SPARSPAK: Waterloo Sparse Matrix Package
User’s Gulde for SPARSPAK-A

Eleanor Chu .
Alan George
Joseph Liu
Esmond Ng

Department of Computer Science
University of Waterloo
Waterloo, Ontario, CANADA
Research Report CS-84-36

November 1984

Table of Contents

1. Introduction and basic structure of SPARSPAK-Acccccovuivviiiencnncccncnennnnens 3
2. Modules of SPARSPAK-A and how to use themccooeiniiviiininincnnnnnninnenen. 5
2.1. User mainline program and an eXampleccoooeeverveermerrneseressssensssassssnens 5
2.2. Modules for input of the matrix structureccocooveereeniss eveeereeeeaeeearens 7
(a) Input of a NONZero location. ... 7

(b) Input of the structure of a row, or part of a FOW.ccceeieeenrninrninnccnennn, -7

(c) Input of a submatrix structure.ciniinenineennneneenneneenes 8

(d) Input of a full submatrix structure.iiivcencccnnnnenrennnn, 8

2.3. Modules for ordering and storage allocationcccccevivvnnvininvennenennnne.. 10
2.4. Modules for inputting numerical valuescccccoeiniiinviniinnnnnnnnnninien. 12
(a) Input of a single nonzero component.iiicnininieneenenencens 12

(b) Input of a TOW Of NONZETOES.oceeeiciitiiiiceci et 13

(c) Input of a submatrixX.ccccecevricciniciiinld et staes 13

2.5. Modules for numerical 80lutioncccccoiiiiiiiiiiiniiiiee e 14
2.8. Modules for estimating the relative error in the computed solution 14

3. Some guidelines on selecting a method ..o, 16
4. Save and restart facilities ...t 18
5. Solving many problems having the same structureccccoccevvvvviviiiinieincnnn 19
6. Solving many problems which differ only in their right hand side 20
7. Output from SPARSPAK-A ...ttt ee st s et ee st e sessae s e s saansaen 22
 7.1. Message level (MSGLVA)coooooreeimeeeeeeseeeesssssenssesesssssssssessssisssssssssessssssaon 22
7.2. Statistics gathering (STATSA) ...ttt seneaes 23
7.3. Error messages (JERRA)cecccniieinnecrcieneieneseeencnesesessssscsenssessasesssncns 24
7.3.1. Save and restart routinesccccoooeviiiiiiniiieiiiieieeees e eeeeeees 25

7.3.2. Input Of the MAbTIX SETUCHULE ...oooeeveeeeeeroeeeeeeeeee oo sesseeeseee oo 25

7.3.3. Ordering and storage allocation routinesccccceiiviiiiiinnccinnnns 26

7.3.4. Input of the numerical valuescccceeeiiiiiniinnnnnnnn. cetrreesbe et 26

November 1984 1

SPARSPAK-A User’s Guide

7.3.5. Factorization and solution ... 27

7.3.6. Relative error estimation ...t 28

8. Summary listing of interface routinescccoooiiriiiiiiiiiiiiiiee 29
9. EXAMPIESoooiiiiiiititce ettt et a e et s b s e s b e e as s e aeens 31
Example 1 .. ettt ee et bbb e n s e b e aae 32
EXAmPIE 2 ..ottt se et et e et s ae s bs s e a e s a e e b e ae b e s bt e erbeeanens 35
Example 3 teeerieeereseesseeessseeesseessseeeesreseteeanteeabeeaaaeeeaeee e neeee ittt eta s s s e s e sabs e e b e s e bs e e aneean 38
3583 11Y o) L0 SO U OO O OO PN 42
EXAMPIE 5 oot ees e eeeseees st saseasaesas s as s s et ae s i s s st e st be s st s saeaesannatas 47
Example 8 ...ttt s b e s aaeeas 57
10. Appendix -- implementation overview ... 60
10.1. User/module communication ...t 60
10.2. Module/module communication ... 60
10.3. Save and restart implementation ... 61
10.4. Method checkingccoooiiiiiiiiiiiiiiiirnceesiiccenrer et e ast s saes 62
10.5. Stage (sequence) checking ... 62
10.6. Storage allocation of integer and floating-point arrayscccceeeiiene 63
10.7. Statistics gatheringcccccooviiiiiiiiiciii 63
11, Referencescoiiniiiniiiiniiiieiiiiniiesieesis e sessbe e sseenaeanas et 64

November 1984 v 2

SPARSPAK: Waterloo Sparse Matrix Package
User’s Guide for SPARSPAK-A

A collection of modules for solving
sparse systems of linear equations

Eleanor Chu!

Alan George'

’Joseph Liutt

Esmond Ng'
Research Report CS-84-36

© November, 198

ABSTRACT

This document describes the structure and use of SPARSPAK-A, a sparse
linear equations package which is designed to efficiently solve large sparse
systems of linear equations. Computer programs for solving sparse systems of
linear equations typically involve fairly complicated data structures and storage
management. In many cases the user of such programs simply wants to solve
his problem, and should not have to understand how the storage management is
done, or how the matrix components are actually stored. One of the attractive
features of this package is that it effectively insulates the user from these
considerations, while still allowing the package to be used in a variety of ways.
Another important feature of the package is the provision of a wariety of
methods for solving sparse systems, along with convenient means by which the

best method for a given problem can be selected.

Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.
Department of Computer Science, York University, Downsview, Ontario, Canada.

November 1984

SPARSPAK-A ~ User’s Guide

IMPORTANT NOTE

The error estimate provided by the subroutine ERESTi (see Section 2.6) is based on
estimates of the condition number of the coefficient matrix and the error in the triangular
factorization. Experience has shown that the error estimate is very good in most cases. It may
occasionally overestimate the actual relative error for some ill-conditioned problems or badly
scaled problems. Also, EREST: may not be able to return an error estimate when the estimate
of the condition number of the coefficient matrix or the estimate of the error in the triangular
factors is large, even though the solution may be computed accurately.

We would appreciate receiving any comments and feedback the ‘user may have in using the
error estimators for practical problems. Such comments and feedback are important and useful
for improving the error estimators. Please send comments and feedback to

Dr. Alan George

Department of Computer Science
University of Waterloo
Waterloo, Ontario

CANADA N2L 3G1

Telephone: 519-885-1211, ext 3473 (Dr. Alan George)

November 1984 : 2

- SPARSPAK-A User’s Guide

-.1. Introduction and basic structure of SPARSPAK-A

SPARSPAK-A offers a collection of methods for solving sparse systems of linear equations
Az = b ,

where A is an nXn nonsingular matrix, and 2 and b are vectors of length n. We assume the
user is aware of the basic issues involved in solving sparse matrix equations, and the basic facts
about solving systems of linear equations using Gaussian elimination. For a discussion on the
initial design of this package, see [5).

For all the methods provided in SPARSPAK-A, the user and the package interact to solve
the matrix problem through the following basic steps:

Step 1. The user supplies the nonzero structure of A to the package using a set of subroutines
described in Section 2.2.

Step 2. The package reorders the original problem (finds a permutation P), and allocates
storage for the triangular factorization of PAPT=LU, as described in Section 2.3.

Step 3. The user supplies the numerical values for the matrix A to the package, as described in
Section 2.4.

Step 4. The package computes the triangular factors L and U of PAPT, as described in Section
2.5. ' ’

Step 5. The user supplies numerical values for b, as described in Section 2.4. (This step may
come before Step 4, and may be intermixed with Step 3.)

Step 6. The package computes the solution z, using L, U, P and b, as described in Section 2.5.

Step 7. The user (optionally) calls a subroutine which supplies an estimate of the relative error
in z. The subroutine is described in Section 2.6.

The different methods provided in SPARSPAK-A correspond to different algorithms for
choosing P (along with appropriate storage methods), and whether or not A is symmetric.
When A is symmetric, U is replaced by LT in the above description, and of course only one of L
and LT is stored.

The user chooses a particular method by calling the appropriate subroutines in Steps 2, 3,

4, 6 and 7. The methods are distinguished by a numerical digit ¢, 1<¢<6, which is the last

- character of the subroutine names. The subroutines used in Steps 1 and 5 apply to all the

methods. The best method to use depends very much on the particular problem, and the

~ context in which it is being solved, so we cannot provide rigid rules as to which method to use.
Some guidelines and considerations regarding the choice of method are given in Section 3.

Restrictions and assumptions:

1. SPARSPAK-A assumes that the nonzero structure of A is symmetric. If this is not the
case, the package will still work, but if A has highly unsymmetric structure, this may lead

to some inefficiencies because the matrix will be treated as though its structure is that of
A+AT.

November 1984 ' ‘ 3

SPARSPAK-A * User’s Guide

2. SPARSPAK-A assumes that for any permutation matrix P, Gaussian elimination applied
" to PAPT without row or column interchanges yields an acceptably accurate factorization
LU. In other words, the package assumes that A can be symmetrically permuted without
regard for numerical stability. This is true, for example, when A is symmetric and positive
definite, or diagonally dominant. In general one can detect when the assumption above is

invalid by computing an estimate of the relative error in the computed solution using the -
subroutine EREST (see Section 2.6).

November 1984 4

SPARSPAK-A : ‘ ‘ User’s Guide

2. Modules of SPARSPAK-A and how to use them

2.1. User mainline program and an example

SPARSPAK-A allocates all of its storage from a single one-dimensional floating-point
array(!) which for purposes of discussion we will denote by S. In addition, the user must provide

its size MAXSA, which is transmitted to the package via a common block SPAUSR,
(SPARSPAK-A USER), which has four variables.

COMMON /SPAUSR/ MSGLVA, IERRA, MAXSA, NEQ@NS

Here MSGLVA is the message level indicator which is used to control the amount of information
printed by the package. The second variable IERRA is an error code, which the user can
examine in his mainline program for possible errors detected by the package. Detailed

discussion of the roles of MSGLVA and IERRA is provided in Section 7. The varlable NEQNS
is the number of equations. ‘

The following program illustrates how one might use SPARSPAK-A. The various
subroutines referenced are described in the subsequent parts of this section. The problem solved
is a 10X10 symmetric tridiagonal system Az=b where the diagonal elements of A are all 4, the

superdiagonal and subdiagonal elements are all —1, and the entnes in the right hand side vector
b are all ones.

REAL) S(es50), FOUR, ONE
INTEGER I, IERRA, MAXSA, MSGLVA, NEQNS
COMMON /SPAUSR/ MSGLVA, IERRA, MAXSA, NEQNS

Q

CALL SPRSPK

MAXSA = 250

INPUT THE MATRIX STRUCTURE. THE DIAGONAL IS
ALWAYS ASSUMED TO BE NONZERO, AND SINCE THE
MATRIX IS SYMMETRIC, SPARSPAK-A ONLY NEEDS TO -
KNOW. THAT THE SUBDIAGONAL ELEMENTS ARE NONZERO.

QaQaaaQaaQq

CALL IJBEGN
DO 100 I = 2, 10
CALL INIJ (I, I-1, §)
100 CONTINUE
CALL IJEND (S)

INPUT THE NUMERICAL VALUES FOR A AND B. SINCE
THE MATRIX IS SYMMETRIC, ONLY THE LOWER TRIANGLE
AND THE DIAGONAL ARE INPUT.

QQaaa QaQQ

1) Declared either REAL or DOUBLE PRECISION, depending on the version of SPARSPAK-A that is available. The exam-
ples in this manual assume a single precision version is being used.

November 1984 v 5

SPARSPAK-A User’s Guide

FOUR = 4.0E0
ONE = 1.0E0
DO 200 I = 1, 10
IF (I .GT. 1)
* CALL INAIJ:1 (I, I-1, (-ONE), S)
CALL INAIJ: (I, I, FOUR, S)
CALL INBI (I, ONE, S)
200 CONT INUE

PRINT THE SOLUTION, FOUND IN THE FIRST TEN
LOCATIONS OF THE WORKING STORAGE ARRAY S.

Qaaa Qaa

WRITE (6,11) (S(I),I=1,10)
11 FORMAT (/ 10H SOLUTION / (5F12.5))

CALL STATSA

Q QaaQ
]
o
3
3
[
N
~
17,
~
[
Q
i
5
o]
3
S
s
~
5
Y
]
7}
3
:h-

STOP
END

Note: If the SPARSPAK—A available to you is a double precision version, the REAL declaration
in this example should be changed to DOUBLE PRECISION.

The module SPRSPK must be called before any part of the package is used. Its role is to
initialize some system parameters (e.g. the logical unit numbers for output files), and to set
default values for options (e.g. the message level indicator), and to initialize the timing routine.

The routine needs only to be called once in the user progra,m and the FORTRAN statement is
simply

CALL SPRSPK

Note that the only variable in the common block SPAUSR that must be explicitly assigned a
- value by the user is MAXSA.

It is assumed that the subroutines which comprise SPARSPAK-A have been compiled into
a library, and that the user can reference them from his FORTRAN program just as he
references the standard FORTRAN library subroutines, such- as SIN, COS, etc. Normally, a
user will use only a small fraction of the subroutines provided in SPARSPAK-A.

Warning:

The modules of SPARSPAK-A communicate with each other through labelled common
blocks whose names are SPKSYS, SPAUSR, SPACON, SPAMAP, and SPADTA. Thus, the
user must not use labelled common blocks with these names in his program.

November 1984 : 6

SPARSPAK-A User’s Guide

If these common block names cause conflicts in your program or at your computer
installation; it is possible to have the package distributed with these common blocks having
speci fically requested labels. These names should be specified when the package is acquired.

2.2. Modules for input of the matrix structure

SPARSPAK-A has to know the matrix structure before it can determine an appropriate
ordering for the system. We now describe the group of routines which provide a variety of ways
through which the user can inform the package where the nonzero entries are; that is, those
indices (z,7) for which the (z,7)-th element of A is nonzero. Before any of these input routines is
called, the user must execute an initialization routine called IJBEGN, which tells the package
that the structure of a new matrix problem is about to be input.

CALL IJBEGN

(a) Input of a nonzero location.

To tell the package that the (7,7)-th element of A is nonzero, the user simply executes the
statement ‘ '

CALL INIJ (I, J,S)

where I and J are respectively the row and column indices of the nonzero, and S is the working
storage array declared by the user for use by the package.

In this example,

I =4
J =8
CALL INIJ (I, J, S)

the package will record a logical nonzero in positions (4,3) and (3,4) of the matrix.

(b) Input of the structure of a row, or part of a row.

When the structure of a row or part of a row is available, it is more efficient to use the
routine INROW. The statement to use is

CALL INROW (I, NIR, IR, S)

where I denotes the index of the row under consideration, IR is an array containing the column
indices of some or all of the nonzeroes in the I-th row, NIR is the number of subscripts in IR,
and S is the user-declared working storage.

" November 1984 : 7

SPARSPAK-A : User’s Guide

For example, in

the package is informed of nonzeroes in locations (2,5), (5,2), (5,5), (5,7) and (7,5) of the matrix.
Note that the column indices in the array IR can be in arbitrary order, and the rows can be
input in any order.

(c) Input of a submatrix structure.

To provide greater flexibility, the package allows the user to input the structure of a
submatrix. The calling statement is

CALL INLJIJ (N1J,1II, JJ, S)

where NIJ is the number of input index pairs, and II and JJ are the arrays containing the row
and column indices.

~The following example

II(1) = 1
JI(1) = 1
11(2) = 1
JI(2) = 8
I1(8) = #
JI(8) = 8
CALL I

NIJIJ (8, II, JJ, S)
informs the package that there are nonzeroes in locations (1,1), (1,3), (3,1), (2,3) and (3,2).

