A DISCUSSION AND IMPLEMENTATION OF
KOVACIC'S ALGORITHM FOR
ORDINARY DIFFERENTIAL EQUATIONS
by
Carolyn J. Smith

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

Research Report CS-84-35
October 1984

A Discussion and Implementation of
Kovacic’s Algorithm for
Ordinary Differential Equations

by

Carolyn J. Smith

Table of Contents

B X% e Yo L1 Lol 5 1o 5+ N

3 R @ L= o1 7 P
O o0 6 o Yo 1 P
2. Some Preliminariesuiiiiiiiitconaniinneteniseeiscisiereisoteniarranness,
2.1, The FOour Cases ...uuiieietenietionieenieerneeesneseenaseaieeeeniesrane,s
2.2. Form of the Algorithmttt i it crie i,
2.3. Necessary Conditionsoiiiiiiiieiireniieeanreeanrenrariennenns
3. Kovacic’s Algorithm and Proofttt iiiiiiiiaen

3.1. Kovacic’s Algorithm ... it it it e ittt e
3.2. Proof of Kovacic’s Algorithmo i i it
3.2.1. Proof of Algorithm for Case (1)ciiiiiiiiiiiiiiiii i,
3.2.2. Proof of Algorithm for Case (2)ovviiiiiiiiiiiiiiiiinneneane.
3.2.3. Proof of Algorithm for Case (3)oviiiiiiiiiiiiiiiiianns,

4. Saunders’ Algorithm i i i i e i e e e e

4.1. Saunders’ Modifications to Kovacic’s Algorithm
4.2. Proof of Saunders’ (Corrected) Algorithmccoiiiiiiiin....
S. Implementation in Mapleot e

5.1. Details of the Implementation e
5.2. Limitations of the Implementationccoiiiiiiiiiiiiiiinenn...
5.3. Some Further Observationso.uiiiiitiiiiiiie it iiie e,
AL Source Code oottt e e e e e e,
B. Examples and Tests ...ttt e e

Bibliography

O 00 B D e

13
13
16
17
21
25
36
36
40
47
47
49
31
33
78
82

Index of Definitions

Liouvillian sOlution .. ouuiiieniiiiiiiinnnienennnns P
Liouvillian fieldcovvvvrnnnnn. T
differential f1eld ...ttt it e i e e i

finite algebraic. ... e e e e

TedUCHION Of O T oottt ittt s et atiee et antnnssoesananeesssssnnnanes

o031} 108§ PP
component of the identity ... i i e
connected component 0f @ BroUPottt i e e e
SOIVAD e . o e e e e

invariant of the Galois groUPttt i i i e
OTAINATY POIMES Lottt it it ettt ittt s et e e,

0 00 0O N N N N L i i B R NN NN R

T T - T
= NV T O, T U TR SN SN N OV I S B \° B o B oo B e

Preface

This essay was written in partial fulfillment of the requirements for the degree
of Master of Mathematics in Computer Science at the University of Waterloo.

Thanks go to all the members of the Maple group for their assistance during the
implementation of the algorithm.

Special thanks go to my supervisor, Bruce Char, for his support and assistance
through the duration of this work.

iii

CHAPTER 1

Introduetion

1.1. Overview

The following essay is a discussion of an algorithm by J. Kovacic [3] to solve
certain second order ordinary differential equations, and of an implementation of
this algorithm in Maple.

In the remainder of this chapter, the exact form of the problem to be solved is
given. In chapter 2, some of the theory that is intrinsic to the algorithm is developed
and the general form of the algorithm is specified.

In chapter 3, Kovacic’s algorithm is presented and proved correct. In chapter
4, a variant of the algorithm developed by B. D. Saunders for implementation in
Macsyma [5] is discussed and some corrections made. The corrected algorithm is
also verified to correspond to Kovacic’s algorithm.

In chapter 5, the implementation of the algorithm is discussed and some prob-
lems with Maple as the implementation system are mentioned. Some recommenda-
tions for future work on Maple and on the implementation of the algorithm are
made. Source code is presented in appendix A. Some examples of the use of the
algorithin and of the implementation are presented in appendix B.

1.2. Purpose

The equation to be solved is assumed of the following form:

az" +bz +¢cz=0 (1.2a)

where a, b and ¢ are rational functions of a (complex) variable x with coefficients in
the field of complex numbers C, a # 0 and z is a (complex) function of x.

