BERAR

MENT

1l
DEPARTMENT
DEPARTMENT

S

TER
TER
ER

Mt
MPU

WATERLS €9
WATERL
RSITY OF WATERLOO COMPUT

i

I
1

=

HNIVE
UNIVE
UNIVE

Algorithms
for

Drawing Anti-aliased
Circles and Ellipses

Dan Field

CS-84-38

December, 1984

Algorithms for Drawing Anti-aliased Circles and Ellipses

Dan Field

Computer Graphics Laboratory
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
(519) 886-1351

ABSTRACT

Fast algorithms for pre-filtered anti-aliasing previously operated solely on
straight line objects; this work extends the class of objects to include circles and
ellipses. The new algorithms do pot require floating point, square root, or
division operations in the inner loops. When rendering against a constant
background, a single inner loop multiplication operation may also be eliminated.
We describe in detail how the technique is applied to rendering an octant of a
filled circle using a square area integration filter. We briefly describe the
extensions necessary for different types of anti-aliased circles and ellipses. We
show how pre-computed filters stored in a lookup table may be implemented. An
implementation of the algorithm for rendering anti-aliased, filled circles is
included.

1. Introduction

Algorithms for drawing bi-level (not anti-aliased) circles are described in [1,2,3,9,11,12,14].
Straightforward modifications of these techniques do not seem to lend themselves to efficient
anti-aliasing algorithms owing to the non-linear behavior in either the argument of the filter
function or the value of the function itself. Advances for anti-aliasing along straight edges
reported in [5,8,13,15] have taken advantage of the linearities inherent with straight edges to
obtain efficient algorithms. Previous work on rendering anti-aliased circles and ellipses is reported
in [4]. However, those algorithms use a Newton-Raphson root finding technique and suffer from
the presence of a division operation within each iteration of the inner loop, and thus are expensive
to implement in hardware or microcode. In this paper we report on new algorithms free of inner
loop division operations.

This work was supported by grant A0183 from the Natural Sciences and Engineering Research Council of Ca-
pada.

-0 -

The basic scheme of the algorithms presented here is to employ polynomial prediction of a
filter function, based on previous values of the function, and to use iteration to bring the
prediction within tolerance. In practice, the error in the prediction is usually quite small, so that
simple linear convergence during the iteration step is sufficient to yield an efficient algorithm.

We shall assume that a raster device is modeled as an array of square, unit area pixels. For
convenience, pixels are addressed by the lower left corner of the square. This amounts to a
translation of 1/2 in both z and y from the standard model in which pixels are addressed by their
centers. Let the color or intensity} of the circle be I. The color contribution to a pixel of a filled
circle is defined to be a-I where a is the intersection area of the pixel with the circle. For the
moment, we shall focus our attention only on those pixels intersected by the circle edge since all
other pixels are either wholly contained or excluded from the circle. Assuming the circle to be
centered at the origin, it is sufficient to consider only those pixels lying within a single octant;
symmetry of the circle allows those pixels to be reflected about the lines =0, y=0, and z=y to
complete the circle.

Consider the portion of a circle with integer radius R in the second octant only. It can be
shown that the edge of a circle moves no more than one pixel in the vertical direction between
z=i and z=¢+1 and that there are only two ways that the edge of the circle can intersect a
single column of pixels.

In the first case, the circle intersects only pixel (¢,g;) in column ¢. Let h; and k,, be the
distances above the line y=g; where the circle intersects z=s and z=1i+1 (See Fig. 1). A good
approximation of the intersection area a is the area of the trapezoid defined by a chordal
approximation of the circle; the filter value we shall use is:

a=(h.-+h,-+l)/2 (1)

-~
T
| ki

¥ (¢.9:) . l

Fig. 1. The circle intersects pixel (i,q;) in column s.

1The terms color and intensity are used interchangeably throughcus. 7 can be thoughi of as & gr-;=cale, an in-
tensity for a single primary rgb, or a luminance channel in a color coordinate ~~stem such as CIE or HSV

-3 -

In the second case, the circle intersects pixels (i,g;) and (i,g; +,) in column i (See Fig. 2). Let k;
be the distance above y=g; where the circle intersects z=i, and h; ., be the distance above
¥=¢; +, where the circle intersects z=s+1. An approximation of the filter at pixel (¢ ,8;) is:
and at pixel (i,g; +,) is:

a=(1+h; 4,2 (3)

The motivation behind choosing these approximations is that they are fast to compute, sum to
the area of the chordal approximation to the circle contained in both pixels, provide smooth,
monotonic intensity transitions between adjacent horizontal pixels, and do not cause disturbing
visual effects.

