SPARSPAK: Waterloo Sparse Matrix Package
User’s Guide for SPARSPAK-B

Alan George
Esmond Ng

Department of Computer Science
University of Waterloo
Waterloo, Ontario, CANADA
Research Report CS-84-37

November 1984

Table of Contents

1. Introduction and basic structure of SPARSPAK-Booooirireircinecreeeeceer et esaeevenes 3
2. Modules of SPARSPAK-B and how to use themocevvveiieveenineninninrenetenneseseesessesnenees 6
2.1. User mainline program and an eXampleccovevervevcrencrcceeenmnennentnenesssseseesesesnsassesessessons 6
2.2. Modules for input of the problem ...t 8
IDEINISE TOWSooueneereenieiereereeieersesnesseesereassassessaesssseasssasasssesassssessssssastessessesstantessesssensansnenns 9

2.3. Module for ordering the COIUMNSc.ccoiiiininniniirceicenenistiee e sssassesse e ssesacsnans 9
2.4. Module for reordering the TOWSoccoceiiiriiiiniiicecneercccnersensaneesressersasssnssnesnessessassnes 11
2.5. Module for numerical SOIULIONccccccvvvririerirvririnrieeerrreereeeesrenesrreseeraesaeesrenesssessaesnnenes 11

3. Summary of the use of the basic interface modulesccoveveervrnrnirierienccnriresereeveeseeane 13
4, Save and restart fACHItIESccoooviiireirecrer e et e e s esaa e s st en 14
5. Residual calculationcooiiiiiiriieiiereirecrecrerierstesrre s essesessessasessnesasesnsssnssssasssessanesasessrens 15
6. Output from SPARSPAK-Booovioeeiteireeeererterretesseesaesatessesessssesseseessssssesesssesssassessassserase 16
6.1. Message level indicator (MSGLVB)ccoumiimniciinccirnsenisnsessnsiosissesssesseosssscssissene 16
6.2. Statistics gathering (STATSB)cccccvvreceriseriiernecsnnestesisssssseestsecssessestescssesessessssanens 17
6.3. Error messages (IERRB)occovvvmneerrncesiincsisnisnsnsiiitssesessessssssssssesssssssstossssssassssssnsensen 18
6.3.1. Save and restart SUDTOULINESccccvereerieeevierrrerrineerersenessaesssassnesssessserssssssasesnes 19

6.3.2. Problem initialization SuUbroutinecccccoceivrrieeiiireccriieecnieeerreenreeercnreessseenenes 19

6.3.3. RoW input SUBFOULINEcocceeeeriienrereerenenensessconeresessisessnnsestessssssasaesesaesssessses 19

6.3.4. Column ordering subroutineccccccevvereererrinrennrenreniesnesesicesnassnsessessssseennes 19

6.3.5. Row ordering SUBTOULINEcccormeeiiiiminniiiiininiesnisses e sasssssesse s 20

6.3.6. Solution SUDFOULINEccoceiiiiiiiniiiirrenreneeeeenreresteessessesessesnesesessnsessaessesesnesnss 20

6.3.7. Residual calculation Subroutingcccoveiieerieiievienennernrecrereereeserereeseessreseenees 21

7. Summary listing of SPARSPAK-B interface subroutinesccoceeirveeireccinnninncerrenreeencnnens 22
Bi EXAMPIES ..ot eerre e st s s a e s et e s e e e s e saa e s e ne s n e e s s R e sesra e e s b eaesnre san 23
EXAMPIe 1 ..ot treecrree s ee s sate e snesene e s e usas e e nessrnar e e e s e at et et e e banesannnesssaeennne 24
EXamMpPle 2 ...t aesae s bbb R e s 28
EXAMPIE 3 ..ot s st sae s s e e s e ssae s e st s ne s e s s sn e e saeenasseeeenananies 35
EXQAMPIE 4 ..ot s s s s s sa e b e s b st ae st e smeas b 39

9. REfEIEINCESc.oooveeiiiieiiciecreteeterte s ccree e eb et et sbeene st s s e e st steseesaesstsan et eatssarensantesaaeanansesatenranse 44

November 1984 1

SPARSPAK: Waterloo Sparse Matrix Package
User’s Guide for SPARSPAK-B

A collection of modules
to be used with SPARSPAK-A for solving
sparse constrained linear least squares problems

Alan George'
Esmond Ng'
Research Report CS-84-37

© November, 1984

SPARSPAK-B User’'s Guide

This document describes the use of a system called SPARSPAK-B, which is
an enhancement to the SPARSPAK-A package to allow for the solution of large
sparse constrained (and unconstrained) linear least squares problems.
SPARSPAK-B consists of new interface subroutines and -some additional
underlying subroutines, but makes extensive use of subroutines in the SPARSPAK-
A package. SPARSPAK-B cannot run without SPARSPAK-A.

Although SPARSPAK-B depends upon SPARSPAK-A, it is in an important
sense independent; a user can simultaneously solve a least squares problem and a
problem from the class treated by the basic SPARSPAK-A package.

t Department of Computer Science, University of Waterloo, Waterloo, Ontario, CANADA.

November 1984

SPARSPAK-B User’s Guide

IMPORTANT NOTE

The numerical algorithm used in LSQSLYV (see Section 2.5) is a prototype implementation of
an algorithm that is due to Bjorck [1]. The behaviour of the numerical algorithm, in the presence
of roundoff errors in finite precision computer arithmetic, is not well-understood. In the course of
solving a constrained linear least squares problem, some small dense subproblems may have to be
solved. Some of these resulting subproblems may be sensitive to roundoff errors and numerical
solutions to these subproblems may be inaccurate when a small tolerance is supplied to LSQSLV.

We would appreciate receiving any comments and feedback the user may have in using the
package to solve practical problems. Such comments and feedback are important and useful since
they may allow us to refine the numerical algorithm in the future.

When the package fails to produce an accurate solution, we would be grateful if the user could
send us a copy of the data (if possible) so that we may locate where problems occur.

Please send comments and feedback to

Dr. Alan George or Dr. Esmond Ng
Department of Computer Science
University of Waterloo

Waterloo, Ontario

CANADA N2L 3Gl

Telephone: 519-885-1211, ext 3473 (Dr. Alan George)
519-885-1211, ext 2517 (Dr. Esmond Ng)

November 1984

[$S)

SPARSPAK-B ' User’s Guide

1. Introduction and basic structure of SPARSPAK-B
SPARSPAK-B is designed to solve the problem

min W Xﬁ - ,
8 L l | X(}’) l | 2
where

Q = {B| B minimizes || Wy(¥YB — z) ||, }

Here X and Y are respectively m Xn and p Xn sparse matrices, y and z are vectors of length m
and p respectively, and B is a vector of length n. The matrices Wy and Wy are respectively m Xm
and p Xp diagonal weight matrices. The package is capable of handling the very general problem
in which X and Y may be either of full rank or rank-deficient, and there is no restriction on the
dimensions of X and Y. Moreover, the constraints need not be consistent. When the constrained
linear least squares problem does not have a unique solution, the package computes the solution
which has minimal Euclidean norm.

Even though SPARSPAK-B is designed to solve a very general constrained linear least squares
problem, it can also handle problems that may be much simpler than this general case. For
example, the package is capable of solving an unconstrained linear least squares problem; that is,
p=0. In particular, SPARSPAK-B can be used to solve a sparse general square system of linear
equations (p =0 and m =n).

As we have noted above, the package does not impose any restrictions on the dimensions of X
and Y. That is, the package also handles the case in which m =0 but p #0 (even though such a
problem may not have any physical meaning). In this situation, SPARSPAK-B simply treats the
nonempty constraints as a linear least squares problem and computes the minimal norm least
squares solution.

The basic computational technique used in SPARSPAK-B is due to George and Heath [3].

Y
Let M denote the (m +p)Xn matrix [X]' It is assumed that the Cholesky factor of MTM is

R
sparse. Then M is reduced to upper trapezoidal form [0] by applying Givens transformations and

Gaussian eliminations to the rows of M. Here R is an nXn upper triangular matrix. Finally the
upper triangular matrix R is used to compute the solution. It can be shown that the structure of R
is contained in the structure of the Cholesky factor of the symmetric positive definite matrix MT M.
Thus, using techniques developed for solving sparse symmetric positive definite systems, one can
predict the structure of R by analyzing the structure of MTM [7). This allows a storage scheme
for R to be set up before numerical factorization begins and hence the numerical computation of R
can be carried out using a static data structure. Experience has shown that this approach is
efficient (both in terms of storage and execution time) compared to schemes that employ dynamic
storage allocation [4].

In most cases, the matrix M7 M is sparse when both the “least squares matrix” X and the
“constraint matrix” Y are sparse. However, there are instances in which MTM is dense even
though X and Y are sparse. Fortunately this usually occurs when there are only a few “dense rows”
in X and Y. Such problems can be handled in a special way by the package. More precisely, the
least squares problem and the constraints may be regarded as being partitioned as follows:

November 1984 3

SPARSPAK-B ; User’s Guide

s = [3]s-]

s = [E]o- 2]

where 4 and E contain respectively the sparse equations and constraints, and B and F contain
respectively the dense equations and constraints. It is now assumed that M denotes the matrix

E
[A]' Furthermore, it is assumed that the Cholesky factor of M TM is sparse. The package

reduces M to upper trapezoidal form using the approach described above. Then the upper
trapezoidal form, together with B and F, are used to derive the solution to the original problem.
The algorithm is due to Bjorck [1]. Detailed description of the implementation can be found in

[11].

In general the algorithms, the data structures and the storage management for solving sparse
matrix problems are quite complicated. Thus, in order to insulate the user from these
considerations, a set of simple user interface subroutines is used in the package. These interface
subroutines will be described in detail in the following sections.

The user and the package interact to solve the problem through the following basic steps.

Step 1. The user supplies the rows of [X | y] and [Y | z] to the package, in any order, along with
the corresponding diagonal element of Wy and Wy.

Step 2.
The user calls a subroutine which initiates a reordering of the columns of [4 1, in order

to preserve sparsity in subsequent calculations. (See Section 2.3.)

Step 3. The user calls a subroutine which initiates a reordering of the rows of X and Y according
to one of several criteria. (See Section 2.4.)

Step 4. The user calls a subroutine which computes the solution .

The package has facilities to allow the user to compute conveniently the norm of the residual
vectors

Iy —xB Il and Hz—-YBll, ,

where B is the computed solution.

Important netes:

1. Note that SPARSPAK-B is designed to handle problems in which X and ¥ may have any
dimensions. However, the package will perform more efficiently (in terms of storage and
execution time) when m+p=n (that is, overdetermined problems). When m +p <<n (that
is, underdetermined problems), the package will still be able to solve the problems, but both
the storage and time requirements may be high. See [5] for some examples and algorithms for
handling sparse unconstrained underdetermined problems.

2. The discussions above indicate that the package employs heavily techniques for handling
sparse symmetric positive definite systems of linear equations. Indeed, SPARSPAK-B makes
extensive use of the subroutines in SPARSPAK-A, which is a package designed for solving
efficiently sparse symmetric positive definite linear systems [2]. SPARSPAK-B cannot run

November 1984 : 4

SPARSPAK-B User’s Guide

without SPARSPAK-A. Although SPARSPAK-B depends upon SPARSPAK-A, it is in an
important sense independent. A user can simultaneously solve a sparse constrained linear least
squares problem and a sparse symmetric positive definite linear system in the same program.

An early version of SPARSPAK-B was designed and implemented by Dr. M.T. Heath at the
Oak Ridge National Laboratory. This early version includes algorithms for solving the basic sparse
unconstrained linear least squares problems, and for handling constraints, dense rows and rank
deficiency [12]. Those algorithms are special cases of a more general algorithm due to Bjorck for
handling more general sparse constrained linear least squares problems [1]. This general algorithm
is used in the current version of SPARSPAK-B. The design of SPARSPAK-B is similar to that of
SPARSPAK-A [2]. The reader is referred to [6] for a discussion of the design and implementation
issues.

November 1984 5

SPARSPAK-B User’s Guide

2. Modules of SPARSPAK-B and how to use them

2.1. User mainline program and an example

SPARSPAK-B allocates all of its storage from a single one-dimensional floating-point array
which for purposes of discussion we will denote by 7. In addition, the user must provide its size
MAXSB, which is transmitted to the package via a common block SPBUSR, (SPARSPAK—B
USER), which has eight variables.