The goal of the algorithm is to find one Liouvillian solution of the equation. A
solution is Liouvillian if it is an element of a Liouvillian field, where a Liouvillian
field is defined as follows:

Definition: Let F be a differential field of functions of a complex variable x, that

contains C(x), i.e. F is a field of characteristic zero with a differentiation
operator ' with the following two properties: (a+b) = a’+5' and
(ab) = ab'+a’b, for all @ and b in F. (The characteristic of a field is the
least integer ¢ > 0 for which ga = 0 for all « in the field. If no such ¢
exists, then the characteristic of the field is zero.) F is Liouvillian if there

exists a tower of differential fields
C(x)=FQ(;F1Q' ..anzF

such that foreachi = 1,...,n

al

Fi = F,-_l(a) where EFi_l

o
i.e. F;is generated by an exponential of an integral over F,_
i g y i-1

or

Fi=Fi—l(a) where (X’GFZ'_I
(i.e. F; is generated by an integral over F;_1)

or
F; is finite algebraic over F;_;.
(i.e. F;=F; {(a) and a satisfies a polynomial of the form

agtajot - - - +a,a"=0 where the g; are in F;_; and are not all
ZEro)

The algorithm need only find one Liouvillian solution of the equation because a
second solution may be found by the methed of reduction of order as follows. The
second solution is assumed of the form z, = v-z; where z; is the known first solution
and v is some function to be determined. Using the differential equation (1.2a), one

obtains a first order equation for v which can be solved to give the second solution as

—f%dx
[
=1 [
21
If the first solution, z;, is Liouvillian it is clear that the second, z,, is also
Liouvillian and hence all solutions of {1.2a} are Licuvillian (since all soclutions are 2

linear combination of z; and z,).

In order to reduce the original differential equation to a simpler form, the fol-

lowing transformation is made:

_rb,
Y@ = 2 - e 2"

Then (1.2a) becomes

'y b2 + 2ab’ — 2ba’ — 4ac
y'= 5 y=20
4a

or

"=y ‘ (1.2b)

«
I

where

_ b2 + 2ab’ ~ 2ba’ — 4ac
= 2
da”

Clearly, if the solutions to (1.2a) are Liouvillian, then so are the solutions to (1.2b).

In what follows, the equation to be solved will be assumed of the form (1.2b).
The implementation of the algorithm accepts equations of the form (1.2a), makes the
transformation, solves the transformed equation, then transforms the solutions using
the inverse transformation
b
[—=ax
2(x) = y(x) - ¢ 2

CHAPTER 2

Some Preliminaries

2.1. The Feour Cases

The following theorem by Kovacic [3] determines the form that the algorithm
will take.

Theorem: For the differential equation y’* = ry, r € C{(x), there are four cases that
can occur.

I

® where o € C(x).

Jo where w is algebraic of
degree 2 over C(x) and case (1) does not hold.

(1) The d.e. has a solution of the form n = e

(2) The d.e. has a solution of the form n = e

(3) All solutions of the d.e. are algebraic over C(x) and cases (1) and (2)

I

do not hold. The solutions are of the form n = e ® where o is alge-

braic of degree 4, 6 or 12 over C(x).

(4) The d.e. has no Liouvillian solutions.

The remainder of this section will cover the proof of this theorem and the back-
ground necessary to understand it.

Let m, { be any two independent solutions of the d.e. y’' = ry. Define G to be
the differential extension field of C(x) generated by +n and ¢, i.e.
G = C(x)(m,m’,L,L’). (Higher derivatives of m and { are not necessary since

rry

M =rmeG, " =r'n+r G, etc.)

Now, the Galois group of the differential equation is the Galois group of G over
C(x), and is denoted G = G(G/C(x)). G is the group of all differential automor-
phisms of G leaving C(x) elementwise fixed.

Recall that an automorphism of a group H is an isomorphism from H to itself.
A differential automorphism is an automorphism that commutes with ’ (the differen-
tiation operator).

This means that G is the group of all automorphisms o: G -G such that
o(a') = (ca)’ for all a € G, and of = f for all f € C(x).

