SPARSPAK: Waterloo Sparse Matrix Package User's Guide for SPARSPAK-A

Eleanor Chu Alan George Joseph Liu Esmond Ng

Department of Computer Science University of Waterloo Waterloo, Ontario, CANADA

Research Report CS-84-36

Table of Contents

1.	Introduction and basic structure of SPARSPAK-A	3
2.	Modules of SPARSPAK-A and how to use them	5
	2.1. User mainline program and an example	5
	2.2. Modules for input of the matrix structure	7
	(a) Input of a nonzero location.	7
	(b) Input of the structure of a row, or part of a row.	
	(c) Input of a submatrix structure.	8
	(d) Input of a full submatrix structure.	8
	2.3. Modules for ordering and storage allocation	10
	2.4. Modules for inputting numerical values	12
	(a) Input of a single nonzero component.	12
	(b) Input of a row of nonzeroes.	13
	(c) Input of a submatrix.	13
	2.5. Modules for numerical solution	14
	2.6. Modules for estimating the relative error in the computed solution	14
	Some guidelines on selecting a method	16
4.	Save and restart facilities	18
5.	Solving many problems having the same structure	19
6.	Solving many problems which differ only in their right hand side	20
7.	Output from SPARSPAK-A	22
	7.1. Message level (MSGLVA)	22
	7.2. Statistics gathering (STATSA)	23
	7.3. Error messages (IERRA)	24
	7.3.1. Save and restart routines	25
	7.3.2. Input of the matrix structure	25
	7.3.3. Ordering and storage allocation routines	26
	7.3.4. Input of the numerical values	26

	7.3.5. Factorization and solution	27
	7.3.6. Relative error estimation	28
8.	Summary listing of interface routines	29
9.	Examples	31
	Example 1	32
	Example 2	35
	Example 3	38
	Example 4	
	Example 5	
	Example 6	57
10	Appendix implementation overview	60
	10.1. User/module communication	60
	10.2. Module/module communication	60
	10.3. Save and restart implementation	61
	10.4. Method checking	62
	10.5. Stage (sequence) checking	62
	10.6. Storage allocation of integer and floating-point arrays	63
	10.7. Statistics gathering	63
11	I References	64

SPARSPAK: Waterloo Sparse Matrix Package

User's Guide for SPARSPAK-A

A collection of modules for solving sparse systems of linear equations

Eleanor Chu[†]

Alan George[†]

Joseph Liu††

Esmond Ng[†]

Research Report CS-84-36

[©] November, 1984

ABSTRACT

This document describes the structure and use of SPARSPAK-A, a sparse linear equations package which is designed to efficiently solve large sparse systems of linear equations. Computer programs for solving sparse systems of linear equations typically involve fairly complicated data structures and storage management. In many cases the user of such programs simply wants to solve his problem, and should not have to understand how the storage management is done, or how the matrix components are actually stored. One of the attractive features of this package is that it effectively insulates the user from these considerations, while still allowing the package to be used in a variety of ways. Another important feature of the package is the provision of a variety of methods for solving sparse systems, along with convenient means by which the best method for a given problem can be selected.

[†] Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.

^{††} Department of Computer Science, York University, Downsview, Ontario, Canada.

IMPORTANT NOTE

The error estimate provided by the subroutine *ERESTi* (see Section 2.6) is based on estimates of the condition number of the coefficient matrix and the error in the triangular factorization. Experience has shown that the error estimate is very good in most cases. It may occasionally overestimate the actual relative error for some ill-conditioned problems or badly scaled problems. Also, *ERESTi* may not be able to return an error estimate when the estimate of the condition number of the coefficient matrix or the estimate of the error in the triangular factors is large, even though the solution may be computed accurately.

We would appreciate receiving any comments and feedback the user may have in using the error estimators for practical problems. Such comments and feedback are important and useful for improving the error estimators. Please send comments and feedback to

Dr. Alan George
Department of Computer Science
University of Waterloo
Waterloo, Ontario
CANADA N2L 3G1

Telephone: 519-885-1211, ext 3473 (Dr. Alan George)

1. Introduction and basic structure of SPARSPAK-A

SPARSPAK-A offers a collection of methods for solving sparse systems of linear equations

$$Ax = b$$

where A is an $n \times n$ nonsingular matrix, and x and b are vectors of length n. We assume the user is aware of the basic issues involved in solving sparse matrix equations, and the basic facts about solving systems of linear equations using Gaussian elimination. For a discussion on the initial design of this package, see [5].

For all the methods provided in SPARSPAK-A, the user and the package interact to solve the matrix problem through the following basic steps:

- Step 1. The user supplies the nonzero structure of A to the package using a set of subroutines described in Section 2.2.
- Step 2. The package reorders the original problem (finds a permutation P), and allocates storage for the triangular factorization of $PAP^T = LU$, as described in Section 2.3.
- Step 3. The user supplies the numerical values for the matrix A to the package, as described in Section 2.4.
- Step 4. The package computes the triangular factors L and U of PAP^{T} , as described in Section 2.5.
- Step 5. The user supplies numerical values for b, as described in Section 2.4. (This step may come before Step 4, and may be intermixed with Step 3.)
- Step 6. The package computes the solution x, using L, U, P and b, as described in Section 2.5.
- Step 7. The user (optionally) calls a subroutine which supplies an estimate of the relative error in x. The subroutine is described in Section 2.6.

The different *methods* provided in SPARSPAK-A correspond to different algorithms for choosing P (along with appropriate storage methods), and whether or not A is symmetric. When A is symmetric, U is replaced by L^T in the above description, and of course only one of L and L^T is stored.

The user chooses a particular method by calling the appropriate subroutines in Steps 2, 3, 4, 6 and 7. The methods are distinguished by a numerical digit i, $1 \le i \le 6$, which is the last character of the subroutine names. The subroutines used in Steps 1 and 5 apply to all the methods. The best method to use depends very much on the particular problem, and the context in which it is being solved, so we cannot provide rigid rules as to which method to use. Some guidelines and considerations regarding the choice of method are given in Section 3.

Restrictions and assumptions:

1. SPARSPAK-A assumes that the nonzero structure of A is symmetric. If this is not the case, the package will still work, but if A has highly unsymmetric structure, this may lead to some inefficiencies because the matrix will be treated as though its structure is that of $A+A^T$.

2. SPARSPAK-A assumes that for any permutation matrix P, Gaussian elimination applied to PAP^T without row or column interchanges yields an acceptably accurate factorization LU. In other words, the package assumes that A can be symmetrically permuted without regard for numerical stability. This is true, for example, when A is symmetric and positive definite, or diagonally dominant. In general one can detect when the assumption above is invalid by computing an estimate of the relative error in the computed solution using the subroutine ERESTi (see Section 2.6).

2. Modules of SPARSPAK-A and how to use them

2.1. User mainline program and an example

SPARSPAK-A allocates all of its storage from a single one-dimensional floating-point array⁽¹⁾ which for purposes of discussion we will denote by S. In addition, the user must provide its size MAXSA, which is transmitted to the package via a common block SPAUSR, (SPARSPAK-A USER), which has four variables.

```
COMMON /SPAUSR/ MSGLVA, IERRA, MAXSA, NEQNS
```

Here MSGLVA is the message level indicator which is used to control the amount of information printed by the package. The second variable IERRA is an error code, which the user can examine in his mainline program for possible errors detected by the package. Detailed discussion of the roles of MSGLVA and IERRA is provided in Section 7. The variable NEQNS is the number of equations.

The following program illustrates how one might use SPARSPAK-A. The various subroutines referenced are described in the subsequent parts of this section. The problem solved is a 10×10 symmetric tridiagonal system Ax=b where the diagonal elements of A are all 4, the superdiagonal and subdiagonal elements are all -1, and the entries in the right hand side vector b are all ones.

```
REAL
                  S(250), FOUR, ONE
      INTEGER
                  I, IERRA, MAXSA, MSGLVA, NEQNS
      COMMON
                  /SPAUSR/ MSGLVA, IERRA, MAXSA, NEQNS
\boldsymbol{C}
                 SPRSPK
          CALL
          MAXSA = 250
C
          INPUT THE MATRIX STRUCTURE. THE DIAGONAL IS
\boldsymbol{C}
          ALWAYS ASSUMED TO BE NONZERO, AND SINCE THE
\boldsymbol{C}
          MATRIX IS SYMMETRIC, SPARSPAK-A ONLY NEEDS TO
\boldsymbol{C}
          KNOW THAT THE SUBDIAGONAL ELEMENTS ARE NONZERO.
          CALL I JBEGN
              100 I = 2, 10
               CALL INIJ ( I, I-1, S )
  100
          CONT I NUE
          CALL IJEND (S)
\boldsymbol{C}
          FIND THE ORDERING AND ALLOCATE STORAGE.
\boldsymbol{C}
\boldsymbol{C}
           CALL ORDRA1 (S)
\boldsymbol{C}
          INPUT THE NUMERICAL VALUES FOR A AND B.
\boldsymbol{C}
\boldsymbol{C}
          THE MATRIX IS SYMMETRIC, ONLY THE LOWER TRIANGLE
          AND THE DIAGONAL ARE INPUT.
```

⁽¹⁾ Declared either REAL or DOUBLE PRECISION, depending on the version of SPARSPAK-A that is available. The examples in this manual assume a single precision version is being used.

```
C
            FOUR = 4.0E0
            ONE
                  = 1.0E0
                 200
                      I = 1, 10
                         I .GT . 1 )
                          CALL INAIJ1 ( I, I-1, (-ONE), S )
INAIJ1 ( I, I, FOUR, S )
INBI ( I, ONE, S )
                 CALL
            CONTINUE
  200
C
\boldsymbol{C}
            SOLVE THE SYSTEM.
\boldsymbol{C}
                    SOLVE1 (S)
C
            PRINT THE SOLUTION, FOUND IN THE FIRST TEN
C
\boldsymbol{C}
            LOCATIONS OF THE WORKING STORAGE ARRAY S.
C
                               (S(I), I=1, 10)
            WRITE (6,11)
            FORMAT ( / 10H SOLUTION / (5F12.5) )
    11
C
\boldsymbol{C}
            PRINT STATISTICS GATHERED BY SPARSPAK-A.
\boldsymbol{C}
            CALL
                    STATSA
C
            STOP
        END
```

Note: If the SPARSPAK-A available to you is a double precision version, the REAL declaration in this example should be changed to DOUBLE PRECISION.

The module SPRSPK must be called before any part of the package is used. Its role is to initialize some system parameters (e.g. the logical unit numbers for output files), and to set default values for options (e.g. the message level indicator), and to initialize the timing routine. The routine needs only to be called once in the user program, and the FORTRAN statement is simply

CALL SPRSPK

Note that the only variable in the common block SPAUSR that must be explicitly assigned a value by the user is MAXSA.

It is assumed that the subroutines which comprise SPARSPAK-A have been compiled into a *library*, and that the user can reference them from his FORTRAN program just as he references the standard FORTRAN library subroutines, such as SIN, COS, etc. Normally, a user will use only a small fraction of the subroutines provided in SPARSPAK-A.

Warning:

The modules of SPARSPAK-A communicate with each other through labelled common blocks whose names are SPKSYS, SPAUSR, SPACON, SPAMAP, and SPADTA. Thus, the user must not use labelled common blocks with these names in his program.

If these common block names cause conflicts in your program or at your computer installation, it is possible to have the package distributed with these common blocks having specifically requested labels. These names should be specified when the package is acquired.

2.2. Modules for input of the matrix structure

SPARSPAK-A has to know the matrix structure before it can determine an appropriate ordering for the system. We now describe the group of routines which provide a variety of ways through which the user can inform the package where the nonzero entries are; that is, those indices (i,j) for which the (i,j)-th element of A is nonzero. Before any of these input routines is called, the user must execute an initialization routine called IJBEGN, which tells the package that the structure of a new matrix problem is about to be input.

CALL IJBEGN

(a) Input of a nonzero location.

To tell the package that the (i,j)-th element of A is nonzero, the user simply executes the statement

where I and J are respectively the row and column indices of the nonzero, and S is the working storage array declared by the user for use by the package.

In this example,

```
:

I = 4

J = 8

CALL INIJ ( I, J, S )
```

the package will record a logical nonzero in positions (4,3) and (3,4) of the matrix.

(b) Input of the structure of a row, or part of a row.

When the structure of a row or part of a row is available, it is more efficient to use the routine INROW. The statement to use is

where I denotes the index of the row under consideration, IR is an array containing the column indices of some or all of the nonzeroes in the I-th row, NIR is the number of subscripts in IR, and S is the user-declared working storage.

For example, in

```
I = 5

IR(1) = 2

IR(2) = 7

IR(3) = 5

CALL INROW ( I, 3, IR, S )
```

the package is informed of nonzeroes in locations (2,5), (5,2), (5,5), (5,7) and (7,5) of the matrix. Note that the column indices in the array IR can be in arbitrary order, and the rows can be input in any order.

(c) Input of a submatrix structure.

To provide greater flexibility, the package allows the user to input the structure of a submatrix. The calling statement is

where NIJ is the number of input index pairs, and II and JJ are the arrays containing the row and column indices.

The following example

```
.
II(1) = 1
JJ(1) = 1
II(2) = 1
JJ(2) = 3
JJ(3) = 2
JJ(3) = 3
CALL INIJIJ ( 3, II, JJ, S )
```

informs the package that there are nonzeroes in locations (1,1), (1,3), (3,1), (2,3) and (3,2).

(d) Input of a full submatrix structure.

The structure of an entire matrix is completely specified if all the full submatrices are given. In applications where they are readily available, the routine *INCLQ* is useful. Its calling sequence is

CALL INCLQ (NCLQ, CLQ, S)

where NCLQ is the size of the submatrix and CLQ is an array containing the column (or row) indices of the submatrix.

Thus, to inform the package that the submatrix corresponding to indices 1, 3, 5 and 6 is full, we execute

```
.
CLQ(1) = 1
CLQ(2) = 3
CLQ(8) = 5
CLQ(4) = 6
CALL INCLQ (4, CLQ, S)
```

The type of structure input routine to use depends on how the user obtains the matrix structure. Anyway, the one or ones that best suit the application can be selected; SPARSPAK-A allows *mixed use* of the routines in inputting a matrix structure. The package automatically removes duplications so the user does not have to worry about inputting duplicated index pairs.

```
CLQ(1) = 1

CLQ(2) = 2

CLQ(3) = 5

CALL INCLQ ( 3, CLQ, S )

IR(1) = 2

IR(2) = 4

IR(3) = 5

CALL INROW ( 4, 3, IR, S )

CALL INIJ ( 1, 3, S )
```

The code above would input the matrix structure

```
* * * * *
* * *
* * *
```

into the package. Note that the diagonal elements of the input matrix are assumed to be nonzero (see notes below).