(d) Input of a full submatrix structure.

The structure of an entire matrix is completely specified if all the full submatrices are
given. In applications where they are readily available, the routine INCLQ is useful. Its calling
sequence is

CALL INCLQ (NCLQ, CLQ, S)

November 1984 | 8

SPARSPAK-A \ User’s Guide

where NCLQ is the size of the submatrix and CLQ is an array containing the column (or row)
indices of the submatrix.

Thus, to inform the package that the submatrix corresponding to indices 1, 3, 5 and 6 is
full, we execute

CLQ(1) = 1
CLQ(2) = 8
CLQ(S) = 5
CLQ(4) = 6
CALL "INCLQ (4, CLQ, S)

The type of structure input routine to use depends on how the user obtains the matrix
structure. Anyway, the one or ones that best suit the application can be selected; SPARSPAK-
A allows mized use of the routines in inputting a matrix structure. The package automatically
removes duplications so the user does not have to worry about inputting duplicated index pairs.

INCLQ (8, CLQ, S)

CALL INROW (4, 8, IR, S)
CALL INIJ (1, 8, S)

The code above would input the matrix structure

*

* ¥k *
* ¥ * *
*

* ¥k

into the package. Note that the diagonal elements of the input matrix are assumed to be
nonzero (see notes below).

When all pairs have been input, using one or a combination of the input routines, the user

is required to tell SPARSPAK-A explicitly that structure input is complete by calling the routine
IJEND. The statement to use is

November 1984 9

SPARSPAK-A User’s Guide

CALL IJEND (S)

and its purpose is to transform the data from the format used during the recording phase to the
standard format used by the later phases. The user does not have to concern himself with this
representation or transformation.

Impoﬂant Notes:

(a) SPARSPAK-A assumes that the value of NEQNS (the number of equations) is equal to the

 maximum column (or row) index supplied by the routines which transmit the (z,7) pairs to

the package. Thus, it is imperative that the user supplies at least one (7,7) pair for which 7

or j is equal to NEQNS. The routine IJEND assigns the value of NEQNS found by the
package to the corresponding variable in the common block SPAUSR.

(b) SPARSPAK-A assumes that the diagonal elements of the coefficient matrix are nonzero.

Common Errors:

The most common cause of error during matrix structure input is insufficient working
storage. If we denote the number of off-diagonal nonzeroes in the matrix by OFFDA, then the
minimum amount of storage necessary to successfully input the structure is given by

OFFDA + 2XNEQNS + 1 .

Of course sometimes the user does not know the value of OFFDA, and may guess too low.
SPARSPAK-A will still accept and count the (7,7) pairs, even after running out of storage, and
the user can obtain an upper bound for OFFDA by calling the module STATSA, described in
Section 7, after all pairs have been input. (The number reported may be unnecessarily large
because duplicate input pairs may not now be detected, and thus may be counted more than
once by the package.)

For a complete list of errors which may be generated by the structure input modules, see
Section 7.3.1. . ,

2.3. Modules for ordering and storage allocation

With an internal representation of the nonzero structure of the matrix- A available,
SPARSPAK-A is ready to reorder the matrix problem. This is initiated by calling an ordering
Toutine, whose name always has the form ORDRzi. Here 7 is a numerical digit between 1 and 6
that signifies the storage method. The character z can take values A or B, which denotes one of
two ordering strategies tailored for storage method 1.

Executing the statement
CALL ORDRA1(S)

will imply the use of storage method 1 and the first ordering algorithm for this method. See
Section 3 for a discussion of the various methods provided, and some guidance on which one to

November 1984 10

SPARSPAK-A User’s Guide

-use. Section 8 contains a list of ordering strategies provided by the package. The routine
ORDRzt not only determines an appropriate ordering for the storage method, it sets up the

data structure for the reordered matrix problem. The package is now ready for numerical
input.

Common Errors:

Just as in the structure input phase, the most common cause of premature termination of
the ORDRzi module is insufficient working storage. As mentioned above, this module performs
~ two functions: ordering and storage allocation. The ordering step determines the permutation

P, and the allocation step sets up the appropriate data structures to store the triangular factors
L and U of the permuted matrix PAPT.

In general, the ordering and allocation subroutines require different amounts of storage.
Furthermore, their storage requirements are often unpredictable, because the number of data

structure pointers, and the number of nonzeroes in the factors L and U, are not known until the
subroutines have been executed.

Thus, the interface module ORDRz: may terminate in several distinctly different ways.
(a) There was not enough storage to execute the ordering subroutine.

(b) The ordering was successfully obtained, but there was insufficient storage to initiate
execution of the data structure set-up (storage allocation) subroutine.

(¢) The data structure set-up subroutine was executed, and the amount of storage required for
the data structure pointers etc. was determined, but there was insufficient storage for
these pointers.

(d) The data structure was successfully generated, but there is insufficient storage for the
actual numerical values, so the next step (input of the numerical values) cannot be
executed. ‘ : :

(¢) ORDRzx: was successfully executed, and there is sufficient storage to proceed to the next
step.

If any of the above conditions occurs, the user may execute SAVEA, and re-initiate the
computation after adjusting his storage declarations (either up or down) and executing
RSTRTA®. 1t (a) or (b) occurs, information is supplied indicating the minimum value of
MAXSA needed so that (c), (d) or (e) will occur upon re-execution. If (¢) occurs, the minimum
value of MAXSA needed for (d) and (e) is provided.

When (c) or (d) occurs, after executing SAVEA, adjusting the storage declaration, then
executing RSTRTA, one must again call ORDRzi. However, the interface will detect that the
ordering and/or storage allocation have already been performed, and will skip that part of the
computation. Note that if a user is simply using SPARSPAK-A to select a particular method,
(c) may be an acceptable termination state. (See Example 6 in Section 9.)

2 See Section 4 for details on how to use SAVEA and RSTRTA, and Examples 4, 5 and 6 in Section 9.

November 1984 >11‘

SPARSPAK-A User’s Guide

2.4. Modules for inputting numerical values

The modules in this group are similar to those for inputting the matrix structure. They
provide a means of transmitting the actual numerical values of the matrix problem to
SPARSPAK-A. Since the data structures for different storage methods are different, the
package must have a different matrix input subroutine for each method. For the user’s
convenience, SPARSPAK-A uses the same set of subroutine names for all the methods, except

for the last digit which distinguishes the method, and the parameter lists for all the methods are
the same.

Important Note:

The elements of A and b transmitted to SPARSPAK-A by these routines are either single
or double precision floating-point numbers, depending on the version of SPARSPAK-A being

used. The examples in this manual assume a single precision version of the package is being
used.

There are three ways of passing the numerical values to SPARSPAK-A. In all of them,
indices passed to the package always refer to those of the original given problem. The user

need not be concerned about the various permutatlons to the problem which may have occurred
during the ordering step.

When any of the three numerical input routines is first called, the storage used for storing
the numerical values is initialized to zero.

(a) Imput of a single nonzero component.

The subroutine IINAIJ7 is provided for this purpose and its calling sequence is
CALL INAIlJi (I, J, VALUE, S)
where I and J are the | row and column indices, and VALUFE is the numerical value. The
subroutine INAIJ: adds the quantity VALUE to the appropriate current value in storage, rather -

than making an assignment. This is helpful in situations (e.g. in some finite element
applications) where the numerical values are obtained in an incremental fashion.

For example, the execution of

CALL INAIJ2 (8, 4,
CALL INAIJ2 (8, 4, —4.0, S)

effectively assigns 5.5 to the (3,4)-th component of A.

November 1984 _ v 12

SPARSPAK-A | User’s Guide

(b) Input of a row of nonzeroes.

The routine INROWi can be used to input the numerical values of a row or part of a row
in the matrix. Its calling sequence is similar to that of INROW, described on Section 2.2."

CALL INROWi (I, NIR, IR, VALUES, S)

Here the additional parameter VALUES is a floating-point array containing the numerical values
- of the row. Again, the numerical values are added to the current values in storage.

(¢) Input of a submatrix.

The routine that allows the input of a submatrix is INMAT:. Its parameter list
corresponds to that of INIJIJ with the additional parameter VALUES that stores the numerical
quantities.

CALL INMAT: (NlJ, II, JJ, VALUES, S)
Again, the numerical values in VALUES are added to those currently held by the package.

Mixed use of the routines INAIJi, INROW: and INMAT: is permltted Thus the user is

free to use whatever routine is most convenient.

The same convenience is provided in the input of numerical values for the right hand side
vector b. SPARSPAK-A includes the routine INBI which inputs an entry of the right hand side
vector.

CALL INBI (I, VALUE, S)

Here I is the index and VALUE is the numerical value. Alternatively, the routine INBIBI can
be used to input a subvector, and its calling sequence is

CALL INBIBI (NI, II, VALUES, S)
where NI is the number of input numerical values, and II and VALUES are vectors containing

the indices and numerical values respectively. In both routines, incremental calculation of the
numerical values is performed.

In some situations where the entire right hand side vector is available, the user can use the
routine INRHS which transmits the whole vector to SPARSPAK-A. It has the form

CALL INRHS (RHS, S)

where RHS is the vector containing the numerical values.

Novembe: 1984 13

SPARSPAK-A ‘ User’s Guide

In all three routines, the numbers provided are added to those currently held by the
package, and the use of the routines can be intermixed. (See example in (a) above.) The storage
used for the right hand side by SPARSPAK-A is initialized to zero the first time any of them is
executed.

Important Notes:

(a) When the matrix A is symmetric, so that method-?, with 7 odd, is used, SPARSPAK-A
requires that the elements of the lower triangle be provided. Thus, for example, the
following statement will cause an error.

CALL INAIJS(8,5 18,5)

(b) The examples which we have given assume that a single precision version of SPARSPAK-A
is being used. If the version is in double precision, the numerical values and numerical
variables should be declared as double precision. For example:

CALL INAIJS (5,8, 1.8D0, S)

2.5. Modules for numerical solution

The numerical computation of the solution vector is initiated by the FORTRAN statement
CALL SOLVEi (S)
where S is the working storage array for SPARSPAK-A. Again, the last digit ¢ is used to

distinguish between solvers for different storage methods.

Internally, the routine SOLVEi consists of both the factorization and forward/backward
solution steps. If the factorization has been performed in a previous call to SOLVE:,
SPARSPAK-A will automatically skip the factorization step, and perform the solution step
directly. The solution vector is returned in the first NEQNS locations of the storage vector S.
If SOLVE; is called before any right hand side values are input, only the factorization will be
performed. The solution returned will be all zeroes. See Examples 3 and 4 in Section 9.

2.6. Modules for estimating the relative error in the computed solution

" An estimate of the relative error (using the infinity norm Il ||°°(3)) in the computed solution
can be obtained by executing the following FORTRAN statement.

CALL ERESTi (RELERR, S)

Here S is the working storage array for SPARSPAK-A and RELERR is a variable which will
contain the relative error estimate after the subroutine is invoked successfully. The last digit 2

® hohemaxhsl

November 1984 ; 14

SPARSPAK-A User’s Guide

is used to distinguish between subroutines for different storage methods. .

If the problem is too ill-conditioned with respect to the precision of the machine, or
unacceptable rounding error in the factorization has occurred, a message will be printed

(depending on the value of the message level indicator MSGLVA) and RELERR will be set to
—1.0.

The estimate is based on estimates of the condition number of the coefficient matrix and
the error incurred in its factorization [1]. Thus, the estimate is independent of the right hand
side and EREST: has to be called only once regardless of the number of right hand sides that
are to be solved. Furthermore, EREST: should be called only after the factorization has been
performed; that is, after SOLVE: has been executed successfully.

November 1984 ' 15

SPARSPAK-A User’s Guide

3. Some guidelines on selecting a method

We mentioned in Section 1 that there are six basic methods, distinguished by a numerical
digit ¢ satisfying 1<¢<6. These six methods can be viewed as grouped into three odd-even
pairs; the only distinction between method 7 (odd) and method ¢+1 is that method 7 assumes
the coefficient matrix A is symmetric, and method 7+1 assumes A is unsymmetric. Thus, we
really only provide three essentially distinct methods, with each one having a symmetric and
unsymmetric version. Hence, in this section we will largely confine our remarks to methods 1, 3
and 5; comparative remarks about them will also apply to their unsymmetric analogues,
methods 2, 4 and 6. '

The basic methods are as follows; the remarks comparing them, and the advice provided,
should be regarded as at best tentative. Characteristics of sparse matrices vary a great deal.

Method Basic Strategy and References

1,2 The objective of these methods is to reorder A so it has a small
' bandwidth or profile [7]. The well-known reverse Cuthill-McKee
algorithm is used. For relatively small problems, say n<200, they

are probably the best overall methods to use.

3,4 The objective of these methods is to reduce storage requirements,
but the factorization time will usually be substantially higher than
any of the other methods. Their storage requirements will usually
be substantially less than methods (1,2) (unless n is very large).
The same remark is true about the relative solution times. Thus,
these methods are often useful when storage is restricted, and/or
when many problems which differ only in the right hand side must
be solved (see Section 6).

There are two ordering options provided: ORDRA3 and ORDRB3
(and similarly for the unsymmetric case). The A option is
specifically tailored for “finite element problems”, typical of those
arising in structural analysis and the numerical solution of partial
differential equations [2]. The B option is effective for less specific
problems; and uses a refined quotient tree ordering described in

o

5,6 These methods attempt to find orderings which minimize fill-in,
and they exploit all zeroes. Their ordering times are almost
always greater than those above, but for moderate-to-large
problems the reduced factorization times usually are more than
compensatory.

November 1984 16

SPARSPAK-A ' User’s Guide

4. Save and restart facilities

SPARSPAK-A provides two subroutines called SAVEA and RSTRTA which allow the user
to stop the calculation at some point, save the results on an external sequential file, and then
restart the calculation at exactly that point some time later. To save the results of the
computation done thus far, the user executes the statement

CALL SAVEA (K, S)

where K is the FORTRAN logical unit on which the results are to be written, along with other
information needed to restart the computation. If execution is then terminated, the state of the
computation can be re-established by executing the following statement.

CALL RSTRTA (K, S)

Examples 4, 5 and 6 provided in Section 9 illustrate the use of SAVEA and RSTRTA.

Note that executing SAVEA does not destroy any information; the compﬂtaﬁibh can
proceed just as if SAVEA were not executed.

- When errors occur in a module, the routines SAVEA and RSTRTA are useful in saving the
~ results of previously successfully executed modules (see Section 7.3 and Example 5 in Section 9).

Another potential use of the SAVEA and RSTRTA modules is to make the working storage
array S available to the user in the middle of a sparse matrix computation. After SAVEA has
been executed, the working storage array S can be used by some other computation.

-Finally, the SAVEA and RSTRTA modules allow the user to segment the computation into
several distinct phases, and thereby reduce the amount of program that must be resident in
storage at any given time.

Important Notes:

(a) In the subroutines SAVEA and RSTRTA, information is either written on or read from the
FORTRAN logical unit K using binary format.

(b) If the subroutines SAVEA and RSTRTA are used, then before the user executes his
program, he must define a file for the FORTRAN logical unit K using the appropriate
system control statement or command (this depends on the environment in which the
program is being executed). Furthermore, this file must be preserved by the user for later
access by the RSTRTA subroutine. Thus, the user must not write to this file.