COMMON [SPBUSR/ MSGLVB, IERRB, MAXSB, NCOLS,
NSEQNS. NDEQNS., NSCONS., NDCONS

Here MSGLVB is the message level indicator which is used to control the amount of information
printed by the package. The second variable JERRB is an error code, which the user can examine
in his mainline program for possible errors detected by the package. Detailed discussion of the roles
of MSGLVB and IERRB is provided in Section 6. The variable NCOLS is the number of columns
in X and Y, and NSEQNS, NDEQNS, NSCONS, NDCONS are respectively the number of rows in
A, B, E and F. Thus, NSEQNS +NDEQNS =m and NSCONS +NDCONS =p.

The following program illustrates how one might use SPARSPAK-B. The various subroutines
referenced are described in the subsequent parts of this section. The problem solved is assumed to
be stored on an external file (FORTRAN unit 1) in a binary format.

INTEGER SUBS(10)

INTEGER FILE, IERRB, INPUT, K, MAXSB, MSGLVB,
1 NCOLS, NDCONS, NDEQNS, NSCONS, NSEQNS,
1 NSUBS, OPTION, ROWNUM, TYPE, TYPTOL

REAL T(5000), VALUES(10)

REAL RESCON, RESEQN., RHS, TOL, WEIGHT

COMMON [SPBUSR/ MSGLVB, IERRB, MAXSB, NCOLS,
1 NSEQNS, NDEQNS, NSCONS, NDCONS

PR NS N
~
z
~
~
~
kN
~
~
N
hN
3
~
Q
=

CALL SPRSPK
MSGLVB = 2
MAXSB = 5000

CALL FILEB (FILE)

ana o
>
hu
)
N
bl
Q
B
y
3
R
tm
>
ﬂ
o]
g
kN
h
"xy
P~y
t~
=

REWIND INPUT
100 CONTINUE
READ (INPUT) ROWNUM, TYPE, NSUBS,
1 (SUBS (K) ,VALUES (K) ,K=1 ,NSUBS) ,

(1) Declared either REAL or DOUBLE PRECISION, depending on the version of SPARSPAK-A and SPARSPAK-B
that is available. The examples in this manual assume a single precision version is being used.

November 1984 , 6

SPARSPAK-B User’s Guide

1 RHS, WEIGHT
IF (NSUBS .EQ. 0) GO TO 200
CALL INXYWB (ROWNUM, TYPE, NSUBS, SUBS, VALUES,

1 RHS, WEIGHT, T)
GO TO 100
200 CONTINUE
C e e e e mcmeaaa——aa
C ORDER COLUMNS AND ROWS.
€ e e e eemammm—————an

CALL ORCOLB (T)
CALL ORROWB (OPTION, T)

aan

CALL LSQSLV (TOL, TYPTOL, T)
CALL RESIDB (RESEQN, RESCON, T |
PRINT THE SOLUTION, FOUND IN THE FIRST NCOLS
LOCATIONS IN THE WORKING STORAGE ARRAY T, AND
PRINT THE RESIDUALS.
WRITE (6,11) (T(K).K=I1,NCOLS)

11 FORMAT (|/ 10H SOLUTION |/ (5F12.5))
WRITE (6,22) RESEQN, RESCON

22 FORMAT (| 22H EQUATION RESIDUAL

1 / 22H CONSTRAINT RESIDUAL

anann

ana
v
E]
[
2
\]
2
N
\]
~
[}
~
Ty
(9]
[}
Q
b
H
X
zx,
x
by
]
~]
h<
%]
~
b
=
9
~
N
?“
-]

CALL STATSB

A

STOP
END

Note: If the SPARSPAK-B package available to you is a double precision version, the REAL
declarations in this example should be changed to DOUBLE PRECISION.

The module SPRSPK must be called before any part of the package is used. Its role is to
initialize some system parameters (e.g. the logical unit numbers for output files), to set default
values for options (e.g. the message level indicator), and to initialize the timing routine. The routine
needs only to be called once in the user program, and the FORTRAN statement is shown below.

CALL SPRSPK

(In fact, SPRSPK is the initialization routine for the entire SPARSPAK package, including both
SPARSPAK-A and SPARSPAK-B.) Note that the only variable in the common block SPBUSR
that must be explicitly assigned a value by the user is MAXSB, although he may wish to set others
as well, such as MSGLVB.

It is assumed that the subroutines which comprise SPARSPAK-A and SPARSPAK-B have
been compiled into a library, and that the user can reference them from his FORTRAN program
just as he references the standard FORTRAN library subroutines, such as SIN, COS, etc.
Normally, a user will use only a small fraction of the subroutines provided in SPARSPAK-A and
SPARSPAK-B.

November 1984 7

SPARSPAK-B User’s Guide

SPARSPAK-B requires an external sequential file for the storage of intermediate results.
Before beginning to solve a problem, the user must call a subroutine FILEB to tell SPARSPAK-B
which FORTRAN unit it should use. The FORTRAN statement to be used is

CALL FILEB (IONUM)
where JONUM is the required FORTRAN logical unit.

Important Notes:
(1) The module FILEB must be called when a new problem is to be solved.

(2) The user is responsible for defining the external file for the FORTRAN logical unit JONUM
using the appropriate system control statement or command. (This depends on the
environment in which the program is being executed.) Furthermore, the file should be
preserved throughout the execution of the program.

Warning:

The modules of SPARSPAK-B communicate with each other through labelled common blocks
whose names are SPKSYS, SPBUSR, SPBCON, SPBMAP, and SPBDTA. (Note that SPKSYS is
shared by SPARSPAK-A and SPARSPAK-B.) Thus, the user must not use labelled common blocks
with these names in his program.

If these common block names cause conflicts in your program or at your computer installation,
it is possible to have the package distributed with these common blocks having specifically
requested names. These names should be specified when the package is acquired.

2.2. Modules for input of the problem

The subroutine INXYWB allows the user to provide the structure and the numerical values of
X and Y to the package, along with the numerical values of y, z, Wy, and Wy. They are provided
one row at a time, as shown in the example below.

CALL INXYWB (ROWNUM, TYPE, NSUBS, SUBS, VALUES, RHS, WEIGHT, T)

The parameters of the subroutine are as follows.

ROWNUM : An integer variable associated with each row. Usually,
' 1 <ROWNUM <(m+p) and the rows of X and ¥ are labelled from 1 to
m—+p. The rows of X and Y can be intermixed in this labelling. It
should be emphasized that ROWNUM is used only as a label for a row.
In some contexts, it may be reasonable for several rows to have the same
value for ROWNUM. The use of ROWNUM along with the use of
ORROWB with OPTION set to 5 (see Section 2.4) allows the user to
impose a specific row ordering.

TYPE: An integer variable having value 1, 2, 3 or 4, indicating the following.

November 1984 ‘ R

SPARSPAK-B User’s Guide

1- arow of 4 (sparse equation in X), with corresponding element of y
and Wy.

2- arow of B (dense equation in X), with corresponding element of y
and Wy. (See below for an explanation.)

3- arow of E (sparse constraint in Y), with corresponding element of z
and Wy.

4 - arow of F (dense constraint in Y, with corresponding element of z
and Wy. (See below for an explanation.)

NSUBS': An integer variable containing the number of nonzeros in the input row.

SUBS: An integer array containing the column indices (subscripts) of the
nonzeros in the input row.

VALUES: A floating-point array containing the numerical values of the nonzeros in
the input row in positions corresponding to the column indices stored in
SUBS.

RHS': The right-hand side element of y or z corresponding to the input row.

WEIGHT: The diagonal element of the weight matrix Wy or Wy corresponding to

the input row. It is assumed that WEIGHT is positive.

T: The floating-point working storage array from which all storage for the
package is allocated. (See Section 2.1 and the example there.)

Dense rows

Some problems may yield a few rows of X and of Y that have relatively many nonzeros. Such
rows wreak havoc with the sparsity preservation techniques used in SPARSPAK-B. At the moment
the package has no robust scheme for deciding which rows will cause unacceptable damage, but it
does have a way of circumventing problems caused by such rows. Accordingly, the user can
indicate dense rows of X or of Y by setting the corresponding value of the input parameter TYPE
to 2 or 4 when such a row is input. See Example 2 in Section 8 for an illustration of the use of this
feature.

Important Note:

The floating-point values transmitted to SPARSPAK-B by INXYWB are either single or
double precision floating-point numbers, depending on the version of SPARSPAK-B being used.
The examples in this manual assume that a single precision version of the package is being used.

2.3. Module for ordering the columns

Recall that the Cholesky factor of the symmetric positive definite matrix M7M plays an

E
important role in the solution process, where M = . It is well known that if MTM is sparse,
A

the sparsity of its Cholesky factor depends crucially on the symmetric ordering of the rows and
columns of M7 M [7). Note that a symmetric ordering of MTM is the same as a column ordering
of M. Thus, in order to reduce storage and execution time, one should find a “good” column
ordering for M before any numerical computation begins so that the Cholesky factor of the
reordered matrix is (hopefully) sparse. This can be achieved after the problem has been supplied to

November 1984 9

SPARSPAK-B User’s Guide

the package using INXYWB. The column ordering process is invoked by executing the following
FORTRAN statement. ’

CALL ORCOLB (T)

The algorithm used in SPARSPAK-B is an impiementation of the minimum degree algorithm due to
Liu [14]. The module ORCOLB is also responsibie for setting up the appropriate data structures for
the matrices involved in subsequent numerical computations.

Common Errors:

The most common cause of premature termination of the ORCOLB module is insufficient
working storage. As mentioned above, this module performs two functions: column ordering and
storage allocation. The ordering step determines the column permutation, and the allocation step
sets up the appropriate data structures.

In general, the ordering and allocation subroutines require different amounts of storage.
Furthermore, their storage requirements are often unpredictable, because the number of data
structure pointers, and the number of nonzeros to be stored are not known until the subroutines have
been executed.

Thus, the interface module ORCOLB may terminate in several distinctly different ways.
(a) There was not enough storage to execute the column ordering subroutine.

(b) The ordering was successfully obtained, but there was insufficient storage to initiate execution
of the data structure set-up (storage allocation) subroutine.

(c) The data structure set-up subroutine was executed, and the amount of storage required for the
data structure pointers etc. was determined, but there was insufficient storage for these
pointers.

(d) The data structure was successfully generated, but there is insufficient storage for the actual
numerical values in the upper trapezoidal matrix, so the next step (numerical computation)
cannot be executed.

(e) ORCOLB was successfully executed, and there is sufficient storage to proceed to the next step.

If any of the above conditions occurs, the user may execute SAVEB, and re-initiate the
computation after adjusting the storage declarations (either up or down) and executing RSTRTB®,
If (a) or (b) occurs, information is supplied indicating the minimum value of MAXSB needed so
that (c) or (d) will occur upon re-execution. If (¢) occurs, the minimum value of MAXSB needed
for (d) is provided.

When (c) or (d) occurs, after executing SAVEB, adjusting the storage declaration, then
executing RSTRTB, one must again call ORCOLB. However, the interface will detect that the
ordering and/or storage allocation have already been performed, and will skip that part of the
computation.

(2) See Section 4 for details on how to use SAVEB and RSTRTB, and Examples 3 and 4 in Section 8.

November 1984 . 10

SPARSPAK-B User’s Guide

2.4. Module for reordering the rows

The execution time or the numerical stability of the module LSQSLV described in Section 2.5
can be affected significantly by the row ordering [3,13]. Accordingly, SPARSPAK-B provides a
row-ordering module which may be invoked (optionally) by the following FORTRAN statement.

CALL ORROWB (OPTION, T)

When the weights Wy and Wy vary widely in magnitude, it is important for numerical accuracy
that the rows of 4 and E be arranged in order of increasing weight. See [13] for details. This can
be achieved by setting the integer parameter OPTION to 1.

If the rows of WxX and WY do not vary greatly, the user may wish to sort the rows in order
to reduce execution time, although the user should be aware that this sorting might require more
storage than would otherwise be required to solve the problem. The following options are provided.