The Galois group, G, is isomorphic to a subgroup of GL(2,C), the group of all
2X2 invertible matrices with complex coefficients, i.e. each o € G corresponds to a
aO’ b(I

matrix ¢y dg where ag, b,, ¢, d; € C. This correspondence occurs as follows.

Because m and { are solutions of y'’ = ry, and because any o € G is a differential

automorphism, then
(e(m))’ = o(n’’) = o(rm) = or-om = rom

and hence om must be a solution of the d.e. too. Further, om must be a linear com-
bination of m and {, since every solution of the d.e. is a linear combination of any
two independent solutions of the d.e. We may then write

on=ayzmn+ by L asb,eC

Following the same arguments

ol=cym+dyl c4,d,€C

Combining these two results we have

a, by 'ﬂ- a,m + bl
co dof 1E] T leem + dgl
aO’ bO‘
and o clearly corresponds to the matrix
(e o

Using the Wronskian of v and {, we can show that G is isomorphic to a sub-
group of SL(2,C) (CGL(2,C)), the group of 2X2 invertible matrices with determinant
1. The Wronskian, W, of n and { is by definition W = m{' — m'{. Take the deriva-
tive of W and get

W= +nl" = —"{=m"—-n"L=nr{ —m{=0
Hence W must be a constant and so for any o € G, oW = W (because W € C(x) and &,

by definition, leaves C(x) fixed). This implies

oW = ol — m'{) = on(al)’ — (om)'of

(ag-n + bcC)(Co’n’ + do-;,) - (“g"’l' + bo-g')(co-n + do-c)

= (aO'dcr - bo'co-)(ni;’ - 'T],Z) = (aO‘dO' - bUCU)W

and thus a d, — byc, = deto = 1.

We will now state two facts without proof. The Galois group of the d.e., G,
(relative to m and {), is (isomorphic to) an algebraic subgroup of SL(2,C). (Thisis a
fundamental fact from Picard-Vessiot theory. A proof may be found in [3].) Recall
that any subgroup K of GL(2,C) is said to be an algebraic group if there exist a finite

number of polynomials Py, ..., P,, where each P;e C[X{,X,,X3,X,], such that a
ab)
matrix c d is an element of K iff P(a,b,c,d)= --- = P,(a,b,c,d) = 0.

Further, for any algebraic subgroup of SL(2,C) the following lemma holds.
(See [2] for the proof of this lemma.)

Lemma: If G is an algebraic subgroup of SL(2,C) then one of the following four
cases can occur.

(1) G is triangulisable, i.e. there exists an x € G such that for every g ¢ G,

xgx lis a triangular matrix. We can assume that xgx ™1 is a lower tri-
. a 0 .
angular matrix and hence of the form b g1 with a and b e C.

(Recall that G is a subgroup of SL(2,C) and hence the determinant of
xgx ™1 must be 1.)

(2) G is conjugate to a subgroup of D where

+ c 0 0 ¢
DT =1l -1 | ceCo,e # 0f U _e~1 g | ceC,c #0

and case (1) does not hold, i.e. there exists an x € G such that for

1

every g e G, xgx - is either a diagonal matrix or a skew-diagonal

matrix but there is no x € G such that all xgx™!

are triangular (this
includes strictly diagonal too). (Note that the determinant of each

xgx~Lis 1 since the determinant of each matrix in D™ is 1.)
(3) G is finite and cases (1) and (2) do not hold.

(4) G = SL(2,C), i.e. G is the infinite group of all 2X2 matrices with
determinant 1.

What do we have now? We know that G, the Galois group of the d.e., is (iso-
morphic to) an algebraic subgroup of SL(2,C). We also know that any algebraic sub-
group of SL(2,C) satisfies the above lemma. We can now apply the lemma to the

Galois group of the d.e. and see what relevance it has to the solutions of the d.e.

In case (1), G is triangulisable. Assume x € G has been found and every matrix
conjugated to a lower triangular matrix. (This is equivalent to changing the basis of
the vector space or picking two different independent solutions 1 and .) Then every

a;, 0

o € G is of the form -1] @4.¢5 € C and maps m to om = a,m.
CO‘ a(]'

Now if we set o = —'21— (or equivalently, = efw), then

’ ' a 'q' '
M on asm n

and hence w € C(x). This is case (1) of the original theorem; the d.e. has a solution

J

of the form m = ¢” ~ where o € C(x).