When all pairs have been input, using one or a combination of the input routines, the user is required to tell SPARSPAK-A explicitly that structure input is complete by calling the routine *IJEND*. The statement to use is

CALL IJEND (S)

and its purpose is to transform the data from the format used during the recording phase to the standard format used by the later phases. The user does not have to concern himself with this representation or transformation.

Important Notes:

- (a) SPARSPAK-A assumes that the value of NEQNS (the number of equations) is equal to the maximum column (or row) index supplied by the routines which transmit the (i,j) pairs to the package. Thus, it is imperative that the user supplies at least one (i,j) pair for which i or j is equal to NEQNS. The routine IJEND assigns the value of NEQNS found by the package to the corresponding variable in the common block SPAUSR.
- (b) SPARSPAK-A assumes that the diagonal elements of the coefficient matrix are nonzero.

Common Errors:

The most common cause of error during matrix structure input is insufficient working storage. If we denote the number of off-diagonal nonzeroes in the matrix by *OFFDA*, then the minimum amount of storage necessary to successfully input the structure is given by

$$OFFDA + 2 \times NEQNS + 1$$
.

Of course sometimes the user does not know the value of OFFDA, and may guess too low. SPARSPAK-A will still accept and count the (i,j) pairs, even after running out of storage, and the user can obtain an upper bound for OFFDA by calling the module STATSA, described in Section 7, after all pairs have been input. (The number reported may be unnecessarily large because duplicate input pairs may not now be detected, and thus may be counted more than once by the package.)

For a complete list of errors which may be generated by the structure input modules, see Section 7.3.1.

2.3. Modules for ordering and storage allocation

With an internal representation of the nonzero structure of the matrix A available, SPARSPAK-A is ready to reorder the matrix problem. This is initiated by calling an ordering routine, whose name always has the form ORDRxi. Here i is a numerical digit between 1 and 6 that signifies the storage method. The character x can take values A or B, which denotes one of two ordering strategies tailored for storage method i.

Executing the statement

CALL ORDRA1 (S)

will imply the use of storage method 1 and the first ordering algorithm for this method. See Section 3 for a discussion of the various methods provided, and some guidance on which one to

use. Section 8 contains a list of ordering strategies provided by the package. The routine *ORDRxi* not only determines an appropriate ordering for the storage method, it sets up the data structure for the reordered matrix problem. The package is now ready for numerical input.

Common Errors:

Just as in the structure input phase, the most common cause of premature termination of the ORDRxi module is insufficient working storage. As mentioned above, this module performs two functions: ordering and storage allocation. The ordering step determines the permutation P, and the allocation step sets up the appropriate data structures to store the triangular factors L and U of the permuted matrix PAP^T .

In general, the ordering and allocation subroutines require different amounts of storage. Furthermore, their storage requirements are often unpredictable, because the number of data structure pointers, and the number of nonzeroes in the factors L and U, are not known until the subroutines have been executed.

Thus, the interface module ORDRxi may terminate in several distinctly different ways.

- (a) There was not enough storage to execute the ordering subroutine.
- (b) The ordering was successfully obtained, but there was insufficient storage to initiate execution of the data structure set-up (storage allocation) subroutine.
- (c) The data structure set-up subroutine was executed, and the amount of storage required for the data structure pointers etc. was determined, but there was insufficient storage for these pointers.
- (d) The data structure was successfully generated, but there is insufficient storage for the actual numerical values, so the next step (input of the numerical values) cannot be executed.
- (e) ORDRxi was successfully executed, and there is sufficient storage to proceed to the next step.

If any of the above conditions occurs, the user may execute SAVEA, and re-initiate the computation after adjusting his storage declarations (either up or down) and executing RSTRTA⁽²⁾. If (a) or (b) occurs, information is supplied indicating the minimum value of MAXSA needed so that (c), (d) or (e) will occur upon re-execution. If (c) occurs, the minimum value of MAXSA needed for (d) and (e) is provided.

When (c) or (d) occurs, after executing SAVEA, adjusting the storage declaration, then executing RSTRTA, one must again call ORDRxi. However, the interface will detect that the ordering and/or storage allocation have already been performed, and will skip that part of the computation. Note that if a user is simply using SPARSPAK-A to select a particular method, (c) may be an acceptable termination state. (See Example 6 in Section 9.)

⁽²⁾ See Section 4 for details on how to use SAVEA and RSTRTA, and Examples 4, 5 and 6 in Section 9.

2.4. Modules for inputting numerical values

The modules in this group are similar to those for inputting the matrix structure. They provide a means of transmitting the actual numerical values of the matrix problem to SPARSPAK-A. Since the data structures for different storage methods are different, the package must have a different matrix input subroutine for each method. For the user's convenience, SPARSPAK-A uses the same set of subroutine names for all the methods, except for the last digit which distinguishes the method, and the parameter lists for all the methods are the same.

Important Note:

The elements of A and b transmitted to SPARSPAK-A by these routines are either single or double precision floating-point numbers, depending on the version of SPARSPAK-A being used. The examples in this manual assume a single precision version of the package is being used.

There are three ways of passing the numerical values to SPARSPAK-A. In all of them, indices passed to the package always refer to those of the *original given problem*. The user need not be concerned about the various permutations to the problem which may have occurred during the ordering step.

When any of the three numerical input routines is first called, the storage used for storing the numerical values is initialized to zero.

(a) Input of a single nonzero component.

The subroutine INAIJi is provided for this purpose and its calling sequence is

where I and J are the row and column indices, and VALUE is the numerical value. The subroutine INAIJi adds the quantity VALUE to the appropriate current value in storage, rather than making an assignment. This is helpful in situations (e.g. in some finite element applications) where the numerical values are obtained in an incremental fashion.

For example, the execution of

```
CALL INAIJ2 ( 3, 4, 9.5, S )
CALL INAIJ2 ( 3, 4, -4.0, S )
```

effectively assigns 5.5 to the (3,4)-th component of A.

(b) Input of a row of nonzeroes.

The routine *INROWi* can be used to input the numerical values of a row or part of a row in the matrix. Its calling sequence is similar to that of *INROW*, described on Section 2.2.

Here the additional parameter VALUES is a floating-point array containing the numerical values of the row. Again, the numerical values are added to the current values in storage.

(c) Input of a submatrix.

The routine that allows the input of a submatrix is *INMATi*. Its parameter list corresponds to that of *INIJIJ* with the additional parameter *VALUES* that stores the numerical quantities.

Again, the numerical values in VALUES are added to those currently held by the package.

Mixed use of the routines INAIJi, INROWi and INMATi is permitted. Thus, the user is free to use whatever routine is most convenient.

The same convenience is provided in the input of numerical values for the right hand side vector b. SPARSPAK-A includes the routine *INBI* which inputs an entry of the right hand side vector.

Here I is the index and VALUE is the numerical value. Alternatively, the routine INBIBI can be used to input a subvector, and its calling sequence is

where NI is the number of input numerical values, and II and VALUES are vectors containing the indices and numerical values respectively. In both routines, incremental calculation of the numerical values is performed.

In some situations where the entire right hand side vector is available, the user can use the routine INRHS which transmits the whole vector to SPARSPAK-A. It has the form

CALL INRHS (RHS, S)

where RHS is the vector containing the numerical values.

In all three routines, the numbers provided are added to those currently held by the package, and the use of the routines can be intermixed. (See example in (a) above.) The storage used for the right hand side by SPARSPAK-A is initialized to zero the first time any of them is executed.

Important Notes:

(a) When the matrix A is symmetric, so that method i, with i odd, is used, SPARSPAK-A requires that the elements of the *lower* triangle be provided. Thus, for example, the following statement will cause an error.

CALL INAIJ3 (3, 5, 1.3, S)

(b) The examples which we have given assume that a single precision version of SPARSPAK-A is being used. If the version is in double precision, the numerical values and numerical variables should be declared as double precision. For example:

2.5. Modules for numerical solution

The numerical computation of the solution vector is initiated by the FORTRAN statement

where S is the working storage array for SPARSPAK-A. Again, the last digit i is used to distinguish between solvers for different storage methods.

Internally, the routine SOLVEi consists of both the factorization and forward/backward solution steps. If the factorization has been performed in a previous call to SOLVEi, SPARSPAK-A will automatically skip the factorization step, and perform the solution step directly. The solution vector is returned in the first NEQNS locations of the storage vector S. If SOLVEi is called before any right hand side values are input, only the factorization will be performed. The solution returned will be all zeroes. See Examples 3 and 4 in Section 9.

2.6. Modules for estimating the relative error in the computed solution

An estimate of the relative error (using the infinity norm $\|.\|_{\infty}^{(3)}$) in the computed solution can be obtained by executing the following FORTRAN statement.

CALL ERESTi (RELERR, S)

Here S is the working storage array for SPARSPAK-A and RELERR is a variable which will contain the relative error estimate after the subroutine is invoked successfully. The last digit i

⁽³⁾ $||w||_{\infty} = \max |w_i|$.

is used to distinguish between subroutines for different storage methods.

If the problem is too ill-conditioned with respect to the precision of the machine, or unacceptable rounding error in the factorization has occurred, a message will be printed (depending on the value of the message level indicator MSGLVA) and RELERR will be set to -1.0.

The estimate is based on estimates of the condition number of the coefficient matrix and the error incurred in its factorization [1]. Thus, the estimate is independent of the right hand side and *ERESTi* has to be called only once regardless of the number of right hand sides that are to be solved. Furthermore, *ERESTi* should be called only after the factorization has been performed; that is, after *SOLVEi* has been executed successfully.

3. Some guidelines on selecting a method

We mentioned in Section 1 that there are six basic methods, distinguished by a numerical digit i satisfying $1 \le i \le 6$. These six methods can be viewed as grouped into three odd-even pairs; the only distinction between method i (odd) and method i+1 is that method i assumes the coefficient matrix A is symmetric, and method i+1 assumes A is unsymmetric. Thus, we really only provide three essentially distinct methods, with each one having a symmetric and unsymmetric version. Hence, in this section we will largely confine our remarks to methods 1, 3 and 5; comparative remarks about them will also apply to their unsymmetric analogues, methods 2, 4 and 6.

The basic methods are as follows; the remarks comparing them, and the advice provided, should be regarded as at best tentative. Characteristics of sparse matrices vary a great deal.

Method

Basic Strategy and References

1,2

The objective of these methods is to reorder A so it has a small bandwidth or profile [7]. The well-known reverse Cuthill-McKee algorithm is used. For relatively small problems, say $n \le 200$, they are probably the best overall methods to use.

3,4

The objective of these methods is to reduce storage requirements, but the factorization time will usually be substantially higher than any of the other methods. Their storage requirements will usually be substantially less than methods (1,2) (unless n is very large). The same remark is true about the relative solution times. Thus, these methods are often useful when storage is restricted, and/or when many problems which differ only in the right hand side must be solved (see Section 6).

There are two ordering options provided: ORDRA3 and ORDRB3 (and similarly for the unsymmetric case). The A option is specifically tailored for "finite element problems", typical of those arising in structural analysis and the numerical solution of partial differential equations [2]. The B option is effective for less specific problems; and uses a refined quotient tree ordering described in [3].

5,6

These methods attempt to find orderings which minimize fill-in, and they exploit all zeroes. Their ordering times are almost always greater than those above, but for moderate-to-large problems the reduced factorization times usually are more than compensatory.

4. Save and restart facilities

SPARSPAK-A provides two subroutines called SAVEA and RSTRTA which allow the user to stop the calculation at some point, save the results on an external sequential file, and then restart the calculation at exactly that point some time later. To save the results of the computation done thus far, the user executes the statement

CALL SAVEA (K, S)

where K is the FORTRAN logical unit on which the results are to be written, along with other information needed to restart the computation. If execution is then terminated, the state of the computation can be re-established by executing the following statement.

CALL RSTRTA (K, S)

Examples 4, 5 and 6 provided in Section 9 illustrate the use of SAVEA and RSTRTA.

Note that executing SAVEA does not destroy any information; the computation can proceed just as if SAVEA were not executed.

When errors occur in a module, the routines SAVEA and RSTRTA are useful in saving the results of previously successfully executed modules (see Section 7.3 and Example 5 in Section 9).

Another potential use of the SAVEA and RSTRTA modules is to make the working storage array S available to the user in the middle of a sparse matrix computation. After SAVEA has been executed, the working storage array S can be used by some other computation.

Finally, the SAVEA and RSTRTA modules allow the user to segment the computation into several distinct phases, and thereby reduce the amount of program that must be resident in storage at any given time.

Important Notes:

- (a) In the subroutines SAVEA and RSTRTA, information is either written on or read from the FORTRAN logical unit K using binary format.
- (b) If the subroutines SAVEA and RSTRTA are used, then before the user executes his program, he must define a file for the FORTRAN logical unit K using the appropriate system control statement or command (this depends on the environment in which the program is being executed). Furthermore, this file must be preserved by the user for later access by the RSTRTA subroutine. Thus, the user must not write to this file.

5. Solving many problems having the same structure

In certain applications, many problems which have the same sparsity structure, but different numerical values, must be solved. In this case, the structure input, ordering, and data structure set-up needs only to be done once. This situation can be accommodated perfectly well by SPARSPAK-A. The control sequence is depicted by the following flowchart.

When the numerical input routines (INAIJi, INBI, ..., etc.) are first called after SOLVEi has been called, this is detected by SPARSPAK-A, and the computer storage used for A and b is initialized to zero.

Note that if such problems must be solved over an extended time period (i.e., in different runs), the user can execute SAVEA after executing ORDRxi and thus avoiding the input of the structure of A and the execution of ORDRxi in subsequent equation solutions.

6. Solving many problems which differ only in their right hand side

In some applications, numerous problems which differ only in their right hand sides must be solved. In this case, we only want to factor A into LU (or LL^T) once, and use the factors repeatedly in the calculation of x for each different b. Again, SPARSPAK-A can handle this situation in a straightforward manner, as illustrated by the flowcharts below.

When SPARSPAK-A is used as indicated by flowchart (1), the package detects that no right hand side has been provided during the first execution of SOLVEi, and only the factorization is performed. In subsequent calls to SOLVEi, SPARSPAK-A detects that the factorization has already been performed, and that part of the SOLVEi module is bypassed. In flowchart (2), both factorization and solution are performed during the first call to SOLVEi, with only the solve part performed in subsequent executions of SOLVEi. (See Example 3 in Section 9.)

Note that SAVEA can be used after SOLVEi has been executed, if the user wants to save the factorization for use in some future calculation.

7. Output from SPARSPAK-A

As noted earlier in Section 2, the user supplies a one-dimensional floating-point array S, from which all array storage is allocated. In particular, the interface allocates the first NEQNS storage locations in S for the solution vector of the linear system (NEQNS is the last variable in the common block SPAUSR). After all the interface modules for a particular method have been successfully executed, the user can retrieve the solution from these NEQNS locations.