OPTION Details

0 Rows are processed in the order they were supplied, regardless of the
values of ROWNUM (see Section 2.2).

1 Rows are sorted in order of increasing weight (i.e., the parameter
WEIGHT).

2 Rows are sorted in order of increasing number of nonzeros (i.e., the
parameter NSUBS).

3 Rows are sorted in order of increasing minimum column subscripts (see
below).

4 Rows are sorted in order of increasing maximum column subscripts (see
below). :

5 Rows are sorted in order of the parameter ROWNUM (see Section 2.2).

Here the maximum {minimum} column subscript of a row is the column subscript (index) of the
last {first} nonzero in that row. Moreover, the column indices referred to those of the (column)
permuted matrix obtained from ORCOLB.

The effectiveness of these strategies is not well understood, and varies with the problem. In
the absence of any prior knowledge, setting OPTION to 4 is recommended. See [8,9,10] for
discussions on the row ordering problem in the solution of sparse linear least squares problems.

Note:

The amount of storage required to perform row ordering may be substantially larger than
those required by the other interface subroutines.

2.5. Module for numerical solution

The actual numerical computation which produces the solution B is initiated by executing the
FORTRAN statement

CALL LSQSLV (TOL, TYPTOL, T)

where T is the working storage array.

November 1984 11

SPARSPAK-B User’s Guide

The parameter TOL is a user-specified tolerance which is used to determine when a diagonal
element of the upper triangular matrix produced in the numerical computation should be regarded
as numerically zero. Suppose R denotes the upper triangular matrix. A diagonal element R;; will
be regarded as numerically zero if

|R; | = TOL when TYPTOL =0
and

R :
IRl =< TOL when TYPTOL =1
max | Rkk |

2 ‘
The choice of TOL is usually problem-dependent. In general, TOL should be chosen so that it
reflects the accuracy of X, Y, y and z. For example, if the input numerical values are known to be
accurate to ¢ significant digits, then one should use a relative test (TYPTOL =1) and TOL should
be set to about 107",

November 1984 12

SPARSPAK-B User’s Guide

3. Summary of the use of the basic interface modules

The following flowchart depicts the sequence of calls to SPARSPAK-B interface subroutines
which occur when a constrained linear least squares problem is solved. After LSQSLV has been
executed, the solution to the problem can be found in the first NCOLS locations in the working
storage array T, where NCOLS is the third variable in the labelled common block SPBUSR.

SPRSPK

!

FILEB |<- - -1

INXYWB

ORCOLB

!

ORROWB

'

L o LSQSLV | -- -4

A second and subsequent problems can be solved by simply starting at the beginning of the
module sequence again, as implied by the broken line. ‘

November 1984 13

SPARSPAK-B User’s Guide

4. Save and restart facilities

As in SPARSPAK-A, SPARSPAK-B provides two subroutines called SAVEB and RSTRTB
which allow the user to stop the calculation at some point, save the results on an external sequential
file, and then restart the calculation at exactly the same point some time later. To save the results
of the computation done thus far, the user executes the FORTRAN statement

CALL SAVEB (K, T)

where K is the FORTRAN logical unit on which the results are to be written, along with other
information needed to restart the computation. If execution is then terminated, the state of the
computation can be re-established by executing the FORTRAN statement

CALL RSTRTB (K, T)

Example 3 provided in Section 8 illustrates the use of SAVEB and RSTRTB.

Note that executing SAVEB does not destroy any information; the computation can proceed
just as if SAVEB were not executed.

When errors occur in a module, the routines SAVEB and RSTRTB are useful in saving the
results of previous modules executed successfully (see Section 6.3 and Example 4 in Section 8).

Another potential use of the SAVEB and RSTRTB modules is to make the working storage
array T available to the user in the middle of a sparse matrix computation. After SAVEB has been
executed, the working storage array 7 can be used by some other computation.

Finally, the SAVEB and RSTRTB modules allow the user to segment the computation into
several distinct phases, and thereby reduce the amount of program that must be resident in storage
at any given time.

Important Notes:

(a) In the subroutines SAVEB and RSTRTB, information is either written on or read from the
FORTRAN logical unit X using binary format.

(b) If the subroutines SAVEB and RSTRTRB are used, then before the user executes his program,
he must define a file for the FORTRAN logical unit K using the appropriate system control
statement or command. (This depends on the environment in which the program is being
executed.) Furthermore, this file must be preserved by the user for later access by the
RSTRTRB subroutine.

(c) The external file for the logical unit K must be different from the working file specified in the
FILEB statement.

November 1984 5 14

SPARSPAK-B

S. Residual calculation

User’s Guide

SPARSPAK-B provides a subroutine for computing the Euclidean norm of the residual

vectors. The FORTRAN statement to be used is as follows:
CALL RESIDB (RESEQN, RESCON, T)

where T is the working storage array. After the subroutine is called,
RESEQN = ||y — xB Il

and
RESCON = || z = YB ||,

where B is the computed solution.

Important Note:

RESIDB should be called only when the least squares solution has been computed (that is,

after LSQSLV has been executed successfully).

November 1984

15

SPARSPAK-B User’s Guide

6. Output from SPARSPAK-B

As noted earlier in Section 2.1, the user supplies a one-dimensional floating-point array T,
from which all array storage is allocated. In particular, the interface allocates the first NCOLS
storage locations in T for the solution vector of the constrained linear least squares problem. After
all the interface modules for a particular problem have been successfully executed, the user can
retrieve the solution from these NCOLS locations.

In addition to the least squares solution 3, SPARSPAK-B may provide other information
about the computation, depending upon the value of MSGLVB (the first variable in the common
block SPBUSR), whether or not errors occur, and whether or not the module STATSB is called.
This section discusses these features of SPARSPAK-B.

Notes:

Two logical output units (/PRNTS and IPRNTE) are required by SPARSPAK-B. Any
information and/or statistics which the user has requested are recorded on the output unit JPRNTS,
while any error messages that might be raised by SPARSPAK-B during the execution of the
program are recorded on the output unit JPRNTE. These two logical output units are set in the
initialization module SPRSPK, and it is the responsibility of the user and/or the computer
installation to ensure that the files associated with these two logical units are defined before
attempting to execute the program. The default output units are both 6. (These two output units
are also used by SPARSPAK-A.)

6.1. Message level indicator (MSGLVB)

The first variable MSGLVB in the common block SPBUSR stands for “message level”, and
governs the amount of information printed by the interface modules. Its default value is two, and
for this value a relatively small amount of summary information is printed, indicating the initiation
of each phase. When MSGLVRB is set to one by the user, only fatal error messages are printed; this
option could be useful if SPARSPAK-B is being used in the “inner loop” of a large computation,
where even summary information would generate excessive output. Increasing the value of
MSGLVB (up to 4) provides increasingly detailed information about the computation. Note that
the module SPRSPK sets MSGLVB to its default value; if the user wishes MSGLVB to be different
from two, he must reset it after SPRSPK has been called.

In many circumstances, SPARSPAK-B will be embedded in still another “super package”
which models phenomena producing sparse constrained linear least squares problems. Messages
printed by SPARSPAK-B may be useless or even confusing to the ultimate users of the super
package, or the super package may wish to field the error conditions and perhaps take some
corrective action which makes the error messages irrelevant. Thus, al/l printing by SPARSPAK-B
can be prevented by setting MSGLVB to zero.

We summarize our discussion in this section in the following table.

November 1984 . 16

SPARSPAK-B User’s Guide

MSGLVB amount of output
0 no information is provided.
1 only warnings and errors are printed.
2 warnings, errors and summary are printed.
3 warnings, errors, summary and some statistics are printed.
4 detailed information for debugging purposes.

Warning:

It should be noted that a high volume of output may be generated if MSGLVB is set to four,
since the input data would also be echoed.

6.2. Statistics gathering (STATSB)

SPARSPAK-B gathers a number of statistics which the user will find useful if he is comparing
SPARSPAK-B with other packages, or is going to solve numerous similar problems and wants to
adjust the working storage to the minimum necessary. The package has a. common block called
SPBDTA containing variables whose values can be printed by executing the following FORTRAN
statement.

CALL STATSB

The information printed includes

the size of the working storage array T, .

the number of columns in X and Y,

the number of rows in 4, B, E and F,

the number of nonzeros in the matrices X and Y,

the maximum number of nonzeros in the rows of X and Y,

the number of nonzeros in (E T 4T)

’

A

the number of off-diagonal nonzeros in the upper triangular matrix obtained after the
numerical reduction,

the time used to find the column ordering,

the storage used by the column ordering subroutine,
the time used for data structure set-up,

the storage used by the storage allocation subroutine,
the time used to find the row ordering,

the storage used by the row ordering subroutine,

the time used for computing the solution,

the number of operations required by the solution subroutine,

November 1984 17

SPARSPAK-B User’s Guide

the storage used by the solution subroutine,

the time used for computing the residuals,

the number of operations required by the residual calculation subroutine,
the storage used by the residual calculation subroutine,

the total time used by the solution process,

the maximum storage required by the solution process,

the Euclidean norm of the residual vectors.

Since the module STATSB can be called at any time, some of the above information may not be
available, and will not be printed. Furthermore, the amount of information printed also depends on
the message level MSGLVB. The word “operations” here means multiplicative operations
(multiplications and divisions). Since most of the arithmetic performed in sparse matrix
computation occurs in multiply-add pairs, the number of operations (as defined here) is a useful
measure of the amount of arithmetic performed.

The reader is referred to the examples in Section 8 for more discussion about the output from
STATSB.

6.3. Error messages (/FRRB)

When a fatal error is detected, so that the computation cannot proceed, a positive code is
assigned to JERRB. The user can simply check the value of JERRB to see if the execution of the
module has been successful. This error flag can be used in conjunction with the save and restart
feature described in Section 4 to retain the results of successfully completed parts of the
computation, as shown by the program fragment below.

CALL ORCOLB (T |
IF (IERRB .EQ. 0) GO TO 100
CALL SAVEB (3, T)
STOP
100 CONTINUE

The variable JERRB is set to the value 10Xk +/, where 1<I/=<9 distinguishes the error, and k is
determined by the type of module that sets IERRB positive.

k interface modules

20 save and restart modules (SAVEB and RSTRTB)

21 problem initialization module (FILEB)

22 row input module (INXYWB)

23 column ordering and data structure set-up module (ORCOLB)

24 row reordering module (ORROWB)

25 solution module (LSQSLV)

26 residual calculation module (RESIDB)

November 1984 , 18

SPARSPAK-B User’s Guide

6.3.1. Save and restart subroutines

IERRB SAVEB and RSTRTB
201 Output unit given to SAVEB is not positive.
202 Input unit given to RSTRTB is not positive.
203 Insufficient storage in working storage array to restart the computational
process. The minimum value of MAXSB required is printed in the error
message.

6.3.2. Problem initialization subroutine

IERRB FILEB
211 Input/output unit given to FILEB is not positive.

6.3.3. Row input subroutine

IERRB INXYWB

221 Incorrect execution sequence. Probable cause of error: routine FILEB was
not executed successfully.

222 Incorrect execution sequence. Probable cause of error: routine ORCOLB
has already been executed. To start a new problem, FILEB must be called
first.

223 Number of nonzeros (NSUBS) is not positive.

224 Input row type (TYPE) is invalid.

225 Input index (or subscript) is not positive.

226 Input weight (WEIGHT) is not positive.

2217 Insufficient storage in working storage array to form matrix structure. The

minimum value of MAXSB required is printed in the error message.

6.3.4. Column ordering subroutine

IERRB ORCOLB

231 Incorrect execution sequence. Probable cause of error: routine INXYWB
was not executed successfully.

232 Incorrect execution sequence. Probable cause of error: routine ORCOLB
was called after having already been executed successfully.

November 1984 19

SPARSPAK-B

IERRB

233

234

235

236

237

238

User’s Guide

ORCOLB

Insufficient storage in working storage array to create adjacency structure.
The minimum value of MAXSB required is printed in the error message.
Response: execute SAVEB, and restart the computation using ORCOLB
with MAXSB at least as large as that indicated in the error message.

Number of variables or columns (NCOLS) is zero.
Number of equations and constraints is zero (i.e., m +p =0).

Insufficient storage in working storage array to execute the column
ordering routine. The minimum value of MAXSB required is printed in
the error message. Response: execute SAVEB, and restart the computation
using ORCOLB with MAXSB at least as large as that indicated in the
error message.