In case (2), G is conjugate to a subgroup of D*. Assume we have conjugated G

a, 0 0 b

and ever G is of the form _1] or _
very o € 0 a;! -b;1 0

g
so that either om = am,

ol = aglg, or om = b, ol = —-b;ln. (Note that in either case, o(nzzz) = nzgz, SO
!

that n2¢° e C(x).) If we set o = ﬁ'ﬂ— (= efm) and ¢ = _CC—’ then either cw = w and

cd = ¢, or cw = $ and od = w. Minimally both cases are handled by 0w = o or
o?w — o = 0 s0 w satisfies a polynomial of degree 2 over C(x), hence is algebraic of

degree 2 over C(x). This is case (2) of the original theorem; the d.e. has a solution

I

In case (3), G is a finite group, i.e. there are only a finite number of automor-

of the formn = e ® where o is algebraic of degree 2 over C(x).

phisms, 04,05, . ..,0,. Look at any elementary symmetric function of the func-
tions oM, oM, -+ oM, €.g. Jom=om-+om+ --- +o,m Foranyo;eG,
of [Eom] = 3,0.m because o; - 0; € G for all o; (because G is a group and hence is
closed). Hence, Y om = f(x) e C(x) and m satisfies om+ - -+ +o,m— f(x)=0
and is algebraic over C(x). A similar argument holds for { so that since n and { are

algebraic over C(x), all solutions of the d.e. are algebraic over C(x).

To be more specific about the nature of G in case (3), we will state the follow-
ing theorem without proof. (See Kovacic [3] for details.)

Theorem: If X is a finite subgroup of SL(2,C) then either

(1) K is conjugate to a subgroup of DT,
(2) The order of K is 24.

(3) The order of K is 48.

(4) The order of K is 120.

Clearly, the first case of this theorem is a subcase of case (2). This means that
for case (3), G has order 24, 48 or 120 only, and hence the order of nm over C(x) is
24, 48 or 120 respectively.

In each of these cases, the following functions of and { are known to be in
C(x); if G has order 24 then ('fl4 + 8n§3)2e C(x), if G has order 48 then
(n3¢ — n¢7)? e C(x), and if G has order 120 then nilf — 11m%° — n¢le C(x). (See
[3] for proofs of these statements.)

In case (4), G = SL(2,C). We want to show that in this case, the d.e. has no
Liouvillian solution. We will assume the contrary and force a contradiction.

Assume the d.e. has one Liouvillian solution. Then a second solution, obtained
by the method of reduction of order, must also be Liouvillian and hence all solutions
of the d.e. must be Liouvillian (because all solutions are a linear combination of the
two independent solutions). Clearly, G = C(x)(n,n’,{,¢’) must be contained in a

Liouvillian field. This implies that the component of the identity of G, G°, must be
solvable.

The component of the identity of any group is the largest connected subgroup of
the group containing the identity. Recall that a point set is connected if any two
points in the set can be joined by a segmental arc all of whose points belong to the
point set.

A group H is said to be solvable (in the Galois theory sense) if
H=HyDH{D --- DH, ={e} where each H; . is normal in H;, each factor group
H/H;. i is abelian and e is the identity element of H.

If G = SL(2,C), then G° = SL(2,C) and hence SL(2,C) must be solvable. But
SL(2,C) is not solvable and a contradiction has been shown. Hence, the original
assumption must be false and the d.e. has no Liouvillian solutions. This is case (4)
of the original theorem.

2.2. Form cf the Algorithm
Jo

with either w € C, o algebraic of degree 2 over C(x), or o algebraic of degree 4, 6 or

At this point, we have that for the d.e. y'' = ry, the solution is of the form e

12 over C(x), or there is no closed-form solution. The algorithm to solve the given
d.e. now takes the following form.

I

apply sub-algorithm to find a solution of form m = e ® where w € C(x)
if success then

RETURN((solution);
fi;

I

apply sub-algorithm to find a solution of form m = e ® where o is algebraic of
degree 2 over C(x)
if success then
RETURN(solution);
fi;
J

apply sub-algorithm to find a solution of form n = e ® where o is algebraic of
degree 4, 6 or 12 over C(x)
if success then
RETURN((solution);
fi;
FAIL();

Each of the three sub-algorithms must be such that if a solution of the required
form exists, then it will always be found. Only then can one guarantee that if all
three sub-algorithms fail, then there is no Liouvillian solution.