('. 1qi+l)

X
Fig. 2. The circle intersects pixels (f,q;) and (i,g; 4+,) in column i.

In most cases, the error in the intersection area resulting from straight-line approximations
to the circle between z=1¢ and z=i<+1 are small. If ! is the length of the approximating chord

between z=i and z=i+1, the error has value R%sin"! #]——;*VRE—ZEM. An upper bound

1 1
of +O |~ | may be obtained with a series expansion. For circles with radii greater than
3V2R [33] &

10, the relative error resulting from straight-line approximation is less than 6 percent. Since the
error increases as R decreases, it might be possible for small circles te be visibly distorted. Fig. 3
demonstrates that there is very little visual difference between the circles produced with and
without chordal approximations for small radii.

Fig. 3. A comparison of circles of radn 1 through 10 produced by 3 different
algorithms. From left to right, the circles are: bilevel, anti-aliased without
cherdal approximations, and anti-aliased with chordal approximations. The
image was produced using a 3x hardware magnification factor.

2. Mathematical Foundation

In the previous section, it was shown that the quantities ¢, g, and h; are sufficient to render
anti-aliased circles. The algorithm sweeps from left to right along the z axis incrementing ¢ from
0 until ¢; <:¢. In this section, we describe how g, and h; are computed.

A fixed point representation for h; is necessarily limited to some precision, say 1/Z.
Multiplying the fixed point representation by the inverse of the precision, an integral
representation with equivalent accuracy is obtained. In the case of h;, the precision becomes the
accuracy to which the circle can be located between two pixels. Z is referred to as the sub-pizel
resolution. The following equation describes the relationship between the fixed point and integral
representations for h;.

h; = —++e¢, | (4)

- a1 1 .
where v; is integral and ¢; is the error in the fixed point representation with EE—S € <;'Zm Since

0ssh, <1, then 0sv; <Z. The integral representation for A; is now v;.

-5 =

It may seem that the sub-pixel resolution, Z, should be as large as possible without
overflowing the number of bits available for storing v;. We shall later show that subject to
* accuracy constraints, Z should in fact be minimized because it contributes in a linear fashion to
the number of iterations in a minimization step. For the moment Z is left as an unspecified
parameter that is known at the beginning of the algorithm.

Since the circle edge is to be located to a sub-pixel resolution of Z, it is convenient to scale
the equation of the circle by Z, and define the real-valued function: f(i)=2 VRI-iZ.

Let w;=v;+ ll/2+f(i+l)]- ll/2+f(i)]. The values of ¢;4, and v;4, can be inferred
from ¢;, and v; as follows: >
If 0w, then (i +1,g;) is on or inside the circle and

%41 = ¢ and vy, = w; (5)
Otherwise, (i +1,¢;) is outside the circle and

G = ¢—1 and vyy =w;+2 (6)

What remains is to find y; 4,= ll/2+ I +1)]. This will be accomplished by the following

scheme.

1) Predict ; ., as the value of f(i+1)
(hyl

where §; 4, and §; ., are integers. That is, the prediction step yields a close approximation to
J(i+1), and the minimization step yields the error. The efficiency of this scheme depends on the
accuracy of the prediction §; 4, (alternatively, the magnitude of §;.,), and the convergence rate
of the minimization. We consider both prediction and minimization steps separately.
2.1. Prediction

An n** degree polynomial prediction Ui +1 for f(s+1) can be found with n addition
operations in a forward differencing scheme. Prediction techniques based on Taylor

approximations will work but require the more complex operations of multiplication and division.
Define the difference operator, A, as:

AYi+1 = Yiv1™Y (7)
Then §; 4+, can be computed by adding the n differences in the standard manner[6].

The k** order differences A* ¥; +o used to predict g; ;o for the next iteration are computed
in the process of finding ﬁ‘- +1- However, these values will be inaccurate since this polynomial uses
the predicted ; 4, for f(i+1) instead of the the correct value, y, . This is rectified by adding
the error term §; +,=y; +1—¥; +; to the differences before evaluating the polynomial for the next

iteration. In effect, we have set up a sliding ' degree polynomial prediction scheme for the
function f.