Insufficient storage in working storage array to execute the storage
allocation routine. The column ordering routine was successfully executed.
Response: same as for error 236.

Insufficient storage in working storage array to hold the data structure
pointers. The column ordering and storage allocation routines were
successfully executed. Response: same as for error 236.

6.3.5. Row ordering subroutine

IERRB

241

242

243

244

ORROWB

Incorrect execution sequence. Probable cause of error: routine ORCOLB
was not executed successfully.

Incorrect execution sequence. Probable cause of error: routine ORROWB
was called after having already been executed successfully.

Input row ordering option (OPTION) is invalid.

Insufficient storage in working storage array to execute the row ordering
routine. The minimum value of MAXSB required is printed in the error
message. Response: execute SAVEB, and restart the computation using
ORROWB with MAXSB at least as large as that indicated in the error
message.

6.3.6. Solution subroutine

November 1984

SPARSPAK-B

IERRB

251

252

253

254

255

256

User’s Guide

LSQSLV

Incorrect execution sequence. Probable cause of error: routine ORCOLB
or routine ORROWRB was not executed successfully.

Incorrect execution sequence. Probable cause of error: routine LSQSLV
was called after having already been executed successfully.

Input tolerance (TOL) is negative.
Input tolerance type (TYPTOL) is invalid.

Insufficient storage in working storage array to execute the solution
routines. The minimum value of MAXSB required is printed in the error
message. Response: execute SAVEB, and restart the computation using
LSQSLV with MAXSB at least as large as that indicated in the error
message.

routine LSQSLV fails to compute a singular value decomposition of
intermediate small dense matrices.

6.3.7. Residual calculation subroutine

IERRB

261

262

November 1984

RESIDB

Incorrect execution sequence. Probable cause of error: routine LSQSLV
was not executed successfully.

Insufficient storage in working storage array to compute residuals. The
minimum value of MAXSB required is printed in the error message.
Response: execute SAVEB, and restart the computation using RESIDB
with MAXSB at least as large as that indicated in the error message.

21

SPARSPAK-B User’s Guide

7. Summary listing of SPARSPAK-B interface subroutines

SPARSPAK | g prspx
initialization
Probl
_LTO%eMm | piTEB (IONUM)
initialization
= : :
in::lvt INABWB (ROWNUM, TYPE, NSUBS, SUBS, VALUES, RHS, WEIGHT, T)
Col
oM\ HRCOLB (T)
ordering
Row
. ORROWB { OPTION, T)
ordering
Numerical
. LSQSLV (TOL, TYPTOL, T)
solution
Residual ’ '
esicual | RESIDB (RESEQN, RESCON, T)
calculation
Print STATSB
statistics
Save SAVEB (K, T
Restart RSTRTB (K, T)

November 1984 } 22

SPARSPAK-B User’s Guide

8. Examples

In this section, we provide several examples which illustrate how SPARSPAK-B can be used.
The programs were compiled using the Berkeley f77 compiler and run on a DEC VAX 11/780
computer. A single precision version of SPARSPAK-A and SPARSPAK-B was used. All times
reported are in seconds. It should be noted that the results may be different if a different version of
SPARSPAK-A and SPARSPAK-B are used, or if the programs are compiled and run on a different
computer.

The sample problems are variants of the following unconstrained linear least squares problem:
min Hxg—»ll. .

where X is defined below.

Consider a k Xk grid (see figure below, where k=4). There is a variable associated with
each grid point, and for each square in the grid, there is a set of four equations involving the
variables at the four grid points in that square. This gives rise to a sparse overdetermined system of
linear equations and it will be solved in the least squares sense. The number of variables is n=k2
and the number of equations is m=4(k —1)2. For our purpose, the numerical values of the
nonzeros in X and y are generated using a uniform random number generator.

D—O—O—0O
S O—D—0O
O—O—O—@

November 1984 23

SPARSPAK-B User’s Guide

Example 1

In this example, SPARSPAK-B is used to solve a constrained linear least squares problem
. XB — ,
tmin I XB—» ll,
where
Q = {B| B minimizes || YB —z ||, }

The matrix X is the same as the one defined on a k Xk grid. The constraints are as follows.
100 --- 0 2
Y= 1lo1o0 - o0 > 2= s
That is, the first and the second variables are assumed to have values 2 and 5 respectively.

The program begins by calling SPRSPK to initialize SPARSPAK-B, followed by a call to
FILEEB which tells SPARSPAK-B the unit number to be used to reference the temporary external
file required by the package. Then the problem is generated and provided to SPARSPAK-B using
the subroutine INXYWB. The column ordering is determined and data structure is set up by calling
ORCOLB. Finally, the solution is obtained by executing LSQSLV. The subroutines RESIDB and
STATSB are called to compute the norm of the residual vectors and to print out the statistics
gathered by the package.

Note that in this example, the size of the working storage array T was 7500, while the statistic
indicates that the maximum amount of storage required by any modules was only 514 which was the
storage requirement in ORCOLB. Thus if problems with the same structure are to be solved, the
user can change the size of T to 514.

Program

C--- SPARSPAK-B (ANSI FORTRAN) RELEASE II1 --- NAME = EXI 1SPK
C (C) UNIVERSITY OF WATERLOO JANUARY 1984 28 PK
C***********************t******************t*#*tt#*t#*****#t#*t* 3SPK
C************#*#t*********t***#******lt**#**********#*t***tt***# 4SPK
C********** MA I N L I N E P R 0 G R A M % % ok & k %k ok sk %k %k SSPK
Ct*#t#*****t**********tm****t#*#*#****t********t**t**#*****t*#** 6SPK
C#*#****#***t**********t*********#*****t#*#******************t** 7SPK
C 8SPK
C EXAMPLE 1 (SEE USER’S GUIDE). 9SPK
C 10SPK
C REQUIREMENTS : 11SPK
C -- AN EXTERNAL FILE FOR UNIT 1. 12SPK
C -- A RANDOM NUMBER GENERATOR (RANDOM) . , 138SPK
C 14SPK
C********t***t******************###t*****#tt*tt#*#*#****#*******]5SPK
C 16SPK
INTEGER SUBS(100) 178SPK
INTEGER FILE , I , ICASE , IERRB , IPRNTE, IPRNTS, 18SPK

1 ISEED , J , K , KGRID , KMI , MAXINT, 19SPK

1 MAXSB , MSGLVB, NCOLS , NDCONS, NDEQNS, NSCONS, 20SPK

1 NSEQNS, NSUBS , OUTPUT, ROWNUM, TYPE, TYPTOL 21SPK

REAL MCHEPS, RATIOL, RATIOS, TIME 22SPK

REAL T(7500), VALUES(100) 23SPK

REAL RESCON, RESEQN, RHS , TOL ., WEIGHT 24SPK

c 25SPK
C*************tt*******#*******t*****#***a**t****#**t#t*#******# 26SPK

November 1984 , 24

SPARSPAK-B

User’s Guide

COMMON [SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 MCHEPS, TIME
COMMON [SPBUSR/ MSGLVB, IERRB

CALL SPRSPK

anaaaaan

0

FILE = 1

OUTPUT = IPRNTS
TOL = MCHEPS

TOL = 100.0E0*TOL
TYPTOL = 1

ISEED = 1234567

MSGLVB = 2
MAXSB = 7500

CALL FILEB (FILE)

anan o

NSUBS = 4
WEIGHT = 1.0E0
TYPE = I~

ROWNUM

]
S

KGRID = 5

KM1 = KGRID - 1

bo 400 I =1
bo 300 J =

aan
Q
2
2
hl
=
2
hi
E
<
QO
3
X
[

SUBS(1) = (I - 1)*KGRID + J
SUBS(2) = (I - 1)*KGRID + J + 1

SUBS(3) = I*KGRID + J
SUBS(4) = I*KGRID + J + 1

A RANDOM NUMBERGENERATOR.

anan

DO 200 ICASE =1, 4
bo 100 K = 1, NSUBS

VALUES (K) = RANDOM(ISEED)

100 CONTINUE
ROWNUM = ROWNUM + I
RHS = RANDOM(ISEED)

, MAXSB
1 NDEQNS, NSCONS, NDCONS

GENERATE NUMERICAL VALUES USING

NSEQNS ,

H %k ok ok ok ok ok k ok ok 3k ok dk ko k k k k ok % %k ok ok kR k ok ok kak R ok ok ok k Kk kR ok ok Kk Rk ok Rk kR K KKKk KEEKER

CALL INXYWB (ROWNUM, TYPE, NSUBS, SUBS,

1 VALUES, RHS,

200 CONTINUE
300 CONTINUE
400 CONTINUE

aaan

ROWNUM = ROWNUM + 1
TYPE = 3

November 1984

25

27SPK
28SPK
29SPK
30SPK
31SPK
32S8SPK
33S8SPK
34SPK
358PK
368SPK
378PK
38SPK
398PK
40SPK
418SPK
42SPK
43SPK
44SPK
458PK
46SPK
47SPK
485 PK
49SPK
50SPK
51SPK
528PK
53SPK
548PK
558SPK
56SPK
578PK
58SPK
59S8SPK
60SPK
61SPK
62SPK
63SPK
64SPK
65SPK
66SPK
67SPK
68SPK
69SPK
70SPK
71SPK
72SPK
73SPK
74SPK
75SPK
76SPK
778PK
78S PK
79SPK
80SPK
815PK
82SPK
83SPK
84SPK
85SPK
86SPK
87SPK
88SPK
89SPK
90SPK
918PK
928SPK

SPARSPAK-B

NSUBS = 1

SUBS(1) = 1
VALUES (1) =
RHS = 2.0E0
WEIGHT = 1.0E0

1.0E0

CALL INXYWB (ROWNUM, TYPE, NSUBS, SUBS, VALUES,

User’s Guide

1 RHS, WEIGHT, T)

c

ROWNUM = ROWNUM + 1

TYPE = 3

NSUBS = 1

SUBS (1) = 2

VALUES (1) = 1.0E0

RHS = 5.0E0

WEIGHT = 1.0E0

CALL INXYWB (ROWNUM, TYPE, NSUBS, SUBS, VALUES,

1 RHS, WEIGHT, T)
c
c ORDER COLUMNS .
C | cces e macsmnaaa

CALL ORCOLB (T)
c
5. . I
c COMPUTE LEAST SQUARES SOLUTION AND RESIDUALS.
T T T T A

CALL LSQSLV (TOL, TYPTOL, T)

CALL RESIDB (RESEQN, RESCON, T)
c
€ m e -
c PRINT THE SOLUTION, FOUND IN THE FIRST NCOLS
c LOCATIONS IN THE WORKING STORAGE ARRAY T.
5 T

WRITE (OUTPUT,11) (T(K).K=I1,NCOLS)

11 FORMAT (/ 10H SOLUTION [(1P5El5.5))

€ m e e e e e e e e e e e e m e e e e e e e e e e et e e m e
c PRINT STATISTICS GATHERED BY SPARSPAK-B.
€ e am e e

CALL STATSB
c

STOP

END

Output

¥rxxxxkxxxk* UNIVERSITY OF WATERLOO
*EXEEXKXEX SPARSE MATRIX PACKAGE

* ok ok ok K ok K kX (S PARSUPAK)

* ok Kk Kk Kk Kk X RELEASE 3

Bk K K ok ok ok ok k % (C) JANUARY 1984

Xk rkk*kxx* ANSI FORTRAN

Exxxkkxx SINGLE PRECISION
**xxxx*kxx* JAST UPDATE JANUARY 1984

OUTPUT UNIT FOR ERROR MESSAGES
OUTPUT UNIT FOR STATISTICS

A

FILEB - FILE INITIALIZATION

November 1984

26

93SPK
94SPK
958 PK
96 SPK
97SPK
98SPK
99SPK
100SPK
101SPK
102SPK
103SPK
104SPK
105SPK
106SPK
107S8PK
108SPK
109SPK

- 1108PK

111SPK
1128PK
1138PK
114SPK
1158SPK
116SPK
1178SPK
118SPK
1198PK
120SPK
121SPK
1228PK
123SPK
124SPK
125SPK
1268PK
127SPK
128SPK
129SPK
130SPK
131SPK
132SPK
133SPK
134SPK