2.3. Necessary Conditions

In order to reduce the work involved in solving the d.e., Kovacic has deter-
mined some conditions on the function r that must be true in order for each of the
first three cases to be possible, i.e. for a Liouvillian solution to exist. If we can
determine using these conditions that a case is not possible, then the sub-algorithm
for that case need not be attempted.

These conditions are necessary but not sufficient; i.e. if the conditions for a
given case do not hold then the corresponding sub-algorithm need not be tried as it
will certainly fail, but if the conditions do hold then the sub-algorithm may or may
not succeed.

In order to understand the necessary conditions and their development, some
facts from complex analysis are needed.

16

Recall that any analytic function, f, of a complex variable z, can be expanded
about any point ¢ in the complex plane in a Laurent series as follows.
a_l a_2

f) = ag + ay(z=a) + ayz—a)’ + - - - + z=a " (z—a)?

The analytic part of the given expansion is ag + a,(z—a) + - - - ; the principal part is
a_l a_2

3 + e,
z—a (z—a)~

By definition, a is a pole of f(z) of order n if the last term

a_y
(z—a)"

Equivalently, if f is a rational function, a is a pole of f(z) of order # if it is a root of

of the principal part of the Laurent series expansion of f about a is

the denominator of f of multiplicity n.

Further, the order of f at = is defined to be the order of « as a zero of f(z), i.e.
the order of 0 as a pole of f(%—). Equivalently, if f is a rational function, then the
order of f at = is the degree of the denominator minus the degree of the numerator.

The following theorem regarding the necessary conditions for the three cases
may now be stated.

Theorem: For the d.e. y’' = ry the following conditions are necessary for the respec-
tive cases to hold, i.e. for a Liouvillian solution of the specified form to

exist.

(1) Every pole of r has order 1 or even order. The order of r at « is
even or greater than 2.

(2) r has at least one pole of either order 2 or odd order greater than 2.

(3) No pole of r has order greater than 2. The order of r at = is at least

o B.
2. If the partial fraction expansion of ris r = 3, : 7+ L
i (x—c)) 7 X4,

then /T + 4a; € Q for each i, 2B; =0, and V1+ 4yeQ where
j
Y = E;ai+ E:Bf%.
i i

The following is a summary of the proof of this theorem. It uses several ideas
that are explained in more detail in the proof of the algorithm itself (see section
3.2.).

In case (1), the d.e. has a solution of the form n = efm, where o € C(x). This
implies that
2=y (2.3a)

o+ ow

{See section 3.2. for a proof of this statement.) Since both r and w € C(x), they can

11

be expanded in Laurent series about any point ¢ in the complex plane as follows.

o = b(x—c)* + higher powers of x—¢, peZ, b #0 (2.3b)

r = a(x—c)” + higher powers of x—c, veZ,a #0 (2.3¢)
Substituting (2.3b) and (2.3c) into (2.3a) we get
whx—c)* T+ oo A=)+ - = alx—c) + - -

We want to demonstrate that if ¢ is a pole of r (i.e. v < 0), then its order is either 1
or even. If we assume v is not -1 or -2, we can show it must be even. Assume
v = -3, then matching coefficients of the lowest power of x—c above gives
v = min(w—1,2p). With v < —3, this implies that w < —1 and 2u < p—1. Because
b% # 0 (by assumption), then v = 2u, i.e. v is even as required.

This also demonstrates that if » has a pole of order v = 2 = 4 at ¢, then o has

a pole of order w at c. This fact will be used in the proof of the algorithm in section
3.2.1.