November 1984 ” 18

SPARSPAK-A User’s Guide

5. Solving many problems having the same structure

In certain applications, many problems which have the same sparsity structure, but
different numerical values, must be solved. In this case, the structure input, ordering, and data
structure set-up needs only to be done once. This situation can be accommodated perfectly well
by SPARSPAK-A. The control sequence is depicted by the following flowchart.

SPRSPK

y

Input Structures
of A

!

Call ORDRz:

'

Input Numerical
Values of A and b

‘

Call SOLVE:

When the numerical input routines (INAIJi, INBI, ..., e;tc.) are first called after SOLVE? has
been called, this is detected by SPARSPAK-A, and the computer storage used for A and b is
initialized to zero.

Note that if such problems must be solved over an extended time period (i.e., in different
runs), the user can execute SAVEA after executing ORDRz: and thus avoiding the input of the
structure of A and the execution of ORDRx? in subsequent equation solutions. :

November 1984 19

SPARSPAK-A f | User’s Guide

6. Solving many problems which differ only in their right hand side

In some applications, numerous problems which differ only in their right hand sides must
be solved. In this case, we only want to factor A into LU (or LLT) once, and use the factors
repeatedly in the calculation of z for each different . Again, SPARSPAK-A can handle this
situation in a straightforward manner, as illustrated by the flowcharts below.

When SPARSPAK-A is used as indicated by flowchart (1), the package detects that no
right hand side has- been provided during the first execution of SOLVEf%, and only the
factorization is performed. In subsequent calls to SOLVE:, SPARSPAK-A detects that the
factorization has already been performed, and that part of the SOLVE: module is bypassed. In
flowchart (2), both factorization and solution are performed during the first ca:ll to SOLVE;,
with only the solve part performed in subsequent executions of SOLVE:. (See Example 3 in
Section 9.)

Note that SAVEA can be used after SOLVE? has been executed, if the user wants to save
the factorization for use in some future calculation.

November 1984 20

SPARSPAK-A User’s Guide

SPRSPK | | SPRSPK
Input S!ructure | Input S%ructure
of A of A
! o
Call ORDRx1 Call ORDRzi
Input Numelrica.l Values | Input Numelrica.l Values

for A ‘ for A

' !

Call SOLVE: Input Numerical Values

for b
Input Numerical Values Call SOLVE:
for b
Call SOLVE:
Flowchart (1) Flowchart (2)

November 1984 | 21

SPARSPAK-A User’s Guide

7. Output from SPARSPAK-A

As noted earlier in Section 2, the user supplies a one-dimensional floating-point array S,
from which all array storage is allocated. In particular, the interface allocates the first NEQNS
storage locations in S for the solution vector of the linear system (NEQNS is the last variable in
the common block SPAUSR). After all the interface modules for a particular method have been
successfully executed, the user can retrieve the solution from these NEQNS locations.

In addition to the solution vector, SPARSPAK-A may provide other information about the
computation, depending upon the value of MSGLVA, whether or not errors occur, and whether
or not the module STATSA is called. This section discusses these features of SPARSPAK-A.

Note:

‘SPARSPAK-A writes output to two FORTRAN logical output units, whose numbers are
given by IPRNTS and IPRNTE. The values for these variables are set in the module SPRSPK
when the package is installed. Standard output requested by the user is printed on unit
IPRENTS, while any error messages raised by SPARSPAK-A are printed on unit JPRNTE. In an
interactive environment, IPRNTE is usually the user’s terminal, while JPRNTS is some other
output device on which the output of the (hopefully) successful run is recorded. In a batch
oriented environment, JPRNTS and IPRNTE are usually the same. Note that the user and/or
the computer installation must ensure that the files associated with IPRNTS and IPRNTE are
available to the user’s program before execution begins.

7.1. Message level (MSGLVA)

The first variable MSGLVA in the common block SPAUSR stands for “message level”, and
governs the amount of information printed by the interface modules. Its default value is two,
and for this value a relatively small amount of summary information is printed, indicating the
initiation of each phase. When MSGLVA is set to one by the user, only fatal error messages are
printed; this option could be useful if SPARSPAK-A is being used in the “inner loop” of a large
computation, where even summary information would generate excessive output. Increasing the
value of MSGLVA (up to 4) provides increasingly detailed information about the computation.
Note that the module SPRSPK sets MSGLVA to its default value; if the user wishes MSGLVA
to be different from two, he must reset it after SPRSPK has been called.

In many circumstances, SPARSPAK-A will be embedded in still another “super package”
which models phenomena producing sparse matrix problems. Messages printed by SPARSPAK-
A may be useless or even confusing to the ultimate users of the super package, or the super
package may wish to field the error conditions and perhaps take some corrective action which
makes the error messages irrelevant. Thus, all printing by SPARSPAK-A can be prevented by
setting MISGLVA to zero.

To summarize, we have

November 1984 22

SPARSPAK-A User’s Guide

MSGLVA amount of output
0 no information is provided.
1 only warnings and errors are printed.
2 warnings, errors and summary are printed.
3 warnings, errors, summary and some statistics are printed.
4 detailed information for debugging purposes.

Warning:

It should be noted that, by setting MSGLVA to four, a high volume of output may be
generated, since the input data would also be echoed.

7.2. Statistics gathering (STATSA)

SPARSPAK-A gathers a number of statistics which the user will find useful if he is
comparing various methods, or is going to solve numerous similar problems and wants to adjust
his working storage ‘to the minimum necessary. The package has a common block called
SPADTA containing variables whose values can be printed by executing the following statement.

CALL STATSA

The information printed includes
the number of equations,
the number of off-diagonal nonzeroes in the matrix,
the size of the working storage,
the time used to find the ordering,
the time used for data structure set-up,
the time used for the factorization step,
the time used for the triangular solution step,
the time used for the relative error estimation step,
number of operations required by the factorization step,
number of operations required by the triangular solution step,
number of operations required by the relative error estimation step,
the storage used by the ordering subroutine,
the storage used by the data structure set-up subroutine,
the storage used by the SOLVE? module,
the storage used by the ERESTi module,

an estimate of the reciprocal of the condition number of the input matrix, and

November 1984 : 23

SPARSPAK-A | | User’s Guide

an estimate of the relative error in the triangular factorization,
an estimate of the relative error in the computed solution.

Since the module STATSA can be called at any time, some of the above information may not be
available, and will not be printed. The word “operations” here means multiplicative operations
(multiplications and divisions). Since most of the arithmetic performed in sparse matrix
computation occurs in multiply-add pairs, the number of operations (as defined here) is a useful
measure of the amount of arithmetic performed.

The reader is referred to the examples in Section 9 for more discussion about the output
from STATSA.

7.3. Error messages (IERRA)

When a fatal error is detected, so that the computation cannot proceed, a positive code is
assigned to JERRA. The user can simply check the value of JERRA to see if the execution of
module has been successful. This error flag can be used in conjunction with the save/restart
feature described in Section 4 to retain the results of successfully completed parts of the
computation, as shown by the program fragment below.

CALL ORDRA1 (S5)
IF (IERRA .EQ. 0) GO TO 100
CALL SAVEA (8, §)
STOP
100 CONTINUE

The variable IERRA is set to the value 10Xk~ , where 0<I<9 distinguishes the error, and
k is determined by the type of module that sets IJERRA positive. ’

-k : interface modules

10 save and restart modules (SAVEA, RSTRTA) -

11 matrix structure input modules (INIJ, INIJIJ, etc.)

12 matrix ordering and allocation modules (ORDRz1)

13 matrix numerical input modules (INAILJ, ..., etc.)

14 right hand side numerical input modules (INBI, ..., etc.)
15 factorization and solution modules (SOLVE?)

16 relative error estimation modules (EREST?)

November 1984 ‘ 24

SPARSPAK-A

User’s Guide

7.3.1. Save and restart routines

IERRA
101
102

103

7.3.2. Input of the matrix structure

IERRA

111

112

113

114

IERRA

115

116 k

117

November 1984

SAVEA, RSTRTA
Output unit given to SAVEA is not positive.
Input unit given to RSTRTA is not positive.

Insufficient storage to restart the computational process. The
minimum value of MAXSA required is printed in the error
message. v

IN1J, INROW, INIJ1J, INCLQ

Incorrect execution sequence. Probable cause of error: routine
IJBEGN was not executed successfully before (z,7) pairs input
began.

Incorrect execution sequence. Probable cause of error: routine
IJEND has already been called to indicate the end of structure
input.

Insufficient storage was provided in the working storage array.
The (%,7) pairs input to INIJ, INROW, INIJ1J, and INCLQ will
be counted and discarded. Duplicates which are detected will not
be counted, but some duplicates may be missed.

Input index (or subscript) is negative or zero.

IJEND

Incorrect execution sequence. Probable cause of error: routine
IJEND was called before new matrix structure has been input.
Call IJBEGN to start a new problem.

Insufficient storage to transform matrix structure. The minimum
value of MAXSA required is printed in the error message.

Number of variables (NEQNS) is zero.

25

SPARSPAK-A

User’s Guide

7.3.3. Ordering and storage allocation routines

IERRA

121

122

123

124

125

126

127

ORDRzi

Incorrect execution sequence. Probable cause of error: routine

IJEND was not executed successfully.

Incorrect execution sequence. Probable cause of error: routine
ORDRx: was called after having already been executed
successfully. : ' :

Incompatible ordering method. Probable cause of error: part of
the ordering routine ORDRx? was executed, and then SAVEA was
executed because of insufficient storage. The execution was then
restarted, using RSTRTA, but ORDRzj was called with i5j.

Insufficient storage in working storage array to execute the
ordering routine. Response: execute SAVEA, and restart the
computation using ORDRz: with MAXSA at least as large as that
indicated in the error message. ~

Insufficient storage in working storage array to execute the
storage allocation routine. The ordering routine was successfully
executed. Response: same as for error 124.

Insufficient storage in working storage array to hold the data
structure pointers. The ordering and storage allocation routines
were successfully executed. Response: same as for error 124.

Insufficient storage in working storage array to hold the numerical
values. The ordering and storage allocation routines were
successfully executed, and there was enough storage to hold the
data structure pointers. Response: same as for error 124.

7.3.4. Input of the numerical values

IERRA

131

132

November 1984

INALJ:, INROW:, INMAT:

Incorrect execution sequence. Probable cause of error: routine
ORDRz1 was not executed successfully.

Incompatible input routine. Probable cause of error: attempt to
use input routine INAIJ:, INROW:, or INMAT: after using
ORDRxj, where t#j.

26

SPARSPAK-A

IERRA

133

134

135

IERRA

141

142

User’s Guide

INALJi, INROW:, INMAT:

Attempt to input the (¢,7)-th element of matrix A for ¢<j. (This
error occurs only for symmetric matrix methods; i.e., when method
is odd). Methods for symmetric matrices expect elements of the
lower triangle to be input.

- Attempt to input an (7,j)-th element of matrix A where :>n,

J>n, <1, or 5<1.

Attempt to input a numerical value for the (z,7)-th element of
matrix A into the data structure, but the data structure has no
space for it. Probable cause of error: the user has not called INIJ,
INROW, INIJIJ or INCLQ with all the pairs (%,7) for which the
(¢,7)-th elements of A are nonzero. (SPARSPAK-A thinks A is
sparser than it really is.)

INBI, INBIBI, INRHS

Incorrect execution sequence. Probable cause of error: routine
ORDRzi was not executed successfully.

Index (or subscript) out of rangé. Probable cause of error:
attempt to input a numerical value for the :-th element of b where
1>n or 7 <l.

7.3.56. Factorization and solution

IERRA

151 -

152

November 1984

SOLVEq

Incorrect execution sequence. Probable cause of error: the
numerical input routines were not executed successfully.

Incompatible ordering and solution routines. Probable cause of
error: Routines ORDRz: and SOLVEj were called, where ©#j.

 Response: execute SAVEA and restart the computation using

SOLVE: where 1 is the value of METHOD specified in the error
message.

27

SPARSPAK-A

IERRA

153

154

User’s Guide

SOLVE:

Zero pivot or negative square root was detected in the (symmetric)
factorization routine. Possible cause of error: the matrix may
require pivoting in order to preserve numerical stability. In this
case the use of SPARSPAK-A to solve the problem is
inappropriate. (See restrictions in Section 1.)

Zero pivot was detected in the (unsymmetric) factorization
routine. Possible cause of error: the matrix may require pivoting
in order to preserve numerical stability. In this case the use of
SPARSPAK-A to solve the problem is inappropriate. (See
restrictions in Section 1.)

7.3.8. Relative error estimation

IERRA

161

162

163

164

November 1984

ERESTY

Incorrect execution sequence. Probable cause of error: routine
SOLVE: was not executed successfully. '

Incompatible condition number estimation routine. Probable cause
of error: Routines EREST: and SOLVEj were called, where z#7.
Response: execute SAVEA and restart the computation using
EREST: where i is the value of METHOD specified in the error
message.

Insufficient storage in working storage array to compute an
estimate of the relative error in the computed solution. Response:
execute SAVEA, and restart the computation using FREST: with
MAXSA at least as large as that indicated in the error message.

The estimate of the relative error has a value of —1.0 which means

that the computed solution may not have any correct significant
digits.

28

SPARSPAK-A

8. Summary listing of interface routines

User’s Guide

Initialization of SPARSPAK-A

SPRSPK

Structure input

IJBEGN

INIJ (L J,S)

INROW (I, NIR, IR, S)
INIJIJ (NIJ, IL, JJ, S)
INCLQ (NCILQ, CLQ, S)

IJEND (S)

Ordering (see next table)

ORDRzi (S)

Matrix input

Right hand side input

INALJi (I, J, VALUE, S)
INROWi (I, NIR, IR, VALUES, S)
INMAT; (NIJ, IT, JJ, VALUES, S)

INBI (1, VALUE, S)
INBIBI (NI, II, VALUES, S)
INRHS (RHS, S)

Factorization and/or Solution

SOLVE: (S)
Relative error estimation EREST: (RELERR, S)
Print statistics STATSA
Save and Restart the computation | SAVEA (K, S)

RSTRTA (K, S)

Q
S|
5

~o, 1

Ordering Choices

Reverse Cuthill-McKee ordering [7]; symmetric A
Reverse Cuthill-McKee ordering [7]; unsymmetric A

One-way Dissection ordering [2]; symmetric A
One-way Dissection ordering [2]; unsymmetric A

Refined quotient
Refined quotient

tree ordering [3|; symmetric A
tree ordering [3}; unsymmetric A

Nested Dissection ordering [4]; symmetric A
Nested Dissection ordering [4]; unsymmetric A

Minimum Degree
Minimum Degree

by | W o>l e]s
o | o tffas o coff e ~

ordering [6]; symmetric A

November 1984

ordering [6]; unsymmetric A

29

SPARSPAK-A

start

'

input the
{structure of A

!

order and

allocate
storage

!

input
numerical

values

for A

\

>

input
numerical
values

for b

ad

'

factor A

solve

|

relative
error
estimation

User’s Guide

SPRSPK

IJBEGN, IN1J,
INROW, INIJIJ,
INCLQ, IJEND

ORDRzi, where
z=A,B
i=172) 3,4,5,6

INROWS,
INALJi,
INMAT;

INRHS,
INBI,
INBIBI

SOLVE?

ERESTi

" Sketch of possible execution paths through SPARSPAK-A modules

November 1984

30

SPARSPAK-A , User’s Guide

9. Examples

In this section, we provide several programs which illustrate how SPARSPAK-A can be
used. These programs are derived from the one given in Section 2.1.