SPARSPAK-B

User’s Guide

~ N~ RN

.11532e+00
.77276e-01
.93660e-01
.84502e-01
.24445e-02

INXYWB - INPUT ROWS

ORCOLB - FIND COLUMN ORDERING

LSQSLYV - LEAST SQUARES SOLVE

RESIDB - COMPUTE RESIDUAL

SOLUTION

2.00000e+00 5.00000e+00 2.64674e+00
-3.00018e+00 -1.18907e+00 2.28644e-01
3.82073e-01 1.95622e+00 3.16640e-02
5.77518e-01 -3.68422e-01 9.56243e-02
6.70207e-01 5.10281e-01 3.93671e-01

STATSB - SYSTEM-B STATISTICS

SIZE OF STORAGE ARRAY (MAXSB)

NUMBER OF COLUMNS (UNKNOWNS)
NUMBER OF SPARSE EQUATIONS
NUMBER OF DENSE EQUATIONS
NUMBER OF SPARSE CONSTRAINTS
NUMBER OF DENSE CONSTRAINTS
TIME FOR COLUMN ORDERING
STORAGE FOR COLUMN ORDERING
TIME FOR ALLOCATION

STORAGE FOR ALLOCATION

TIME FOR ROW ORDERING
STORAGE FOR ROW ORDERING
TIME FOR SOLUTION

OPERATION COUNT FOR SOLUTION
STORAGE FOR SOLUTION

TIME FOR COMPUTING RESIDUAL
OPN COUNT FOR COMPUTING RESIDUAL
STORE FOR COMPUTING RESIDUAL
TOTAL TIME REQUIRED

MAXIMUM STORAGE REQUIRED
RESIDUAL IN EQUATIONS
RESIDUAL IN CONSTRAINTS

[T A

[/ T

T

7500
25
64

0.017
514.
0.033
425.
0.
0.
0.650
21758.
451.
0.133
390.000
376.
0.833
514.
7.900e+00
0.000e-01

November 1984

27

.95429e-01
.61121e-03
.61554e-01
.24321e+00
.10439e+00

SPARSPAK-B | User’s Guide

Example 2

The purpose of this example is to illustrate the effect of dense rows. The problem being

solved is the unconstrained linear least squares probiem

mﬁin Hxp—yll, .

v - [3]

Here A4 is the matrix defined on a k Xk grid, and B and yp are given below.

B=[111-11] , = [7]

where X is partitioned into two portions

" In the first run, all rows of X are treated as sparse (TYPE =1). In the second run, the rows
of A are regarded as sparse (TYPE =1) whereas the row of B is treated as dense (TYPE =2).

Note the difference in storage requirements and execution times in the output.

Program 1

C--- SPARSPAK-B (ANSI FORTRAN) RELEASE III --- NAME = EX2A
c (C) UNIVERSITY OF WATERLOO JANUARY 1984

C************4************************#**#**t#****t*t***********
CF %%k ok k% ok ok ok ok kK ok ok ok ok k ok kK ok ok kok ok Kk ok k ok ok k ok ok R kb ok Rk kR ok ok Rk kK KRk kR X KR KKK Kk X
C*¥** % 5% %% *%x M A I N L I NE P R O G R A M *® kKK K KK KKK
C***************************#*******1'******#*!*#**#**t*#*#**t*t*
CF %%k K % % ok 5k %k % ok k% % ok % % % K ok k ok ok k ok R ok ok ok Kk ok ok K Kk ok ok ok ok Kk ok ok ok ok ok ok ok ¥ ok ok k% ok kK ok ok K Xk & %

C
C EXAMPLE 2 (SEE USER'S GUIDE).
C
C REQUIREMENTS
C -- AN EXTERNAL FILE FOR UNIT 1.
C -- A RANDOM NUMBER GENERATOR (RANDOM) .
C
o R R Ry
C
INTEGER SUBS(100)
INTEGER FILE ., 1 , ICASE , IERRB , IPRNTE, IPRNTS,
1 ISEED , J , K ., KGRID , KMI , MAXINT,
1 MAXSB , MSGLVB, NCOLS , NDCONS, NDEQNS, NSCONS,
1 NSEQNS, NSUBS , OUTPUT, ROWNUM, TYPE , TYPTOL
REAL MCHEPS, RATIOL, RATIOS, TIME
REAL T(7500), VALUES(100)
REAL RESCON, RESEQN, RHS , TOL , WEIGHT
C

C* % %% ok o ok kA ok o ok kK K R ok K K K A R R R oK ok K ok ok ok K R ok ok ok ko ok ok Kk ok ok ok ok ok ok ok kK ok ok Kk K
C
COMMON [/SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 MCHEPS, TIME
COMMON /SPBUSR/ MSGLVB, IERRB , MAXSB , NCOLS , NSEQNS,
1 NDEQNS, NSCONS, NDCONS

C

C X % % % ok % ok ok 3k ok % % ok % ok % ok X kK kK ok ok %k ok A %k ok 3k ok K ok ok %k ok %k ok ok ok ok % ok ok ok k ok Kk ok k sk ok ok ok ok ok % %k ok % ok % ok

aaaan
Ty
>
L
S
oy
N
h
N
N
ﬂ
oy
S
2

November 1984

28

1SPK
28 PK
3SPK
4SPK
5SPK
6SPK
7S PK
8§SPK
9SPK
10SPK
11SPK
12SPK
13SPK
14SPK
I15SPK
16SPK
17SPK
18SPK
19SPK
208PK
21SPK
22SPK
23SPK
24SPK
258PK
26SPK
278SPK
28SPK
29SPK
30SPK
31SPK
32SPK
33SPK
34SPK
358SPK
36SPK
37SPK

SPARSPAK-B

anaaan 0

aa6 9}

[oNoNo N

annn

100

1
200
300
400

500

CALL SPRSPK

FILE = 1

oUTPUT = IPRNTS
TOL = MCHEPS

TOL = 100.0E0*TOL
TYPTOL = 1

ISEED = 1234567

MSGLVB = 2
MAXSB = 7500

CALL FILEB (FILE)

NSUBS = 4
WEIGHT = 1.0E0
TYPE = 1
ROWNUM = 0
KGRID = 7

KM1 = KGRID - 1
bo 400 I = 1
DO 300 J = 1, KMI

SUBS(1) = (I - 1)*KGRID + J
SUBS(2) = (I - 1)*KGRID + J + 1
SUBS(3) = I*KGRID + J
SUBS(4) = I*KGRID + J + 1
GENERATE NUMERICAL VALUES USING
A RANDOM NUMBER GENERATOR.
DO 200 ICASE = 1, 4
DO 100 K = I, NSUBS
VALUES (K) = RANDOM(1SEED
CONTINUE
ROWNUM = ROWNUM + 1
RHS = RANDOM(ISEED)
CALL INXYWB (ROWNUM, TYPE,
VALUES, RHS,
CONTINUE
CONTINUE
CONTINUE

ROWNUM = ROWNUM + 1

TYPE = 1

NSUBS = KGRID*KGRID

DO 500 I = I, NSUBS
SUBS(I) = I
VALUES (1) =

CONTINUE

RHS = 7.0E0

WEIGHT = 1.0E0

1.0E0

CALL INXYWB (ROWNUM, TYPE, NSUBS, SUBS,

RHS, WEIGHT, T)

November 1984

User’s Guide

)

NSUBS, SUBS,
WEIGHT, T)

VALUES ,

29

38SPK
398PK
408 PK
41SPK
42SPK
43SPK
44SPK
45SPK
46SPK
47SPK
48SPK
49SPK
50SPK
51SPK
528PK
538PK
54SPK
S5SPK
56SPK
57SPK
58SPK
59SPK
60SPK
61SPK
62SPK
63SPK
64SPK
65SPK
66SPK
67SPK
68SPK
69SPK
70SPK
71SPK
72SPK
73S8SPK
74SPK
75SPK
76SPK
77SPK
78S PK
79S8SPK
80SPK
81SPK
82SPK
83SPK
84SPK
85SPK
86SPK
87SPK
88SPK
89SPK
90SPK
91SPK
92SPK
93SPK
94SPK
958SPK
926 SPK
97SPK
98SPK
99SPK
100SPK
101SPK
102SPK
103SPK

SPARSPAK-B

User’s Guide

c ORDER COLUMNS .
C e e m e e e e e e e e
CALL ORCOLB (T)
c
C ___
c COMPUTE LEAST SQUARES SOLUTION AND RESIDUALS.
C ___
CALL LSQSLV (TOL, TYPTOL, T)
CALL RESIDB (RESEQN, RESCON, T |
c
C - mmm e m e e mmm e e m o mm .. et m e mm e m. . ——— -
c PRINT THE SOLUTION, FOUND IN THE FIRST NCOLS
c LOCATIONS IN THE WORKING STORAGE ARRAY T.
C __
WRITE (OUTPUT,11) (T(K),K=I,NCOLS)
11 FORMAT (|/ 10H SOLUTION [(IPSEI5.5))
65
c PRINT STATISTICS GATHERED BY SPARSPAK-B.
C __
CALL STATSB
c
STOP
END
Output
**xxx%%%x%% UNJVERSITY OF WATERLOO
kxxx%k k%% SPARSE MATRIX PACKAGE
% K %k k k % k %k k Xk (S PA RS PA K)
%k k% k ok ok %k Xk 5k *k RELEASE
*xsxxxxrxx (C) JANUARY 1984
xxxxxxs2rx JNS] FORTRAN
*xxxxxxxxx SINGLE PRECISION
*kxxxxx%k%x [AST UPDATE JANUARY 1984
OUTPUT UNIT FOR ERROR MESSAGES 6
OUTPUT UNIT FOR STATISTICS 6
FILEB - FILE INITIALIZATION
INXYWB - INPUT ROWS
ORCOLB - FIND COLUMN ORDERING
LSQSLV - LEAST SQUARES SOLVE
RESIDB - COMPUTE RESIDUAL
SOLUTION
4.27624¢-01 3.45387e-02 1.26388e-01 3.57653e-01 3
1.31271e-01 -6.67795e-01 3.41637e-02 4.47426¢-01 4
3.17152¢-03 1.02795e-01 3.66493¢-01 7.21198e-01 -3
3.04172e-01 -9.93216e-02 5.65310e-01 4.02508¢-01 5
-6.21576e-02 2.51969e-01 5.16541¢-01 1.59729¢-01 6
-3.53609¢-02 4.96227¢-01 -3.99947e-01 -3.46666¢-01 3
2.86251e-01 3.20507e-01 5.32274e-01 2.22485¢-01 4
6.90003e-01 4.31956e-01 -1.54123e-01 9.86527¢-02 3
1.82578e-01 -4.59611e-01 -1.64609e+00 7.08693e-01 -6
5.53662e-01 1.02702¢-03 7.23422e-01 -1.13267e-01

November 1984

30

104SPK
105SPK
106SPK
107SPK
108SPK
109SPK
110SPK
111SPK
112SPK
113SPK
114SPK
1158SPK
116SPK
117SPK
118SPK
119SPK
120SPK
121SPK
122SPK
123SPK
124SPK
1258SPK
126SPK

.13657e-01
.08073e-01
.65426e-01
.26987e-02
.74453e-02
.04208e-01
.58984e-01
.88556e-03
.20304e-02

SPARSPAK-B User’s Guide

STATSB - SYSTEM-B STATISTICS

SIZE OF STORAGE ARRAY (MAXSB) = 7500
NUMBER OF COLUMNS (UNKNOWNS) = 49
NUMBER OF SPARSE EQUATIONS = 145
NUMBER OF DENSE EQUATIONS = 0
NUMBER OF SPARSE CONSTRAINTS = 0
NUMBER OF DENSE CONSTRAINTS = 0
TIME FOR COLUMN ORDERING = 0.050
STORAGE FOR COLUMN ORDERING = 5146.
TIME FOR ALLOCATION = 0.200
STORAGE FOR ALLOCATION = 2795.
TIME FOR ROW ORDERING = 0.
STORAGE FOR ROW ORDERING = 0.