The proof of the conditions on the order of r at = is exactly analogous and is

done by expanding r and o at .

fm, w algebraic over C(x)
of degree 2. The Galois group of the d.e., G, is conjugate to a subgroup of D™ so

In case (2), the d.e. has a solution of the form m = ¢

that for every o € G either om =a,m, of{ = aglz_; or om = by, ol = —b;l'q. In
either case, o(n%?) = m%? so mZ%e C(x). Also Ml € C(x) because if it were, we
would have o(n{) = n = azm - aglg and G would be a diagonal matrix with a, and

ac_l on the diagonal (i.e. the case om = b {, ol = —b;l'q could not occur).
Hence we can write n2(as IM(x—¢,)%, e; € Z, where at least one of the e; must
Lo 202ys
r 5 ()
be odd. Assume mZ(Z = (x—c)eH(x—ci)ei with ¢ odd. Let ¢ = (md)’ _ 2 75
nd ()
Because '’ = rn and '’ = r{, then
b + 36" + &3 = drd + 21’ (2.3d)
Expand both r and ¢ in Laurent series about ¢. Then
1
2° 2.3
¢ = s polynomial in x—¢ (2.3¢)
r = a(x—c)¥ + higher powers of x—¢ (2.31)

and substitute (2.3e) and (2.3f) into (2.3d) to get

12

32 13
e T c B¢ -1
st A e - = 2a(et) (x—c)Y T 4
(x—¢) (x—c)” (x—¢)
If v> —2, then e — g-ez + %33 =0and e =0, 2, 4. But e must be odd, so v = —2.
If v < -2, then 2a{e+v) = 0 and ¢ = —v so that v is odd. Hence either v = =2 or

v < —2 and odd, i.e. r has a pole of either order 2 or odd order > 2.

In case (3), m is algebraic over C(x) so it can be expanded in a Puiseaux series
(Laurent series with fractional exponents) about any point ¢ in the complex plane.
Also, m is a solution of the d.e. so

"= (2.3g)
Expand m and r about ¢

n = a(x—c)* + higher powers of x—¢c, aeC, a#0, peQ (2.3h)

r = a(x—c)¥ + higher powersof x—c, a #0, veZ (2.31)

and substitute (2.3h) and (2.3i) into (2.3g) to get
ap(p=D)x=c)* 2+ - . = aalx—c)*TV+ - ..

The lowest order term on the right, being composed of the product of the lowest
order terms of m and r, cannot be zero, sou +v=p — 2 and v = —2, i.e. the poles
of r have order 1 or 2.

If v= -2, then matching coefficients of (x—c)*“2 on both sides gives
a=p(p—1)orp= ~21~ * %Vm. Because p € Q, by assumption, then V1+4a € Q
and the partial fraction expansion of r must be

o;

B
r=73 + 3 + polynomial
P (x—c)t T x4

with 4/T+4a; € Q for each i.

The remainder of the conditions are obtained in an exactly analogous manner by
expanding r and 7 about « and substituting into v'" = rx.

CHAPTER 3

Kovacic’s Algorithm and Proof

3.1. Kovacic’s Algorithm

In his original paper, Kovacic describes and proves the sub-algorithms for each
of the three cases separately. We will exploit the similarities in the three algorithms
and describe them together. This will make it easier to follow the unification
Saunders does for his variant of the algorithm. Proofs of the three sub-algorithms
will be done separately in section 3.2.

The goal of the algorithm will be to determine the minimal polynomial for w.

J

may not be able to obtain an explicit expression for w.)

. w . . N .
Since m = ¢ in all cases, this determines a solution of the d.e. (In some cases, we

We will first determine a function & = &(n,{). Then, in each case, the minimal
polynomial for w is written in terms of & (and r). The form of ¢ as a function of 7
and { will be determined by the invariant of the Galois group of the d.e. in each
case, where the invariant of the Galois group of the differential equation is defined to
be that function of m and { that is kept invariant by all ¢ in the group and hence is in

’

C(x). Recall that in case (1), T:] is invariant, in case (2) 12¢? is invariant, and in

case (3) (~q4 + 8n§3)2, ('qSI_’, - ncs)z and 'qllz - 11n6§6 - ncll are invariant.

In all cases, ¢ will be written as $ = 6 + % The main component of 8 is a

[

sum 3
cel *

algorithm will be determining possible values for the e_.’s.

, where I is the set of poles ¢ of . A major part of the work of the

The function P will be a polynomial whose roots are ordinary points of r (i.e.
P
P
rather we will determine a possible degree d of P in terms of the e.’s and e, (deter-

not poles). We will not determine the roots of P (i.e. the poles of) explicitly;

mined from the expansion of r at). Then, we can determine the coefficients of P
using an equation relating P, 8 and r.