- 6 -

The object of the prediction step is to reduce the magnitude of §; that determines the time
taken by the minimization step. If the predictions were based on exact previous values of f (5), we
could decrease | 5;| indefinitely by increasing the degree of the predicting polynomial. However,
we have based the prediction on integral approximations of previous values of f, causing the
roundoff errors in §; to double in the degree of the approximating polynomial and dominate the
behavior of the prediction. As will be demonstrated, a second degree polynomial is optimal over a
full range of circle radii and sub-pixel resolutions. The average magnitude of §; has been
empirically determined to be 0.7 over this range.

The quantity ¥;4,—f(i+1) is the sum of two different errors. The first is roundoff error
caused by integral representation of the A* ¥;- We shall denote these by
t(A"y,-)= A"y.--A" J (7). The total roundoff error is therefore the sum of the roundoff error in

the addition cascade and has value):‘t(A"y,-). The second type of error is caused by inaccuracies
k=0

in the polynomial prediction itself. We shall denote this error by 8(J; +1)-

Roundoff errors no more than double with the degree of the polynomial. By assumption,
|t(A%;)| =1/2. As differences are taken, roundoff errors may double so that
n
[t(a**1y;)| <2|t(AFy;)|. Therefore, |t(AFy;)|=2*"". Since §;4,=3 A%y, we have
k=0
| £(§; +,)| S2*—1/2 as an upper bound for the total roundoff error for n‘* degree polynomial
prediction.

th

The error in n degree polynomial prediction irrespective of roundoff is

8(f; +1)=|F(i+1)= 5 4% f(i)| and is small in comparison to the roundoff errors. The
k=0 ‘

remainder term in a Taylor expansion for f{i+1) yields the prediction error,
3@ +1)=0(i +1)).

Summing the roundoff and prediction errors over the course of drawing an octant of the
circle, we obtain '

RVZ z ’
F liinl = Viret-viro(K ®

The asymptotic behavior of this error is governed by the V2Rr2" 1 term, and suggests that n

should be small even for large values of % Comparisons between upper and lower bounds for

different values of n are difficult to obtain because of the erratic behavior in the t(A"y,-) error
term. Through empirical means we have determined the total error for n=1,23 and
1=Z,R=<256. The results are presented with the 2id of 3D surface graphs contained in Figs. 4-6.
Each graph contains a comparison of errors between two prediction degrees: linear vs. quadratic in
Fig. 4, linear vs. cubic in Fig. 5, and quadratic vs. cubic in Fig. 6. Circle radii increase in the z
direction; sub-pixel resolution increases in the y direction. The height of the surface above or
below the zy plane indicates the difference of the errors between the two prediction degrees being
compared for a particular circle. Points where the surface intersects the zy plane represent circles
that have equal error sums for the two degrees of prediction. The volume between the surface

and the zy plane (positive above the plane, negative below) indicates the total error of the two
prediction degrees over the range of sub-pixel resolutions and circle radii. From the figures we can
deduce that quadratic is more accurate than linear, linear is more accurate than cubic, and

quadratic is more accurate that cubic. Overall, quadratic predictior. is most accurate.

Fig. 4. Linear (larger error above the zy plane) vs. quadratic (larger error below

the zy plane) polynomial predicticn.

Fig. 5. Linear {larger error above the zy plane) vs. cubic {larger error below the

ry plane) polynomial prediction.

Fig. 8. Quadratic (larger error above the zy plane) vs. cubic (larger error belcw

the zy plane) polynomial prediction.

2.2. Minimization —9-

We next turn to the minimization step. The problem of finding the §; ., that ‘minimizes
| #; +1+6; 41— f(i+1)| can be transformed to the equivalent problem of finding the &, that
minimizes the difference of squares |(§;4,+8;+,)°=/%(i+1)|. The terms in the latter
minimization are free of square roots and may be computed with less difficulty. The f 2(H—l)
values are easily found using forward difference equations for Z°R%-2%2,

The quantity §; 1, may be found using any root finding method. However, if we are to avoid
multiplication and division operations, techniques such as Newton-Raphson that are based on
extrapolating the function using its first derivative may be eliminated from consideration.
Obvious candidates are linear and logarithmic (subdivision) searches. The number of operations
taken in one iteration for linear search is less than that for logarithmic search. Inmitialization for
linear search is also faster than initialization for logarithmic search. Because the expected value
of |5;,4,1=0.7, the search will take very few iterations, and the constants in the asymptotic
behavior of the algorithm become significant. Therefore, we shall implement linear search. This
choice must be re-examined if other types of curves are to be rendered by the techniques presented
here.

