4.1.b each cell of which is simply a function and each edge is an
unit delay. (See [2]). Formally, an OCA is a quintuple A = (Q,Z,T, f,4)
where @ is the state set, X is the initial input alphabet, I' is the output and
input alphabet, f : EUTI'XQ - Q@ XTI is the transition function, and ACT
is the set of accepting symbols.

The space-time diagram of a systolic network N is formalized in [3] as the
unrolling of N. The unrolling of an OCA is a trellis. Therefore, the result of the

Fault-Tolerant Schemes for Some Systolic Systems 15

O OO e

Figure 4.1.a

LY Q.

Figure 4.1.b

last section can be easily used for OCA’s. Let T be the unrolling of an OCA A.
. If thére is a faulty cell in A (see Figure 4.2.a) then there is a whole failed diago-
nal line in T (see Figure 4.2.b). Assume that B € Q is the pre-initial state for
every cell of the OCA. We have the following theorem.

Figure 4.2

16 Karel Culik II and Sheng Yu

Theorem 4 Let A = (Q,XZ,I,f,D) be an OCA. Then there ezists a
Jault-tolerant OCA A’ with the bypass function p(a,b) = (a,b) such that

(1) L(A") = L(A);
(2) the delay by k failed cells of A' is 2k;

(3) k& more cells are used by A’ than A if k is the number of the failed cells
tnvolved tn the computation. O

The construction of A’ = (Q',Z,I'', /', A) uses the same principle as that
of Theorem 1. However, it looks simpler since the faulty-cell pattern is more reg-
ular in a trellis which is the unrolling of an OCA. Let

Q'=QuUT

I'=Tu{7|qeQ}u

fla,p), fa=ae €ZUTlp€Q;
['ep)=1 (g.9), ifa=7€T'p €Q;
(B,p), ifa=B,;p € Q.

Properties (1) and (2) follow directly by Theorem 1 and Corollary 2, respec-
tively. Property (3) holds since the time delay means that more diagonal lines are

involved.

Intuitively, the bypass function p(a,b) = (a,b) simply means an extra unit
delay. By this scheme, an OCA will work correctly by just replacing the faulty
cells by simple registers, see Figure 4.3.

This scheme is explained in an example in Figure 4.4, where the unrollings
of both the perfect and faulty networks are shown. The dotted lines show where
the cut is.

Fault-Tolerant Schemes for Some Systolic Systems 17

-—---—qn unit delay

o~
————

-

Replace a cell by a register.

\
\
\
\
\
faulty cell

Figure 4.3

Figure 4.4

Another simple fault-tolerant scheme for CCA is explained in the following

example ,

18 Karel Culik II and Sheng Yu

Figure 4.5

In Figure 4.5.b is a faulty OCA with the 4th cell failed, which simulates a
perfect OCA in Figure 4.5.a. The failed cell simply passes the symbols to the
right. A special symbol “#" is assumed to be the external input to every failed
cell. The input string skips failed cells. If f is the transition function for a per-
fect OCA, the transition function for the corresponding fault-tolerant OCA is
defined as

, { (B,a), ifa##;
f'(e,f) = S (a,B), otherwise.

This scheme automatically creates a cut with one unit delay to every edge of the
cut. Figure 4.6 is a different time-space diagram of Figure 4.5.b. It emphasizes
where the cut is formed by the transition function f ‘.

Fault-Tolerant Schemes for Some Systolic Systems 19

Figure 4.6

For a fault-tolerant bounded OCA, the time delay is equal to the number of
failed cells involved in the computation. The number of cells used in the compu-
tation depends on the distribution of the nonfaulty cells since the number of non-
faulty cells is always equal to the number of input symbols in this scheme.

The unrolling of a one-way cellular ring is equivalent to a trellis [3]. So the
fault-tolerant scheme for a OCA is very similar to the one for a OCA. We omit
the details.

5. FAULT-TOLERANT SCHEMES FOR LINEAR CELLULAR
AUTOMATA AND ITERATIVE ARRAYS

A cellular automaton (CA) ([1], [2], [8], [10], [14]) is shown in Figure 5.1. A
CA is a linear array of cells. Each cell is a finite automaton. An input to 2 CA
is a string of symbols which enter in parallel a sequence of adjacent cells at begin-
ning of the computation. The next state of a cell is the function of the current
states of its two nearest neighbors and itself.