In addition to the solution vector, SPARSPAK-A may provide other information about the computation, depending upon the value of MSGLVA, whether or not errors occur, and whether or not the module STATSA is called. This section discusses these features of SPARSPAK-A.

Note:

SPARSPAK-A writes output to two FORTRAN logical output units, whose numbers are given by IPRNTS and IPRNTE. The values for these variables are set in the module SPRSPK when the package is installed. Standard output requested by the user is printed on unit IPRNTS, while any error messages raised by SPARSPAK-A are printed on unit IPRNTE. In an interactive environment, IPRNTE is usually the user's terminal, while IPRNTS is some other output device on which the output of the (hopefully) successful run is recorded. In a batch oriented environment, IPRNTS and IPRNTE are usually the same. Note that the user and/or the computer installation must ensure that the files associated with IPRNTS and IPRNTE are available to the user's program before execution begins.

7.1. Message level (MSGLVA)

The first variable MSGLVA in the common block SPAUSR stands for "message level", and governs the amount of information printed by the interface modules. Its default value is two, and for this value a relatively small amount of summary information is printed, indicating the initiation of each phase. When MSGLVA is set to one by the user, only fatal error messages are printed; this option could be useful if SPARSPAK-A is being used in the "inner loop" of a large computation, where even summary information would generate excessive output. Increasing the value of MSGLVA (up to 4) provides increasingly detailed information about the computation. Note that the module SPRSPK sets MSGLVA to its default value; if the user wishes MSGLVA to be different from two, he must reset it after SPRSPK has been called.

In many circumstances, SPARSPAK-A will be embedded in still another "super package" which models phenomena producing sparse matrix problems. Messages printed by SPARSPAK-A may be useless or even confusing to the ultimate users of the super package, or the super package may wish to field the error conditions and perhaps take some corrective action which makes the error messages irrelevant. Thus, all printing by SPARSPAK-A can be prevented by setting MSGLVA to zero.

To summarize, we have

MSGLVA	amount of output
0	no information is provided.
1 .	only warnings and errors are printed.
2	warnings, errors and summary are printed.
3	warnings, errors, summary and some statistics are printed.
4	detailed information for debugging purposes.

Warning:

It should be noted that, by setting MSGLVA to four, a high volume of output may be generated, since the input data would also be echoed.

7.2. Statistics gathering (STATSA)

SPARSPAK-A gathers a number of statistics which the user will find useful if he is comparing various methods, or is going to solve numerous similar problems and wants to adjust his working storage to the minimum necessary. The package has a common block called SPADTA containing variables whose values can be printed by executing the following statement.

CALL STATSA

The information printed includes

the number of equations, the number of off-diagonal nonzeroes in the matrix, the size of the working storage, the time used to find the ordering. the time used for data structure set-up, the time used for the factorization step, the time used for the triangular solution step, the time used for the relative error estimation step, number of operations required by the factorization step, number of operations required by the triangular solution step, number of operations required by the relative error estimation step, the storage used by the ordering subroutine, the storage used by the data structure set-up subroutine, the storage used by the SOLVEi module, the storage used by the *ERESTi* module, an estimate of the reciprocal of the condition number of the input matrix, and

an estimate of the relative error in the triangular factorization, an estimate of the relative error in the computed solution.

Since the module STATSA can be called at any time, some of the above information may not be available, and will not be printed. The word "operations" here means multiplicative operations (multiplications and divisions). Since most of the arithmetic performed in sparse matrix computation occurs in multiply-add pairs, the number of operations (as defined here) is a useful measure of the amount of arithmetic performed.

The reader is referred to the examples in Section 9 for more discussion about the output from STATSA.

7.3. Error messages (IERRA)

When a fatal error is detected, so that the computation cannot proceed, a positive code is assigned to *IERRA*. The user can simply check the value of *IERRA* to see if the execution of module has been successful. This error flag can be used in conjunction with the save/restart feature described in Section 4 to retain the results of successfully completed parts of the computation, as shown by the program fragment below.

```
CALL ORDRA1 ( S )
IF ( IERRA .EQ. 0 ) GO TO 100
CALL SAVEA ( S, S )
STOP
100 CONTINUE
```

The variable IERRA is set to the value $10 \times k + l$, where $0 \le l \le 9$ distinguishes the error, and k is determined by the type of module that sets IERRA positive.

```
\boldsymbol{k}
                         interface modules
10
     save and restart modules (SAVEA, RSTRTA)
11
     matrix structure input modules (INIJ, INIJIJ, etc.)
12
     matrix ordering and allocation modules (ORDRxi)
13
     matrix numerical input modules (INAIJi, ..., etc.)
     right hand side numerical input modules (INBI, ..., etc.)
14
15
     factorization and solution modules (SOLVEi)
16
     relative error estimation modules (ERESTi)
```

7.3.1. Save and restart routines

IERRA	SAVEA, RSTRTA
101	Output unit given to SAVEA is not positive.
102	Input unit given to RSTRTA is not positive.
103	Insufficient storage to restart the computational process. The minimum value of MAXSA required is printed in the error
	message.

7.3.2. Input of the matrix structure

IERRA	INIJ, INROW, INIJIJ, INCLQ
111	Incorrect execution sequence. Probable cause of error: routine
	IJBEGN was not executed successfully before (i,j) pairs input
	began.
112	Incorrect execution sequence. Probable cause of error: routine
	IJEND has already been called to indicate the end of structure
	input.
113	Insufficient storage was provided in the working storage array.
	The (i,j) pairs input to INIJ, INROW, INIJIJ, and INCLQ will
	be counted and discarded. Duplicates which are detected will not
	be counted, but some duplicates may be missed.
114	Input index (or subscript) is negative or zero.
<i>IERRA</i>	IJEND
115	Incorrect execution sequence. Probable cause of error: routine
	IJEND was called before new matrix structure has been input.
	Call IJBEGN to start a new problem.
116	Insufficient storage to transform matrix structure. The minimum
	value of MAXSA required is printed in the error message.
117	Number of variables (NEQNS) is zero.

7.3.3. Ordering and storage allocation routines

<i>IERRA</i>	ORDRxi
121	Incorrect execution sequence. Probable cause of error: routine <i>IJEND</i> was not executed successfully.
122	Incorrect execution sequence. Probable cause of error: routine ORDRxi was called after having already been executed successfully.
123	Incompatible ordering method. Probable cause of error: part of the ordering routine $ORDRxi$ was executed, and then $SAVEA$ was executed because of insufficient storage. The execution was then restarted, using $RSTRTA$, but $ORDRxj$ was called with $i \neq j$.
124	Insufficient storage in working storage array to execute the ordering routine. Response: execute SAVEA, and restart the computation using ORDRxi with MAXSA at least as large as that indicated in the error message.
125	Insufficient storage in working storage array to execute the storage allocation routine. The ordering routine was successfully executed. Response: same as for error 124.
126	Insufficient storage in working storage array to hold the data structure pointers. The ordering and storage allocation routines were successfully executed. Response: same as for error 124.
127	Insufficient storage in working storage array to hold the numerical values. The ordering and storage allocation routines were successfully executed, and there was enough storage to hold the data structure pointers. Response: same as for error 124.

7.3.4. Input of the numerical values

IERRA	$\mathit{INAIJi}, \mathit{INROWi}, \mathit{INMATi}$
131	Incorrect execution sequence. Probable cause of error: routine ORDRxi was not executed successfully.
132	Incompatible input routine. Probable cause of error: attempt to use input routine $INAIJi$, $INROWi$, or $INMATi$ after using $ORDRxj$, where $i \neq j$.

IERRA INAIJi, INROWi, INMATi 133 Attempt to input the (i,j)-th element of matrix A for i < j. (This error occurs only for symmetric matrix methods; i.e., when method is odd). Methods for symmetric matrices expect elements of the lower triangle to be input. 134 Attempt to input an (i,j)-th element of matrix A where i > n, j > n, i < 1, or j < 1. Attempt to input a numerical value for the (i,j)-th element of 135 matrix A into the data structure, but the data structure has no space for it. Probable cause of error: the user has not called INIJ, INROW, INIJIJ or INCLQ with all the pairs (i,j) for which the (i,j)-th elements of A are nonzero. (SPARSPAK-A thinks A is sparser than it really is.) **IERRA** INBI, INBIBI, INRHS 141 Incorrect execution sequence. Probable cause of error: routine ORDRxi was not executed successfully. Index (or subscript) out of range. Probable cause of error:

7.3.5. Factorization and solution

i > n or i < 1.

142

IERRA	SOLVEi
151	Incorrect execution sequence. Probable cause of error: the numerical input routines were not executed successfully.
152	Incompatible ordering and solution routines. Probable cause of error: Routines $ORDRxi$ and $SOLVEj$ were called, where $i \neq j$. Response: execute $SAVEA$ and restart the computation using $SOLVEi$ where i is the value of $METHOD$ specified in the error
	message.

attempt to input a numerical value for the i-th element of b where

IERRA

SOLVEi

153

Zero pivot or negative square root was detected in the (symmetric) factorization routine. Possible cause of error: the matrix may require pivoting in order to preserve numerical stability. In this case the use of SPARSPAK-A to solve the problem is inappropriate. (See restrictions in Section 1.)

154

Zero pivot was detected in the (unsymmetric) factorization routine. Possible cause of error: the matrix may require pivoting in order to preserve numerical stability. In this case the use of SPARSPAK-A to solve the problem is inappropriate. (See restrictions in Section 1.)

7.3.6. Relative error estimation

IERRA ERESTi

161

Incorrect execution sequence. Probable cause of error: routine SOLVEi was not executed successfully.

162

Incompatible condition number estimation routine. Probable cause of error: Routines ERESTi and SOLVEj were called, where $i \neq j$. Response: execute SAVEA and restart the computation using ERESTi where i is the value of METHOD specified in the error message.

163

Insufficient storage in working storage array to compute an estimate of the relative error in the computed solution. Response: execute SAVEA, and restart the computation using ERESTi with MAXSA at least as large as that indicated in the error message.

164

The estimate of the relative error has a value of -1.0 which means that the computed solution may not have any correct significant digits.

8. Summary listing of interface routines

Initialization of SPARSPAK-A	SPRSPK
Structure input	IJBEGN
	INIJ (I, J, S)
	INROW (I, NIR, IR, S)
	INIJIJ (NIJ, II, JJ, S)
	INCLQ (NCLQ, CLQ, S)
	IJEND (S)
Ordering (see next table)	ORDRxi (S)
Matrix input	INAIJi (I, J, VALUE, S)
	INROWi (I, NIR, IR, VALUES, S)
	INMATi (NIJ, II, JJ, VALUES, S)
Right hand side input	INBI (I, VALUE, S)
	INBIBI (NI, II, VALUES, S)
	INRHS (RHS, S)
Factorization and/or Solution	SOLVEi (S)
Relative error estimation	ERESTi (RELERR, S)
Print statistics	STATSA
Save and Restart the computation	SAVEA (K, S)
	RSTRTA (K, S)

ORDRxi		Ordering Choices
\boldsymbol{x}	i	Ordering Choices
$egin{array}{c} A \\ A \end{array}$	1 2	Reverse Cuthill-McKee ordering [7]; symmetric A Reverse Cuthill-McKee ordering [7]; unsymmetric A
$egin{array}{c} A \\ A \end{array}$	3 4	One-way Dissection ordering [2]; symmetric A One-way Dissection ordering [2]; unsymmetric A
$egin{array}{c} B \ B \end{array}$	3 4	Refined quotient tree ordering [3]; symmetric A Refined quotient tree ordering [3]; unsymmetric A
A A	5 6	Nested Dissection ordering [4]; symmetric A Nested Dissection ordering [4]; unsymmetric A
B B	5 6	Minimum Degree ordering [6]; symmetric A Minimum Degree ordering [6]; unsymmetric A

Sketch of possible execution paths through SPARSPAK-A modules

9. Examples

In this section, we provide several programs which illustrate how SPARSPAK-A can be used. These programs are derived from the one given in Section 2.1.

These examples were run using a standard single precision version of SPARSPAK-A under the Berkeley f77 compiler on a DEC VAX 11/780 computer. All times reported are in seconds. It should be noted that the results will be different if a different version of SPARSPAK-A or a different computer is used.

Example 1

This is an example of the simplest use of SPARSPAK-A, with each of the modules of method 1 used in sequence. The problem solved is a 10×10 symmetric tridiagonal system Ax=bwhere the diagonal elements of A are all 4, and the superdiagonal and subdiagonal elements are all -1. The right hand side vector b is chosen so that the entries of the solution vector x are all ones.

In the program, the nonzero structure of A is input using IJBEGN, INIJ and IJEND. After ORDRA1 is executed, the interface modules INAIJ1 and INBI are used to transmit the numerical values of A and b to the package respectively. The module SOLVE1 is called to do the numerical solution, and EREST1 is called to compute an estimate of the relative error in the computed solution. Then STATSA is called to print out the statistics gathered by the interface during execution. Finally, the actual error in the computed approximate solution is determined since the true solution is known.

Note that the size of the working storage provided was 250, while the maximum amount used by any of the modules was 90, which was the storage requirement for the EREST1 module. Thus, if the user was going to solve this problem again, he could adjust his storage down to 90.