The search for §; 4, is begun at 0. The search proceeds, updating the tentative value of §;
by d==x1. At step k of the minimization, our tentative value is kd. If §; ,,—f 2(:' +1)>0, then
the prediction overshot the actual value and d=—1. Otherwise, d=1. Define

e = d|(§; 41 +kd)? = f3i+1)] 9)

Thus, e,=0 and subsequent ¢, decrease toward 0. The minimization is complete when ¢
becomes negative. The value of §;4, that minimizes Eq. (9) is (k—1)d if e, _,+e; >0, or kd
otherwise.

Eq. (9) can be evaluated with addition and subtraction operations using forward differences.
Simplifying to obtain

e = 2kf; 4+ 2 d+d(G%, = S +1)) (10)

Initial values for the differences are:
A%y, =2
Aeo = 2dﬁ.+l—l (11)

e = i =THi+1)

Except for the ii,-z.,.l term, the computations involved in Eq. (11) may all be implemented with
addition and subtraction operations. Since ﬁ,-z.,.l is a product of two second degree polynomials, it
may be computed via four forward difference equations. However, just as the differences for y; ,,
were updated by the value of §; ., so must the differences for ﬁizﬂ. It can be shown that two
additional forward differences are sufficient for this task. For brevity we shall leave the reader to
verify the details. As a practical concern, when a multiplication operation is part of the
underlying machine instruction set, it will be more efficient to compute ﬁi2+1 =¥; +1'9; +; than to

implement the forward difference formulation. The tradeoff is 1 multiplication versus 6+46;
additions in step ¢ of the algorithm.

2.3. Summary

Let us summarize what has been accomplished. We have outlined the steps to find the
_ integral values of a function f(i) from §=0 to i=m. An efficient algorithm was obtained using
an accurate prediction for f(i), followed by a minimization of the error between the prediction
and f(¢). The original minimization problem was transformed, so that the error could be easily
computed. The result of the minimization was used as an approximation for f(i) and as feedback
for the prediction of f(i-+1) in the next step. In principle, difference equations can eliminate.
multiplication and division operations for many functions y=f(i} and transforms T when
T(/ (7)) is a polynomial in ¢ and T'(y) is a polynomial in y. An interesting and difficult problem
is to find functions and transforms for which this technique is more efficient than direct
computation of the function itself.

3. Putting It All Together

The basic outline of the algorithm is contained in Fig. 7. This section contains the details
necessary to produce an implementation from the information presented in the previous section.

1) initialize

2) set i=0, g=R

3) while i<q do steps 4 through 8

4) predict o

5) minimize

6) correct forward differences

7) use computed values to fill in perimeter and interior pixels
8) imi+1

9) fill in four remaining pixels on the diagonals

Fig. 7. Outline of the algorithm for drawing anti-aliased, filled circles.

3.1. Initialization

Initialization of the forward differences for y involves square roots to compute A2y0 and
Alyo. These may be eliminated by estimating ZR=y,=y,=y, to obtain 0=A2y0= Alyo. The
estimation will affect performance only during the first two iterations of the algorithm because
predictions for y; and beyond are independent of y,, y,, and y,.

3.2. Completing the Circle

A pixel location and intensity for the second octant is reflected about the lines z =0, y=0,
and z=y to fill all eight octants of the perimeter. Members of the eight reflection-induced
locations with common z coordinates are paired and vertical lines are generated connecting
members of the same pair. These lines serve to fill the interior of the circle. Therefore, the circle is
drawn in three distinct portions: the left portion (LP) that is filled toward the right, the center
portion (CP) that is filled both toward the left and right, and the right portion (RP) that is filled
toward the left (See Fig. 8).

-

Fig. 8. The left (LP), center (CP), and right portions (RP) of a circle as it is
being rendered.

Since pixels are addressed by their lower left corners and not by their centers, reflections
about the z and y axes are achieved by adding 1 to the appropriate coordinate before changing
the sign. For example, the reflection of the pixel (z,y) about the z axis is (z,—y—1). We use the
notation

eight_plot(x,y,I)

to represent the operation of setting the second octant pixel (z,y) as well as the pixels related by
symmetry in the other 7 octants to intensity I.