-) M '@ —)
N S ./ T\ o
Figure 5.1

Formally, a cellular automaton is a system A = (C,Q,L,5,F), where C is an
infinite set of cells which are numbered by IN, @ is a finite set of states,

20 Karel Culik II and Sheng Yu

L C Q@ is the set of initial states (or, say, inputs), §: Q3 - Q is the transition
function, and F C @ is the set of final states . Symbol # € @ is the quiescent
state.

We use S subscript ¢, i.e. S; to denote the cell to state mapping at time ¢,
S, : C = Q. A cellular automaton (CA) is bounded if § satisfies &a,b,c) = #
if and only if b = #. In the following, we only consider bounded CA’s. Let
¢y ...,¢ be the cells which are initially not quiescent. Then
Se+1(c) = ASe(ci 1), Sele;), Selej+1)) 1 = i S, Syleg) = Syfcp+1) = #.

The fact that an n-time (real time) CA can be simulated by a 2n-time
trellis suggests that fault-tolerant scheme for CA’s can be obtained from the one
for trellises. However a failed cell in a CA is equivalent to a whole failed column
in a trellis. By Theorem 2, the fault-tolerant scheme of previous section will not
work in this case. Therefore, we need a different fault-tolerant scheme for the
CA’s. ‘

We assume that the bypass function for the failed cells of the CA is
p(a,b) = (b,a), ie., the failed cells can simply exchange the state information
for the two neighboring cells. The main idea of the fault tolerant scheme for CA
is as follows. The state of ¢; at time £+1 depends on the states of ¢;_,,¢;,¢; 4+
at time t. If the state of ¢;_, or ¢;, of time ¢ is not available, then we store
the partial information at ¢; temporarily and will not compute the new state
until all of them are ready. The example given in Figure 5.2 shows this idea.

A’ (in Figure 5.2.b) looks much more complex than A (in Figure 5.2.a).
Actually, each cell of A’ only needs two more registers, which we call left regis-
ter and right register, to remember the status of its two neighbors when waiting
for delayed information (because of failed cells) to arrive. The transition function
of A’ is based on the transition function of A and it follows these principles:

(i) Look at the left (right) register for the state information of the left (right)
neighbor.

(i) If the left (right) register is empty, then get the state information from its
left (right) neighbor. If it is not available, enter a “?’" to the left (right)
register.

(iii) If the left (right) register is a “#”’, then get the state information from the
left (right) neighbor when the left (right) meighbor has a single (not com-
pound) state.

(iv) If all the 3 states are ready then compute the new state according the tran-
sition rule, store the new state and empty the left and right registers.

Fault-Tolerant Scher:es for Some Systolic Systems 21

X

X,
XXX
X
X,

K
X
X

><

a><g
XX
XX
XX
XX
XX

._>_<_><
XXX
XX
XX
XX

>>§
X
XX SIS

a b

XX

Figure 5.2

Let A =(C,Q,Z,5,F) be a cellular automaton without failed cells. We
call it a perfect cellular automaton. A fault-tolerant CA A’ = (C',Q’,Z,§',F)
based on A is formally constructed as follows:

Q' =Q U{(?,4,,8,) l{(7.9.2) | 9 € QYU {(91,95.9) | 91,9, € Q);
8 (1) 8'(p,a1,05,), 45) = §31,42,95),
8'(41,(?,92,95),p)
8'(41,(?, 92, ?),93) = 841,95,95), for 9,905,953 € @, p € Q" U {B},
(2) 8'(p,92:7) = &41,92,95), if p = g or (py,4;,7)

r = g3 or(?,qs,r3) for q,,95,9; € @, p,,r3 € Q'

22 Karel Culik II and Sheng Yu

(3)
[(%005 I 2 EDNPULL,01,05 | 2y, € Q)
r = ggfor (?,95,9), ¢ € {?} U Q;
(91,92, 7), if p € q,0r(g,9,,7), 9 €{f}U Q,
Flp,a20r) = | r € DIU(rrs?) | Py, € Q)
(7.92%). it p € NPU{(#,p,,05) | P12, € @},
r €0 U{(ryro.?) | ryr, € Q)