Program

```
C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = EX1
                                                                   1 SPK
 (C) UNIVERSITY OF WATERLOO JANUARY 1984
                                                                   2 S P K
3 SPK
C.....
                                                                   ASPK
C****** MAINLINE PROGRAM
                                                                   5 S P K
C.....
                                                                   6 SPK
7SPK
\boldsymbol{C}
                                                                   8 S P K
              I , IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA , MSGLVA, NVARS
     INTEGER
                                                                   9 S PK
                                                                  10SPK
    1
     REAL
               MCHEPS, RATIOL, RATIOS, TIME
                                                                  1.1 SPK
     REAL
                     S(250)
                                                                  1 2 S PK
                     ERROR , FOUR , ONE , RELERR, TWO
     REAL
                                                                  1 3 S P K
                                                                  1 A SPK
                                                                  15SPK
\boldsymbol{C}
C *
                                                                  16SPK
C
                                                                  17SPK
                     MSGLVA, IERRA, MAXSA, NVARS
            /SPAUSR/
                                                                  18SPK
     COMMON
                     IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
                                                                  19SPK
     COMMON
            /SPKSYS/
                     MCHEPS, TIME
C
                                                                  21 SPK
C * *
                                                                  2 2 S P K
                                                                  23SPK
C
                                                                  24 SPK
Ċ
C
     INITIALIZE SPARSPAK-A.
                                                                  25 S P K
                                                                  26 SPK
C
                                                                  27SPK
     CALL SPRSPK
                                                                  28 S P K
     MAXSA = 250
                                                                  29 S P K
C
                                                                  30 SPK
C
      . . . . . . . . . . . . . . .
                                                                  31SPK
     INPUT STRUCTURE.
\boldsymbol{C}
     ......
                                                                  32SPK
                                                                  335PK
     CALL I JBEGN
     DO 100 I = 2, 10
                                                                  34SPK
```

```
CALL INIJ ( I, I-1, S )
                                                                                          35SPK
  100 CONTINUE
                                                                                          3 6 S P K
       CALL IJEND (S)
                                                                                          37SPK
\boldsymbol{C}
                                                                                          38SPK
\boldsymbol{c}
       39SPK
       DETERMINE SYMMETRIC ORDERING.
\boldsymbol{C}
                                                                                          40 SPK
\boldsymbol{c}
       41SPK
       CALL ORDRA1 (S)
                                                                                          A 2 SPK
\boldsymbol{C}
                                                                                          43SPK
C
                                                                                          44SPK
       INPUT NUMERICAL VALUES.
                                                                                          A 5 SPK
                                                                                          46SPK
       ZERO = 0.0E0
                                                                                          47SPK
       ONE = 1.0E0
TWO = 2.0E0
                                                                                          48SPK
                                                                                          49SPK
       FOUR = 4.0E0
                                                                                          50 SPK
       DO 200 I = 1, 10

IF ( I .GT. 1 ) CALL INAIJ1 ( I, I-1, -ONE, S )

CALL INAIJ1 ( I, I, FOUR, S )
                                                                                          51 SPK
                                                                                          5 2 S P K
                                                                                          5 8 S P K
            CALL INBI ( I, TWO, S )
                                                                                          54SPK
  200 CONTINUE
                                                                                          55SPK
       CALL INBI ( 1, ONE, S )
CALL INBI ( 10, ONE, S )
                                                                                          56SPK
                                                                                          57SPK
\boldsymbol{C}
                                                                                          58SPK
\boldsymbol{C}
                                                                                          59SPK
\boldsymbol{C}
       PERFORM NUMERICAL FACTORIZATION AND SOLUTION.
                                                                                          60SPK
C
       61SPK
       CALL SOLVE1 (S)
                                                                                          6 2 S P K
\boldsymbol{C}
                                                                                          63SPK
C
                                                                                          64SPK
       COMPUTE AN ESTIMATE OF THE RELATIVE ERROR
\boldsymbol{C}
                                                                                          6 5 SPK
\boldsymbol{C}
       IN THE COMPUTED SOLUTION.
                                                                                          6 6 S P K
\boldsymbol{C}
       67SPK
       CALL EREST1 ( RELERR, S )
                                                                                          68SPK
C
                                                                                          69SPK
C
                                                                                           70 SPK
C
       OBTAIN STATISTICS.
                                                                                           71SPK
       ......
C
                                                                                          72SPK
       CALL STATSA
                                                                                           78SPK
C
                                                                                           74SPK
\boldsymbol{C}
                                                                                          75SPK
       COMPUTE THE ACTUAL RELATIVE ERROR IN THE COMPUTED SOLUTION
\boldsymbol{C}
                                                                                          76 SPK
\boldsymbol{C}
       SINCE THE TRUE SOLUTION IS KNOWN.
                                                                                           77SPK
\boldsymbol{C}
                                                                                           78SPK
       ERROR = ZERO
                                                                                           79SPK
       DO 300 I = 1, 10
                                                                                           80SPK
            ERROR = AMAX1(ERROR, ABS(S(I)-ONE))
                                                                                           81 SPK
  300 CONTINUE
                                                                                           8 2 S P K
       WRITE (IPRNTS, 11) ERROR
                                                                                           88SPK
    11 FORMAT (/10X, 35HMAXIMUM ERROR
                                                                      , 1PE15.5 )
                                                                                           84SPK
\boldsymbol{C}
                                                                                           85SPK
       STOP
                                                                                           86SPK
       END
                                                                                           87SPK
```

Output

```
********* (C) JANUARY 1984
******** ANSI FORTRAN
****** SINGLE PRECISION
****** LAST UPDATE JANUARY 1984
     OUTPUT UNIT FOR ERROR MESSAGES
     OUTPUT UNIT FOR STATISTICS
IJBEGN - BEGIN STRUCTURE INPUT ...
INIJ - INPUT OF ADJACENCY PAIRS ...
IJEND - END OF STRUCTURE INPUT ...
ORDRA1 - RCM ORDERING ...
INAIJ1 - INPUT OF MATRIX COMPONENTS ...
INBI - INPUT OF RIGHT HAND SIDE ...
SOLVE1 - ENVELOPE SOLVE ...
EREST1 - ERROR ESTIMATOR . . .
STATSA - SYSTEM-A STATISTICS ...
     SIZE OF STORAGE ARRAY (MAXSA)
                                                 250
     NUMBER OF EQUATIONS
                                                 10
     NUMBER OF OFF-DIAGONAL NONZEROS
                                                 18
     TIME FOR ORDERING
                                                 0.033
     STORAGE FOR ORDERING
                                                 60.
     TIME FOR ALLOCATION
                                                 0.
     STORAGE FOR ALLOCATION
                                                 60.
     STORAGE FOR SOLUTION
                                                 70.
     TIME FOR FACTORIZATION
                                                 0.017
     TIME FOR SOLUTION
     OPERATIONS IN FACTORIZATION OPERATIONS IN SOLUTION
                                                18.
                                               38.
     TIME FOR ESTIMATING RELATIVE ERROR
                                                 0.050
     OPERATIONS IN ESTIMATING REL ERROR
                                               160.
     STORAGE FOR ESTIMATING REL ERROR
                                                90.
     ESTIMATE OF RELATIVE ERROR
                                            1.785e-07
     TOTAL TIME REQUIRED
                                                 0.100
     MAXIMUM STORAGE REQUIRED
                                                 90.
     MAXIMUM ERROR
                                              1.19209e-07
```

Example 2

This is the same as Example 1, except that the matrix A is unsymmetric. The diagonal elements of A are all 4, the superdiagonal elements are all 1, and the subdiagonal elements are all -1. The right hand side vector b is chosen so that the entries of the solution vector x are all ones.

Program

```
C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = EX2
                                                                 1 SPK
C (C) UNIVERSITY OF WATERLOO
                          JANUARY 1984
                                                                 2 SPK
                                                                 3 SPK
4 SPK
C****** MAINLINE PROGRAM
                                                                 5 SPK
6 SPK
7SPK
\boldsymbol{C}
                                                                 8SPK
                   , IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA .
     INTEGER
                                                                 9 SPK
              MSGLVA, NVARS
                                                                10SPK
     REAL
              MCHEPS, RATIOL, RATIOS, TIME
                                                                11SPK
     REAL
                    S(250)
                                                                12SPK
     REAL
                    ERROR , FOUR , ONE
                                       , RELERR, ZERO
                                                                13SPK
\boldsymbol{C}
                                                                14SPK
    C *
                                                                15SPK
\boldsymbol{C}
                                                                16SPK
     COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS
                                                                17SPK
     COMMON
            /SPKSYS/
                    IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
                                                                18SPK
                    MCHEPS, TIME
                                                                19SPK
\boldsymbol{C}
                                                                20 SPK
C^*
        21 SPK
\boldsymbol{C}
                                                                22 SPK
\boldsymbol{C}
                                                                23 SPK
C
     INITIALIZE SPARSPAK-A.
                                                                24SPK
\boldsymbol{C}
     -----
                                                                25 SPK
     CALL SPRSPK
                                                                26 SPK
     MAXSA = 250
                                                                27SPK
\boldsymbol{C}
                                                                28 S P K
\boldsymbol{C}
                                                                29SPK
\boldsymbol{C}
     INPUT STRUCTURE.
                                                                30 SPK
\boldsymbol{C}
     -----
                                                                31 SPK
     CALL I JBEGN
                                                                3 & SPK
        100 I = 2, 10
                                                                33SPK
             INIJ ( I, I-1, S )
        CALL
                                                                34 SPK
  100 CONTINUE
                                                                35SPK
     CALL IJEND (S)
                                                                36 SPK
\boldsymbol{C}
                                                                37SPK
\boldsymbol{C}
     38SPK
C
     DETERMINE SYMMETRIC ORDERING.
                                                                39SPK
C
     -----
                                                                40SPK
     CALL ORDRA2 (S)
                                                                41SPK
C
                                                                42SPK
\boldsymbol{C}
                                                                43SPK
C
     INPUT NUMERICAL VALUES.
                                                                44SPK
                                                                45SPK
     ZERO = 0.0E0
                                                                46 SPK
     ONE = 1.0E0
                                                                47SPK
     FOUR = 4.0E0
                                                                48SPK
        200 I = 1, 10
                                                                A9SPK
         50SPK
                                                                51SPK
             INAIJ2 ( I, I, FOUR, S )
                                                                5 2 S P K
```

November 1984

```
CALL INBI ( I, FOUR, S )
                                                                          53SPK
  200 CONTINUE
                                                                          54SPK
      CALL INBI ( 1, ONE, S )
                                                                          55SPK
      CALL INBI ( 10, -ONE, S )
                                                                           56SPK
C
                                                                           57SPK
C
      58SPK
C
      PERFORM NUMERICAL FACTORIZATION AND SOLUTION.
                                                                           59SPK
                                                                           60SPK
      CALL SOLVE2 (S)
                                                                           61SPK
C
                                                                           62SPK
C
                                                                           63SPK
      COMPUTE AN ESTIMATE OF THE RELATIVE ERROR
C
                                                                           64SPK
      IN THE COMPUTED SOLUTION.
                                                                          65SPK
      _____
                                                                           66SPK
      CALL EREST2 ( RELERR, S )
                                                                          67SPK
C
                                                                           68SPK
                                                                           69SPK
      OBTAIN STATISTICS.
                                                                           70SPK
C
      . . . . . . . . . . . . . . . . . .
                                                                           71 SPK
      CALL STATSA
                                                                           72SPK
C
                                                                           73SPK
                                                                          74SPK
C
      COMPUTE THE ACTUAL RELATIVE ERROR IN THE COMPUTED SOLUTION
                                                                           75SPK
C
      SINCE THE TRUE SOLUTION IS KNOWN.
                                                                           76SPK
                                                                           77SPK
      ERROR - ZERO
                                                                           78SPK
      DO = 300 \quad I = 1, 10
                                                                           79SPK
          ERROR = AMAX1(ERROR, ABS(S(I)-ONE))
                                                                           80SPK
  300 CONTINUE
                                                                           81 SPK
      WRITE (IPRNTS, 11) ERROR
                                                                           82SPK
   11 FORMAT (/10X, 35HMAXIMUM ERROR
                                                          , 1PE15.5 )
                                                                           8 3 S P K
C
                                                                           84SPK
      STOP
                                                                           85SPK
      END
                                                                           86SPK
```

```
****** UNIVERSITY OF WATERLOO
 ****** SPARSE MATRIX PACKAGE
······ (SPARSPAK)
              RELEASE
           (C) JANUARY 1984
***** ANSI FORTRAN
****** SINGLE PRECISION
****** LAST UPDATE JANUARY 1984
    OUTPUT UNIT FOR ERROR MESSAGES
    OUTPUT UNIT FOR STATISTICS
IJBEGN - BEGIN STRUCTURE INPUT ...
    - INPUT OF ADJACENCY PAIRS ...
INIJ
     - END OF STRUCTURE INPUT ...
I JEND
ORDRA2 - RCM ORDERING . . .
INAIJ2 - INPUT OF MATRIX COMPONENTS ...
```

INBI - INPUT OF RIGHT HAND SIDE ... SOLVE 2 - ENVELOPE SOLVE ... EREST2 - ERROR ESTIMATOR ... STATSA - SYSTEM-A STATISTICS . . . SIZE OF STORAGE ARRAY (MAXSA) 250 NUMBER OF EQUATIONS 10 NUMBER OF OFF-DIAGONAL NONZEROS 18 TIME FOR ORDERING 0.017 STORAGE FOR ORDERING 60. TIME FOR ALLOCATION 0. STORAGE FOR ALLOCATION 60. STORAGE FOR SOLUTION 79. TIME FOR FACTORIZATION 0.017 TIME FOR SOLUTION 0. OPERATIONS IN FACTORIZATION 18. OPERATIONS IN SOLUTION 28. TIME FOR ESTIMATING RELATIVE ERROR 0.033 OPERATIONS IN ESTIMATING REL ERROR 160. STORAGE FOR ESTIMATING REL ERROR 99. ESTIMATE OF RELATIVE ERROR 1.197e-07 TOTAL TIME REQUIRED 0.067 MAXIMUM STORAGE REQUIRED 99. MAXIMUM ERROR 1.19209e-07

Example 3

This is similar to Example 1, except that method 3 is used (with the A ordering option), and two problems differing only in their right hand sides are solved. After solving the problem whose solution vector contains all ones, a new right hand side is input which corresponds to a different problem whose solution vector contains all twos. When the module SOLVE3 is called a second time, the interface detects that the factorization has already been done, and only the triangular solution is performed.