Two vertical lines are drawn each step of the algorithm and increase the area of CP.
Vertical lines to increase the area of LP and RP are not generated every step of the algorithm.
Only when the circle edge crosses into a new column of pixels in LP and RP is it necessary to fill
the interior pixels in that column. In the second octant, this is precisely the case when the circle
edge crosses into a new row of pixels in CP. That is, only when the edge intersects the two pixels
(F,g;) and (i,g;4,) in the second octant. In this case, lines (g;4,,6—1),(g;4,,~¢) and
(—8; 41— 1,i—1),(—g; 4, —1,—7) are also drawn as long as i >0. We use the notation

fill(x,y max,ymin,I)

to represent the operation of drawing the vertical line of intensity I from pixel (z,ymaz) through
(z,ymin). If ymaz <ymin, no line will be drawn.

The pixels on the perimeter that are drawn last are (lR/\/ﬁj, [R/\/E]) and the 3 others

related by symmetry. These have the potential for being filled more than once if we are not
careful about the stopping criteria for the algorithm. The strategy will be to run the main loop

from z=0to z= lR/\/El—l. A final step outside the loop is required to fill these pixels.

3.3. Full Color and Non-black Backgrounds

Anti-aliasing algorithms operate by replacing old pixel values by new pixel values according
to the blending function

pz'zel(‘i,j) -al+(1=a)l,; (12)

where a is the filter response at pixel (i,7), I is the intensity of the object being rendered, and
I, is the previous color of pixel (i,5). The blending function computes the linear “blend”
between the object and the background. Note that this appears to be the best we can do without
knowledge of how the background was actually created. We now demonstrate how to combine

the results of the previous two sections for efficient and accurate computation of the blending
function.

By rearranging the terms of Eq. (12), it is easy to see how one of the multiplications can be
eliminated.

One can think of renaming the original intensity I of the object as I—1I, .. Once the product is
computed, it is added to the old pixel value, Iy, . If I—1Ip, <O, then we can rewrite the
blending function as

Ik — oTgex=1) (14)

and think of renaming the original intensity I as Iy, .~ 1.

When rendering against a constant background, the product a(I—1I;,) may be computed
without any multiplications. First, if 0=I~1I,,,, then the circle we are rendering will not be
visible against the background and it may be ignored. Otherwise, let Z=|I—1I,,.|. Three

analogs to Egs. (1)-(3) are obtained by using Eq. (13) or (14) and substituting with the renamed
intensity. When the circle edge crosses a single pixel in column i we have:

al I=Tygl = (hi+hpy)| T=Tpe| /2
v, v,
= Z[—Zi-+e;+—';—l+ei+l]/2
15
= (v;+v; 4 V2+(6 +64)2/2 (19)

= l("i+”i+1y2]

When the circle edge crosses two pixels in column ¢ we have the equation for pixel (s,g;):
= hi | I=Tpy| 72
v;/2+¢; 212 (16)

[u,./zl

= (v;+2)2+¢,2/2 (17)

=i+ zy2|
The sub-pixel resolution, Z, was chosen to eliminate multiplication operations and retain
accuracy in the resulting pixel intensity. The errors caused by taking the floor after dividing the
v terms lie in the range [—1/2,0]. From Eq. (4), it can be shown that the errors caused by
ignoring the ¢ terms lie in the range [—1/2,1/2]. Therefore, the total error in the final pixel
intensity resulting from truncation is in the range [—1,1/2].

|

and the equation for pixel (f,q; +,):

When rendering against a non-constant background, each pixel on the perimeter must be
read from the frame buffer before computing the blending function. In general, there is no a
priori knowledge of the background intensity, and the blending function must be computed
directly. Therefore, the sub-pixel resolution, Z, is set to the smallest power of two larger than the
maximum possible intensity. If v is the filter response at some pixel, v is multiplied by | I —Ipeil
and subsequently divided by Z. While the multiplication is necessary, the choice for Z allows thé
division to be implemented by a shift operation.

There are three alternatives when rendering full rgb color. The first is to set Z to a
sufficiently large power of two as before, and perform a separate multiplication for v with each
primary color. For the red component, this amounts to computing v(l;—Ij) and shifting

the result log(Z) bits to the right. This requires an extra 3 multiplications per pixel.

If the background is constant, three distinct copies of the algorithm could be run in parallel
(one for each primary color). As in the constant background case described above, multiplications
are avoided by setting Z to the appropriate rgb component. For example, the red algorithm
would set Z= (I, 4—1, W".u)' This approach would be feasible only for hardware implementations.