‘These examples were run using a standard single precision version of SPARSPAK-A under
the Berkeley f77 compiler on a DEC VAX 11/780 computer. All times reported are in seconds.
It should be noted that the results will be different if a different version of SPARSPAK-A or a
different computer is used.

November 1984 31

SPARSPAK-A User’s Guide

Example 1

This is an example of the simplest use of SPARSPAK-A, with each of the modules of
method 1 used in sequence. The problem solved is a 10X10 symmetric tridiagonal system Az=b
where the diagonal elements of A are all 4, and the superdiagonal and subdiagonal elements are
all =1. The right hand side vector b is chosen so that the entries of the solution vector are all
ones.

In the program, the nonzero structure of A is input using IJBEGN, INIJ and IJEND.
After ORDRAL is executed, the interface modules INAIJ! and INBI are used to transmit the
numerical values of A and b to the package respectively. The module SOLVE! is called to do
the numerical solution, and EREST! is called to compute an estimate of the relative error in the
computed solution. Then STATSA is called to print out the statistics gathered by the interface

during execution. Finally, the actual error in the computed approximate solution is determined
since the true solution is known.

Note that the size of the working storage provided was 250, while the maximum amount
used by any of the modules was 90, which was the storage requirement for the ERESTI module.
Thus, if the user was going to solve this problem again, he could adjust his storage down to 90.

Program

C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = EX!
C (C) UNIVERSITY OF WATERLOO JANUARY 1984

C‘"‘O0‘000‘000‘0‘0.000‘.0"‘0000‘O‘t"“““.t.l"'l‘d““...0..
Ct"....“".‘."l"000‘0000..‘00...‘0‘0‘O.“O““Ot‘.‘.‘.‘.0‘0‘
C.“"l““ MA INL ’NE PROGRAM R R XN N RN RN
C“#t"‘t‘#“.O‘lt0“00"‘0‘00“..."“0.‘0““O‘O““‘.OOOOO“O
C"“’Ot“t‘t‘l“"‘.“‘“‘O““OOO‘O"’O.“"l".‘....‘.“l.‘.t'

c

INTEGER I , IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA ,
1 MSGLVA, NVARS

REAL MCHEPS, RATIOL, RATIOS, TIME

REAL S(250) .
REAL ERROR , FOUR , ONE , RELERR, TWO
1 : ZERO .

c
C‘#..'&.“..'O“““‘.‘O.‘..O.....“.““““I.‘C‘.".OO“O“‘O‘
c _

COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS

COMMON /SPKSYS/ [IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

‘ 1 MCHEPS, TIME

c

CC"O‘0‘0.“‘"“‘"00'0.'.““‘00““l“““..“t“‘.."’t“‘“O

......................

QaQaaQa
~
2
-
)
[
S
[
~
N
x
17,
o
Y
bl
n
5
S

CALL SPRSPK
MAXSA = 250

aQaaa

................

CALL [IJBEGN
DO 100 I = 2, 10

November 1984 , ' , 32

18PK
2SPK
3SPK
4{SPK
5SPK
6 SPK
7SPK
8SPK
9 SPK
10SPK
11SPK
12SPK
18SPK
145PK
158PK
16SPK
178PK
18SPK
19SPK
20SPK
21SPK
22SPK
28SPK
24 SPK
25SPK
26SPK
27SPK
28SPK
29SPK
30SPK
81SPK
82SPK
38SPK

34 SPK

SPARSPAK-A

CALL INIJ (I, I-1, §)

User’s Guide

100 CONTINUE
CALL IJEND (S)
c
C 2 ececamccccccmcenacnnancnnnnma=
c DETERMINE SYMMETRIC ORDERING
C | eeescccteccececsc e e amm——-
CALL ORDRA! (S)
c
C | cececcecccccsaccancnnman
c INPUT NUMERICAL VALUES.
C | cececrscnccccccmcncnena=
ZERO = 0.0E0
ONE = 1.0E0
TWO = 2.0E0
FOUR = 4.0E0
DO 200 I = 1, 10
IF (I .GT. 1) CALL INAIJ1 (I, I-1, -ONE, S)
CALL INAIJ1 (I, I, FOUR, §)
CALL INBI (I, TWO, S)
200 CONTINUE
CALL INBI (1, ONE, S)
CALL INBI (10, ONE, S)
c /
C I i T I L IR
c PERFORM NUMERICAL FACTORIZATION AND SOLUTION.
C | teceenmecencocecensnocnnnemmsanoeneenenseaneanseenseees=
CALL SOLVEL (S }
c
2 —am-
c COMPUTE AN ESTIMATE OF THE RELATIVE ERROR
c IN THE COMPUTED SOLUTION.
C 3 e emmmcccrceacceecnraeeeeae e e~
CALL EREST! (RELERR, S)
c
C = eeccceececmsccaceaaaa
c OBTAIN STATISTICS.
C = ceeecccmcccaancea-
CALL STATSA
c
C s I
c COMPUTE THE ACTUAL RELATIVE ERROR IN THE COMPUTED SOLUTION
c SINCE THE TRUE SOLUTION IS KNOWN.
€ 3 cecdeccdescesacdcacnctessnnomeeemaeeem-ean e .em---aaa
ERROR = ZERO
DO 800 I = 1, 10
‘ ERROR = AMAX1 (ERROR,ABS(S(I)-ONE))
800 CONTINUE '
WRITE (IPRNTS,11) ERROR
11 FORMAT (/10X, $5HMAXIMUM ERROR , 1IPE15.5)
c
STOP
END
Output

trrstsdrrsdy UNIVERSITY OF WATERLOO
#rdssrrtrr GDARSE MATRIX PACKAGE
##sdsssssr (S PARSPAK)
TR R R) RELEASE 8

November 1984

33

85SPK
$6SPK
8 7SPK
88SPK
89SPK
40SPK
41SPK
42SPK
48SPK
44SPK -

45SPK -

46SPK
47SPK
48SPK
49SPK
50SPK
51S8PK
52SPK
58SPK
54S5PK
55SPK
56SPK
57SPK
58SPK
59SPK
60SPK
61SPK
62SPK
638SFK
64SPK
6 5SPK
66SPK
6 7SPK
68SPK
69SPK
7T0SPK
71SPK
T2SPK
78SPK
74 SPK
75SPK
76SPK
77SPK
78SPK
79SPK
80SPK
81SPK
82SPK
88SPK
84SPK
858PK
86SPK
87SPK

SPARSPAK-A

#ssvssssss () JANUARY 1084
#sses26480s ANST FORTRAN

#sss4sss90s SINGLE PRECISION
$ssssss00+ [AST UPDATE JANUARY 1984

OUTPUT UNIT FOR ERROR MESSAGES
OUTPUT UNIT FOR STATISTICS

IJBEGN -

INIJ
IJEND
ORDRA1
INAIJ1
INBI
SOLVE1
EREST1

STATSA

BEGIN STRUCTURE INPUT
INPUT OF ADJACENCY PAIRS
END OF STRUCTURE INPUT

RCM ORDERING

INPUT OF MATRIX COMPONENTS
INPUT OF RIGHT HAND SIDE
ENVELOPE SOLVE

ERROR ESTIMATOR

SYSTEM-A STATISTICS

SIZE OF STORAGE ARRAY (MAXSA)
NUMBER OF EQUATIONS

NUMBER OF OFF-DIAGONAL NONZEROS
TIME FOR ORDERING

STORAGE FOR ORDERING

TIME FOR ALLOCATION

STORAGE FOR ALLOCATION

STORAGE FOR SOLUTION

TIME FOR FACTORIZATION

TIME FOR SOLUTION

OPERATIONS IN FACTORIZATION
OPERATIONS IN SOLUTION

TIME FOR ESTIMATING RELATIVE ERROR
OPERATIONS IN ESTIMATING REL ERROR
STORAGE FOR ESTIMATING REL ERROR
ESTIMATE OF RELATIVE ERROR

TOTAL TIME REQUIRED

MAXIMUM STORAGE REQUIRED

MAXIMUM ERROR

250
10
18
0.088
60.
0.
60.
70.
0.017
0.
18.
38.
0.050
160.
90.
- 1.785¢-07
0.100
90.

1.19209e-07

User’s Guide

November 1984

34

SPARSPAK-A _ User’s Guide

Example 2

This is the same as Example 1, except that the matrix A is unsymmetric. The diagonal
elements of A are all 4, the superdiagonal elements are all 1, and the subdiagonal elements are

all —1. The right hand side vector b is chosen so that the entries of the solution vector z are all
ones.

Program

C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = EX2
C (C) UNIVERSITY OF WATERLOO JANUARY 1984

C###tt###tt#ltt##tt##ttt##*#*#tttt*#**###t**t*t##*tt##t*#tt##tt*
C#tttt#tt#####t##tt#t‘tttt&t#t##t*#t#ttt#t#*#ti#l‘tt‘**#tt#tt##&
C*ttt*t*#tt MAINL I N E PROGRAM I AEERER R RE
Ct#&*##-ﬁtt#&tlttt#ttt#*#t##t#tlﬁ#tt###t#ttt##*t*t*##t#t###ttttt#
Gi*#*###t#tl##‘#t&t##*##l‘t#l#tt*t#t###tttt#tt##t###*###**#**##i

C

INTEGER I , IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA ,
1 MSGLVA, NVARS

REAL MCHEPS, RATIOL, RATIOS, TIME

REAL S(e50)

REAL ERROR' , FOUR , ONE , RELERR, ZERO

c

Cti#*#tt#######«*#**###*i###tt####*t#'##*t#tt#l##*#*###tt###'#ttt#
c :
COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS

COMMON /SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 MCHEPS, TIME
g#t#ti#ttt##*t#t#tt#ttt#tt###tt#tt#ttl####tt###*t.ttttttttttt#ttt
c
C 3 ceeemecceccceacenennnn~
c INITIALIZE SPARSPAK-A.
C 3 ceme e
CALL SPRSPK
MAXSA = 250
c
o
c INPUT STRUCTURE.
S P) .
CALL [IJBEGN :
DO 100 I = 2, 10
CALL INIJ (I, I-1, S)
100 CONTINUE
' CALL IJEND (S)
c
C 0 e em et el a et e e e e aa e
c DETERMINE SYMMETRIC ORDERING.
€ ce e e ecececc e e aaan
CALL ORDRAg2 (S)
c
C m e e m e eeaa—ae
c INPUT NUMERICAL VALUES.
€ 3 cemeemccececenecnceceaana

DO 200 I = 1, 10 ,
IF (I .GT. 1) CALL INAIJ2 (I, I-1, -ONE, S)
IF (I .LT. 10) CALL INAIJg (I, I+1, ONE, S)
CALL INAIJ2 (I, I, FOUR, §)

Novémber 1984 _ 35

1SPK
2SPK
8SPK
4SPK
5SPK
6SPK
7SPK
8SPK
9SPK
10SPK
11SPK
12SPK
18SPK
14SPK
155PK .
16SPK
17SPK
18SPK
19SPK
20SPK
21SPK
22SPK
28SPK
24SPK
25S8PK
26SPK
27SPK

' 28SPK

29SPK
$0SPK
81SPK

‘82SPK

88SPK
84SPK
85SPK
86SPK
8 7SPK
88SPK
89SPK
40SPK
{1SPK
425PK
{8SPK
44SPK

458PK

46SPK
4 7SPK
4 8SPK
49SPK
50SPK
51SPK
52SPK

SPARSPAK-A

200

QQQaQ0 aaQa qQqaaaa aaaa

800

11

CALL INBI (I, FOUR, S)
CONT INUE
CALL INBI (1, ONE, S)
CALL INBI (10, -ONE, §)

...

...

...

COMPUTE AN ESTIMATE OF THE RELATIVE ERROR
IN THE COMPUTED SOLUTION.

..................

..................

CALL STATSA

--

COMPUTE THE ACTUAL RELATIVE ERROR IN THE COMPUTED SOLUTION
SINCE THE TRUE SOLUTION IS KNOWN.

ERROR = ZERO

DO 800 I = 1, 10

. ERROR = AMAX1 (ERROR,ABS(S(I)-ONE))

CONT INUE '

WRITE (IPRNTS,11) ERROR

FORMAT (/10X, 85HMAXIMUM ERROR , 1PE15.5)

sTOP
END

User’s Guide

sssv0s00022 UNIVERSITY OF WATERLOO
#svssss02+ SPDARSE MATRIX PACKAGE
sss0ss000s S PARSUPAK)
dasvsseree RELEASE 3
sssve0vsess (C) JANUARY 1084
#ov0v0ss0se ANST FORTRAN

#4e00440es SINGLE PRECISION
#essesse09 [AST UPDATE JANUARY 1984

OUTPUT UNIT FOR ERROR MESSAGES : 8
OUTPUT UNIT FOR STATISTICS ’ 8
IJBEGN - BEGIN STRUCTURE INPUT
INIJ - INPUT OF ADJACENCY PAIRS
IJEND - END OF STRUCTURE INPUT .
ORDRA2 - RCM ORDERING ...

INAIJ2 - INPUT OF MATRIX COMPONENTS

Novembér 1984

36

53SPK

54SPK
55SPK
568SPK
57SPK
58SPK
59SPK
60SPK
61SPK
6 2SPK
63SPK
64SPK
65SPK
66SPK
67SPK
68SPK
69SPK
70SPK
71SPK
72SPK
78SPK
74SPK
75SPK
76SPK
77SPK
78SPK
79SPK
80SPK
81SPK
82SPK
83SPK
84SPK
85SPK
86SPK

SPARSPAK-A User’s Guide

INBI - INPUT OF RIGHT HAND SIDE

SOLVE# - ENVELOPE SOLVE

EREST2 - ERROR ESTIMATOR

STATSA - SYSTEM-A STATISTICS
SIZE OF STORAGE ARRAY (MAXSA) 250
NUMBER OF EQUATIONS 10
NUMBER OF OFF-DIAGONAL NONZEROS 18
TIME FOR ORDERING 0.017
STORAGE FOR ORDERING 60.
TIME FOR ALLOCATION 0.
STORAGE FOR ALLOCATION 60.
STORAGE FOR SOLUTION 79.
TIME FOR FACTORIZATION 0.017
TIME FOR SOLUTION 0.
OPERATIONS IN FACTORIZATION 18.
OPERATIONS IN SOLUTION ; 28.
TIME FOR ESTIMATING RELATIVE ERROR 0.088
OPERATIONS IN ESTIMATING REL ERROR 160.
STORAGE FOR ESTIMATING REL ERROR 99.
ESTIMATE OF RELATIVE ERROR 1.197¢-07
TOTAL TIME REQUIRED 0.087
MAXIMUM STORAGE REQUIRED 99.
MAXIMUM ERROR 1.19200e-07

November 1984 37

SPARSPAK-A User’s Guide

Example 3

This is similar to Example 1, except that method 3 is used (with the A ordering option),
and two problems differing only in their right hand sides are solved. After solving the problem
whose solution vector contains all ones, a new right hand side is input which corresponds to a
different problem whose solution vector contains all twos. When the module SOLVES is called a

second time, the interface detects that the factorization has already been done, and only the
triangular solution is performed.