Program

```
C (C) UNIVERSITY OF WATERLOO JANUARY 1984
C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = EXS
                                                                          1 SPK
                                                                          2 SPK
                                                                          3 SPK
                                                                          4 SPK
               MAINLINE PROGRAM
                                                                          5 S P K
                                                                          6 SPK
C............
                                                                          7SPK
C
                                                                          8SPK
      INTEGER
                      , IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA ,
                                                                          9 S PK
                MSGLVA, NVARS
                                                                         10SPK
                MCHEPS, RATIOL, RATIOS, TIME
     REAL
                                                                         11SPK
      REAL
                       S(250)
                                                                         12SPK
      REAL
                                             , RELERR, TWO
                       ERROR , FOUR , ONE
                                                                         13SPK
                       ZERO
                                                                         14SPK
C
                                                                         15SPK
           C
                                                                         16SPK
C
                                                                         17SPK
      COMMON /SPAUSR/
                       MSGLVA, IERRA , MAXSA , NVARS
                                                                         18SPK
      COMMON /SPKSYS/
                       IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
                                                                         19SPK
                       MCHEPS, TIME
                                                                          20 SPK
\boldsymbol{C}
                                                                          21 SPK
C *
                                                                         22SPK
C
                                                                          23SPK
C
                                                                          24SPK
C
      INITIALIZE SPARSPAK-A.
                                                                          25 SPK
C
                                                                          26SPK
      CALL SPRSPK
                                                                          275PK
      MAXSA = 250
                                                                          28SPK
C
                                                                          29 S P K
C
                                                                          30SPK
C
      INPUT STRUCTURE.
                                                                          31 SPK
C
      . . . . . . . . . . . . . . . .
                                                                          32SPK
      CALL IJBEGN
                                                                          335PK
         100 I = 2, 10
                                                                          34SPK
          CALL
               INIJ ( I, I-1, S )
                                                                          35SPK
  100 CONTINUE
                                                                          36 S P K
      CALL IJEND (S)
                                                                          37SPK
C
                                                                          385PK
C
                                                                          39SPK
C
      DETERMINE SYMMETRIC ORDERING.
                                                                          40SPK
C
                                                                          41SPK
      CALL ORDRAS (S)
                                                                          42SPK
C
                                                                          43SPK
                                                                          44SPK
      INPUT NNUMERICAL VALUES.
C
                                                                          45SPK
      46SPK
      ZERO - 0.0E0
                                                                          47SPK
                                                                          48SPK
      ONE = 1.0E0
                                                                          49SPK
      TWO = 2.0E0
```

```
FOUR = 4.0E0
                                                                                   50SPK
      DO 200 I = 1, 10

IF (I.GT. 1) CALL INAIJS (I, I-1, -ONE, S)

CALL INAIJS (I, I, FOUR, S)

CALL INBI (I, TWO, S)
                                                                                   51SPK
                                                                                   52SPK
                                                                                   5 3 S P K
                                                                                   54SPK
  200 CONTINUE
                                                                                   55SPK
      CALL INBI ( 1, ONE, S )
CALL INBI ( 10, ONE, S )
                                                                                   56SPK
                                                                                   57SPK
\boldsymbol{C}
                                                                                   58SPK
\boldsymbol{C}
       _____
                                                                                   59SPK
      PERFORM NUMERICAL FACTORIZATION AND SOLUTION.
C
                                                                                   60 SPK
\boldsymbol{C}
      61SPK
      CALL SOLVES (S)
                                                                                   62SPK
C
                                                                                   63SPK
C
      64SPK
      COMPUTE AN ESTIMATE OF THE RELATIVE ERROR
\boldsymbol{C}
                                                                                   65SPK
\boldsymbol{C}
      IN THE COMPUTED SOLUTION.
                                                                                   66SPK
C
       -------
                                                                                   67SPK
      CALL ERESTS ( RELERR, S )
                                                                                   68SPK
\boldsymbol{C}
                                                                                   69SPK
\boldsymbol{C}
       70SPK
C
      OBTAIN STATISTICS.
                                                                                   71SPK
\boldsymbol{C}
      _____
                                                                                   72SPK
      CALL STATSA
                                                                                   73SPK
\boldsymbol{C}
                                                                                    74SPK
\boldsymbol{C}
                                                                                    75SPK
\boldsymbol{C}
      COMPUTE THE ACTUAL RELATIVE ERROR IN THE SOLUTION
                                                                                    76 SPK
\boldsymbol{C}
      SINCE THE TRUE SOLUTION IS KNOWN.
                                                                                    77SPK
C
       _____
                                                                                    78SPK
      ERROR = ZERO
                                                                                    79SPK
      DO 300 I = 1, 10
                                                                                    80 SPK
           ERROR = AMAX1(ERROR, ABS(S(I)-ONE))
                                                                                    81 SPK
  300 CONTINUE
                                                                                    82SPK
      WRITE (IPRNTS, 11) ERROR
                                                                                    8 3 S P K
                                                                 , 1PE15.5 )
   11 FORMAT (/10X, 35HMAXIMUM ERROR
                                                                                    84SPK
\boldsymbol{C}
                                                                                    85SPK
\boldsymbol{C}
                                                                                    86SPK
\boldsymbol{C}
       INPUT A NEW RIGHT HAND SIDE VECTOR.
                                                                                    87SPK
\boldsymbol{C}
       88SPK
      DO \downarrow 0.0 I = 1, 1.0 CALL INBI ( I, FOUR, S )
                                                                                    89 SPK
                                                                                    90SPK
  400 CONTINUE
                                                                                    91SPK
       CALL INBI ( 1, TWO, S )
                                                                                    9 2 S P K
       CALL INBI ( 10, TWO, S )
                                                                                    93SPK
                                                                                    94SPK
\boldsymbol{C}
                                                                                    95SPK
       PERFORM ANOTHER SOLVE.
\boldsymbol{C}
                                                                                    96SPK
\boldsymbol{C}
                                                                                    97SPK
       CALL SOLVES (S)
                                                                                    98SPK
\boldsymbol{C}
                                                                                    99SPK
\boldsymbol{C}
                                                                                   100SPK
       ______
C
       OBTAIN STATISTICS.
                                                                                   101SPK
C
       -----
                                                                                   102SPK
       CALL STATSA
                                                                                   103SPK
\boldsymbol{C}
                                                                                   104SPK
\boldsymbol{C}
       _______
                                                                                   105SPK
\boldsymbol{C}
       COMPUTE THE ACTUAL RELATIVE ERROR.
                                                                                   106SPK
C
       107SPK
       ERROR - ZERO
                                                                                   108SPK
       DO 500 I = 1, 10
                                                                                   109SPK
           ERROR = AMAX1(ERROR, ABS(S(I)-TWO))
                                                                                   110SPK
   500 CONTINUE
                                                                                   111SPK
       WRITE (IPRNTS, 11) ERROR
                                                                                   112SPK
                                                                                   113SPK
C
                                                                                   114SPK
       STOP
       END
                                                                                   115SPK
```

```
****** UNIVERSITY OF WATERLOO
****** SPARSE MATRIX PACKAGE
******* LAST UPDATE JANUARY 1984
    OUTPUT UNIT FOR ERROR MESSAGES
    OUTPUT UNIT FOR STATISTICS
IJBEGN - BEGIN STRUCTURE INPUT ...
INIJ - INPUT OF ADJACENCY PAIRS ...
IJEND - END OF STRUCTURE INPUT ...
ORDRAS - ONE-WAY DISSECTION ORDERING ...
INAIJS - INPUT OF MATRIX COMPONENTS ...
INBI - INPUT OF RIGHT HAND SIDE ...
SOLVES - IMPLICIT BLOCK SOLVE ...
ERESTS - ERROR ESTIMATOR ...
STATSA - SYSTEM-A STATISTICS . . .
    SIZE OF STORAGE ARRAY (MAXSA)
                                             250
    NUMBER OF EQUATIONS
                                              10
    NUMBER OF OFF-DIAGONAL NONZEROS
                                              18
    TIME FOR ORDERING
                                              0.033
    STORAGE FOR ORDERING
                                              91.
    TIME FOR ALLOCATION
                                               0.017
    STORAGE FOR ALLOCATION
                                              94.
    STORAGE FOR SOLUTION
                                              94.
    TIME FOR FACTORIZATION
                                              0.
    TIME FOR SOLUTION
                                              0.017
    OPERATIONS IN FACTORIZATION
                                              18.
    OPERATIONS IN SOLUTION
    TIME FOR ESTIMATING RELATIVE ERROR
                                             0.067
    OPERATIONS IN ESTIMATING REL ERROR
                                             157.
    STORAGE FOR ESTIMATING REL ERROR
ESTIMATE OF RELATIVE ERROR
                                             144.
                                           1.785e-07
    TOTAL TIME REQUIRED
                                              0.133
    MAXIMUM STORAGE REQUIRED
                                             144.
    MAXIMUM ERROR
                                           1.19209e-07
INBI - INPUT OF RIGHT HAND SIDE . . .
SOLVES - IMPLICIT BLOCK SOLVE ...
     FACTORIZATION ALREADY DONE.
```

November 1984 40

STATSA - SYSTEM-A STATISTICS . . .

SIZE OF STORAGE ARRAY (MAXSA)	250
NUMBER OF EQUATIONS	10
NUMBER OF OFF-DIAGONAL NONZEROS	18
TIME FOR ORDERING	0.033
STORAGE FOR ORDERING	91.
TIME FOR ALLOCATION	0.017
STORAGE FOR ALLOCATION	94.
STORAGE FOR SOLUTION	94.
TIME FOR FACTORIZATION	0.
TIME FOR SOLUTION	0.
OPERATIONS IN FACTORIZATION	18.
OPERATIONS IN SOLUTION	<i>38</i> .
TOTAL TIME REQUIRED	0.050
MAXIMUM STORAGE REQUIRED	94.
MAXIMUM ERROR	2.38419e-07

Example 4

This example illustrates the use of the save/restart feature of SPARSPAK-A. After the factorization is computed, SAVEA is executed, which writes the current state of the computation on FORTRAN logical unit 3. In a second program the module RSTRTA is executed to read the information from unit 3, and the computation resumes at the point at which SAVEA was invoked.

Program 1

```
C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = EX4A
                                                                  1 SPK
C (C) UNIVERSITY OF WATERLOO JANUARY 1984
                                                                  2 SPK
                                                                  3 S P K
4 SPK
             MAINLINE PROGRAM
                                                                  5 S P K
C.....
                                                                  6 S P K
                                                                  7SPK
C
                                                                  8SPK
C
     FILE REQUIREMENT :
                                                                  9 SPK
C
        --- UNIT 3 - FOR SAVEA (SHOULD NOT BE DESTROYED).
                                                                 10SPK
                                                                 11SPK
C.
                                                                 12SPK
C
                                                                 1 3 S P K
                    , IERRA , MAXSA , MSGLVA, NVARS
     INTEGER
                                                                 14SPK
                     S(250)
     REAL
                                                                 15SPK
     REAL
                     FOUR , ONE
                                 . RELERR
                                                                 16SPK
C
                                                                 17SPK
       C * * * *
                                                                 18SPK
C
                                                                 19SPK
     COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS
                                                                 20 SPK
C
                                                                 21 SPK
     _____
C *
                                                                 22SPK
C
                                                                 23SPK
\boldsymbol{C}
                                                                 24SPK
C
     INITIALIZE SPARSPAK-A.
                                                                  25 SPK
C
     26 SPK
                                                                 27SPK
     CALL SPRSPK
     MAXSA = 250
                                                                 285PK
C
                                                                  29 S P K
\boldsymbol{C}
                                                                  30 SPK
\boldsymbol{C}
     INPUT STRUCTURE.
                                                                 31SPK
\boldsymbol{C}
     . . . . . . . . . . . . . . . . . . .
                                                                 32SPK
     CALL IJBEGN
                                                                 33SPK
     DO 100 I = 2, 10
                                                                 34SPK
             INIJ ( I, I-1, S )
         CALL
                                                                  35SPK
                                                                 36SPK
  100 CONTINUE
     CALL IJEND (S)
                                                                  37SPK
C
                                                                  38SPK
                                                                 39SPK
C
     DETERMINE SYMMETRIC ORDERING.
                                                                  40SPK
C
                                                                  A1SPK
     CALL ORDRA1 (S)
                                                                  42SPK
\boldsymbol{C}
                                                                  43SPK
                                                                  44SPK
C
     C
     INPUT NUMERICAL VALUES.
                                                                  45SPK
     46SPK
     ONE = 1.0E0
                                                                  47SPK
     FOUR - 4.0E0
                                                                  48SPK
     DO 200 I = 1, 10
IF (I.GT. 1) CALL INAIJ1 (I, I-1, -ONE, S)
                                                                  49SPK
                                                                  50SPK
```

```
CALL INAIJ1 ( I, I, FOUR, S )
                                                                                        51SPK
  200 CONTINUE
                                                                                        5 2 S P K
C
                                                                                        5 8 S P K
C
       -----
                                                                                        54SPK
C
       PERFORM NUMERICAL FACTORIZATION.
                                                                                        55SPK
\boldsymbol{C}
       -----
                                                                                        5 6 S P K
       CALL SOLVE1 (S)
                                                                                        57SPK
                                                                                        58SPK
\boldsymbol{C}
       -----
                                                                                        59SPK
C
       COMPUTE AN ESTIMATE OF THE RELATIVE ERROR
                                                                                        60SPK
\boldsymbol{C}
       IN THE COMPUTED SOLUTION.
                                                                                        61SPK
\boldsymbol{C}
                                                                                        6 2 S P K
       CALL EREST1 ( RELERR, S )
                                                                                        63SPK
\boldsymbol{C}
                                                                                        64SPK
C
                                                                                        65SPK
\boldsymbol{C}
       OBTAIN STATISTICS.
                                                                                        66 SPK
C
       67SPK
       CALL STATSA
                                                                                        68SPK
\boldsymbol{C}
                                                                                        69SPK
\boldsymbol{C}
                                                                                        70SPK
       SAVE CURRENT STATE OF THE COMPUTATION.
C
                                                                                        71 SPK
\boldsymbol{C}
                                                                                        72 SPK
       CALL SAVEA ( 3, S )
                                                                                        73SPK
\boldsymbol{C}
                                                                                        74SPK
       STOP
                                                                                        75SPK
       END
                                                                                        76 SPK
```

```
****** UNIVERSITY OF WATERLOO
******** SPARSE MATRIX PACKAGE
*******
           (SPARSPAK)
               RELEASE 3
********* (C) JANUARY 1984
********** ANSI FORTRAN
****** SINGLE PRECISION
****** LAST UPDATE JANUARY 1984
    OUTPUT UNIT FOR ERROR MESSAGES
    OUTPUT UNIT FOR STATISTICS
IJBEGN - BEGIN STRUCTURE INPUT ...
INIJ - INPUT OF ADJACENCY PAIRS ...
IJEND - END OF STRUCTURE INPUT ...
ORDRA1 - RCM ORDERING ...
INAIJ1 - INPUT OF MATRIX COMPONENTS ...
SOLVE1 - ENVELOPE SOLVE ...
    NO RIGHT HAND SIDE PROVIDED,
     SOLUTION WILL BE ALL ZEROS.
EREST1 - ERROR ESTIMATOR ...
STATSA - SYSTEM-A STATISTICS ...
```

SIZE OF STORAGE ARRAY (MAXSA)	250
NUMBER OF EQUATIONS	10
NUMBER OF OFF-DIAGONAL NONZEROS	18
TIME FOR ORDERING	0.
STORAGE FOR ORDERING	60.
TIME FOR ALLOCATION	0.017
STORAGE FOR ALLOCATION	60.
STORAGE FOR SOLUTION	70.
TIME FOR FACTORIZATION	0.017
TIME FOR SOLUTION	0.
OPERATIONS IN FACTORIZATION	18.
OPERATIONS IN SOLUTION	0.
TIME FOR ESTIMATING RELATIVE ERROR	0.033
OPERATIONS IN ESTIMATING REL ERROR	160.
STORAGE FOR ESTIMATING REL ERROR	90.
ESTIMATE OF RELATIVE ERROR	1.785e-07
TOTAL TIME REQUIRED	0.067
MAXIMUM STORAGE REQUIRED	90

SAVEA - SAVE STORAGE VECTOR ...