We need to show that, for any finite set SCC’, Ag’ simulates A in order
to prove that A’ is fault-tolerant and equivalent to A. Assume that
C={c;,¢y ... ,Cp, ..} and C'={eyse,, ... ,€,,...,}. Let the notation ¢ or
ef to denote the i** cell of A or A’ at time t. T : C'XN = N is a function to
extract the time index, e.g., T(ef)=t. We use qf to denote the state of cf, ie.,
% = 5,(c;)-

Let S be an arbitrary finite subset of C’ and
C'=S={e €, ...6, .} i<i<---<ip<---. Function h is used to
map the indices of the cells in C to the indices of the cells in C'—S, ie.,
h(k)=14,. Now we are ready to define a mapping p: CXP = C'XP which
establishes the basis of the simulation; p is defined recursively as follows:

o(e)= efuy, pled ™) =iy,
where
k = max{T(o(c/-;))+h(i)=h(i=1), T(p(c})+1, T(p(c/+,))+h(i+1)=h (i)},

for 720 and { =0.

The construction of A’ guarantees that the state of p(cf) is the same as the
state of cf, for any { €P and ¢ =0. This can be shown by induction on time t.
This proof consists of tedious case study, we omit this details but we give the fol-
lowing facts which are used in the induction step of the proof.

Fact 1 Let A = (C,Q,L,5F) bea CA and A’ = (C',Q',X,8,F) be a
CA constructed from A by the above scheme. Let w € * and |w| = n.
We use g} to denoted the S;(c;) of A with w as the input at time 0. Then

Fault-Tolerant Schemes for Some Systolic Systems 23

(i) if e € C' is a nonfaulty cell, then, for any m =0, S, (e) can only
have the following forms: qf, (?,qf, ?), (?,qf,qfﬂ) or (qf_l ,qf, ?), i.e., for
some t=m, all the states stored in the 3 registers of ¢, have the same
time-indez;

(i) if S,(e)= qf, then its nearest nonfaulty left neighbor e; can be in the

following states only: g _;, (¢f—2,4f~1,?), (%,0f—1,), (7.}), qt 7YY,

(i) if S,(ex) = (2,4}, ?) or (#,4f,¢}+,), then its nearest nonfaulty left neigh-
bor e; only can be in the following states: g, (2.4 “Lad™,
(qf_z,qf_l ,?) or (?",qf_1 ,?); (the last two are possible only when
J <k-1)

(iv) if S,(ex) = (gf-;, 4}, ?) then Sm(e;) can only be in the following possi-
ble states: ¢f X}, (?,4f-,,4f), (af—2,0f~1, ?); the last case is possible only
when j <k-1;

(v) for the right nearest nonfaulty neighbor, the possible cases are correspond-
ing to (2), (3), and (4). O

Fact 2 The difference of the time indices of the states (each state can only
have one time index, e.g. (‘?,qf, qf +1) has time index t) between two nonfaulty

neighbor cells cannot be greater than 1 (or less than —1).

The above results directly lead to the following theorem.

Theorem 5 For any cellular automaton A, there effectively exist an
equivalent fault-tolerant cellular automaton A’.

The remaining problem on this fault-tolerant CA scheme is how fast is the
simulation.

Theorem 6 Let k be the mazimum number of adjacent faulty cells of A’
whick are involved in the simulation. Then A’ can stmulate t time units
operations of A in (k+1)t time units or less. O

We now give a informal proof of Theorem 6. Let €1,€y - . ., €, be the
cells used in the simulation of ¢|,c,, ..., ¢, of A. Assume ¢;,,,..., €j~1 be the
widest band of failed cells and 7—1¢ == k+1. Then it takes k+1 time units to

- 24 Karel Culik II and Sheng Yu

pass the state information between ¢; and e;. This is the maximum communica-
tion time between any two nonfaulty neighbors of e),...,¢,. So, ¢; and ej
need (k+1)t time units to simulate ¢ time units operations. The other cells
need equal or less time units.

The results on CA’s are easily expanded to other linearly connected net-
works which have parallel inputs.

An iterative array (IA) is a systolic system which is similar to a cellular
automaton except the input pattern. Instead of having parallel input, it has a
serial one. The input symbols are read by the leftmost cell of the IA and exactly
one symboli is read at each time unit. If we relax this requirement and instead we
assume that they are read whenever needed, then, with some minor changes, the
scheme for the cellular automata also works for the iterative arrays.