Program

C--- SPARSPAK-A (ANSI FORTRAN) RELEASE IIl --- NAME = EXS$
C (C) UNIVERSITY OF WATERLOO JANUARY 1984

c#‘..t"OO““‘.‘OO‘.“‘.“0“’.‘0"‘000.0“00000.000‘00‘00‘000#‘
C‘O‘.t‘l‘t“O““0"‘0"‘.0‘OO““O“t.‘000.00"0“00“‘00000“‘.
C“O‘l““‘ MA [N L [N E P R o G R A M [EEEEERE RN]
CO.“‘OO0.0“““"0..‘.00...“.“l“‘..‘“000‘00“00...‘00“00‘
C‘O‘.0.0‘..C‘..‘OCOQO0.0‘.O‘.C.O“0..000000‘000000.00‘0“00‘00..

lof

INTEGER I , IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA ,
1 MSGLVA, NVARS

REAL MCHEPS, RATIOL, RATIOS, TIME

REAL S(250)

REAL ERROR , FOUR , ONE , RELERR, TWO ,

1 ZERO
c

Gt P e rae st sttt st s s s s estrtsessasossessseeesssesosessscsesessssasne
c , ’

COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS

COMMON /SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 MCHEPS, TIME
C
c““""O“O0.0‘O.“OtO“Ol““t"’000.’.‘_OOOO‘O“""‘O‘O“OO‘OO
(o}
C e teemcceceeeaaaaaaias
c INITIALIZE SPARSPAK-A.
€ ceeeccccacanccaaanaann
CALL SPRSPK
MAXSA = 250
(o]
C ceceeccccceanaaa
c INPUT STRUCTURE.
€ eeceeecccccecana

CALL [IJBEGN
DO 100 I = g, 10
CALL INIJ (I, I-1, S)
100 CONTINUE
CALL IJEND (S)

.............................

aaaa aqQaQa

........................

ZERO = 0.0E0
ONE = 1.0E0
TWO = 2.0E0

November 1984 | , 38

1SPK
25PK
$5PK
4SPK
5SPK
6SPK
7SPK
8SPK
9SPK
10SPK
11SPK
125PK
18SPK
14SPK
15SPK
16SPK
17SPK
18SPK

" 19SPK

20SPK
21SPK
22SPK
28SPK
24SPK
25SPK
26SPK
27SPK
28SPK
29SPK
$0SPK
81SPK
$2SPK
83SPK
84SPK
85SPK

86SPK -

87SPK
88SPK
$9SPK
40SPK
41SPK
42SPK
438SPK
44SPK
45SPK
46SPK
47SPK
48SPK

_48SPK

SPARSPAK-A User’s Guide

FOUR = 4 .0E0 : 50SPK
DO 200 I = 1, 10 : 51SPK
IF (I .GT. 1) CALL INAIJS (I, I-1, -ONE, S)} 52SPK
CALL INAIJS (I, I, FOUR, §) 58SPK
CALL INBI (I, TWO, S) 54SPK
200 CONTINUE 55SPK
CALL INBI (1, ONE, S) , 56SPK
CALL INBI (10, ONE, S) 57SPK
e 58SPK
(o e I I A R ~ . 59SPK
(o] PERFORM NUMERICAL FACTORIZATION AND SOLUTION. 6 0SPK
o T eI I A I 61SPK
CALL SOLVES (S) ’ ‘ 62SPK
c 638SPK
L R A R ity 64SPK
C COMPUTE AN ESTIMATE OF THE RELATIVE ERROR ; 6 5SPK
c IN THE COMPUTED SOLUTION. 66SPK
L e e 6 7SPK
CALL ERESTS (RELERR, S) .) 68SPK
c 69SPK
L 70SPK
(o] OBTAIN STATISTICS. . 71SPK
(o R 72SPK
CALL STATSA 78 SPK
c 74 SPK
[I IR R e I T N 75SPK
(o] COMPUTE THE ACTUAL RELATIVE ERROR IN THE SOLUTION 786 SPK
C SINCE THE TRUE SOLUTION IS KNOWN. 77SPK
[i I I i I TR R 78SPK
ERROR = ZERO 79SPK
DO 800 I = 1, 10 . 80SPK -
ERROR = AMAX1(ERROR,ABS(S(I)-ONE}) 81SPK
800 CONTINUE 82SPK
WRITE (IPRNTS,11) ERROR : 88SPK
11 FORMAT (/10X, 85HMAXIMUM ERROR , 1PE15.5) , 84SPK
c , ; 85SPK
o i I 86SPK
c INPUT A NEW RIGHT HAND SIDE VECTOR. 87SPK
Lo e I I IR IR IR e P ' ‘88SPK
DO 400 I = 1, 10 89SPK
CALL INBI (I, FOUR, S) 90SPK
400 CONTINUE B 91SPK
CALL INBI (1, TWO, S) 92SPK
CALL INBI (10, TWO, S) 98SPK .
C 94SPK
C ceeeeemceeac it e e e B 95SPK
C PERFORM ANOTHER SOLVE. S 96SPK
C seececececcicnccnnnnnnna ' , 97SPK
CALL SOLVES (S) 98SPK
c 29SPK
C | ceeeemececcccaenan : 100SPK
C OBTAIN STATISTICS. 101SPK
€ ceeemeeeeeeaaeaann 1082SPK
CALL STATSA _ 108SPK
c 104SPK
o 2 A 105SPK
C COMPUTE THE ACTUAL RELATIVE ERROR. 106SPK
2 107SPK
ERROR = ZERO . 108SPK
DO 500 I = 1, 10 109SPK
ERROR = AMAX1 (ERROR,ABS(S(I)-TWO)) 110SPK
500 CONTINUE 111SPK
WRITE (IPRNTS,11) ERROR 112SPK
c i ; 118SPK
STOP i . . 114SPK
END . 115SPK

November 1984 39

SPARSPAK-A

User’s Guide

Output

#4ssss402¢ UNIVERSITY OF WATERLOO
*#sssssrss SPARSE MATRIX PACKAGE
s BEE B bt S { SPARSPAK)

IEE R R RS RELEASE ¢
##d4ss434+ (C) JANUARY 1984
drsrirrarr ANGT FORTRAN

*rtrrvrers SINOIE PRECISION
#essssetss [AGT UPDATE JANUARY 1984

OUTPUT UNIT FOR ERROR MESSAGES
OUTPUT UNIT FOR STATISTICS

IJBEGN
INIJ
IJEND
ORDRAS
INAIJS
INBI
SOLVES
ERESTS

STATSA

BEGIN STRUCTURE INPUT

INPUT OF AD JACENCY PAIRS
END OF STRUCTURE INPUT

ONE -WAY DISSECTION ORDERING
INPUT OF MATRIX COMPONENTS
INPUT OF RIGHT HAND SIDE
IMPLICIT BLOCK SOLVE

ERROR ESTIMATOR

SYSTEM-A STATISTICS

SIZE OF STORAGE ARRAY (MAXSA)
NUMBER OF EQUATIONS

NUMBER OF OFF-DIAGONAL NONZEROS
TIME FOR ORDERING

STORAGE FOR ORDERING

TIME FOR ALLOCATION

STORAGE FOR ALLOCATION

STORAGE FOR SOLUTION

TIME FOR FACTORIZATION

TIME FOR SOLUTION

OPERATIONS IN FACTORIZATION
OPERATIONS IN SOLUTION

TIME FOR ESTIMATING RELATIVE ERROR
OPERATIONS IN ESTIMATING REL ERROR
STORAGE FOR ESTIMATING REL ERROR
ESTIMATE OF RELATIVE ERROR

TOTAL TIME REQUIRED

MAXIMUM STORAGE REQUIRED

MAXIMUM ERROR

INBI

SOLVES

INPUT OF RIGHT HAND SIDE

IMPLICIT BLOCK SOLVE

FACTORIZATION ALREADY DONE:

STATSA

November 1984

SYSTEM-A STATISTICS

250

10

18
0.088

91.
0.017

94.

94.

0.
0.017

18.

8s8.
0.067

157.

144.
1.785€¢-07
0.188

144.

1.19208e-07

40

SPARSPAK-A

SIZE OF STORAGE ARRAY (MAXSA)
NUMBER OF EQUATIONS

NUMBER OF OFF-DIAGONAL NONZEROS
TIME FOR ORDERING

STORAGE FOR ORDERING

TIME FOR ALLOCATION

STORAGE FOR ALLOCATION
STORAGE FOR SOLUTION

TIME FOR FACTORIZATION

TIME FOR SOLUTION

OPERATIONS IN FACTORIZATION
OPERATIONS IN SOLUTION

TOTAL TIME REQUIRED

MAXIMUM STORAGE REQUIRED

MAXIMUM ERROR

250

10

18

0.088
91.

0.017
94.
24.

0.

0.
18.
88.

0.050
94.

2.88418e-07

User’s Guide

November 1984

41

SPARSPAK-A ~ User’s Guide

Example 4

This example illustrates the use of the save/restart feature of SPARSPAK-A. After the
factorization is computed, SAVEA is executed, which writes the current state of the
computation on FORTRAN logical unit 3. In a second program the module RSTRTA is
executed to read the information from unit 3, and the computation resumes at the point at
which SAVEA was invoked.

Program 1

C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = EX4A
C (C) UNIVERSITY OF WATERLOO JANUARY 1984

c‘.&'."'l..l‘t..".‘““QO.OO.OO.‘.‘O#OO..‘.0100"t.“‘."‘&.‘t‘
Cﬂl"00‘0“0.“““0‘0‘0“l“.‘"0000‘0.‘00‘.000"l.‘t.“.t“.““
CO‘OO‘OOO.‘ MA I N L I N E P Ro G R A M [EEXRER RN E NN]
C‘t‘.‘.‘.‘0“0.0"‘&‘0‘..“‘.OO“‘O.““OO‘0.0‘.t‘t.““t.'l.t&‘
C...O’C#“O“‘“.“.'.0‘0““"“‘“00‘““0.000000“OO"Ot“‘t‘t

c

c FILE REQUIREMENT : :
c --- UNIT 8 - FOR SAVEA (SHOULD NOT BE DESTROYED).
c ;

ct“‘000.‘0..0“00..““‘O‘t“t‘."“‘.t.“t“‘0“0“‘0‘.‘Ott‘O‘

c

INTEGER I, IERRA , MAXSA , MSGLVA, NVARS
REAL s(250)
REAL FOUR ~, ONE , RELERR

c

CO‘O"t““‘t“.ttt.““““&".t“..t..."“".'.O'Ot..“l.‘tt'
C

COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS
c

C.#“Cl"O&‘..‘O0‘.0“.‘...‘0‘“O‘O“O‘.....‘..“O"O‘O“OOO“.’

......................

QaaQaQ

......................

CALL SPRSPK
MAXSA = 250

................

QaQaQaQ
~
3
S
17,3
5
§
3
@

................

CALL [IJBEGN
DO 100 I = 2, 10
CALL INIJ (I, I-1, §)
100 CONTINUE
CALL IJEND (§)

.............................

.............................

.......................

QaaaQaa aQaaq

.......................

ONE = 1.0E0
FOUR = 4.0E0
DO 200 I = I, 10
IF (I .GT. 1) CALL INAIJ: (I, I-1, -ONE, S)

November 1984 - 42

1SPK
25PK
$SPK
4SPK
5SPK
6SPK
7SPK
8SPK
9SPK
10SPK
11SPK
12SPK
18SPK
14SPK
15SPK
16SPK
175PK
18SPK
19SPK
20SPK
21SPK
22SPK
23SPK
24SPK
25SPK
26SPK
27SPK
28SPK
29SPK
$0SPK
$1SPK
$2SPK
$3SPK
84 SPK
$5SPK
$6SPK
$7SPK
88SPK
$9SPK
40SPK
41SPK
4{2SPK
485PK
44 SPK
45SPK
4 6SPK
4 7SPK
48SPK
4 9SPK
50SPK

SPARSPAK-A

CALL INAIJ1 (I, I, FOUR, §)

200 CONTINUE

User’s Guide

c
o
C PERFORM NUMERICAL FACTORIZATION.
o Z U VU .
CALL SOLVE:® (S)
C
€ s e eeeeem e e eeeeee e emaaeaaaaaaat
(o} COMPUTE AN ESTIMATE OF THE RELATIVE ERROR
c IN THE COMPUTED SOLUTION.
-2 S
CALL EREST! (RELERR, S)
c
€ cececcmeceacaaaaa-
C OBTAIN STATISTICS.
€ cecececcecacaaaaaa
CALL STATSA
C
c e
c SAVE CURRENT STATE OF THE COMPUTATION.
o 2
CALL SAVEA (8, S)
C
sTopP
END
Output

#¥tdseterds UNIVERSITY OF WATERLOO
#esrhs s34+ GPARSE MATRIX PACKAGE
SRR RS (SPARSPAK)
IETEEERE R 2 RELEASE 8
sevssresrs (0) JANUARY 1984
#edawrddrs ANST FORTRAN

#¥4ss23442% SINGLE PRECISION
dtststesds JAST UPDATE JANUARY 1984

OUTPUT UNIT FOR ERROR MESSAGES
OUTPUT UNIT FOR STATISTICS

I JBEGN BEGIN STRUCTURE INPUT

INIJ - INPUT OF ADJACENCY PAIRS
IJEND - END OF STRUCTURE INPUT

ORDRA1 RCM ORDERING

INAIJ1 - INPUT OF MATRIX COMPONENTS

SOLVE1 ENVELOPE SOLVE ...
NO RIGHT HAND SIDE PROVIDED,
SOLUTION WILL BE ALL ZEROS.

EREST1 - ERROR ESTIMATOR ..

STATSA - SYSTEM-A STATISTICS

November 1984

43

51SPK .