TIME FOR SOLUTION = 2.550
OPERATION COUNT FOR SOLUTION 248739.
STORAGE FOR SOLUTION 1814.
TIME FOR COMPUTING RESIDUAL = 0.367

OPN COUNT FOR COMPUTING RESIDUAL = 915.000
STORE FOR COMPUTING RESIDUAL = 1667.
TOTAL TIME REQUIRED = 3.167
MAXIMUM STORAGE REQUIRED = 5146.
RESIDUAL IN EQUATIONS = 3.663e+00°
RESIDUAL IN CONSTRAINTS = 0.000e-01
Program 2
C--- SPARSPAK-B (ANSI FORTRAN) RELEASE IIl --- NAME = EX2B

c (C) UNIVERSITY OF WATERLOO JANUARY 1984
CHEXFE XX A AR R KRR KRR KRR F R R AR F AR KRR R KRR KK KA R KRR AR R R R A KRR XX R R K R H R ¥ &

C***t*************#***t**t****t*t*#*t#*#*’lt**#*****t**‘#***t##**
C#********# M A I N L I N E P R O G R A M * ok % ok ok %k ok k ¥k %
C****#**t****#*t*****t*************#**#*#*##***‘********t***t*t#
C****t*t********t*********#****t**###t*******t****t#t******l***t

c
c EXAMPLE 2 (SEE USER'S GUIDE]) .
c
c REQUIREMENTS
c -- AN EXTERNAL FILE FOR UNIT 1.
c -- A RANDOM NUMBER GENERATOR (RANDOM) .
g************#*****************‘****#******#**‘*lt***##t**#*##*#
c
INTEGER SUBS(100)
INTEGER FILE , I , ICASE , IERRB , IPRNTE, IPRNTS,
1 ISEED , J . K . KGRID , KMl , MAXINT,
1 MAXSB , MSGLVB, NCOLS , NDCONS, NDEQNS, NSCONS,
1 NSEQNS, NSUBS , OUTPUT, ROWNUM. TYPE , TYPTOL
REAL MCHEPS, RATIOL, RATIOS, TIME
REAL T(7500), VALUES(100)
REAL RESCON, RESEQN, RHS , TOL . WEIGHT
c

C*******#***********t****************t***#**#***##****#**#******

C
COMMON [SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 MCHEPS, TIME
COMMON /SPBUSR/ MSGLVB, IERRB , MAXSB , NCOLS ., NSEQNS,
1 NDEQNS, NSCONS, NDCONS

(o

C{I*****************’k************************t*‘##**tt********#**

November 1984

31

1SPK
28 PK
3SPK
4SPK
5SPK
6SPK
7SPK
8SPK
9SPK
10SPK
11SPK
12SPK
138PK
14SPK
158PK
16SPK
178PK
18SPK
19SPK
20SPK
21SPK
22SPK
23SPK
24SPK
258SPK
26SPK
278PK
288PK
29S8 PK
30SPK
31SPK
32SPK
338SPK

SPARSPAK-B

a aaaaq

o]

anan

ana

anaa

aaan

100

1
200
300

CALL SPRSPK

FILE = 1

OUTPUT = IPRNTS
TOL = MCHEPS
TOL = 100.0E0*TOL

TYPTOL = 1
ISEED = 1234567
MSGLVB = 2
MAXSB = 7500

CALL FILEB (FILE)

NSUBS = 4
WEIGHT = 1.0E0
TYPE = 1
ROWNUM = 0
KGRID = 7
KM! = KGRID - 1
DO 400 I = I, KMI
DO 300 J = 1, KMI
GENERATE STRUCTURE.
SUBS(1) = (I - 1)*KGRID + J
SUBS(2) = (I - 1J*KGRID + J + 1
SUBS(3) = I*KGRID + J
SUBS(4) = I*KGRID + J + 1
GENERATE NUMERICAL VALUES USING
A RANDOM NUMBER GENERATOR.
DO 200 ICASE = 1, 4
DO 100 K = [, NSUBS
VALUES (K) = RANDOM(1SEED)
CONTINUE
ROWNUM = ROWNUM + 1
RHS = RANDOM(ISEED)
CALL INXYWB (ROWNUM, TYPE, NSUBS,
VALUES, RHS, WEIGHT,
CONTINUE
CONTINUE

400 CONTINUE

500

ROWNUM = ROWNUM + 1

TYPE =

2

NSUBS = KGRID*KGRID

DO 500 I = I, NSUBS
SUBS(I) = I
VALUES(I) = 1.0E0

CONTINUE

RHS = 7.0E0

WEIGHT

November 1984

1.0E0

User’s Guide

SUBS ,

32

34SPK
35SPK
36SPK
37SPK
38SPK
39SPK
40SPK
41SPK
428SPK
43SPK
44SPK
45SPK
46SPK
47SPK
48SPK
49SPK
50SPK
51SPK
525PK
538PK
54SPK
558SPK
56SPK
57SPK
58SPK
59S8SPK
60SPK
61SPK
62SPK
63SPK
64SPK
635SPK
66SPK
67SPK
68SPK
69SPK
708 PK
71SPK
72S8PK
73SPK
74SPK
75SPK
76SPK
77SPK
78SPK
79SPK
80SPK
81SPK
8 2SPK
83SPK
84SPK
85SPK
86SPK
87SPK
88SPK
89SPK
90SPK
91SPK
92SPK
93SPK
94SPK
95SPK
96SPK
97SPK
98SPK
99SPK

SPARSPAK-B User’s Guide
CALL INXYWB (ROWNUM, TYPE, NSUBS, SUBS, VALUES,
1 RHS, WEIGHT, T |
C
C e e e e
c ORDER COLUMNS .
C mmmmmeem—eeaans
CALL ORCOLB (T)
C
€ e e e e e e e e e m e e e mmmmmm e ———— .
C COMPUTE LEAST SQUARES SOLUTION AND RESIDUALS.
€ e e e e e e e e mmme e m————an
CALL LSQSLV (TOL, TYPTOL, T)
CALL RESIDB (RESEQN, RESCON., T)
C
c e e e e e mmemeaoas
c PRINT THE SOLUTION, FOUND IN THE FIRST NCOLS
C LOCATIONS IN THE WORKING STORAGE ARRAY T.
€ e e e e e e e e e mm e m e ammmmemmmmm—————— -
WRITE (OUTPUT,11) (T(K).K=I,NCOLS)
11 FORMAT ([/ 10H SOLUTION |/ (IP5SEIS5.5))
C ..
c PRINT STATISTICS GATHERED BY SPARSPAK-B.
U
CALL STATSB
C
STOP
END
Output
*kkkkktt k% [UNTVERSITY OF WATERLOO
Ak ErAXEE% SPARSE MATRIX PACKAGE
KR K KKK KK K { S PARSUPAK)
% %k k %k k % ¥ % % % RELEASE
*xkrx®AXEE (C) JANUARY 1984
*xkkxkx X kx ANS] FORTRAN
¥kEkXEXXX* CINGLE PRECISION
¥xkxxkkkx* JAST UPDATE JANUARY 1984
OUTPUT UNIT FOR ERROR MESSAGES 6
OUTPUT UNIT FOR STATISTICS 6
FILEB - FILE INITIALIZATION
INXYWB - INPUT ROWS
ORCOLB - FIND COLUMN ORDERING
LSQSLY - LEAST SQUARES SOLVE
RESIDB - COMPUTE RESIDUAL
SOLUTION
4.27621e-01 3.45408e-02 1.26385e-01 3.57654e-01 3
1.31271e-01 6.67797e-01 3.41631e-02 4.47427e-01 4
3.17158e-03 1.02797e-01 3.66493e-01 7.21199%e-01 3
3.04172e-01 9.93229¢-02 5.65309e-01 4.02507e¢-01 5
-6.21579e-02 2.51969e-01 5.16541e-01 1.59730e-01 6
-3.53588¢e-02 4.96227¢-01 3.99947¢-01 -3.46664e-01 3

November 19384

33

100SPK
101SPK
1028PK
103SPK
104SPK
105SPK
106SPK
107SPK
108SPK
109SPK
110SPK
111SPK
1128PK
113SPK
114SPK
115SPK
116SPK
117SPK
118SPK
119SPK
120SPK
121SPK
1228SPK
1238SPK
1248PK
125SPK
126SPK

.13655e-01
.08074e-01
.65426e-01
.26985e-02
.74474e-02
.04207e-01

SPARSPAK-B

~ N o N

User’s Guide

.22484e-01
.86543e-02
.08693e-01
.13268e-01

2.86252e-01 3.20503e-01 5.32275e-01
6.90001e-01 4.31955e-01 -1.54122e-01
1.82577e-01 4.59609e-01 -1.64609¢+00
5.53660e-01 1.02709¢-03 7.23423e-01
STATSB - SYSTEM-B STATISTICS

SIZE OF STORAGE ARRAY (MAXSB)
NUMBER OF COLUMNS (UNKNOWNS)
NUMBER OF SPARSE EQUATIONS
NUMBER OF DENSE EQUATIONS
NUMBER OF SPARSE CONSTRAINTS
NUMBER OF DENSE CONSTRAINTS
TIME FOR COLUMN ORDERING
STORAGE FOR COLUMN ORDERING
TIME FOR ALLOCATION

STORAGE FOR ALLOCATION

TIME FOR ROW ORDERING
STORAGE FOR ROW ORDERING
TIME FOR SOLUTION

OPERATION COUNT FOR SOLUTION
STORAGE FOR SOLUTION

TIME FOR COMPUTING RESIDUAL
OPN COUNT FOR COMPUTING RESIDUAL
STORE FOR COMPUTING RESIDUAL
TOTAL TIME REQUIRED

MAXIMUM STORAGE REQUIRED
RESIDUAL IN EQUATIONS
RESIDUAL IN CONSTRAINTS

1l

]

]

i

7500
49
144

0.117
1066.
0.017
902.
0.
0.
1.400
128442.
1132.
0.317
915.000
985.
1.850
1132.
3.663e+00
0.000e-01

4.58985e-01
3.88643e-03
-6.20310e-02

November 1984

34

SPARSPAK-B User’s Guide

Example 3

The effect of row ordering on execution time is illustrated. The problem being considered is
the unconstrained problem defined on a k Xk grid.

Note that when row ordering option (OPTION) is set to four, there is a reduction in execution
time for LSQSLV. However, one should also note that the amount of storage required to perform
row ordering is larger than that required by the other modules.

This example also illustrates the use of the save and restart facilities. After ORCOLB is
called, SAVEB is executed to save the current state of the computation. After the problem is
solved with no row ordering, the state after the execution of ORCOLB is restored by executing
RSTRTB so that the problem can now be solved without invoking FILEB, INXYWB, and ORCOLB
again.

Program

C--- SPARSPAK-B (ANSI FORTRAN) RELEASE 111 --- NAME = EX3
c (C) UNIVERSITY OF WATERLOO JANUARY 1984 :

C*t*t*******’I#***#***#*****il**#**********t***t#**“****t**‘**#**
C***************‘*&*t*******#****t*****tt*****i*#*t***t**#*t*****
C********#* M A I N L I N E P R O GRAM * %k % %k k k k k % %
C****t**t****#******#************t*****t******t***#***t*********
C******************lt***#****************#**#**t**t******#******‘

c
c EXAMPLE 3 (SEE USER'S GUIDE).
C
fo REQUIREMENTS
c -- AN EXTERNAL FILE FOR UNIT 1.
c -- AN EXTERNAL FILE FOR UNIT 2.
o} -- A RANDOM NUMBER GENERATOR {RANDOM) .
g*********************#**t**#****#*#******#*****tt****t***t***it
c
INTEGER SUBS(100) ,
INTEGER FILE , I , ICASE , IERRB , IPRNTE, IPRNTS,
1 ISEED , J , K . KGRID , KMI , MAXINT,
1 MAXSB , MSGLVB, NCOLS , NDCONS, NDEQNS, NSCONS,
1 NSEQNS, NSUBS , OPTION, ROWNUM, SAVE , TYPE
1 TYPTOL
REAL MCHEPS, RATIOL, RATIOS, TIME
REAL T(7000), VALUES(100)
REAL RESCON, RESEQN, RHS , TOL . WEIGHT
C

C*******t#***#*****lt***t***t***‘******#***********ﬁ***********t*

C .
COMMON /SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 MCHEPS, TIME
COMMON /SPBUSR/ MSGLVB, IERRB , MAXSB , NCOLS , NSEQNS,
1 NDEQNS, NSCONS, NDCONS
c
C****************##*********************#*****t*******#*********
c
C | ecemmmecne e~
C INITIALIZATION.
C _______________
CALL SPRSPK
c
FILE = 1
SAVE = 2

November 1984 35

1SPK
2SPK
3SPK
4SPK
5SPK
6SPK
7SPK
8SPK
9S PK
10SPK
118PK
12SPK
13SPK
14SPK
15SPK
16SPK
178SPK
18SPK
19SPK
20SPK
21SPK
22SPK
23SPK
24SPK
258PK
26SPK
27SPK
288PK
29SPK
30SPK
31SPK
32SPK
33SPK
348PK
358PK
36SPK
378PK
38SPK
398PK
40SPK
41SPK
42SPK
43SPK

SPARSPAK-B

anaaa q

anan (e}

S RoNoNe!

a aaan aaaan

anan

c

100

1
200
300
400

500

TOL = MCHEPS

TOL = 100.0E0*TOL
TYPTOL = 1

ISEED = 1234567

MSGLVB = 2
MAXSB = 7000

CALL FILEB (FILE)

NSUBS = 4
WEIGHT =
TYPE = 1

ROWNUM = 0

KGRID = 10
KM1 = KGRID - 1
DO 400 I = 1

Do 300 J = 1, KMI

User’s Guide

SUBS(1) = (I - I1)*KGRID + J
SUBS(2) = (I - 1)*KGRID + J + 1

SUBS(3) = I*KGRID + J

SUBS(4) = I*KGRID + J + 1

GENERATE NUMERICAL VALUES USING
A RANDOM NUMBER GENERATOR.