To prevent the change of the input pattern, we can first read all the input
symbols into the array and then start the computation. This scheme works but it
needs more complex transition functions than the simulated iterative array.

Now, we introduce another scheme which is simpler. See Figure 5.3. One
step transition of an iterative array can be simulated by two steps of a trellis. A
faulty cell in the IA is corresponding to a whole failed diagonal line of the trellis.

[} 1
e . P
/‘X'\ a.b b.c cd
— b c { -
(] b c d
a b
Figure 5.3

We know that the unrolling of a one-way cellular automaton (OCA) is equivalent
to a trellis [2]. This scheme consists two phases. In the first phase, it works as
an OCA except that the input symbols are read in sequentially by the leftmost
cell. This phase is shown at the top 11 steps of Figure 5.4.b. This phase will
take 2n+k steps to simulate n-step operation (see Figure 5.4) where k is the

Fault-Tolerant Schemes for Some Systolic Systems 25

number of faulty cells involved. In the second phase, the result is passed back to
the leftmost cell, which needs n+k steps for the shifting. Totally, we need
3n +2k steps to simulate n steps of computation.

Figure 5.4

The bypass function for this scheme is assumed to be p(e,b) = (b,a). The
construction of a fault-tolerant JA A’ = (Q',XL,f',F') for a given IA
A = (Q,Z,f,F) is described as follows. (We assume that Q N X = &, and
B € X is the blank symbol.)

Q'=QUZ‘U{(a,b)|
F' = {$}
['(91,90:2) = (31,95), ifq,9, €QUZ, andp € q';

f'((qufIz)) = f(qu92:¢13); if q1,92,93 €Q,p €Q;

26 Karel Culik II and Sheng Yu
/'(B,B,q)=$, q € FU{$}.

The proof of the correctness is omitted. If A accepts a string w in n time
units, then A’ accepts w in 3n+2k time units, where k is the number of failed
cells involved. So, we have the following theorem.

Theorem 7 For any iterative array A, there exists an equivalent fault-
tolerant iterative array A'.

’ This result can also be expanded to all linearly connected systolic networks
with serial inputs.

6. FAULT TOLERANT UNIDIRECTIONAL RING SIMULATING
BIDIRECTIONAL RING OR BIDIRECTIONAL ARRAY

Our notion of fault-tolerant scheme used in previous sections requires an
algorithm that converts a system of given type into an equivalent fault-tolerant
system of the same type. However, it is reasonable to drop the requirement that
the simulating system must be of the same type. This is especially true if the
simulating system is even of a simpler type.

In [3] it was shown how topological transformations of unrollings (time-
space diagrams) of systolic systems can be used to demonstrate the equivalence of
systolic systems. As an example it was shown that a bidirectional ring or bidirec-
tional array can be simulated by a twice slower unidirectional ring of the same
size. We demonstrate this result directly (without using the equivalence of trel-
lises and one-dimensional arrays). Then we use the fact that there exists a fault
tolerant scheme for unidirectional rings (the simplest known fault-tolerance
scheme) to obtain the corollary that every bidirectional ring or array (linear CA)
can be converted into an equivalent fault-tolerant undirectional ring.

Theorem 8 Given a bidirectional ring (linear CA) we can construct ¢ uni-
directional ring of the same size that simulates every m-step computation on A

tn 2m steps.

Proof: We show the transformation for the linear CA, for bidirectional ring

Fault-Tolerant Schemes for Some Systolic Systems 27

the situation is the same except that all the edges including the dotted ones in

Figure 6.8 are used.