- 52SPK

58SPK
54 SPK
55SPK
S56SPK
51SPK
58SPK
59SPK
60SPK

61SPK -

62SPK
68SPK
64SPK
65SPK
66SPK
6 7SPK
68SPK
69SPK
705PK
71SPK
72SPK
78SPK
74SPK
758PK
76SPK

SPARSPAK-A ‘ User’s Guide

SIZE OF STORAGE ARRAY (MAXSA) 250
NUMBER OF EQUATIONS 10
NUMBER OF OFF-DIAGONAL NONZEROS : 18
TIME FOR ORDERING 0.
STORAGE FOR ORDERING ' 60.
TIME FOR ALLOCATION 0.017
STORAGE FOR ALLOCATION 60.
STORAGE FOR SOLUTION 70.
TIME FOR FACTORIZATION 0.017
TIME FOR SOLUTION 0.
OPERATIONS IN FACTORIZATION 18.
OPERATIONS IN SOLUTION 0.
TIME FOR ESTIMATING RELATIVE ERROR 0.088
OPERATIONS IN ESTIMATING REL ERROR “160.
.STORAGE FOR ESTIMATING REL ERROR g0.
ESTIMATE OF RELATIVE ERROR 1.785e¢-07
TOTAL TIME REQUIRED 0.067
MAXIMUM STORAGE REQUIRED 90.
SAVEA - SAVE STORAGE VECTOR
Program 2
C--- SPARSPAK-A (ANSI FORTRAN) RELEASE IIl --- NAME = EX4B - 1SPK
C (C) UNIVERSITY OF WATERLOO JANUARY 1984 2SPK

c“‘.#‘.‘..‘l.“.".‘..l‘..“.‘.‘.OOO“‘000000"00000‘0000“0‘" 8SPK
c“"‘.‘.““““‘.‘.“.0.00“t"‘&.""‘&’.‘.‘.““‘“‘#‘#‘.‘l‘t“ 4SPK

Ceoeeescees MAINLINE PROGRAM sovs00ecsy 5SPK

c‘t"""'*““t""‘."0““‘OO‘O‘.0.0‘OO“OOO‘.O“OOC‘OO"“.‘

CO‘O“OOO"O“‘“.O0.0"'.CO"“‘Ot...““‘0&.“."...0.‘..“.‘. :gﬁﬁ
c 8SPK
c FILE REQUIREMENT : , 9SPK
c ~ --- UNIT 8 - FOR RSTRTA. ' 10SPK
c : ; ' 11SPK
C‘#‘OO".“OO"C.“l.‘“““.‘“.tt‘...'O#.t"OOOOOOOOC'OOOOOOOO IespK
c 18SPK
INTEGER I , IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA , 14SPK
1 MSGLVA, NVARS) 15SPK
REAL MCHEPS, RATIOL, RATIOS, TIME 16SPK
REAL S(250) : 17SPK
REAL ERROR , ONE , TWO , ZERO 18SPK
c 195PK
COt"00‘000“0““‘0‘00.'.0‘.00“‘.‘0.‘0‘.‘000‘0““"00'0“0‘00 gosPK
c 21SPK
COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS 22SPK
COMMON /SPKSYS/ [IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, 28SPK
1 MCHEPS, TIME ; 24SPK
c 25SPK
C.““.‘““..“.t‘O..“‘.C.O"OO"‘.“t.““‘tl.t“t..“‘“‘..OO esSPK
c : 2 7SPK
e 2 28SPK
c INITIALIZE SPARSPAK-A. 29SPK
e 2 $0SPK
CALL SPRSPK $1SPK
MAXSA = 250 . $2SPK
c , $3SPK
2 U N : 84SPK
c RESTORE STATE OF COMPUTATION. 85SPK
C eeeeee-- e ; 86SPK
CALL RSTRTA (8, S) . $7SPK

November 1984 44

SPARSPAK-A ' User’s Guide

c 88SPK

€ e e iseeeeeiiieeeecceeaans 89SPK

c INPUT RIGHT HAND SIDE VECTOR. 40SPK

€ m et 41SPK

ZERO = 0.0E0 42SPK

ONE = 1.0E0 A 48SPK

TWO = £.0E0 44SPK

DO 100 I = 1, 10 45SPK

"CALL INBI (I, TWO, S) ‘ 46SPK

100 CONTINUE 47SPK

CALL INBI (1, ONE, S) 4 8SPK

CALL INBI (10, ONE, S) 49SPK

c 508PK

L R R 51SPK

c PERFORM NUMERICAL SOLUTION. : 52SPK

L R R 53SPK

CALL SOLVEL (S) 54SPK

c 55SPK

C e 56SPK

c OBTAIN STATISTICS. 57SPK

C eeeeeeeeeeaiaan 58SPK

CALL STATSA 59SPK

c ; 60SPK

L R 61SPK

c . COMPUTE THE ACTUAL RELATIVE ERROR IN THE COMPUTED SOLUTION 62SPK

c SINCE THE TRUE SOLUTION IS KNOWN. 68SPK

L I I I e 64 SPK

ERROR = ZERO 65SPK

DO 200 I = 1, 10 : 66SPK

ERROR = AMAX1 (ERROR,ABS(S(I)-ONE)) 6 7TSPK

200 CONTINUE ‘ 68SPK

WRITE (IPRNTS,11) ERROR 69SPK

11 FORMAT (/10X, $85HMAXIMUM ERROR , 1PE15.5) 7T6SPK

c ‘ 71SPK

STOP 72SPK

END 78SPK
Output

#tstsst2dr UNIVERSITY OF WATERLOO
deerrrredr OCPDARSE MATRIX PACKAGE
#esssusresr (S PARSPAK)
REEREEEE NS . RELEASE 8
#erxdrrver (C0) JANUARY 1984
drksdtrrst ANGT FORTRAN

drrstrrser oINCIE PRECISION
#srrrtdaer [AST UPDATE JANUARY 1984

OUTPUT UNIT FOR ERROR MESSAGES [
OUTPUT UNIT FOR STATISTICS 6
RSTRTA - RESTART SYSTEM-A
INBI - INPUT OF RIGHT HAND SIDE

SOLVE1 - ENVELOPE SOLVE ...
FACTORIZATION ALREADY DONE.

STATSA - SYSTEM-A STATISTICS

November 1984 45

SPARSPAK-A User’s Guide

SIZE OF STORAGE ARRAY (MAXSA) 250

NUMBER OF EQUATIONS) 10

NUMBER OF OFF-DIAGONAL NONZEROS 18

TIME FOR ORDERING 0.

STORAGE FOR ORDERING 60.

TIME FOR ALLOCATION 0.017

STORAGE FOR ALLOCATION 60.

STORAGE FOR SOLUTION 70.

TIME FOR FACTORIZATION 0.017

TIME FOR SOLUTION 0.017

OPERATIONS IN FACTORIZATION 18.

OPERATIONS IN SOLUTION 88.

TOTAL TIME REQUIRED 0.050

MAXIMUM STORAGE REQUIRED 70.

MAXIMUM ERROR 1.19208e-07

November 1984 46

SPARSPAK-A User’s Guide

Example 5

This example consists of four runs of essentially the same program, illustrating how the
SAVEA and RSTRTA modules can be used to avoid repeating successfully completed
computations when the execution cannot proceed further because of lack of working storage. In
the first run, MAXSA was too small to accommodate the structure, and a message was printed
indicating that MAXSA must be at least 999 in order to input the structure. A second run with
MAXSA=999 was executed, and the structure was successfully input; however, the ORDRAS5
- module could not execute because MAXSA was less than 1400. The module SAVEA was then
executed and the run terminated. ‘

The third run had MAXSA=2500, and the ordering and storage allocation were
successfully performed. However, ORDRAS5 terminated with an error because it detected that
too little storage was available for the numerical computation (SOLVES), so SAVEA was again
executed. Finally, the last run was executed with MAXSA set to 2509 (the maximum value,
printed in the third run), and the solution to the problem was obtained.

Note:

The following examples were run using a single precision version of SPARSPAK-A oh a
DEC VAX 11/780 computer. The working storage required will therefore be dlfferent if a
different version of SPARSPAK-A or a different computer is used.

Program 1

C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = EX5A
¢ (C) UNIVERSITY OF WATERLOO JANUARY 1984

Cttt##t#tt###**#t#«ﬁ###*#i#&tit#&##*#t*tt*#ttt#t#****####ttt**#tt
C"#***'#**#*4‘****##I***##t#######*##t##i#t&##t#*t#t##t#tt*#t#l##
Ctttt##&t#t MAINLTINE PR OGRAM IEERERRERERXE,]
'C#t#######**#tt‘t,tt##Jt*#t##titt#tt#tl#t###t**t###tttltt##t#t***
C##tt###**###*######*t####ttt“#l####tt###tt*##*##tt##t##*tt#ttt#

c
c FILE REQUIRMENT :
c --- UNIT 8 - FOR SAVEA AND RSTRTA (SHOULD NOT BE
c DESTROYED) .
c
C«O*****«***ti«*I’#**##‘#t*y#_*#tt*##&tt#l########’##ltt*##**t**#tt#**
c
INTEGER I , IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA ,
1 MSGLVA, NVARS
REAL MCHEPS, RATIOL, RATIOS, TIME
REAL S(900)
REAL ERROR , FOUR , ONE , TWO , ZERO
c

C#ttt##t##d‘#t###*4‘*###*#######*#1lttt##t#*##t###t###ti#i##*t*#t#
C

COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS
COMMON /SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 , MCHEPS, TIME

c
C#*tl####&t###*####“#«ﬁ##t*&###*ti#t#*#t#####t#*##il#&ttii#t##*#i
c

C e eeccececeimcccaeaan

c INITIALIZE SPARSPAK-A.

November 1984 ‘ 47

1SPK

2SPK

$SPK

4SPK

5SPK

6SPK

7SPK

8SPK

9SPK
10SPK
11SPK
125PK
18SPK
14SPK
15SPK
16SPK
17SPK
18SPK
19SPK
20SPK
21SPK
22SPK
28SPK
24SPK
25SPK
26SPK
27SPK
28SPK
29SPK
80SPK

SPARSPAK-A
C @ eccaceccveccccsasccscsncsanas
CALL SPRSPK
MAXSA = 900
c
C 3 ceeccccccccscccace
c INPUT STRUCTURE.
C 3 cseeccsceaccccaas
CALL [IJBEGN
DO 100 I = ¢, 200
CALL INIJ (I, I-1, S)
100 CONTINUE
CALL IJEND (§) .
IF (IERRA .EQ. 0.) GO TO 200
CALL STATSA *
STOP
c
200 CONTINUE
C 3 ceeeececcccccscnsnnsascacssnsa
c DETERMINE SYMMETRIC ORDERING.
C 3 cecacascecsccscssvsscscccsocss
CALL ORDRAS (S)
IF (IERRA .EQ. 0) GO TO %00
CALL SAVEA (8, S)
CALL STATSA
sTopP
c -
800 CONTINUE
C @ <cececcccenscaccscccncacesnae
c INPUT NUMERICAL VALUES.
C @ ececsccencccccscnsasscsss
ZERO = 0.0E0
ONE = 1.0E0
TWO = 2.0E0
FOUR = 4.0E0
DO 400 I = 1, 200
IF (I .GT. 1) CALL INAIJS (I, I-1, -ONE, S)
CALL INBI (I, T™WO, S)
400 CONTINUE
CALL INBI (1, ONE, §)
CALL INBI (200, ONE, S)
c
C 3 eeeeeemccaccccecsccccscsscscssnncsssenasessennas=
c PERFORM NUMERICAL FACTORIZATION AND SOLUTION.
C e escceceeccecescsccancnsncnnsncecsccsanccancnanoe
‘ CALL SOLVES (§)
c
C 3 ~ceecacecscccecscesna
c OBTAIN STATISTICS.
C @ cccdeacacncceacnsscssns
CALL STATSA
c
C 3 e ecceceseccceccescenscecncecaceansenaaneeceneccaeeeaeeeeeco=
c COMPUTE THE ACTUAL RELATIVE ERROR IN THE COMPUTED SOLUTION
c SINCE THE TRUE SOLUTION IS KNOWN.
€ 3 cececeacecmcececscccecansensnsseasneeeaceseacceeenseeneno-
ERROR = ZERO
DO 500 I =1, 200
ERROR = AMAX1 (ERROR,ABS(S(I)-ONE))
500 CONTINUE
WRITE (IPRNTS,11) ERROR
11 FORMAT (/10X, 85HMAXIMUM ERROR , 1IPE15.5)
C .
STOP
END

November 1984

User’s Guide

48

$1SPK
32SPK
88SPK
84SPK
85SPK
86SPK
87SPK
28SPK
89SPK
40SPK
41SPK
42SPK
48SPK
44SPK
45SPK
46SPK
4 7SPK
48SPK
49SPK
50SPK
51SPK
52SPK
58SPK
54SPK
55SPK
56SPK
57SPK
58SPK

§9SPK

60SPK
61SPK
62SPK
638SPK
64SPK
85SPK
66SPK
6 7SPK
68SPK
69SPK
70S5PK
715PK
72SPK
78SPK
74SPK
75SPK
76SPK
77SPK
78 SPK
79SPK
80SPK
81SPK
82SPK
88SPK
84 SPK
85SPK
86SPK
87SPK
88SPK
89SPK
90SPK
91SPK
92SPK
98SPK
94SPK

SPARSPAK-A

User’s Guide

Output

#tsstd444¢ UNIVERSITY OF WATERLOO
#4422 d0e3s GPARSE MATRIX PACKAGE
#essv20¢4s (S PARSPAK)

R ERE RO RELEASE s
#sevseveses (C) JANUARY 1984
#attrdtssr ANSI FORTRAN

#dssardssd SINCIE PRECISION :
#hssdrsses JAST UPDATE JANUARY 1984

OUTPUT UNIT FOR ERROR MESSAGES 6
OUTPUT UNIT FOR STATISTICS 6

- IJBEGN BEGIN STRUCTURE INPUT
INIJ - INPUT OF ADJACENCY PAIRS
IJEND - END OF STRUCTURE INPUT
EMSGA - SYSTEM-A ERROR
IJEND ' - ERROR NUMBER 116
INSUFF. STORAGE FOR ADJ. STRUCTURE.
MAXSA MUST AT LEAST BE 999
STATSA - SYSTEM-A STATISTICS

NO STATISTICS AVAILABLE.

Program 2

C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = EX5B
¢ (C) UNIVERSITY OF WATERLOO JANUARY 1984

Ctitl#*##“ittt##t#tt##*"#Ot#ttt###tt##t##****##*t**i#*#’##**t&#
ct-ﬁ#t##*###*#*#t##****‘**###’*t*#*#**y*#####*#*#**it*#t##i**t##t#
c#*#*##t#*# MAINLTINE PROGRAM *f*#*#*##t
0*#####**#*###*######*#####t#tt##t##*t#‘**#*#*#*#*#*#***#*##*#*#
ctt##*##*##**I#4‘.#'*l“t*###«‘***i’#***l****#f‘###t##t*#t##i##*ttttl#‘#

c
c FILE REQUIREMENT : :
c --- UNIT 8 - FOR SAVEA AND RSTRTA (SHOULD NOT BE
c DESTROYED) .
c
C*#«*I*O"t*l##t*#t##’#####&#t####***#"###t#t###t#ti*##****#*#*****
c
INTEGER I , IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA ,
1 o MSGLVA, NVARS
REAL MCHEPS, RATIOL, RATIOS, TIME
REAL 5(999)
REAL ERROR , FOUR , ONE , TWOo _ , ZERO
c

Cl##t#i*#*#####'I*'##t#"#i#l'*t#t#Il#tt*ttt*###tt#?’**#t*##t#####

November 1984

49

1SPK
2SPK
$SPK
4SPK
5SPK
6SPK
7SPK
8SPK
9SPK
10SPK
11SPK
12SPK
18SPK
14SPK
15SPK
16SPK
17SPK
18SPK
19SPK
20SPK
21SPK

SPARSPAK-A

QaQaQaaQQ

QaaQaQ

QaQaQ Q

aaa Q

QQQOa agaaa aQaaaqQ

100

200

300

400

COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS

COMMON /SPKSYS/ [IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
MCHEPS, TIME

P U S PRSPPI G PRS00 2808380000000 8800088208038 08833283 320000388328

......................

MAXSA = 299

CALL [IJBEGN
DO 100 I = g, 200
CALL INIJ (I, I-1, §)
CONT INUE
CALL IJEND (S) ,
IF (IERRA .EQ. 0) GO TO 200
CALL STATSA
STOP

CONT INUE

CALL ORDRAS (S)

IF (IERRA .EQ. 0) GO TO 300
CALL SAVEA (8, §)
CALL STATSA
STOP

CONT INUE

g
x
[}

DO 400 I = 1, 200
IF (I .GT. 1) CALL |INAIJ5 (I, I-1, -ONE, S)
CALL INBI (I, TWO, -S)

CONT INUVE

CALL INBI (1, ONE, §)

CALL INBI (200, ONE, S)

...

...

CALL SOLVES (§)

..................

CALL STATSA

COMPUTE THE ACTUAL RELATIVE ERROR IN THE COMPUTED SOLUTION
SINCE THE TRUE. SOLUTION IS KNOWN.