DO 200 ICASE =1, 4
DO 100 K

I
Y

NSUBS

VALUES (K) = RANDOM(ISEED)

CONTINUE
ROWNUM = ROWNUM + I
RHS = RANDOM(ISEED)

CALL INXYWB (ROWNUM, TYPE, NSUBS, SUBS,

VALUES, RHS, WEIGHT, T)

CONTINUE
CONTINUE
CONTINUE

CALL ORCOLB (T)

CALL SAVEB (SAVE, T)

OPTION = 0
CONTINUE
CALL ORROWB (OPTION, T)

CALL LSQSLV (TOL, TYPTOL,

T)

CALL RESIDB (RESEQN, RESCON, T)

November 1984

36

44SPK
45SPK
46SPK
47SPK
48SPK
49SPK
50SPK
518PK
528PK
53SPK
54SPK
55SPK
56SPK
57SPK
58SPK
598SPK
60SPK
61SPK
62SPK
63SPK
64SPK
65SPK
66SPK
67SPK
68SPK
69SPK
70SPK
71SPK
72SPK
73SPK
74SPK
758PK
76SPK
77S8SPK
78SPK
79SPK
80SPK
81SPK
82SPK
83SPK
84SPK
85SPK
86SPK
87SPK
88SPK
89SPK
90SPK
918SPK
92SPK
93SPK
94SPK
95SPK
96SPK
97SPK
98SPK
99SPK
100SPK

101SPK

102SPK
103SPK
104SPK
105SPK
106SPK
107SPK
108SPK
109SPK

SPARSPAK-B User’s Guide

c PRINT STATISTICS GATHERED BY SPARSPAK-B. 110SPK
C e e e e e e 111SPK
CALL STATSB 112SPK
IF (OPTION .EQ. 4) STOP 113SPK
c 114SPK
o 115SPK
c RESTORE STATE OF COMPUTATION. 116SPK
o 117SPK
CALL RSTRTB (SAVE, T) 118SPK
OPTION = 4 119SPK
GO TO 500 120SPK
c 121SPK
END 1228PK

Output

*Exxxxxxxx UNIVERSITY OF WATERLOO
kxxkkxk k%t GPARSE MATRIX PACKAGE

ok kK K K Kok ok % { S PARSPAK)

TR KR KK E AR K RELEASE 3

(R EEEERE R RN (C) JANUARY 1984
kkEXEERXKXE ANCT FORTRAN

kA Rkt okttt GINGLE PRECISION
*kkx bk k kX% JAST UPDATE JANUARY 1984

OUTPUT UNIT FOR ERROR MESSAGES 6
OUTPUT UNIT FOR STATISTICS 6
FILEB - FILE INITIALIZATION

INXYWB - INPUT ROWS

ORCOLB - FIND COLUMN ORDERING
SAVEB - SAVE STORAGE VECTOR
ORROWB - FIND ROW ORDERING
LSQSLV - LEAST SQUARES SOLVE
RESIDB - COMPUTE RESIDUAL
STATSB - SYSTEM-B STATISTICS

SIZE OF STORAGE ARRAY (MAXSB) 7000
NUMBER OF COLUMNS (UNKNOWNS) = 100

NUMBER OF SPARSE EQUATIONS = 324
NUMBER OF DENSE EQUATIONS = 0
NUMBER OF SPARSE CONSTRAINTS = 0
NUMBER OF DENSE CONSTRAINTS = 0
TIME FOR COLUMN ORDERING = 0.217
STORAGE FOR COLUMN ORDERING = 2269.
TIME FOR ALLOCATION = 0.050
STORAGE FOR ALLOCATION = 1966.
TIME FOR ROW ORDERING = 0.
STORAGE FOR ROW ORDERING = 0.
TIME FOR SOLUTION = 4.683
OPERATION COUNT FOR SOLUTION = 379405.
STORAGE FOR SOLUTION = 2306.

November 1984 37

SPARSPAK-B

TIME FOR COMPUTING RESIDUAL

OPN COUNT FOR COMPUTING RESIDUAL

STORE FOR COMPUTING RESIDUAL
TOTAL TIME REQUIRED

MAXIMUM STORAGE REQUIRED
RESIDUAL IN EQUATIONS
RESIDUAL IN CONSTRAINTS

RSTRTB - RESTART SYSTEM-B

ORROWB

FIND ROW ORDERING

LSQSLV - LEAST SQUARES SOLVE

RESIDB - COMPUTE RESIDUAL

STATSB

SYSTEM-B STATISTICS

SIZE OF STORAGE ARRAY (MAXSB)
NUMBER OF COLUMNS (UNKNOWNS)
NUMBER OF SPARSE EQUATIONS
NUMBER OF DENSE EQUATIONS
NUMBER OF SPARSE CONSTRAINTS
NUMBER OF DENSE CONSTRAINTS
TIME FOR COLUMN ORDERING
STORAGE FOR COLUMN ORDERING
TIME FOR ALLOCATION

STORAGE FOR ALLOCATION

TIME FOR ROW ORDERING
STORAGE FOR ROW ORDERING
TIME FOR SOLUTION

OPERATION COUNT FOR SOLUTION
STORAGE FOR SOLUTION

TIME FOR COMPUTING RESIDUAL

OPN COUNT FOR COMPUTING RESIDUAL

STORE FOR COMPUTING RESIDUAL
TOTAL TIME REQUIRED

MAXIMUM STORAGE REQUIRED
RESIDUAL IN EQUATIONS
RESIDUAL IN CONSTRAINTS

[I I

i

[

I I O

I

0.
1944.
2006 .

5.
2306.

User’s Guide

717
000

667

4.823e+00
0.000e-01

. 217
2269 .
0.
1966.
0.
5850.
3.
325856.
2306.
0.
1944.
2006 .
5.
5850.

050

083

983

717

000

050

4.823e+00
0.000e-01

November 1984

38

SPARSPAK-B User’s Guide

Example 4

This example illustrates the use of the save and restart facilities to handle errors detected by
SPARSPAK-B. The problem being solved is the same as the one in Example 3 and row ordering
option is set to four. The size of the working storage array is initially set to 3000 which will be
insufficient for ORROWB (as illustrated by Example 3). The state of the computation is saved by
calling SAVEB when the error is detected after ORROWRB is called. After adjusting the size of the
working storage array, we then execute the second program. The routine RSTRTB is called to
restore the state of the computation before ORROWRB is called.

Program 1

C--- SPARSPAK-B (ANSI FORTRAN) RELEASE III --- NAME = EX4A4
c (C) UNIVERSITY OF WATERLOO JANUARY 1984

Clt#***t##****lt**#*#*t**i***ﬁ*****##*#***t#*t****t#l*#*t*****ttt*
C***t***t****i#***t*t******************#t******#**tt***#‘*‘#***t
C*********# M A I N L I NE P R O G R A M *t**ftt*t*
C****t**********lk**‘*t##*****#*t***t*#**t******t*‘***‘**#******t
C**********t******************************t***l****#*‘#********#

c

c EXAMPLE 4 (SEE USER'S GUIDE).

C

c REQUIREMENTS

c -- AN EXTERNAL FILE FOR UNIT 1.

c -- AN EXTERNAL FILE FOR UNIT 2.

c -- A RANDOM NUMBER GENERATOR (RANDOM) .

g‘*******#*#’k*******#****t#*)t**************"*****‘#*****‘*#****
INTEGER SUBS(100)
INTEGER FILE , I ., ICASE , IERRB , IPRNTE, IPRNTS,
1 ISEED , J , K ., KGRID , KMI , MAXINT,
1 MAXSB , MSGLVB, NCOLS , NDCONS, NDEQNS, NSCONS,
1 NSEQNS, NSUBS , OPTION, ROWNUM, SAVE , TYPE
1 TYPTOL
REAL MCHEPS, RATIOL, RATIOS, TIME
REAL T(3000), VALUES(100)
REAL RESCON, RESEQN. RHS , TOL , WEIGHT

C
P L R R R R
C

COMMON [SPKSYS/ IPRNTE, I[PRNTS, MAXINT, RATIOS, RATIOL,

1 MCHEPS, TIME
COMMON [SPBUSR/ MSGLVB, IERRB ., MAXSB , NCOLS , NSEQNS,
1 NDEQNS, NSCONS, NDCONS
CHEFE R XX KA E X AR XK KKK AR KRR R KB R AR KR A K H AR KRB KK AR R R KRR KRR AR KR R K Xk k& &
C
C e e e e e mac e a.
C INITIALIZATION.
C e e e e e aeaaaa
CALL SPRSPK
C
FILE = |
SAVE = 2
OPTION = 4

TOL = MCHEPS

TOL = 100.0E0*TOL
TYPTOL = 1

ISEED = 1234567

November 1984 39

1SPK

2SPK

3SPK

4SPK

5SPK

6SPK

7SPK

8SPK

9SPK
10SPK
11SPK
12SPK
13SPK
14SPK
15SPK
16SPK
17SPK
18SPK
19SPK
20SPK
21SPK
22S8PK
23SPK
24SPK
255PK
26SPK
278PK
28SPK
29SPK
30SPK
31SPK
328PK
335PK
34SPK
358PK
36SPK
378PK
38SPK
39SPK
40SPK
41SPK
425PK
43SPK
44SPK
45SPK
46SPK
47SPK
48SPK

SPARSPAK-B User’s Guide

C
MSGLVB = 2
MAXSB = 3000
C
CALL FILEB (FILE)
C
C
C GENERATE PROBLEM FROM THE GRID.
C
NSUBS = 4
WEIGHT = 1.0EO0
TYPE = 1
c
ROWNUM = 0
C
KGRID = 10
KMl = KGRID - 1
DO 400 I = 1, KMI
DO 300 J = 1, KMI
C ___________________
c GENERATE STRUCTURE.
C
SUBS(1) = (I - 1)*KGRID + J
SUBS(2) = (I - 1J*KGRID + J + 1
SUBS(3) = I*KGRID + J
SUBS(4) = I*KGRID + J + 1
C _______________________________
c GENERATE NUMERICAL VALUES USING
c A RANDOM NUMBER GENERATOR.
C _______________________________

DO 200 ICASE = 1, 4
DO 100 K = 1, NSUBS
VALUES (K) = RANDOM({ISEED)
100 CONTINUE
ROWNUM = ROWNUM + 1
RHS = RANDOM(1SEED)
CALL INXYWB (ROWNUM, TYPE, NSUBS, SUBS,
1 VALUES ., RHS, WEIGHT, T)
200 CONTINUE
300 CONTINUE
400 CONTINUE
IF (IERRB .NE. 0)] GO TO 500

annn

CALL ORCOLB (T)

IF (IERRB .NE. 0) GO TO 500
CALL ORROWB (OPTION, T)

IF (IERRB .NE. 0) GO TO 500

o NoNe o]

CALL LSQSLV (TOL, TYPTOL, T)
IF (IERRB .NE. 0) GO TO 500
CALL RESIDB (RESEQN, RESCON, T)
IF (IERRB .NE. 0) GO TO 500

anana
v
x
~
Z
~
%)
N
b.]
M~
[}
N]
~
9]
]
Q
kN
|
N
]
%]
>
&
~
2]
hu
LN
»
“
~
Y
0
]

CALL STATSB
SToP

9]

500 CONTINUE

November 1984

40

49SPK
50SPK
51S8SPK
52S8SPK
53S8SPK
54SPK
55SPK
56SPK
578SPK
58SPK
59SPK
60SPK
61SPK
628SPK
63SPK
64SPK
65SPK
66SPK
67SPK
68SPK
69SPK
70SPK
718PK
72SPK
73SPK
74SPK
75S8SPK
76SPK
77SPK
78S PK
79SPK
80SPK
81SPK
82SPK
83SPK
84SPK
85SPK
86SPK
87SPK
88SPK
89SPK
90SPK
91SPK
928PK
93SPK
94SPK
95SPK
96SPK
978PK
98SPK
99SPK
100SPK
101SPK
102SPK
103SPK
104SPK
105SPK

106SPK .