Program 2

```
C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME - EXAB
                                                                            1 SPK
C (C) UNIVERSITY OF WATERLOO JANUARY 1984
                                                                            2 SPK
                                                                            3 SPK
4 SPK
C****** MAINLINE PROGRAM
                                                                            5 SPK
                                                                            6 SPK
                                                                            7SPK
                                                                            8SPK
\boldsymbol{C}
     FILE REQUIREMENT:
                                                                            9 SPK
         --- UNIT 3 - FOR RSTRTA.
                                                                           10SPK
                                                                           11SPK
12SPK
C
                                                                           13SPK
                       , IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA ,
      INTEGER
                                                                           14SPK
                 MSGLVA, NVARS
     1
                                                                           15SPK
      REAL
                 MCHEPS, RATIOL, RATIOS, TIME
                                                                           16SPK
                        S(250)
      REAL
                                                                           17SPK
                                     , TWO , ZERO
      REAL
                        ERROR , ONE
                                                                           18SPK
C
                                                                            19SPK
           C
                                                                           20SPK
                                                                           21SPK
      COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS
COMMON /SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
MCHEPS, TIME
                                                                           2 2 S P K
                                                                            23 SPK
                                                                            24SPK
C
                                                                            25 SPK
\boldsymbol{C}
                                                                            26 SPK
\boldsymbol{C}
                                                                            27SPK
C
                                                                            28SPK
\boldsymbol{C}
      INITIALIZE SPARSPAK-A.
                                                                            29 SPK
C
                                                                            30SPK
      CALL SPRSPK
                                                                            31 SPK
      MAXSA = 250
                                                                            32 SPK
\boldsymbol{C}
                                                                            33SPK
\boldsymbol{C}
                                                                            34SPK
\boldsymbol{C}
      RESTORE STATE OF COMPUTATION.
                                                                            35SPK
\boldsymbol{C}
                                                                            36 SPK
      CALL RSTRTA ( 3, S )
                                                                            37SPK
```

November 1984

```
38SPK
\boldsymbol{C}
       -----
                                                                                            39SPK
       INPUT RIGHT HAND SIDE VECTOR.
C
                                                                                            40SPK
       _______
                                                                                            41SPK
       ZERO = 0.0E0
                                                                                            42SPK
       ONE = 1.0E0
                                                                                            43SPK
       TWO = 2.0E0
                                                                                            11SPK
       DO 100 I = 1, 10
CALL INBI ( I, TWO, S )
                                                                                            45SPK
                                                                                            46SPK
  100 CONTINUE
                                                                                            47SPK
       CALL INBI ( 1, ONE, S )
CALL INBI ( 10, ONE, S )
                                                                                            48SPK
                                                                                            49SPK
\boldsymbol{C}
                                                                                            50 SPK
\boldsymbol{C}
                                                                                            51SPK
\boldsymbol{C}
       PERFORM NUMERICAL SOLUTION.
                                                                                            5 2 S P K
       ......
C
                                                                                            53SPK
       CALL SOLVE1 (S)
                                                                                            54SPK
\boldsymbol{C}
                                                                                            55SPK
\boldsymbol{C}
                                                                                            5 6 S P K
       OBTAIN STATISTICS.
\boldsymbol{C}
                                                                                            57SPK
\boldsymbol{C}
                                                                                            58SPK
       CALL STATSA
                                                                                            59SPK
C
                                                                                            60SPK
C
                                                                                            61 SPK
      . COMPUTE THE ACTUAL RELATIVE ERROR IN THE COMPUTED SOLUTION
                                                                                            6 2 S P K
\boldsymbol{C}
       SINCE THE TRUE SOLUTION IS KNOWN.
                                                                                            6 3 S P K
C
                                                                                            64SPK
       ERROR = ZERO
                                                                                            65SPK
       DO 200 I = 1, 10
                                                                                             6 6 S P K
            ERROR = AMAX1(ERROR, ABS(S(I) - ONE))
                                                                                            67SPK
  200 CONTINUE
                                                                                            68SPK
       WRITE (IPRNTS, 11) ERROR
                                                                                             69SPK
    11 FORMAT (/10X, $5HMAXIMUM ERROR
                                                                        , 1PE15.5 )
                                                                                            70SPK
\boldsymbol{C}
                                                                                             71 SPK
       STOP
                                                                                             72 SPK
       END
                                                                                            73SPK
```

SIZE OF STORAGE ARRAY (MAXSA)	250
NUMBER OF EQUATIONS	10
NUMBER OF OFF-DIAGONAL NONZEROS	18
TIME FOR ORDERING	0.
STORAGE FOR ORDERING	60.
TIME FOR ALLOCATION	0.017
STORAGE FOR ALLOCATION	<i>60</i> .
STORAGE FOR SOLUTION	70.
TIME FOR FACTORIZATION	0.017
TIME FOR SOLUTION	0.017
OPERATIONS IN FACTORIZATION	18.
OPERATIONS IN SOLUTION	<i>38</i> .
TOTAL TIME REQUIRED	0.050
MAXIMUM STORAGE REQUIRED	70.
MAXIMUM ERROR	1.19209e-07

46

Example 5

This example consists of four runs of essentially the same program, illustrating how the SAVEA and RSTRTA modules can be used to avoid repeating successfully completed computations when the execution cannot proceed further because of lack of working storage. In the first run, MAXSA was too small to accommodate the structure, and a message was printed indicating that MAXSA must be at least 999 in order to input the structure. A second run with MAXSA=999 was executed, and the structure was successfully input; however, the ORDRA5 module could not execute because MAXSA was less than 1400. The module SAVEA was then executed and the run terminated.

The third run had MAXSA=2500, and the ordering and storage allocation were successfully performed. However, ORDRA5 terminated with an error because it detected that too little storage was available for the numerical computation (SOLVE5), so SAVEA was again executed. Finally, the last run was executed with MAXSA set to 2509 (the maximum value, printed in the third run), and the solution to the problem was obtained.

Note:

The following examples were run using a single precision version of SPARSPAK-A on a DEC VAX 11/780 computer. The working storage required will therefore be different if a different version of SPARSPAK-A or a different computer is used.

Program 1

```
C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = EX5A
                                                                                         1 SPK
  (C) UNIVERSITY OF WATERLOO JANUARY 1984
                                                                                         2 SPK
                                                                                         3 SPK
                                                                                         4 SPK
                  MAINLINE
                                        PROGRAM
                                                                                         5 S P K
                                                                                         6 SPK
C
                                                                                         8 SPK
\boldsymbol{C}
      FILE REQUIRMENT
                                                                                         9 SPK
\boldsymbol{C}
          --- UNIT 3 - FOR SAVEA AND RSTRTA (SHOULD NOT BE
\boldsymbol{C}
                         DESTROYED).
C
                                                                                        1 2 S P K
C * *
                                                                                        13SPK
                                                                                        14SPK
       INTEGER
                             IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA ,
                                                                                        15SPK
                   MSGLVA, NVARS
                                                                                        16SPK
       REAL
                   MCHEPS, RATIOL, RATIOS, TIME
                                                                                        17SPK
                            S(900)
       REAL
                                                                                        18SPK
                                                      , TWO
                                                               , ZERO
       REAL
                            ERROR , FOUR , ONE
                                                                                        19SPK
                                                                                        20SPK
C^{3}
                                                                                        21 SPK
C
                                                                                        2 2 S P K
                /SPAUSR/
       COMMON
                            MSGLVA, IERRA, MAXSA, NVARS
                                                                                        23SPK
                            IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
       COMMON
                /SPKSYS/
                                                                                        2 ASPK
                            MCHEPS TIME
                                                                                        25SPK
Ċ
                                                                                        26 SPK
C * *
                                                                                        27SPK
\boldsymbol{C}
                                                                                        28 SPK
C
                                                                                        29SPK
       INITIALIZE SPARSPAK-A.
                                                                                        30SPK
```

```
31SPK
C
                                                                              32SPK
      CALL SPRSPK
                                                                              33SPK
      MAXSA - 900
                                                                              34SPK
C
C
                                                                              35SPK
      INPUT STRUCTURE.
                                                                              36SPK
C
                                                                              37SPK
C
      CALL IJBEGN
                                                                              38SPK
      DO 100 I = 2, 200
CALL INIJ ( I, I-1, S )
                                                                              39SPK
                                                                               40SPK
                                                                               41SPK
  100 CONTINUE
      CALL IJEND (S)
IF (IERRA .EQ. 0) GO TO 200
                                                                               42SPK
                                                                              43SPK
          CALL STATSA
                                                                              44SPK
          STOP
                                                                               45SPK
                                                                              46SPK
  200 CONTINUE
                                                                               47SPK
C
                                                                              48SPK
C
      DETERMINE SYMMETRIC ORDERING.
                                                                               49SPK
C
                                                                               50SPK
      CALL ORDRAS ( S )
IF ( IERRA .EQ. 0 ) GO TO $00
CALL SAVEA ( S, S )
                                                                               51 SPK
                                                                               52SPK
                                                                               53SPK
          CALL
                STATSA
                                                                               54SPK
          STOP
                                                                               55SPK
C
                                                                               5 8 S P K
  300 CONTINUE
                                                                               57SPK
C
      58SPK
\boldsymbol{C}
      INPUT NUMERICAL VALUES.
                                                                               59SPK
C
                                                                               60SPK
      61 SPK
      ZERO = 0.0E0
      ONE = 1.0E0
TWO = 2.0E0
                                                                               6 2 S P K
                                                                               63SPK
      FOUR = 4.0E0
                                                                               8 I SPK
      DO 400 I = 1, 200

IF (I.GT. 1) CALL INAIJ5 (I, I-1, -ONE, S)

CALL INBI (I, TWO, S)
                                                                               65SPK
                                                                               67SPK
                                                                               68SPK
  400 CONTINUE
      CALL INBI ( 1, ONE, S )
CALL INBI ( 200, ONE, S )
                                                                               69SPK
                                                                               70SPK
C
                                                                               71SPK
                                                                               72SPK
C
C
      PERFORM NUMERICAL FACTORIZATION AND SOLUTION.
                                                                               73SPK
C
       74SPK
      CALL SOLVE5 (S)
                                                                               75SPK
                                                                               76SPK
C
                                                                               77SPK
C
       _ . . . . . . . . . . . . . . . . .
C
      OBTAIN STATISTICS.
                                                                               78 SPK
C
      79 S P K
                                                                               80SPK
      CALL STATSA
C
                                                                               81SPK
C
                                                                               8 2 S P K
      COMPUTE THE ACTUAL RELATIVE ERROR IN THE COMPUTED SOLUTION
                                                                               83SPK
\boldsymbol{C}
                                                                               84SPK
C
       SINCE THE TRUE SOLUTION IS KNOWN.
                                                                               85SPK
C
       86SPK
       ERROR - ZERO
      DO 500 I = 1, 200
                                                                               87SPK
                                                                               885PK
           ERROR = AMAX1(ERROR, ABS(S(I)-ONE))
                                                                               89 S PK
  500 CONTINUE
      WRITE (IPRNTS, 11) ERROR
                                                              , 1PE15.5 )
    11 FORMAT (/10X, 35HMAXIMUM ERROR
                                                                               92SPK
C
                                                                               93SPK
       STOP
                                                                               9 4 S P K
       END
```

```
****** UNIVERSITY OF WATERLOO
****** SPARSE MATRIX PACKAGE
********** (SPARSPAK)
               RELEASE 3
********* (C) JANUARY 1984
********* ANSI FORTRAN
****** SINGLE PRECISION
******* LAST UPDATE JANUARY 1984
    OUTPUT UNIT FOR ERROR MESSAGES
    OUTPUT UNIT FOR STATISTICS
IJBEGN - BEGIN STRUCTURE INPUT ...
      - INPUT OF ADJACENCY PAIRS ...
IJEND - END OF STRUCTURE INPUT ...
EMSGA - SYSTEM-A ERROR ...
     I JEND - ERROR NUMBER
                                            116
     INSUFF. STORAGE FOR ADJ. STRUCTURE.
                                            999
    MAXSA MUST AT LEAST BE
STATSA - SYSTEM-A STATISTICS . . .
    NO STATISTICS AVAILABLE.
```