ERROR = ZERO

DO 500 I = 1, 200

November 1984

User’s Guide

50

28SPK
28SPK
24SPK
25SPK
268SPK
27SPK
28SPK
29SPK
8 0SPK
$1SPK
$2SPK
$3SPK
$4SPK
85SPK
$6SPK
37SPK
38SPK
$9SPK
40SPK
41SPK
4 2SPK
{8SPK
445SPK
45SPK
46SPK
47SPK
48SPK
{9SPK
508PK
51SPK
52SPK
58SPK
54SPK
555PK
56SPK
57SPK
58SPK
59SPK
60SPK
61SPK
6 2SPK
68SPK
64SPK
65SPK
66SPK
6 7SPK
6 8SPK
6 9SPK
70SPK
71SPK
72SPK
78SPK
74SPK
75SPK
76SPK
77SPK
78SPK
79SPK
80SPK
81SPK
8 2SPK
83SPK
84SPK
85SPK
86SPK
87SPK

SPARSPAK-A

ERROR = AMAX1 (ERROR,ABS(S(I)-ONE))

500 CONTINUE

WRITE (IPRNTS,11) ERROR

11 FORMAT (/10X, 85HMAXIMUM ERROR

c

SsTOoP
END

2

User’s Guide

1PE15.5)

textesdits UNIVERSITY OF WATERLOO
##44+4304+ SPARSE MATRIX PACKAGE
#4444+ (S PARSPAK)

P Y YR NN RELEASE 8

FEREE R E AN (C') JANUARY 1984
#ddrsddedsr ANSI FORTRAN

#¥sss24444 GINGLE PRECISION

#*#ds s34+ LAST UPDATE JANUARY 1984

OUTPUT UNIT FOR ERROR MESSAGES
OUTPUT UNIT FOR STATISTICS

IJBEGN - BEGIN STRUCTURE INPUT
INIJ - INPUT OF ADJACENCY PAIRS
IJEND - END OF STRUCTURE INPUT
ORDRA5 - NESTED DISSECTION ORDERING
EMSGA - SYSTEM-A ERROR
ORDRXI (X=A,B AND I=1,2,8,4,5,6)
_ - ERROR NUMBER
INSUFF. STORAGE FOR ORDERING.
MAXSA MUST AT LEAST BE
SAVEA - SAVE STORAGE VECTOR
STATSA - SYSTEM-A STATISTICS
SIZE OF STORAGE ARRAY (MAXSA)
NUMBER OF EQUATIONS
NUMBER OF OFF-DIAGONAL NONZEROS

TOTAL TIME REQUIRED
MAXIMUM STORAGE REQUIRED

124

1400

999
200
898

Program 8

C--- SPARSPAK-A (ANSI FORTRAN} RELEASE III --- NAME = EXS5C

c

(C) UNIVERSITY OF WATERLOO JANUARY 1984

C*«*l**#t##‘t#tIlt###i#*"##t*I’#&*’**ttt##*#tt*###*t*f&tittt##t**#

November 1984

51

88SPK
89SPK
90SPK
91SPK
92SPK
98SPK
94 SPK

1SPK
2SPK
8SPK

SPARSPAK-A User’s Guide

00’00!0““00‘0000000“.000#‘0‘&00"0.‘00‘#ttt‘t.tttttt#'t‘t#t‘t JSPK
ct“v“t‘.‘ MA [N L l NE P R o G R A M [E R ENRE N KRR] SSPK
COOOOOOOOOOOIIOIOOOOO00‘0‘Ottttttttt‘t&tttt#t#&‘tlt"‘ttt‘tttttt ‘SPK
COO&#CO““‘OOOO“OCOOOttlt0ct.‘t0."tttt‘.'!t“t“‘t’tt‘lo‘tott 7SPK
c 8SPK
c FILE REQUIRMENT : 9SPK
c --- UNIT 8 - FOR SAVEA AND RSTRTA (SHOULD NOT BE 10SPK
c DESTROYED) . 11SPK
c : 18SPK
ct"tl‘t‘0."00000"00000000".0‘000000000'00#&0*00.0‘000000000‘ 13SPK
c , , 14SPK
INTEGER I , IERRA , IPRNTE, IPRNTS, MAXINT, MAXSA , 15SPK

1 MSGLVA, NVARS 16SPK
REAL MCHEPS, RATIOL, RATIOS, TIME 17SPK

REAL S(eso00) 18SPK

REAL ERROR , FOUR , ONE , TWo , ZERO 19SPK

c v 20SPK
ctttat0‘00“‘kltﬁ0tt00‘00“‘0000‘.00000‘000000000000000000'0000000 EISPK
c 22SPK
COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS 28SPK
COMMON /SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, 24SPK

1 MCHEPS, TIME Co 25S5PK

c : 26SPK
COOOOOO“OOC“‘!“00“0‘..“00.00000".00000100000000000“0‘t.tt el,sPK
c 28SPK
2 R R 29SPK
c INITIALIZE SPARSPAK-A. $0SPK
C e e e : 81SPK
CALL SPRSPK . 32SPK
MAXSA = 2500 88SPK

(o]) : 84SPK
L 85SPK
C RESTORE STATE OF COMPUTATION. 86SPK
L R 87SPK
CALL RSTRTA (8, S) 88SPK

c ‘ $9SPK
L e I 40SPK
c DETERMINE SYMMETRIC ORDERING. ! 41SPK
(o R L I 42SPK
CALL ORDRAS (S) . 48SPK

IF (IERRA .EQ. 0) GO TO 100 44SPK

CALL SAVEA (8, S) 45SPK

CALL STATSA 46SPK

STOP 47SPK

c : . . 48SPK
100 CONTINUE _ 49SPK

(o R R R . 50SPK
c INPUT NUMERICAL VALUES. 51SPK
C eeeeececcrceaeci s 52SPK
ZERO = 0.0E0 © 58SPK

ONE = 1.0E0 54SPK

TWO = 2.0E0 55SPK

FOUR = 4.0E0 56SPK

DO 200 I = 1, 200 57SPK

IF (I .GT. 1) CALL INAIJ5 (I, I-1, -ONE, §) 58SPK

CALL INAIJS (I, I, FOUR, S) 59SPK

CALL INBI (I, T™WO, S) : 6 0SPK

200 CONTINUE ; 61SPK
CALL INBI (1, ONE, S) 62SPK

CALL INBI (200, ONE, S) 68SPK

c 64SPK .
e 65SPK
c PERFORM NUMERICAL FACTORIZATION AND SOLUTION. 66SPK
c R R R PR 6 7SPK
CALL SOLVES (S) . 68SPK-

C) 6 9SPK

November 1984 52

SPARSPAK-A User’s Guide
€ ceemecemeeaceeaeaan
C OBTAIN STATISTICS.
o 2
CALL STATSA
C
o2
C COMPUTE THE ACTUAL RELATIVE ERROR IN THE COMPUTED SOLUTION
o) SINCE THE TRUE SOLUTION IS KNOWN.
€ 3 meeeeeeceesemmcececeaceaaeceaccccaacene e e~ -
ERROR = ZERO
DO 800 I = 1, 200
ERROR = AMAX1 (ERROR,ABS(S(I)-ONE))
800 CONTINUE
WRITE (IPRNTS, 11} ERROR
11 FORMAT (/10X, S85HMAXIMUM ERROR , 1PE15.5)
C
STOP
END
Output

¥resds2rret UNIVERSITY OF WATERLOO
#4424 4444+ GPARSE MATRIX PACKAGE
FEbE eI e RS { SPARSUPAK)
FEREEE RS RELEASE 8
s44433238% (C) JANUARY 1984
srdrrsdrid ANGT FORTRAN

#strrsss43 QGINGLE PRECISION
tkrbrsdrdr [AST UPDATE JANUARY 1984

OUTPUT UNIT FOR ERROR MESSAGES 6
OUTPUT UNIT FOR STATISTICS 6
RSTRTA - RESTART SYSTEM-A
ORDRA5 - NESTED DISSECTION ORDERING
EMSGA - SYSTEM-A ERROR
ORDRXI (X=A,B AND I=1,2,8,4,5,6) J
- ERROR NUMBER 127
INSUFF. STORAGE FOR SOLVEI.
MAXSA MUST AT LEAST BE 2509
SAVEA - SAVE STORAGE VECTOR

STATSA - SYSTEM-A STATISTICS

SIZE OF STORAGE ARRAY (MAXSA) 2500
NUMBER OF EQUATIONS 200
NUMBER OF OFF-DIAGONAL NONZEROS 898
TIME FOR ORDERING 0.167
STORAGE FOR ORDERING 1400.
TIME FOR ALLOCATION 0.050
STORAGE FOR ALLOCATION 2824.
TOTAL TIME REQUIRED 0.217
MAXIMUM STORAGE REQUIRED 2824.

November 1984

53

70SPK
71SPK
72SPK
78SPK
74SPK
75SPK
76SPK
77SPK
78SPK
79SPK

80SPK

81SPK
82SPK
88SPK
84SPK
85SPK
86SPK
87SPK

SPARSPAK-A User’s Guide

Program 4

C--- SPARSPAK-A (ANSI FORTRAN) RELEASE IIl --- NAME = EXS5D 1SPK
C (C) UNIVERSITY OF WATERLOO JANUARY 1984 2SPK
c.‘t‘.".l“..““‘.‘.OO...0.000#“0‘0#0‘000.“““00.‘0‘#0‘.“& ’SPK
COOOO.t‘000.‘000"0000..000l0l'lttt0Oltlt0t.‘.‘.“t“l“tt(.ﬂ““ A‘SPK
CO‘O‘..0.00 MA I N L I N E P R o G R A M I E RN ENENNE) SSPK
C‘000.‘.0""“.30‘0‘0‘0.‘.C‘O"OOO“t‘t‘ttl."‘iQ.t‘t.t.t&t’..‘ 6SPK
Cl‘t.".tt"...l‘.‘t.l0.“‘00,“‘0&0‘0‘00000"0‘0.000‘0.‘00‘00#'0 7SPK
C 8SPK
(o} FILE REQUIREMENT :@ . 9SPK
C -«- UNIT 8 - FOR SAVEA AND RSTRTA. ‘10SPK
C . 11SPK
c‘..“““‘.lt"."“000.0.0‘O“l.t‘..‘00‘0'0“‘00‘0““‘0.0“‘0 IBSPK
c 18SPK
INTEGER I ., ITERRA , IPRNTE, IPRNTS, MAXINT, MAXSA , 14SPK
1 MSGLVA, NVARS 15SPK
REAL MCHEPS, RATIOL, RATIOS, TIME 16SPK
REAL 5(2509) 17SPK

REAL ERROR , FOUR , ONE , TWO , ZERO 18SPK
c 19SPK
CO0t0.0t‘00&0000&000000O‘0.00000“‘.‘&&‘0“““‘0OOO..OOOUO‘O“O 203PK
(o] ’ 21SPK
COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS - 22SPK
COMMON /SPKSYS/ IPRNTE, I[PRNTS, MAXINT, RATIOS, RATIOL, 23SPK
1 MCHEPS, TIME 24SPK
C 25SPK
CO“0.0#OO‘00'0.00‘0"‘0‘O‘“000000‘000.00'000000.0000000COOOOOOO gasPK
(o] 27SPK
C sesececccccicccconcnns ' 28SPK
o} INITIALIZE SPARSPAK-A. 29SPK
€C = ceccccecccracrnccnccnn 80SPK
CALL SPRSPK 81SPK
MAXSA = 2509 . ' 82SPK
c . 38SPK
C cceeecccccccecccrscecnnncnaans 8 4SPK
C RESTORE STATE OF COMPUTATION. 85SPK
(o R I IR IR) 86SPK
CALL RSTRTA (8, §) 37SPK
¢ A ‘ / $8SPK
c R I IR A ~ $9SPK
(o] DETERMINE SYMMETRIC ORDERING. : : 40SPK
Lo R I 41SPK
CALL ORDRAS (S) 42SPK
IF (IERRA .EQ. 0) GO TO 100 : 48SPK
CALL SAVEA (8, S) 44SPK
CALL STATSA 45SPK
STOP)) 4 6SPK
c 47SPK
100 CONTINUE _ : - 48SPK
C cceececcaccdetaaaaann 49SPK
c INPUT NUMERICAL VALUES. 50SPK
C ceeecccccccescceannncana 51SPK
ZERO = 0.0E0 52SPK
ONE = 1.0E0 , 538SPK
T™WO = 2.0E0 54SPK
FOUR = 4.0E0 : i ~ 55S8PK
DO 200 I = 1, 200 ‘) 56SPK
‘IF (I .GT. 1 } CALL INAIJs (I, I-1, -ONE, §) : 57SPK
CALL INAIJS (I, I, FOUR, S) : . 58SPK

November 1984 54

SPARSPAK-A

CALL INBI (I, TWO, §)
200 CONTINUE
INBI (1, ONE, §)
INBI (200, ONE, §)

CALL
CALL

User’s Guide

COMPUTE THE ACTUAL RELATIVE ERROR IN THE COMPUTED SOLUTI ON
SINCE THE TRUE SOLUTION IS KNOWN.

QQaaQa aaaa aaaa
Qo
3
ES
[
2
3
o
N
—~
n
N
~—y
Q
0

ERROR = ZERO
DO 8so¢0

ERROR = AMAX1 (ERROR,ABS(S(I)-ONE))

I = 1, 200

800 CONTINUE
WRITE (IPRNTS,11) ERROR

11 FORMAT (/10X, 85HMAXIMUM ERROR , 1PE15.5)
c .
sTopP
END
Output

tsrtrrssds UNIVERSITY OF WATERLOO
t+strsd444+ GPARSE MATRIX PACKAGE
#*4¢sd¢42434¢ (S PARSPAK)
REFEEE ST RELEASE 8
#ssxxdsevrr (0) JANUARY 1984
drrds2te3+ ANGT FORTRAN

rrereretrr oINGLE PRECISION
##42+4444+ JAST UPDATE JANUARY 1984

OUTPUT UNIT FOR ERROR MESSAGES
OUTPUT UNIT FOR STATISTICS

RSTRTA
ORDRAS
INAIJS
INBI

SOLVES

STATSA

RESTART SYSTEM-A

NESTED DISSECTION ORDERING
INPUT OF MATRIX COMPONENTS
INPUT OF RIGHT HAND SIDE
GENERAL SPARSE SOLVE

SYSTEM-A STATISTICS

SIZE OF STORAGE ARRAY (MAXSA)
NUMBER OF EQUATIONS

NUMBER OF OFF-DIAGONAL NONZEROS
TIME FOR ORDERING

November 1984

2509
200
898

0.167

55

59SPK
60SPK
61SPK
62SPK
63SPK
64SPK
65SPK
66SPK
6 7SPK
68SPK
69SPK
70SPK
71SPK
72SPK
78SPK
74SPK
75SPK
76SPK
77SPK
78SPK
79SPK
80SPK
81SPK
82SPK
88 SPK
84SPK
85SPK
86SPK

SPARSPAK-A User’s Guide
STORAGE FOR ORDERING 1400.
TIME FOR ALLOCATION 0.050
STORAGE FOR ALLOCATION 2824.
STORAGE FOR SOLUTION 25089.
TIME FOR FACTORIZATION 0.100
TIME FOR SOLUTION 0.050
OPERATIONS IN FACTORIZATION 958.
OPERATIONS IN SOLUTION 1168.
TOTAL TIME REQUIRED 0.867
MAXIMUM STORAGE REQUIRED 25089.
MAXIMUM ERROR 2.88419e-07
November 1984 56