Guangnan et. al.[7| propose a color representation for anti-aliasing consisting of intensity and
two normalized color components. The intensity component is used as the value of I for
computing the blending function. This approach requires the addition of special hardware to
transform the alternative color system into rgb values at the video output stage.

The question of computing the blending function for non-constant backgrounds without
multiplication operations is open.

- 3.4. Machine Word Size

The maximum magnitude of ﬁ.?ﬂ and f2(i+1) is Z2R2. It follows that ZR <2'5V2—1 for
32-bit signed arithmetic. It is still possible to draw very large circles by scaling the sub-pixel
resolution Z down 2¥ before entering the algorithm, and scaling final pixel intensities back up ok
before writing them to the frame buffer. The rightmost k bits of precision for pixel intensities are
lost.

3.5. An Implementation

An implementation of the algorithm in the C programming language[10] is contained in Figs.
9 through 16 demonstrating that the mathematics of the previous sections lead to an efficient,
straightforward algorithm, and providing ready-to-use code for readers not interested in the
mathematics behind the algorithm. The program assumes a constant, 0 intensity background to
simplify the presentation.

/* Global Variables */

static int i, q; /* Current pixel address */

static int R; /* The circle radius */

static Int x_center, y_center; /* Circle center */

static int I; /* Intensity of circle */

static int Z; /* Sub-pixel resolution */

static int y, y_hat; /* Exact and predicted values of f(i) */
static int delta_y, delta2_y; /* 1st and 2nd order differences of y */
static int 2; /* The value of £(i)*f(1) */

static int delta_f2, delta2_f2; /* 1st and 2nd order differences of f(i)*f(i) */
static int v, v_old; /* v/Z = percentage of pixel intersected by circle */

circle() {
int ¢;
initialize();

q=R;
f=0;
while(i<q) {
predict();
minimize();
correct();
v_old = v;
= v + delta_y;
if(v>=0) { /* Single pixel on perimeter */
eight_pixel(1, q, (v+v_old)>>1);
ﬂll(Laol,-q1I);
ﬂll(-1, q¢-1,-q,1); }
else { /* Two pixels on perimeter */

v=v+4Z;
elght_pixel(i, q, v_old>>1);
q=q-1

ﬁll(igl,-q1)i

ﬁu(-i-1, ¢-1,-q, I);

if(i<q) { /* Haven't gone below the diagonal */
eight_pixel(i, q, (v+Z)>>1);
fill(g, i-1, -5, I);
ﬁll(-q-1, k-1, -}, I)3 }

else /* Went below the diagonal, fix v for final pixels */
v=v+2}

i=t+4+1}

/* Fill in 4 remaining pixels */
ce=v>>1;

pixel(g, q, ¢);

pixel(-g-1,q, ¢);

pixel(-q-1, -g-1, ¢);

pixel(g, -q-1, ¢);

return; }
Fig. 9. Variable declarations and central portion of the algorithm.

initialize() {

v=0;
/* The sub-pixel resolution Z would be different for
non-zero, non-constant, or full rgb backgrounds. */
Z=1I
delta2 y = 0
delta_y = 0;
y=2"R;
delta_f2=12"*Z;
delta2_f2 = -delts_f2 - delta f2;
r=y*y
return; }

Fig. 10. Initialize the forward differences and the sub-pixel resolution.

predict() {

delta_y = delta_y + delta2_y;
y_hat =y + delta_y; /* y_hat is predicted value of f(i) */

return; }

Fig. 11. Prediction step.

minimize() {
int e, e_old, d;

/* Initialize the minimization */
delta 2 = delta 2 + delta2_f2;
2 = 2 4 delta_f2;

e=y hat *y hat - £2;
d=1;
y = y_hat;
/* Force e negative */
if(e>0){
e = -e;
d=-1;}
/* Minimize */
while(e<0) {
y=y+d;
e_old = e¢;
e=e+y+y-d;}

/* e or e_old is minimum squared error */
if(e+e_o0ld>0)y =y-d;

return; }

Fig. 12. Minimize the difference of the squares, while computing y.

correct() {

int error;

error = y - y_hat;

delta2_y = delta2 y + error;
delta_y = delta_y + error;

return; }

Fig. 13. Correct the y forward differences for the next iteration.