Program 2

```
C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = EX5B
                                                         1 SPK
C (C) UNIVERSITY OF WATERLOO JANUARY 1984
                                                         2 SPK
     3 SPK
C************************
                                                         4 SPK
5 SPK
                                                         6 SPK
7SPK
                                                         8SPK
\boldsymbol{C}
C
   FILE REQUIREMENT :
                                                         9 SPK
      --- UNIT 3 - FOR SAVEA AND RSTRTA (SHOULD NOT BE
C
                                                        10SPK
                DESTROYED).
\boldsymbol{C}
                                                        11SPK
                                                        1 2 S P K
\boldsymbol{C}
18SPK
                                                        14SPK
            I , IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA , MSGLVA, NVARS MCHEPS, RATIOL, RATIOS, TIME
                                                        15SPK
    INTEGER
                                                        16SPK
                                                         17SPK
    REAL
    REAL
                  S(999)
                                                        18SPK
                                        , ZERO
                                                        19SPK
                  ERROR , FOUR , ONE , TWO
    REAL
                                                        20 SPK
\boldsymbol{C}
         *********************
                                                        21 SPK
```

```
C
                                                                                    2 2 S P K
      COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS
COMMON /SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIO
                                                                                    235PK
                          IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
                                                                                    2 4 S P K
                          MCHEPS, TIME
                                                                                    25SPK
C
                                                                                    26SPK
C * *
                                                                                    275PK
                                                                                    285PK
C
                                                                                    29 S P K
C
      INITIALIZE SPARSPAK-A.
                                                                                    30SPK
C
                                                                                    31 SPK
      CALL SPRSPK
                                                                                    32SPK
      MAXSA - 999
                                                                                    33SPK
C
                                                                                    34SPK
      C
                                                                                    35SPK
       INPUT STRUCTURE.
                                                                                    36SPK
C
       . . . . . . . . . . . . . . . . . . .
                                                                                    37SPK
      CALL I JBEGN
                                                                                    38SPK
      DO 100 I = 2, 200
CALL INIJ ( I, I-1, S )
                                                                                    39SPK
                                                                                    40SPK
  100 CONTINUE
                                                                                    41SPK
      CALL IJEND (S)
IF (IERRA .EQ. 0) GO TO 200
                                                                                    12SPK
                                                                                    43SPK
           CALL STATSA
                                                                                    44SPK
           STOP
                                                                                    45SPK
                                                                                    18SPK
  200 CONTINUE
                                                                                    47SPK
C
                                                                                    48SPK
\boldsymbol{C}
      DETERMINE SYMMETRIC ORDERING.
                                                                                    49SPK
C
       50SPK
      CALL ORDRAS (S)
IF (IERRA .EQ. 0) GO TO $00
CALL SAVEA (S, S)
CALL STATSA
                                                                                    51SPK
                                                                                    5 2 S P K
                                                                                    53SPK
                                                                                    54SPK
           STOP
                                                                                    55SPK
                                                                                    56SPK
  300 CONTINUE
                                                                                    57SPK
C
       58SPK
C
       INPUT NUMERICAL VALUES.
                                                                                    59SPK
C
       60SPK
       ZERO = 0.0E0
                                                                                    61SPK
       ONE = 1.0E0
TWO = 2.0E0
                                                                                    6 2 S P K
                                                                                    63SPK
       FOUR - 4.0E0
                                                                                    64SPK
      DO 400 I = 1, 200

IF ( I .GT. 1 ) CALL INAIJ5 ( I, I-1, -ONE, S )

CALL INBI ( I, TWO, S )
                                                                                    65SPK
                                                                                    66SPK
                                                                                    67SPK
  100 CONTINUE
                                                                                    68SPK
       CALL INBI ( 1, ONE, S )
                                                                                    69SPK
       CALL INBI ( 200, ONE, S )
                                                                                    70SPK
C
                                                                                    71SPK
C
                                                                                    72SPK
C
       PERFORM NUMERICAL FACTORIZATION AND SOLUTION.
                                                                                    73SPK
C
       74SPK
       CALL SOLVE5 (S)
                                                                                    75SPK
C
                                                                                    76SPK
C
       77SPK
C
       OBTAIN STATISTICS.
                                                                                    78SPK
C
       79SPK
       CALL STATSA
                                                                                    80SPK
\boldsymbol{C}
                                                                                    81 SPK
C
                                                                                    82SPK
\boldsymbol{C}
       COMPUTE THE ACTUAL RELATIVE ERROR IN THE COMPUTED SOLUTION
                                                                                    88SPK
       SINCE THE TRUE SOLUTION IS KNOWN.
C
                                                                                    8 4 S P K
                                                                                    85SPK
       ERROR = ZERO
                                                                                    86SPK
       DO 500 I = 1, 200
                                                                                    87SPK
```

```
ERROR = AMAX1(ERROR, ABS(S(I)-ONE))

500 CONTINUE

WRITE (IPRNTS, 11) ERROR

11 FORMAT (/10X, $5HMAXIMUM ERROR

C

STOP

END

88SPK
89SPK
90SPK
90SPK
91SPK
92SPK
92SPK
94SPK
```

```
******* UNIVERSITY OF WATERLOO
******* SPARSE MATRIX PACKAGE
            ( S P A R S P A K )
RELEASE 3
******* (C) JANUARY 1984
******** ANSÍ FORTRAN
******* SINGLE PRECISION
****** LAST UPDATE JANUARY 1984
     OUTPUT UNIT FOR ERROR MESSAGES
     OUTPUT UNIT FOR STATISTICS
IJBEGN - BEGIN STRUCTURE INPUT ...
     - INPUT OF ADJACENCY PAIRS ...
INIJ
IJEND - END OF STRUCTURE INPUT ...
ORDRA5 - NESTED DISSECTION ORDERING ...
EMSGA - SYSTEM-A ERROR ...
            (X=A,B AND I=1,2,3,4,5,6)
- ERROR NUMBER
                                             124
     INSUFF. STORAGE FOR ORDERING.
     MAXSA MUST AT LEAST BE
                                            1400
SAVEA - SAVE STORAGE VECTOR ...
STATSA - SYSTEM-A STATISTICS . . .
     SIZE OF STORAGE ARRAY (MAXSA)
                                                999
     NUMBER OF EQUATIONS
                                                200
     NUMBER OF OFF-DIAGONAL NONZEROS
                                                398
     TOTAL TIME REQUIRED
                                                 0.
     MAXIMUM STORAGE REQUIRED
                                                  0.
```

Program 3

1 SPK 2 SPK 3 SPK

November 1984

```
1SPK
C****** MAINLINE PROGRAM
                                                                           5 SPK
                                                                           6 SPK
7SPK
C
                                                                           8SPK
     FILE REQUIRMENT :
C
                                                                           9 S P K
C
       --- UNIT 3 - FOR SAVEA AND RSTRTA (SHOULD NOT BE
                                                                          10SPK
C
                     DESTROYED).
                                                                          11SPK
C
                                                                          12SPK
C
                                                                          13SPK
C
                                                                          14SPK
                      , IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA ,
     INTEGER
                                                                          15SPK
                MSGLVA, NVARS
                                                                          16SPK
     REAL
                MCHEPS, RATIOL, RATIOS, TIME
                                                                          17SPK
                       S(2500)
     REAL
                                                                          18SPK
     REAL
                       ERROR , FOUR , ONE , TWO , ZERO
                                                                         19SPK
C
                                                                          20SPK
C *
                                                                          21SPK
C
                                                                          22SPK
     COMMON /SPAUSR/ MSGLVA, IERRA, MAXSA, NVARS
COMMON /SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
                                                                          23SPK
                                                                         24SPK
                       MCHEPS, TIME
                                                                         25SPK
C
                                                                          26 SPK
         C *
                                                                          27SPK
C
                                                                          285PK
C
                                                                          29SPK
C
      INITIALIZE SPARSPAK-A.
                                                                          30SPK
C
                                                                          31SPK
      CALL SPRSPK
                                                                          32SPK
     MAXSA - 2500
                                                                          33SPK
C
                                                                          34SPK
C
                                                                          35SPK
C
      RESTORE STATE OF COMPUTATION.
                                                                          36SPK
\boldsymbol{C}
                                                                          37SPK
      CALL RSTRTA ( 3, S )
                                                                          385PK
C
                                                                          39SPK
C
                                                                          40SPK
\boldsymbol{C}
      DETERMINE SYMMETRIC ORDERING.
                                                                          41SPK
\boldsymbol{C}
      42SPK
      CALL ORDRAS ( S )
IF ( IERRA EQ. 0 ) GO TO 100
CALL SAVEA ( S, S )
                                                                          43SPK
                                                                          44SPK
                                                                          45SPK
          CALL
               STATSA
                                                                          46SPK
          STOP
                                                                          47SPK
                                                                          48SPK
  100 CONTINUE
                                                                          49SPK
                                                                          50SPK
\boldsymbol{c}
      INPUT NUMERICAL VALUES.
                                                                          51SPK
\boldsymbol{C}
      52SPK
      ZERO = 0.0E0
                                                                         5 3 S P K
      ONE = 1.0E0
TWO = 2.0E0
                                                                          54SPK
                                                                          55SPK
      FOUR = 4.0E0
                                                                          56SPK
      DO 200 I = 1, 200

IF ( I .GT. 1 ) CALL INAIJ5 ( I, I-1, -ONE, S )

CALL INAIJ5 ( I, I, FOUR, S )
                                                                          5 7 S P K
                                                                          58SPK
                                                                          59SPK
          CALL INBI ( I, TWO, S )
                                                                          60SPK
  200 CONTINUE
                                                                          61SPK
      CALL INBI ( 1, ONE, S )
                                                                          625PK
      CALL INBI ( 200, ONE, S )
                                                                          63SPK
C
                                                                          64SPK
\boldsymbol{C}
                                                                          65SPK
C
      PERFORM NUMERICAL FACTORIZATION AND SOLUTION.
                                                                          66SPK
C
      67SPK
      CALL SOLVES (S)
                                                                          68SPK
C
                                                                          69SPK
```

```
C
                                                                                              70SPK
       OBTAIN STATISTICS.
\boldsymbol{C}
                                                                                              71SPK
C
                                                                                              72SPK
       CALL STATSA
                                                                                              78SPK
C
                                                                                              74SPK
C
                                                                                              75SPK
       COMPUTE THE ACTUAL RELATIVE ERROR IN THE COMPUTED SOLUTION
                                                                                              76SPK
\boldsymbol{C}
       SINCE THE TRUE SOLUTION IS KNOWN.
                                                                                               77SPK
\boldsymbol{C}
                                                                                               78SPK
       ERROR - ZERO
                                                                                               79 SPK
       DO 300 I = 1, 200
                                                                                               80SPK
            ERROR = AMAX1(ERROR, ABS(S(I)-ONE))
                                                                                               81 SPK
  300 CONTINUE
                                                                                               82SPK
    WRITE (IPRNTS,11) ERROR
11 FORMAT (/10X, $5HMAXIMUM ERROR
                                                                                              , 1PE15.5 )
                                                                                              81SPK
\boldsymbol{C}
                                                                                              85SPK
       STOP
                                                                                              86SPK
       END
                                                                                              87SPK
```

```
****** UNIVERSITY OF WATERLOO
RELEASE 3
******* (C) JANUARY 1984
****** ANSI FORTRAN
******* SINGLE PRECISION
******** LAST UPDATE JANUARY 1984
     OUTPUT UNIT FOR ERROR MESSAGES
     OUTPUT UNIT FOR STATISTICS
RSTRTA - RESTART SYSTEM-A . . .
ORDRA5 - NESTED DISSECTION ORDERING . . .
EMSGA - SYSTEM-A ERROR ...
             (X=A, B \ AND \ I=1, 2, 3, 4, 5, 6)
     ORDRX I
            - ERROR NUMBER
                                             127
     INSUFF. STORAGE FOR SOLVEI.
     MAXSA MUST AT LEAST BE
                                            2509
SAVEA - SAVE STORAGE VECTOR . . .
STATSA - SYSTEM-A STATISTICS ...
     SIZE OF STORAGE ARRAY (MAXSA)
                                               2500
     NUMBER OF EQUATIONS
                                                200
     NUMBER OF OFF-DIAGONAL NONZEROS
                                                 398
     TIME FOR ORDERING
                                                 0.167
     STORAGE FOR ORDERING
                                              1400.
     TIME FOR ALLOCATION
                                                 0.050
     STORAGE FOR ALLOCATION TOTAL TIME REQUIRED
                                               2324.
                                                  0.217
     MAXIMUM STORAGE REQUIRED
                                              2324.
```

Program 4

```
C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = EX5D
                                                              1 SPK
C (C) UNIVERSITY OF WATERLOO JANUARY 1984
                                                              2 S P K
                                                              3 SPK
4SPK
C***** MAINLINE PROGRAM
                                                              5 SPK
6 SPK
c.....
                                                              7SPK
C
                                                              8 SPK
\boldsymbol{C}
    FILE REQUIREMENT :
                                                              9 SPK
       --- UNIT 3 - FOR SAVEA AND RSTRTA.
C
                                                             10SPK
                                                             11SPK
C.....
                                                             12SPK
                                                             13SPK
             I , IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA , MSGLVA, NVARS
     INTEGER
                                                             1 4 SPK
                                                             15SPK
             MCHEPS, RATIOL, RATIOS, TIME
    REAL
                                                             16SPK
    REAL
                   S(2509)
                                                             175PK
     REAL
                   ERROR , FOUR , ONE , TWO , ZERO
                                                             18SPK
C
                                                             19SPK
      C *
                                                             20 SPK
                                                             21SPK
    COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS
COMMON /SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
MCHEPS, TIME
                                                             2 2 S P K
                                                             23SPK
                                                             24SPK
C
                                                             25 S P K
       C*
                                                             26SPK
C
                                                             275PK
C
                                                             28SPK
C
                                                             29 S P K
     INITIALIZE SPARSPAK-A.
C
     ......
                                                             30SPK
     CALL SPRSPK
                                                             315PK
     MAXSA = 2509
                                                             3 2 S P K
C
                                                             33SPK
C
                                                             SASPK
     RESTORE STATE OF COMPUTATION.
                                                             35SPK
C
     365PK
                                                             37SPK
     CALL RSTRTA ( 3, S )
C
                                                             38SPK
                                                             39SPK
C
     C
     DETERMINE SYMMETRIC ORDERING.
                                                             40SPK
     41 SPK
     CALL ORDRAS (S)
                                                             42SPK
     IF ( IERRA .EQ. 0 ) GO TO 100
CALL SAVEA ( 3, S )
                                                             43SPK
                                                              44SPK
        CALL
            STATSA
                                                              45SPK
        STOP
                                                              46SPK
                                                              17SPK
C
  100 CONTINUE
                                                             48SPK
     ......
                                                              49SPK
C
     INPUT NUMERICAL VALUES.
                                                              50SPK
C
                                                              51 SPK
     5 2 S P K
     ZERO = 0.0E0
                                                              53SPK
     ONE = 1.0E0
     TWO = 2.0E0
                                                              54SPK
                                                              55SPK
     FOUR = 4.0E0
        200 I = 1, 200
IF ( I .GT. 1 ) CALL INAIJ5 ( I, I-1, -ONE, S )
CALL INAIJ5 ( I, I, FOUR, S )
                                                              56SPK
                                                              57SPK
                                                              58SPK
```

```
CALL INBI ( I, TWO, S )
                                                                              59SPK
  200 CONTINUE
                                                                              60SPK
      CALL INBI ( 1, ONE, S )
CALL INBI ( 200, ONE, S )
                                                                              61SPK
                                                                              62SPK
C
                                                                              63SPK
C
                                                                              64SPK
\boldsymbol{C}
      PERFORM NUMERICAL FACTORIZATION AND SOLUTION.
                                                                              65SPK
      ...........
C
                                                                              66SPK
      CALL SOLVE5 (S)
                                                                              67SPK
C
                                                                              68SPK
\boldsymbol{C}
      69SPK
C
      OBTAIN STATISTICS.
                                                                              70SPK
C
                                                                              71 SPK
      CALL STATSA
                                                                              72SPK
C
                                                                              78SPK
Ċ
      74SPK
      COMPUTE THE ACTUAL RELATIVE ERROR IN THE COMPUTED SOLUTION
\boldsymbol{C}
                                                                              75SPK
\boldsymbol{C}
      SINCE THE TRUE SOLUTION IS KNOWN.
                                                                              76SPK
\boldsymbol{C}
                                                                              77SPK
      ERROR = ZERO
                                                                              78SPK
         300 I = 1, 200
                                                                              79SPK
          ERROR = AMAX1(ERROR, ABS(S(I) - ONE))
                                                                              80SPK
  300 CONTINUE
                                                                              81SPK
      WRITE (IPRNTS, 11) ERROR
                                                                              82SPK
   11 FORMAT (/10X, 35HMAXIMUM ERROR
                                                             , 1PE15.5 )
                                                                              83SPK
\boldsymbol{C}
                                                                              84SPK
      STOP
                                                                              85SPK
      END
                                                                              86SPK
```

```
****** UNIVERSITY OF WATERLOO
****** SPARSE MATRIX PACKAGE
           ( S P A R S P A K )
RELEASE 3
           (C) JANUARY 1984
****** ANSI FORTRAN
****** SINGLE PRECISION
****** LAST UPDATE JANUARY 1984
     OUTPUT UNIT FOR ERROR MESSAGES
     OUTPUT UNIT FOR STATISTICS
RSTRTA - RESTART SYSTEM-A ...
ORDRA5 - NESTED DISSECTION ORDERING . . .
INAIJ5 - INPUT OF MATRIX COMPONENTS ...
     - INPUT OF RIGHT HAND SIDE . . .
INRI
SOLVE5 - GENERAL SPARSE SOLVE ...
STATSA - SYSTEM-A STATISTICS . . .
     SIZE OF STORAGE ARRAY (MAXSA)
                                              2509
     NUMBER OF EQUATIONS
                                               200
     NUMBER OF OFF-DIAGONAL NONZEROS
                                               398
                                                 0.167
     TIME FOR ORDERING
```

55

STORAGE FOR ORDERING	1400.
TIME FOR ALLOCATION	0.050
STORAGE FOR ALLOCATION	2324.
STORAGE FOR SOLUTION	2509.
TIME FOR FACTORIZATION	0.100
TIME FOR SOLUTION	0.050
OPERATIONS IN FACTORIZATION	953.
OPERATIONS IN SOLUTION	1168.
TOTAL TIME REQUIRED	0.367
MAXIMUM STORAGE REQUIRED	2509.