107SPK
108SPK
109SPK
110SPK
111SPK
112S8SPK
113SPK
114SPK

SPARSPAK-B

CALL SAVEB (SAVE, T)
CALL STATSB
sSTop

END

User’s Guide

Output

*xx%kxxxxx%x UNJIVERSITY OF WATERLOO
xxkkx%k %% SPARSE MATRIX PACKAGE

®ok ok kK kR Kk (S PARSPAK)

* % % %k %k %k %k %k ¥ % RELEASE 3
*xxkxxkrx% (C) JANUARY 1984
*kxxxxs%k%% ANS] FORTRAN

*xx%ks%x*s%%% SINGLE PRECISION
*rxxxxxx%% JAST UPDATE JANUARY 1984

OUTPUT UNIT FOR ERROR MESSAGES
OUTPUT UNIT FOR STATISTICS
FILEB - FILE INITIALIZATION
INXYWB - INPUT ROWS
ORCOLB - FIND COLUMN ORDERING

ORROWB

FIND ROW ORDERING

EMSGB - SYSTEM-B ERROR
ORROWB - ERROR NUMBER
INSUFF. SPACE FOR ROW ORDERING,
MAXSB MUST AT LEAST BE

SAVEB - SAVE STORAGE VECTOR
STATSB - SYSTEM-B STATISTICS

SIZE OF STORAGE ARRAY (MAXSB)
NUMBER OF COLUMNS (UNKNOWNS)
NUMBER OF SPARSE EQUATIONS
NUMBER OF DENSE EQUATIONS
NUMBER OF SPARSE CONSTRAINTS
NUMBER OF DENSE CONSTRAINTS
TIME FOR COLUMN ORDERING
STORAGE FOR COLUMN ORDERING
TIME FOR ALLOCATION

STORAGE FOR ALLOCATION

TOTAL TIME REQUIRED

MAXIMUM STORAGE REQUIRED

[

]

]

244

5850

3000
100
324

0.217
2269.

0.050
1966,

0.267
2269.

November 1984

41

115SPK
116SPK
1178PK
118SPK
119SPK

SPARSPAK-B User’s Guide

Program 2

C--- SPARSPAK-B (ANSI FORTRAN) RELEASE 111 --- NAME = EX4B

c (C) UNIVERSITY OF WATERLOO JANUARY 1984
R

C****************t**t*********************ﬁ****#**'*t**##*****t#
C* * k% * %k % %% M A I N L I N E P ROGRAM % ok ok ok ok ok ok ok % ok
C* k% % F 3k k k% % k% %k ok 5k ok ok ok %k ok ok 3 % ok ok ok 3k K ok ok K ok ok Kk k ok K ok ok % ok ok K ok & ok % ok K ok K X kb K k ok Kk ok k%
C******************************#t****t***t#*t**#********‘****#**

C
C EXAMPLE 4 (SEE USER’'S GUIDE).
o
C REQUIREMENTS
C -- AN EXTERNAL FILE FOR UNIT 1.
C -- AN EXTERNAL FILE FOR UNIT 2.
C -- A RANDOM NUMBER GENERATOR (RANDOM) .
C .
CHEF KA R R R KRR AR R RE XK R R KRR AR KRR E R R R R R AR KRR AR AR B KRR X R R R R E AKX K F & ¥ & %
C
INTEGER FILE , IERRB , IPRNTE, IPRNTS, MAXINT, MAXSB ,
1 MSGLVB, NCOLS , NDCONS, NDEQNS, NSCONS, NSEQNS,
1 OPTION, SAVE , TYPTOL
REAL MCHEPS, RATIOL, RATIOS, TIME
REAL T(10000)
REAL RESCON, RESEQN, TOL
o

o T
C
COMMON [/SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 MCHEPS, TIME
COMMON [SPBUSR/ MSGLVB, IERRB , MAXSB , NCOLS , NSEQNS,
1 NDEQNS, NSCONS, NDCONS

C

C R %k %k % k% ok ok % ok ok % ok Kk ok ok ok ok ok ok %k ok 5k %k ok % %k ok X ok ok ok ok K ok Kk ok ok K ok ok K R R K R ok Rk ok Kk ok Kk ok ok X kX Xk XK

C

C e e
c INITIALIZATION.
C e e e meaaaaa
CALL SPRSPK
c
FILE = |
SAVE = 2
OPTION = 4
TOL = MCHEPS
TOL = 100.0E0*TOL
TYPTOL = 1
c
MSGLVB = 2
MAXSB = 10000
c
CALL RSTRTB (SAVE, T)
c
C mmmmmmee—a.
c ORDER ROWS .
C mmeememeoo-
CALL ORROWB (OPTION, T)
c
C e e e e e e e e e e e e e e e m e mm e mm e — e ————————-
c COMPUTE LEAST SQUARES SOLUTION AND RESIDUALS.
€ o m e
CALL LSQSLV (TOL, TYPTOL, T)
CALL RESIDB (RESEQN, RESCON, T)
c

November 1984

42

1SPK

2SPK

3SPK

4SPK

5SPK

6SPK

7SPK

8SPK

9SPK
10SPK
11SPK
12SPK
13SPK
14SPK
158PK
16SPK
17SPK
18SPK
19SPK
20SPK
21SPK
228PK
23SPK
24SPK
25SPK
26SPK
27SPK
28SPK
29SPK
30SPK
31SPK
32SPK
33SPK
34SPK
35SPK
36SPK
378PK
38SPK
39SPK
40SPK
41SPK
42SPK
43SPK
44SPK
455PK
46SPK
47SPK
48SPK
495PK
50SPK
51SPK
52SPK
53SPK
54SPK
555PK
56SPK
57SPK
58SPK
59SPK
60SPK
61SPK

SPARSPAK-B User’s Guide
€ s e
C PRINT STATISTICS GATHERED BY SPARSPAK-B.
€ m e e e et e e e e e e e e e e e e mm e aea——————-
CALL STATSB
STOP
C
END
Output
#rxxkhkkxx*x [UNJVERSITY OF WATERLOO
Rhkxxkkkxx* SPARSE MATRIX PACKAGE
%* ok ok % Kk K % % ¥k %k (S P A R S P A K)
%k %k % Kk ¥ %k % % & %k RELEASE 3
*xkxxRERXX (O] JANUARY 1984
*xrx¥xk*EX% ANST] FORTRAN
*rk*kxx2k%x%x SINGLE PRECISION
*kkxxxktxx JAST UPDATE JANUARY 1984
OUTPUT UNIT FOR ERROR MESSAGES 6
OUTPUT UNIT FOR STATISTICS 6
RSTRTB - RESTART SYSTEM-B
ORROWB - FIND ROW ORDERING
LSQSLY - LEAST SQUARES SOLVE
RESIDB - COMPUTE RESIDUAL
STATSB - SYSTEM-B STATISTICS
SIZE OF STORAGE ARRAY (MAXSB) = 10000
NUMBER OF COLUMNS (UNKNOWNS) = 100
NUMBER OF SPARSE EQUATIONS = ‘324
NUMBER OF DENSE EQUATIONS = 0
NUMBER OF SPARSE CONSTRAINTS = 0
NUMBER OF DENSE CONSTRAINTS = 0
TIME FOR COLUMN ORDERING = 0.217
STORAGE FOR COLUMN ORDERING 2269.
TIME FOR ALLOCATION = 0.050
STORAGE FOR ALLOCATION = 1966.
TIME FOR ROW ORDERING = 0.100
STORAGE FOR ROW ORDERING = 5850.
TIME FOR SOLUTION = 3.933
OPERATION COUNT FOR SOLUTION = 324939.
STORAGE FOR SOLUTION = 2306.
TIME FOR COMPUTING RESIDUAL = 0.700
OPN COUNT FOR COMPUTING RESIDUAL = 1944.000
STORE FOR COMPUTING RESIDUAL = 2006 .
TOTAL TIME REQUIRED = 5.000
MAXIMUM STORAGE REQUIRED = 5850.
RESIDUAL IN EQUATIONS = 4.823e+00
RESIDUAL IN CONSTRAINTS = 0.000e-01

November 1984

43

62S8SPK
6 3SPK
64SPK
65S8SPK
66SPK
67SPK
68SPK

SPARSPAK-B User’s Guide

9. References

(1

(2]

(3]

[4]

[5]

[6]

(7]

(8]

[

[10]

(11]

[12]

[13]

[14]

A. Bjorck, “A general updating algorithm for constrained linear least squares problems”,
SIAM J. Sci. Stat. Comput., 5 (1984), pp.394-402.

E.C.H. Chu, J.A. George, J.W.H. Liu, and E.G.Y. Ng, “User’s guide for SPARSPAK-A: A
collection of modules for solving sparse systems of linear equations”, (in preparation, 1984).

J.A. Geoi'ge’ and M.T. Heath, “Solution of sparse linear least squares problems using Givens
rotations”, Linear Algebra and its Appl., 34 (1980), pp. 69-83.

J.A. George, M.T. Heath, and E.G.Y. Ng, “A comparison of some methods for solving sparse
linear least squares problems”, SIAM J. Sci. Stat. Comput., 4 (1983), pp. 177-187.

J.A. George, M.T. Heath, and E.G.Y. Ng, “Solution of sparse underdetermined systems of
linear equations”, (to appear in SIAM J. Sci. Stat. Comput., 1984).

J.A. George and J.W.H. Liu, “The design of a user interface for a sparse matrix package”,
ACM Trans. on Math. Software, 5 (1979), pp. 134-162.

J.A. George and J.W.H. Liu, Computer solution of large sparse positive definite systems,
Prentice-Hall Inc., Englewood Cliffs, N.J. (1981).

J.A. George, JW.H. Liu, and E.G.Y. Ng, “Row ordering schemes for sparse Givens
transformations, I. Bipartite graph model”, (to appear in Linear Algebra and its Appl., 1984).

J.A. George, JW.H. Liu, and E.G.Y. Ng, “Row ordering schemes for sparse Givens
transformations, II. Implicit graph model”, (to appear in Linear Algebra and its Appl., 1984).

J.A. George and E.G.Y. Ng, “On row and column orderings for sparse least squares
problems”, SIAM J. Numer. Anal., 20 (1983), pp. 326-344.

J.A. George and E.G.Y. Ng, “On the design and implementation of SPARSPAK-B: Waterloo
sparse constrained linear least squares package”, (in preparation, 1984).

M.T. Heath, “Some extensions of an algorithm for sparse linear least squares problems”,
SIAM J. Sci. Stat. Comput., 3 (1982), pp. 223-237.

C.L. Lawson and R.J. Hanson, Solving least squares problems, Prentice-Hall Inc., Englewood
Cliffs, N.J. (1974).

JW.H. Liu, “On multiple elimination in the minimum degree algorithm”, Technical Report
No. 83-03, Department of Computer Science, York University, Downsview, Ontario (1983).

November 1984 44

	