eight_pixel{ x, y, ¢)
int x, y, ¢; {

pixel(x, y, ¢);
pixel(X, ~y-1, ¢)3
pixel{ -x-1, -y-1, ¢);
pixel(-x-1, y, ¢);
pixel(y, x, ¢);
pixel(y, -x-1, ¢ };
pixel(-y-1, -x-1, ¢);
pixel(-y-1, x, ¢);

1
return; ¢

Fig. 14. Fill in all 8 pixels given a second octant pixel location.

fill(x, ymax, ymin, c)
int x, ymax, ymin, c; {

while(ymin<=ymax) {
pixel(x, ymin, ¢);
ymin = ymin + 1;}

return; }

Fig. 15. Draw a vertical line between pixels (x,ymin) and (x,ymax).

pixel(x, y, ¢)
int x, y, ¢; {

/* Set pixel (x+y_center,y+y_center) to intensity c. Note that
we might have to cbtain the previous contents of this pixel
if we are rendering against a non-constani background.
Further work must be done for non-zero backgrounds and full
color implementations.

return; }

Fig. 18. Set pixel (x,y) to intensity c.

4. Extensions

In this section techmiques are presented for drawing different types of circles. We briefly
sketch the modifications to the algorithm necessary to draw ellipses. Finally, we sketch how a
pre-computed filter stored in a look-up table can be implemented.

The algorithm we have presented draws a filled circle or disk of radius R, (See Fig. 17). By
removing a concentric portion of radius R, from the disk, a ring is formed (See Fig. 18). Rings
may be rendered directly by running two disk algorithms in parallel and composing the results.
Often a ring with R;=R,+1 is desired. We can use the strategy for rendering rings above, but
there is an alternative approximation approach that is almost twice as fast. Consider the circle
with radius R, centered at (0,0). Now consider another circle of radius R, centered at (0,—1). In
the second octant the resulting figure closely approximates the ring with R;=R,+1. A slight
widening of the circle occurs near the diagonals, but may be acceptable for many applications.
The width distortion ranges from 0 to (2—V?2)/2=0.3. Only one set of v; values need be’
generated since both circles have the same radius.

Fig. 17. A circular disk.

Fig. 18. A circular ring.

4.1. Ellipses

Anti-aliased ellipses may also be rendered using the techniques we have developed for
drawing circles. The octant symmetry for circles has an analog for ellipses. The portion of an
ellipse in the first quadrant may be divided into two pieces: the piece where the tangent ranges
from 0 to —1, and the piece where the tangent ranges from —1 to —. Combined, both pieces
can be reflected about the lines =0 and y=0 to completely fill the ellipse. Each have similar
defining equations. If the equation of the ellipse is

2 2
LA |
<+ =1 18
R (18)

one piece may be obtained from the other by interchanging ¢ and b and swapping the roles of the

z and y axes. We will sketch an algorithm for rendering only the portion of the ellipse in the first
2

a . " -, -
quadrant where 0z<————=. This range of z values is defined by the inequalities
Vaz+ 2

0=b%i <a®g; for pixel locations (i,q;) along the ellipse. As was the case for circles, it can be
shown that the ellipse crosses no more than two pixels per column within this range.

The function necessary to obtain w; for an ellipse is:
(i) = —f—\/’”—a 5T (19)

Prediction proceeds as with the case for the circle; the transformed minimization becomes

[(@, 41+ 8 41 =62 S 2 +1)] | {20)

Except for a?§’.,, all of the quantities in Eq. {20) including 6%i and a%q; needed to test
termination of the algorithm may be obtained using forward difference schemes. As in the
previous section, azfﬂ may also be computed with forward differences but it is more efficient to

use a single multiplication.

There is a direct extension of the algorithm from the disk form of ellipses to the ring form.

4.2. Pre-computed Filters

Square area integration filters assume a crude model of a physical raster device. As a result,
aliasing effects are not always ameliorated as well as by a filter obtained with a more realistic
model. Because the filters for these models are often expensive to compute on the fly, they are
pre-computed and stored in a look-up table that is accessed at scan conversion time. These tables
may also be determined experimentally and tailored for a specific environment. Two examples of
algorithms that use look-up tables are described in [8.15].