MAXIMUM ERROR

2.38419e-07

56

Example 6

This is a program to illustrate how one might use SPARSPAK-A to choose a method. The matrix is 300×300, it has nonzeroes on the diagonal, the first column and the last row. The structure of the matrix is input using IJBEGN, INIJ and IJEND, and then saved on FORTRAN unit 3. The modules ORDRA1, ORDRA3 and ORDRA5 are then executed, each one followed by a call to STATSA to obtain the storage information. Note that RSTRTA is called after execution of ORDRA1 and ORDRA3, to restore the package to the state that existed immediately after the structure inputting routines were executed. Note also that SAVEA could have been used after each ordering module (with different output unit numbers). After one of the methods was chosen, RSTRTA (with the appropriate unit number) could be used to initiate the computation, avoiding re-executing the ordering module corresponding to the method chosen.

Program

```
C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = EX6
C (C) UNIVERSITY OF WATERLOO
                          JANUARY 1984
MAINLINE PROGRAM
C
C
     FILE REQUIREMENT :
\boldsymbol{C}
       --- UNIT 3 - FOR SAVEA AND RSTRTA.
\boldsymbol{C}
      \boldsymbol{C}
     INTEGER
                   , IERRA , MAXSA , MSGLVA, NVARS
     REAL
                    S(7500)
\boldsymbol{C}
C *
C
     COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS
\boldsymbol{C}
     **************************************
\boldsymbol{C}
\boldsymbol{C}
\boldsymbol{C}
\boldsymbol{C}
     INITIALIZE SPARSPAK-A.
C
     CALL SPRSPK
     MAXSA = 7500
\boldsymbol{C}
C
     INPUT STRUCTURE.
     CALL I JBEGN
        100 I = 1, 300
             INIJ ( I, 1, S )
        CALL
        CALL
              INIJ ( 300, I, S )
  100 CONTINUE
     CALL IJEND (S)
\boldsymbol{C}
\boldsymbol{c}
C
     SAVE STRUCTURE INFORMATION.
```

1 SPK 2 SPK 3 SPK 4SPK 5 SPK 6 SPK 7SPK 8SPK 9 SPK 10SPK 11SPK 12SPK 13SPK 1 & SPK 15SPK 16SPK 17SPK 18SPK 19SPK 20 SPK 21 SPK 2 2 S P K 23 SPK 24SPK 25 SPK 26 SPK 27SPK 28 SPK 29 SPK 30 SPK 31 SPK 3 2 S P K 33SPK 34SPK 35SPK 36 SPK 37SPK 38SPK 39 SPK 40 SPK 41SPK

	CALL SAVEA (3, S)	•	42SPK
C			43SPK
C			4.4SPK
C	DETERMINE REVERSE CUTHILL-MCKEE ORDERING AND		45SPK
C	OBTAIN STATISTICS.		48SPK
C			47 <i>SPK</i>
	CALL ORDRA1 (S)	•	<i>485PK</i>
	CALL STATSA		49SPK
C			50SPK
C			51SPK
C	RESTORE STRUCTURE INFORMATION, DETERMINE ONE-WAY		5 2 S P K
C , .	DISSECTION ORDERING AND OBTAIN STATISTICS.		5
C			5 4 S P K
	CALL RSTRTA (3, S)		5
	CALL ORDRAS (S)		56SPK
	CALL STATSA		5 7 S P K
C			58SPK
C			5 9 S P K
C	RESTORE STRUCTURE INFORMATION, DETERMINE NESTED		60SPK
C	DISSECTION ORDERING AND OBTAIN STATISTICS.		6 1 SPK
C			6 2 S P K
	CALL RSTRTA (3, S)	1 to	 63SPK
	CALL ORDRAS (S)		64SPK
	CALL STATSA		65SPK
C			8 6 S P K
	STOP		67SPK
	END		68SPK

```
****** UNIVERSITY OF WATERLOO
    ***** SPARSE MATRIX PACKAGE
          (SPARSPAK)
               RELEASE 3
(C) JANUARY 1984
****** SINGLE PRECISION
****** LAST UPDATE JANUARY 1984
    OUTPUT UNIT FOR ERROR MESSAGES
    OUTPUT UNIT FOR STATISTICS
IJBEGN - BEGIN STRUCTURE INPUT ...
INIJ
      - INPUT OF ADJACENCY PAIRS ...
IJEND - END OF STRUCTURE INPUT ...
SAVEA - SAVE STORAGE VECTOR ...
ORDRA1 - RCM ORDERING . . .
STATSA - SYSTEM-A STATISTICS . . .
     SIZE OF STORAGE ARRAY (MAXSA)
                                              7500
    NUMBER OF EQUATIONS
NUMBER OF OFF-DIAGONAL NONZEROS
                                               300
                                              1194
     TIME FOR ORDERING
                                               0.217
     STORAGE FOR ORDERING
                                             2396.
```

TIME FOR ALLOCATION	0.017
STORAGE FOR ALLOCATION	2396.
STORAGE FOR SOLUTION	2398.
TOTAL TIME REQUIRED	0.233
MAXIMUM STORAGE REQUIRED	2396.
RSTRTA - RESTART SYSTEM-A	
ORDRAS - ONE-WAY DISSECTION ORDERING	
STATSA - SYSTEM-A STATISTICS	
SIZE OF STORAGE ARRAY (MAXSA)	7500
NUMBER OF EQUATIONS	300
NUMBER OF OFF-DIAGONAL NONZEROS	1194
TIME FOR ORDERING	0.300
STORAGE FOR ORDERING	3297.
TIME FOR ALLOCATION	0.117
STORAGE FOR ALLOCATION	3300.
STORAGE FOR SOLUTION	3002.
TOTAL TIME REQUIRED	0.417
MAXIMUM STORAGE REQUIRED	3300.
RSTRTA - RESTART SYSTEM-A	
ORDRA5 - NESTED DISSECTION ORDERING	
STATSA - SYSTEM-A STATISTICS	
SIZE OF STORAGE ARRAY (MAXSA)	7500
NUMBER OF EQUATIONS	300
NUMBER OF OFF-DIAGONAL NONZEROS	1194
TIME FOR ORDERING	0.217
STORAGE FOR ORDERING	2696.
TIME FOR ALLOCATION	0.083
STORAGE FOR ALLOCATION	3599.
STORAGE FOR SOLUTION	3301.
TOTAL TIME REQUIRED	0.300
MAXIMUM STORAGE REQUIRED	3599.

59

10. Appendix - implementation overview

In this section, we describe briefly the use of labelled common blocks in the internal implementation of SPARSPAK-A and the various methods of communication between modules.

10.1. User/module communication

As described in previous sections of this user guide, the user supplies a one-dimensional floating-point array S, from which all array storage is allocated. In particular, the interface allocates the first NEQNS storage locations in S for the solution vector of the linear system of equations. After all the interface modules for a particular method have been successfully executed, the user can retrieve the solution from these NEQNS locations.

There is one labelled common block SPAUSR that the user must provide, having four variables.

```
COMMON /SPAUSR/ MSGLVA, IERRA, MAXSA, NEQNS
```

The variable MAXSA is the declared size of the one-dimensional floating-point array S and it must be set by user at the beginning of his program. For each module in the interface that allocates storage (e.g. INIJ, IJEND, ORDRxi), MAXSA is used to make sure that there is enough storage to carry out the particular phase.

10.2. Module/module communication

There are several labelled common blocks used for communication among modules within the interface. Two important ones are the control block SPACON and the storage map block SPAMAP.

```
COMMON /SPACON/ STAGE, MXUSED, MXREQD, NVARS, NEDGES, METHOD, {and other method-related control variables}

COMMON /SPAMAP/ PERM, INVP, RHS, {and other method-related data structure pointers}
```

The control block has fifty integer variables and contains control information about the specific problem being solved. There are fifty variables in the storage map block, which keep the locations (origins in S) of the various arrays used in the particular storage scheme. These storage schemes differ in complexity across the methods, so the same storage map block must be used in the corresponding routines ORDRxi, INAIJi, INROWi, INMATi, SOLVEi, and ERESTi. An example is given below.

Storage allocation for the symmetric envelope method (ORDRA1)

10.3. Save and restart implementation

The SAVEA routine saves the control information in the control block, the storage pointers in the storage map block, as well as the storage vector S. In this way, the state of the computation can be re-established by executing the module RSTRTA, which restores the control block and the storage map block, and the storage vector S.

The variable MXUSED in the control block is used to avoid saving irrelevant data from S. After the successful completion of each phase, MXUSED is set to the maximum number of storage locations in S used thus far. It is then only necessary to save the first MXUSED locations of S whenever the routine SAVEA is called.

November 1984

Some operating systems allow a program to change the space it occupies in main storage during execution. Thus, in some installations the user of SPARSPAK-A may be able to dynamically increase or decrease the size of the working storage S. He can determine what the value of MAXSA should be by declaring the labelled common block SPACON in his mainline program, and examining the value of MXREQD. At the end of each successfully executed phase of the computation, MXREQD is set to the minimum value of MAXSA required to successfully execute the next phase of the computation.

It is often the case that when this dynamic growing of program space is provided, the effect is to increase the space allocated to the unlabelled COMMON, which is usually assigned the highest memory locations in the user's program area. In such a circumstance, the array S in the user's program would have to be declared in blank common.

10.4. Method checking

As we discussed in the introduction, using a particular "method" means calling the appropriate interface routines ORDRxi, INAIJi, INROWi, INMATi, SOLVEi, and ERESTi, where the last character is a numerical digit denoting the method. These ordering, input, solve, and relative error estimation modules cannot be mixed since they in general involve different data structures. In order to ensure that these modules are not inadvertently mixed by the user, ORDRxi sets the variable METHOD in the control block SPACON equal to $(10 \times i + k)$, where k is an integer that distinguishes orderings A and B. This variable is checked by subsequently executed input and solve modules.

10.5. Stage (sequence) checking

Another control variable that deserves comment is STAGE. As its name implies, it is used to keep track of the current step or stage of the execution. This variable is particularly important in connection with SAVEA and RSTRTA modules. In restarting the system using the RSTRTA routine, the variable STAGE in the control block SPACON is restored, and it indicates the last successfully completed stage or phase before the routine SAVEA was called. In this way, the execution can be restarted without repeating already successfully completed steps.

Another function of this variable is to enforce the correct execution sequence of the various interface routines. Before the actual execution of each interface routines, the variable STAGE is used to check that all previous interface modules have been successfully completed. This avoids producing erroneous results due to an improper processing sequence, or accidental omission of steps.

The content of the variable STAGE is only changed after a phase has been successfully executed. When an error occurs during the execution of the phase, the variable STAGE remains unchanged. This prevents the execution of all the subsequent phases, even if they are invoked by the user. The variable STAGE is also used by the modules to determine whether some initialization is necessary in a module, or whether part of the module has already successfully executed during a previous call to it.

10.6. Storage allocation of integer and floating-point arrays

The ANSI FORTRAN standard specifies that the number of bits used to represent integers and floating-point numbers are the same. However, some vendors provide the user with the option of specifying "short" integers, either explicitly in the declarations such as "INTEGER*2", or via a parameter to the FORTRAN processor which automatically represents all integers using fewer bits than used for floating-point numbers. Since a significant portion of the storage used in sparse matrix computations involves integer data for pointers, subscripts etc., it is desirable to try to exploit these "short" integer features whenever it makes sense to do so.

SPARSPAK-A contains parameters RATIOS and RATIOL, set in the module $SPRSPK^{(4)}$. which specify the ratios of the number of bits used for floating-point numbers to the number used for "short" and "long" integers. For example, in a double precision IBM version of the package which exploits "short" integers, RATIOS is 4 and RATIOL is 2. Let [x] be the smallest integer such that $[x] \ge x$. The package then uses RATIOS {RATIOL} to allocate only [p/RATIOS] {[p/RATIOL]} elements of S for "short" {"long"} integer arrays of length p.

SPARSPAK-A assumes that the declaration of S that the user makes in his program is of the same type as that used for floating-point computation. We also make the reasonable assumption that $RATIOS \ge 1$ and $RATIOL \ge 1$.

10.7. Statistics gathering

SPARSPAK-A contains a labelled common block called SPADTA which appears below. These variables are used to provide the output described in Section 7.2.

```
COMMON /SPADTA/ ORDTIM, ALOCTM, FCTIME, SLVTIM, ERRTIM, FCTOPS, SLVOPS, ERROPS, ORDSTR, ALOSTR, SLVSTR, ERRSTR, OVERHD, ANORM, RCONDA, ERRFCT, RELEST, SVPAD(33)
```

In order to supply timing information, SPARSPAK-A assumes the existence of a real function *DTIME* which returns the processor execution time that has elapsed since *DTIME* was last referenced. Thus, the *DTIME* function is also installation dependent.

⁽⁴⁾ Thus SPRSPK is an installation dependent subroutine.

11. References

[1] E.C.H. Chu and J.A. George, "An algorithm to estimate the error in Gaussian elimination without pivoting", Research report CS-84-21, Department of Computer Science, University of Waterloo (1984).

- [2] J.A. George, "An automatic one-way dissection algorithm for irregular finite element problems", SIAM J. Numer. Anal., 17 (1980), pp. 740-751.
- [3] J.A. George and J.W.H. Liu, "Algorithms for matrix partitioning and the numerical solution of finite element systems", SIAM J. Numer. Anal., 15 (1978), pp. 297-327.
- [4] J.A. George and J.W.H. Liu, "An automatic nested dissection algorithm for irregular finite element problems", SIAM J. Numer. Anal., 15 (1978), pp. 1053-1069.
- [5] J.A. George and J.W.H. Liu, "The design of a user interface for a sparse matrix package", ACM Trans. on Math. Software, 5 (1979), pp. 134-162.
- [6] J.W.H. Liu, "On multiple elimination in the minimum degree algorithm", Technical Report No. 83-03, Department of Computer Science, York University, Downsview, Ontario (1983).
- [7] J.W.H. Liu and A.H. Sherman, "Comparative analysis of the Cuthill-McKee and Reverse Cuthill-McKee ordering algorithms for sparse matrices", SIAM J. Numer. Anal., 13 (1976), pp. 198-213.

November 1984