Figure 6.1

Figure 6.2

A linear CA is shown in Figure 6.1 and its unrolling (time-space diagram of
a 3-step computation) in Figure 6.2. The self-loops in Figure 6.1 indicate that
each processor has a memory. The digraphs in Figures 6.2 and 6.4 are clearly iso-
morphic, thus (see [3]) the networks in Figures 6.1 and 6.3 are equivalent. If we
identify, in top-down order, the odd rows of Figure 6.6 with all the rows of Figure
6.4 we see that for every edge in Figure 6.4 we have a path of length two con-
necting the corresponding nodes of the digraph in Figure 6.6. Thus by Lemma 2
in [3], the network in Figure 6.5 can (1,2)-simulate the network in Figure 6.3. -

Q0 Q

Figure 6.3

Finally, we observe that the digraphs in Figures 6.6 and 6.8 (without the dotted
edges) are isomorphic. Since the digraph in Figure 6.8 (with the dotted edges) is
the unrolling of a unidirectional ring shown in Figure 6.7 we conclude that every

28 Karel Culik II and Sheng Yu

Figure 6.4

linear array can be (1,2)-simulated on a unidirectional ring. When modifying the
construction for the simulation of a bidirectional ring we will make use of all the
edges, including the dotted ones, in Figure 6.8. O

-8 8 8 8 8 0§

Figure 6.5

As discussed in Section 4 and also in [11] given a unidirectional ring A with
n cells it is easy to construct a fault-tolerant unidirectional ring B with n+k
cells which simulates any T(n)-step computation on A in at most cT(n) steps
providing that at most k of its cells are faulty and that no more than ¢ consecu-
tive cells are faulty. Thus we have the following:

Corollary Given a bidirectional ring A (linear CA) with n processors we can
construct ¢ unidirectional (cellular) ring B with n+k processor that simulates
every T(n) computation on A in O(T(n+k)) steps and is fault-tolerant with
respect to £2, where {2 i3 the collection of all subsets of cells of A of cardinality
at most k. :

Note If the processors (cells) of B are made more complicated so that each
cell can simulated more than one cell of A (essentially overlapping two or more

Fault-Tolerant Schemes for Some Systolic Systems 29

Figure 6.6

Q_ Q

Figure 6.7

“tracks” of cells) we can make B fault tolerant with respect to a larger set of
subsets {2 or alternatively we can choose k = 0, i.e. the ring B can be of the
same (or even smaller) size as the simulated linear array (CA) A.

30 Karel Culik II and Sheng Yu
Figure 6.8

REFERENCES

[1] W. Bucher and K. Culik I, On Real Time and Linear Time Cellular Auto-
mata, RAIRO, Inf. Theoretique, to appear.

[2] C. Choffrut and K. Culik II, On Real Time Cellular Automata and Trellis
Automata, Acta Informatica, to appear.

[3] K. Culik IT and I. Fris, Topological Transformations as a Tool in the Design
of Systolic Networks, Technical Report, CS-84-11, April 1984, Univ. of
Waterloo.

[4 K. Culik II, J. Gruska and A. Salomaa, Systolic Trellis Automata, Part I,
Intern. J. Computer Math. 15, (1984), pp.195-212.

[5] K. Culik II, J. Gruska and A. Salomaa, Systolic Trellis Automata, Part II,
Intern. J. Computer Math. 16, (1984), pp. 3-22.

[6] C.R. Dyer, One Way Bounded Cellular Automata, Inform. and Control 44,
(1980), pp. 261-281.

[7] M. Harao and S. Noguchi, Fault Tolerant Cellular Automata, Journal of

(8]

[°]

Computer and System Sciences11, (1975), pp.171-185.

F.C. Hennie, Iterative Arrays of Logical Circuits, MIT Press, Cambridge,
Mass., 1961.

O.H. Ibarra, SM. Kim and S. Moran, Sequential Machine Characterizations
of Trellis and Cellular Automata and Applications, unpublished manuscript,
1983.

[10] S.P. Kosarajn; On Some Open Problems in the Theory of Cellular

Fault-Tolerant Schemes for Some Systolic Systems 31

Automata, IEEE Trans. Computers C-30, (1974), pp.561-565.

[11] H.T. Kung and M.S. Lam, Fault-Tolerant and Two-Level Pipelining in VLSI
Systolic Arrays, MIT Conf. on Advanced Research in VLSI, Jan. 1984,

[12] H.T. Kung, Why Systolic Architecture?, Computer 15, 1 (1982), pp.37-46.

[13] H. Nishio and Y. Kobuchi, Fault Tolerant Cellular Spaces, Journal of Com-
puter and System Sciences 11 (1975), pp. 150-170.

[14] AR. Smith III, Real-Time Languages Recognition by One-Dimensional Cellu-
lar Automata, J. of Computer and System Science 6, (1972), pp. 233-253.

	