We now sketch how to apply look-up table anti-aliasing to the problem of rendering circles.
The desired filter function stored in the table will be indexed by the distance from the center of.
each pixel (i,g;) to the nearest point on the circle. In the second octant, this distance may be
approximated by the perpendicular distance p, from (i,q,) to the tangent of the circle at z=1.
The perpendicular distance is a product of the vertical distance to the tangent, v; with a scale
factor ¢;. Unlike the case for lines in [8], ¢; does not remain constant throughout the course of
the algorithm. However, both v; and ¢, have equations reminiscent of the function f{i) of the

previous sections.

The strategy is to compute an accurate value for ¢; by prediction and minimization. Similar

triangles can be used to show that
« - AVE o

Let Z be an appropriately large power of 2 so that the function g{i})=Zc, can be represented

accurately as an integer. The function g(7) is now in a form suitable for computation by the
technique described in section 2.

We need the vertical distance v; to the tangent of the circle at z=1i. This was computed in
section 2 using the function f(i)=Z\/R,—i°>. But f({)=Rg(i). Thus, ¢; and v; are
computable from g(i) using a multiplication operation and the formulas of Eqgs. (5) and (6).

The perpendicular distance is therefore:
p; = v;9() _ (22)

Perpendicular distances from pixels (i,4,£m) to the tangent of the circle at z=1{ are obtained by
adding positive and negative multiples of g(i) to p;. Note that all distances have been scaled by
Z implying that the look-up table has a sub-unit resolution of Z.

5. Conclusion

A general technique for incremental function evaluation has been described and applied
resulting in efficient rendering algorithms for anti-aliased circles and ellipses. Incremental function
evaluation plays a large role in scan conversion. We hope that the technique may find other uses,
particularly for texture and surface lighting calculations, and edge tracking for curved surface
patches. It would be especially useful if this technique could be made efficient for trigonometric
and exponential functions.

I thank David Dobkin for many helpful conversations. Figs. 4-6 were created by ray tracing
spline surfaces with software developed by Mike Sweeney and aided by members of the Computer
Graphics Laboratory at Waterloo.

References

[1] BADLER, N.I. Disk generators for a raster display device. Comp. Gr. and Im. Proc.
6, 6 (Dec. 1977), 589-593.

[2] BRESENHAM, JE. A linear algorithm for incremental digital display of circular arcs.
Commun. ACM 20, 2 (Feb. 1977), 100-106.

[3] DOROS, M. Algorithms for generation of descrete circles, rings, and disks. Comp.
Gr. and Im. Proc. 10, 4 (Aug. 1979), 366-371.

[4] FiELD, D. Algorithms for drawing simple geometric objects on raster devices .
Ph.D. Thesis, Princeton University 1983.

[5] FIELD, D. Two algorithms for drawing anti-aliased lines. Proc. Graphics Interface
84, (May, 1984), 87-95.

[e] FOLEY, J.D. AND VAN DAM, A. Fundamentals of Interactive Computer Graphics.
Addison-Wesley, Reading, Mass., 1982.

[7] GUANGNAN, N., TANNER, P., WEIN, M., AND BECHTHOLD, G. An algorithm for
generating anti-aliased polygons for 3-d applications. Proc. Graphics Interface '8S,
(May, 1983), 23-32.

[8] GUPTA, S. AND SPROULL, R.F. Filtering edges for gray-scale displays. Computer
Gr. 15, 3 (Aug. 1981), 1-5.

[9] HorN, BK.P. Circle generators for display devices. Comp. Gr. and Im. Proc. 5,2
(Jun. 1976), 280-288.

[r0] KERNIGHAN, B.W. AND RITCHIE, D.M. The C Programming Language. Prentice-
Hall, Englewood Cliffs, NJ, 1978.

[11] McILROY, M.D. Best approximate circles on integer grids. ACM Trans. on Gr. 2,
4 (Oct. 1983), 237-263.

[12] PITTEWAY, M.L.V. Algorithm for drawing ellipses or hyperbolae with a digital

plotter. Computer J. 10, 3 (1967), 282-289.

[13]

[14]

[15]

PITTEWAY, M.L.V. AND WATKINSON, D.J. Bresenham’s algorithm with grey scale.
Commun. ACM 23, 11 (Nov. 1980), 625-626.

SUENAGA, Y., KANAE, T., AND KOBAYASHI, T. A high-speed algorithm for the

generation of straight lines and circular arcs. IEEE Trans. Comput. TC-28, 10
(Oct. 1979), 728-736.

TURKOWSKI, K. Anti-aliasing through the use of coordinate transformations.
ACM Trans. on Gr. 1, 3 (Jul. 1982), 215-234.

	