SPARSPAK-A : User’s Guide

Example 8

This is a program to illustrate how one might use SPARSPAK-A to choose a method. The
matrix is 300X300, it has nonzeroes on the diagonal, the first column and the last row. The
structure of the matrix is input using IJBEGN, INIJ and IJEND, and then saved on
FORTRAN unit 3. The modules ORDRA1, ORDRAS and ORDRAS5 are then executed, each
one followed by a call to STATSA to obtain the storage information. Note that RSTRTA is
called after execution of ORDRA1 and ORDRAS, to restore the package to the state that
existed immediately after the structure inputting routines were executed. Note also that
SAVEA could have been used after each ordering module (with different output unit numbers).
After one of the methods was chosen, RSTRTA (with the appropriate unit number) could be

used to initiate the computation, avoiding re-executing the ordering module corresponding to the
method chosen. ‘

Program

C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = EX6
C (C) UNIVERSITY OF WATERLOO JANUARY 1984

C##t#t###t#‘*####l#t##-ﬁ#*#l#“*tt#**####tt###‘#**##*’#*It*t&#t*#t
C*l‘*t‘***It*t##t“d’*ti‘#tt###‘t##ti##*t#t###t#ttt#*l*#t####***#**
Cl####*##*# ’ MAI NULINE PROGRAM I EEERERERERREZSR]
C#ttl#t######tt#l##lt**t##tt###tt*’###it#########t*####ti**t*##t#
C*#**t‘#*#*#*&*#*l*t*###*#-ﬁt#tt###tttt##t##t#tt#t‘t*t#t#t#lt*“_t#

c

c FILE REQUIREMENT
C --- UNIT 8 - FOR SAVEA AND RSTRTA.
c : ,

C#**«*#8**-*##’*J’#‘t#t#t##t*#*l‘ti##**t##t#‘#-\'*ﬁt##**#‘*#tt###*###tl*
c

INTEGER I , IERRA , MAXSA , MSGLVA, NVARS

REAL S(7500)
c

B R e Y P Y
c
COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS

g*####*#*#t#######""#t*#&tt########’##l##ﬂ##*#t######tt*##******,*
c
T J U
c INITIALIZE SPARSPAK-A.
c S eeee -
CALL SPRSPK
MAXSA = 7500
c
o
c INPUT STRUCTURE.
C | cceecc e aeaannen~
CALL IJBEGN
DO 100 I = 1, 800
CALL INIJ (I, 1, §
CALL INIJ (800, I, S)
100 CONTINUE
CALL IJEND (S)
c
C = cececececcacarcacaccainaannee
c SAVE STRUCTURE INFORMATION.
C | ceecreavecssscansacocneeean

November 1984 ‘ 57

1SPK
2SPK
$SPK
4SPK
5SPK
6SPK

7SPK

8SPK
9SPK
10SPK
11SPK
18SPK
18SPK
14SPK
155PK
16SPK
17SPK
18SPK
19SPK
20SPK
21SPK
22SPK
28SPK
24SPK
25SPK
26SPK
27SPK
28SPK
29SPK
80SPK
$1SPK
$25PK
$8SPK
$4SPK
$55PK
3 6SPK
87SPK
$8SPK
$9SPK
40SPK
41SPK

SPARSPAK-A

CALL SAVEA (8, S)

User’s Guide

c
€ 3 cccaecsecccacccccccccscecacccecanaacaanananna
c DETERMINE REVERSE CUTHILL-MCKEE ORDERING AND
c OBTAIN STATISTICS.
€ 3 ccccccmacaceccacescnccscscccecceccsacaannnns
CALL ORDRAI (S)
CALL STATSA
c
€ 2 e eceecesccscccccccesscvscnnnnnccsnersnessensansenoan
c RESTORE STRUCTURE INFORMATION, DETERMINE ONE-WAY
c DISSECTION ORDERING AND OBTAIN STATISTICS.
€ 3 cececieeeaceccseccscccaccscccavecescsencansancann
CALL RSTRTA (8, §)
CALL ORDRAS (§)
CALL STATSA
c
€ 3 cteeeesemaascccccececsnenctancestansoneaaneannonn
c RESTORE STRUCTURE INFORMATION, DETERMINE NESTED
c DISSECTION ORDERING AND OBTAIN STATISTICS.
€ ceecceccceecccccaccaccccccccccccaaacaaaaaeea.aae
CALL RSTRTA (8, S)
CALL ORDRAS (S)
CALL STATSA
c
STOP
END
Output

SAVEA

ORDRA1

#esssssevs UNIVERSITY OF WATERLOO
#ssses9349 SPARSE MATRIX PACKAGE
tesssveess (S PARSPAK)
seeResssse RELEASE 8
#sesssssesr (C) JANUARY 1084
#e02s00449 ANSI FORTRAN

seeessvers SINGLE PRECISION
ctaactcftt LAST UPDATE JANUARY 1984

OUTPUT UNIT FOR ERROR MESSAGES 6
OUTPUT UNIT FOR STATISTICS 6

'IJBEGN - BEGIN STRUCTURE INPUT ...

INIJ - INPUT OF ADJACENCY PAIRS

IJEND - END OF STRUCTURE INPUT

.

SAVE STORAGE VECTOR

RCM ORDERING ...

STATSA - SYSTEM-A STATISTICS

SIZE OF STORAGE ARRAY (MAXSA) 7500
NUMBER OF EQUATIONS 800
NUMBER OF OFF-DIAGONAL NONZEROS 1194
TIME FOR ORDERING . - 0.217
STORAGE FOR ORDERING : 2896.

November 1984

58

42SPK
43SPK
44SPK
45SPK
46SPK
4 7SPK
48SPK
49SPK
50SPK
51SPK
52S5PK
53SPK
54SPK
55SPK
56SPK
57SPK
58SPK
59SPK
6 0SPK
61SPK
6 2SPK
68SPK
64 SPK
6 5SPK
6 6SPK
6 7SPK
68SPK

SPARSPAK-A

TIME FOR ALLOCATION
STORAGE FOR ALLOCATION
STORAGE FOR SOLUTION
TOTAL TIME REQUIRED
MAXIMUM STORAGE REQUIRED

RSTRTA - RESTART SYSTEM-A

ORDkA.? - ONE-WAY DISSECTION ORDERING

STATSA - SYSTEM-A STATISTICS

- SIZE OF STORAGE ARRAY (MAXSA}

NUMBER OF EQUATIONS

NUMBER OF OFF-DIAGONAL NONZEROS
TIME FOR ORDERING

STORAGE FOR ORDERING

TIME FOR ALLOCATION

STORAGE FOR ALLOCATION

STORAGE FOR SOLUTION

TOTAL TIME REQUIRED

MAXIMUM STORAGE REQUIRED

RSTRTA - RESTART SYSTEM-A

ORDRAS5 - NESTED DISSECTION ORDERING

STATSA - SYSTEM-A STATISTICS

SIZE OF STORAGE ARRAY (MAXSA)
NUMBER OF EQUATIONS

NUMBER OF OFF-DIAGONAL NONZEROS
TIME FOR ORDERING

STORAGE FOR ORDERING

TIME FOR ALLOCATION

STORAGE FOR ALLOCATION

STORAGE FOR SOLUTION

TOTAL TIME REQUIRED

MAXIMUM STORAGE REQUIRED

0.017
2896.
2398.

0.288
2896.

7500
800
1194
0.300
8297.
0.117
8800.
soo02.
0.417
8800.

7500
300
1194
0.217
2696.
0.088
8599.
83801.
0.800
8599.

User’s Guide

November 1984

59

SPARSPAK-A User’s Guide

10. Appendix — implementation overview

In this section, we describe briefly the use of labelled common blocks in the internal
implementation of SPARSPAK-A and the various methods of communication between modules.

10.1. User/module communication

As described in previous sections of this user guide, the user supplies a one-dimensional
floating-point array S, from which all array storage is allocated. In particular, the interface
allocates the first NEQNS storage locations in S for the solution vector of the linear system of
equations. After all the interface modules for a particular method have been successfully
executed, the user can retrieve the solution from these NEQNS locations.

There is one labelled common block SPAUSR that the user must provide, having four
variables.

COMMON /SPAUSR/ MSGLVA, IERRA, MAXSA, NEQNS

The variable MAXSA is the declared size of the one-dimensional floating-point array S and it
must be set by user at the beginning of his program. For each module in the interface that
allocates storage (e.g. INIJ, IJEND, ORDRzi), MAXSA is used to make sure that there is
enough storage to carry out the particular phase.

10.2. Module/module communication

There are several labelled common blocks used for communication among modules within

the interface. Two important ones are the control block SPACON and the storage map block
SPAMAP.

COMMON /SPACON/ STAGE, MXUSED, MXREQD, NVARS, NEDGES, METHOD,
{and other method-related control vaeriables}

COMMON /SPAMAP/ PERM, INVP, RHS,
{and other method-related data
structure pointers} g

The control block has fifty integer variables and contains control information about the specific
problem being solved. There are fifty variables in the storage map block, which keep the
locations (origins in S) of the various arrays used in the particular storage scheme. These
storage schemes differ in complexity across the methods, so the same storage map block must be
used in the corresponding routines ORDRxi, INAIJi, INROWi, INMAT:, SOLVE:, and
EREST:. An example is given below.

November 1984 60

SPARSPAK-A User’s Guide

RHS -

right hand side vector
PERM >

permutation vector
INVP —

inverse permutation vector
XENV >

index to eﬁvelope structure of L’
DIAG >

‘diagonal of the matrix factor L
ENV >

envelope of the matrix fakctor‘ L

Storage allocation for the symmetric envelope method (ORDRAI)

10.3. Save and restart implementation

The SAVEA routine saves the control information in the control block, the storage
pointers in the storage map block, as well as the storage vector S. In this way, the state of the
computation can be re-established by executing the module RSTRTA, which restores the control
block and the storage map block, and the storage vector S.

The variable MXUSED in the control block is used to avoid saving irrelevant data from S.
After the successful completion of each phase, MXUSED is set to the maximum number of
storage locations in S used thus far. It is then only necessary to save the first MXUSED
locations of S whenever the routine SAVEA is called.

November 1984 ’ ' 61

SPARSPAK-A User’s Guide

Some operating systems allow a program to change the space it occupies in main storage
during execution. Thus, in some installations the user of SPARSPAK-A may be able to
dynamically increase or decrease the size of the working storage S. He can determine what the
value of MAXSA should be by declaring the labelled common block SPACON in his mainline
program, and examining the value of MXREQD. At the end of each successfully executed
phase of the computation, MXREQD is set to the minimum value of MAXSA required to
successfully execute the next phase of the computation. '

It is often the case that when this dynamic growing of program space is provided, the
effect is to increase the space allocated to the unlabelled COMMON, which is usually assigned
the highest memory locations in the user’s program area. In such a circumstance, the array S in
the user’s program would have to be declared in blank common.

10.4. Method checking

As we discussed in the introduction, using a particular “method” means calling the
appropriate interface routines ORDRzi, INAIJi, INROWi, INMAT:, SOLVE:, and EREST;,
where the last character is a numerical digit denoting the method. These ordering, input, solve,
and relative error estimation modules cannot be mixed since they in general involve different
data structures. In order to ensure that these modules are not inadvertently mixed by the user,
ORDRxi sets the variable METHOD in the control block SPACON equal to (10X +k), where k

is an integer that distinguishes orderings A and B. This variable is checked by subsequently
executed input and solve modules.

10.5. Stage (sequence) checking

Another control variable that deserves comment is STAGE. As its name implies, it is used
to keep track of the current step or stage of the execution. This variable is particularly
important in connection with SAVEA and RSTRTA modules. In restarting the system using the
RSTRTA routine, the variable STAGE in the control block SPACON is restored, and it
indicates the last successfully completed stage or phase before the routine SAVEA was called.

In this way, the execution can be restarted without repeating already successfully completed
steps. ’

Another function of this variable is to enforce the correct execution sequence of the various
interface routines. Before the actual execution of each interface routines, the variable STAGE is
used to check that all previous interface modules have been successfully completed. This avoids

producing erroneous results due to an improper processing sequence, or accidental omission of
steps.

The content of the variable STAGE is only changed after a phase has been successfully
executed. When an error occurs during the execution of the phase, the variable STAGE remains
unchanged. This prevents the execution of all the subsequent phases, even if they are invoked
by the user. The variable STAGE is also used by the modules to determine whether some

initialization is necessary in a module, or whether part of the module has already successfully
executed during a previous call to it.

November 1984 62

SPARSPAK-A ’ ’ User’s Guide

- 10.8. Storage allocation of integer and floating-point arrays

The ANSI FORTRAN standard specifies that the number of bits used to represent integers
and floating-point numbers are the same. However, some vendors provide the user with the
option of specifying “short” integers, either explicitly in the declarations such as “INTEGER*2”,
or via a parameter to the FORTRAN processor which automatically represents all integers
using fewer bits than used for floating-point numbers. Since a significant portion of the storage
used in sparse matrix computations involves integer data for pointers, subscripts etc., it is
desirable to try to exploit these “short” integer features whenever it makes sense to do so.

SPARSPAK-A contains parameters RATIOS and RATIOL, set in the module SPRSPKY.
which specify the ratios of the number of bits used for floating-point numbers to the number
used for “short” and “long” integers. For example, in a double precision IBM version of the
package which exploits “short” integers, RATIOS is 4 and RATIOL is 2. Let [x] be the smallest
integer such that [z]>z. The package then uses RATIOS {RATIOL} to allocate only
[»/RATIOS] {[p/RATIOL]} elements of S for “short” {“long”} integer arrays of length p.

SPARSPAK-A assumes that the declaration of S that the user makes in his program is of

the same type as that used for floating-point computation. We also make the reasonable
assumption that RATIOS>1 and RATIOL>1.

10.7. Statistics gathering

SPARSPAK-A contains a labelled common block called SPADTA which appears below.
These variables are used to provide the output described in Section 7.2.

COMMON /SPADTA/ ORDTIM, ALOCTM, FCTIME, SLVTIM, ERRTIM,
FCTOPS, SLVOPS, ERROPS, ORDSTR, ALOSTR,
SLVSTR, ERRSTR, OVERHD, ANORM , RCONDA,
ERRFCT, RELEST, SVPAD(83)

In order to supply timing information, SPARSPAK-A assumes the existence of a real
function DTIME which returns the processor execution time that has elapsed since DTIME was
last referenced. Thus, the DTTME function is also installation dependent.

(4) Thus SPRSPK is an installation dependent subroutine.

November 1984 63

SPARSPAK-A User’s Guide

11. References

[]

2]
3]
[4]

[6]
[7]

E.C.H. Chu and J.A. George, “An algorithm to estimate the error in Gaussian elimination

without pivoting”, Research report CS-84-21, Department of Computer Science, University
of Waterloo (1984).

J.A. George, “An automatic one-way dissection algorithm for irregular finite element
problems”, SIAM J. Numer. Anal., 17 (1980), pp. 740-751.

J.A. George and JJWH. Liu, “Algorithms for matrix partitioning and the numerical
solution of finite element systems”, SIAM J. Numer. Anal., 15 (1978), pp. 297-327.

J.A. George and JWH. Liu, “An automatic nested dissection algorithm for irregular finite
element problems”, SIAM J. Numer. Anal., 15 (1978), pp. 1053-1069.

J.A. George and J.W.H. Liu, “The design of a user interface for a sparse matrix package”,
ACM Trans. on Math. Software, 5 (1979), pp. 134-162.

JW.H. Liu, “On multiple elimination in the minimum degree algorithm”, Technical Report
No. 83-03, Department of Computer Science, York University, Downsview, Ontario (1983).

JW.H. Liu and A.H. Sherman, “Comparative analysis of the Cuthill-McKee and Reverse
Cuthill-McKee ordering algorithms for sparse matrices”, SIAM J. Numer. Anal., 13 (1976),
pp. 198-213. '

November 1984 64

	