We will need to consider all combinations of possibilities for the e¢.’s and e, to

get a solution for P. If a solution can be found for P, we will have found the proper

13

14

combination of e.’s and e, and will have determined 8 exactly (since it is a function

of the e.’s) and hence ¢ and w.

The algorithm is divided into 3 steps. As a preliminary stage, the set I' of the
poles of r is computed. Also, the degree of r at infinity is computed; it will be
required in the computation of e.

The quantity n will be the degree of @ over C(x) in each case; for case (1)
n =1, for case (2) n = 2 and for case (3) n = 4, 6 or 12.

Step (1)

For each c in I" define a set E, of possible values of ¢, as follows:

(a) If cis a pole of r of order 1 then

case (1) — E, = {1}
case (2) — E,= {4}
case (3) — E,= {12}
(b) If ¢ is a pole of r of order 2 and b is the coefficient of ———1»—;- in the partial
x—cj}-

fraction expansion of r then

case (1) — E,= {—; + EV1+4b | k= i%}
case (2) — E,={2+2kV1+4b | k=0,21} N Z
case (3) — E,={6+ ij\/l+4b | k=0,%1, ..., =Nz
(¢} If cis apole of r of order v > 2 then
1 b 1
case (1) — E,.= {Zv + ko | k = if}
. . . 1 . v
where [\/;]c is the sum of terms involving -——)7 fori=2,..., 5
X—C
in the Laurent series expansion of Vr at ¢, a is the coefficient of
1 — in [Vr],, and b is the coefficient of ___17:I in
(x—c)? (x—c)?
r— ([Vrl)?
case (2) — E,={v}
case (3) — E,={} (since there are no poles of order > 2 in case (3))

Also define a set E,. as follows.

(a) If the order of r at © > 2 then
case (1) — Em={%+kl k= i%}
case (2) — E.={2+2k| k=0,x1}

15

case (3) — En=1{6+ 2k|k=0,%1 ...,
(b) If the order of r at ©» = 2 and b is the coefficient of ;1—2— in the Laurent series
expansion of r at « then
case(l) — E,= {% + kV1+4b | k = i%}
case(2) — E.=1{2+2kV1+4b | k=0,x1} N Z
case(3) — E,.={6+ l—:k\/ml k=0,%1, ... ,i%}ﬁ yA
(c¢) If the order of r at ® = v < 2 then
case (1) — En={v+k2|k==2}
where [V7]. is the sum of terms involving x' for i = =%, . . ., 0 in

the Laurent series expansion of Vr at «, a is the coefficient of x 2
-y

—-—1
in [V7]., and b is the coefficient of x 2 inr — ([V7].)?

case (2) — E, = {v}
case (3) — E,=1{} (since the order of r at © is = 2 in case(3))
Step (2)
Consider all possible tuples (eC1’ €cp - v 1€ e.), where the ¢; are the distinct ele-

ments of I' and each e, and e, is an element of the corresponding set E. and E

respectively. (For case (2), we may discard a tuple if all of its coordinates are
even.)

Form the quantity d as follows:

case (1) — d=e,— Je,

case (2) - d= = (eDC cir Eec]
cel

case (3) - d= -1"5 (eOc - EecJ
cel

If d is a non-negative integer, retain the tuple for step (3); otherwise, discard the

—

[38]

tuple.

Step (3)

For each tuple retained from step (2), form the rational function 6 as follows:

case (1) — 6=73 [xe_—cc + S(C)[\/;]c] + 5(2)[V7],

cel

where [Vr], is computed only for poles ¢ of order > 2 and s(c) is the

16

sign of k in the corresponding e, in the tuple, and [VT], is computed
only if the order of r at ® is < 2 and s(«) is the sign of k¥ in the
corresponding e, in the tuple.

case (2) — 8= 12 i
2cd‘x_c
n €c

case (3) — 6= EE P

cel’

Now search for a polynomial P of degree d defined by the following equations for
n+2 polynomials P;, i = n,n—1, .. ., 0,—1. (These are somewhat different from
those given in Kovacic’s paper; the rationale for them is given in section 3.2.3.)
cases (1), (2)and 3) — P, = —P

P,_y=-P/ —0P;,— (n—-)(i+1)rP;yy i=n,n-1,...,0

and

P _1 = 0 (identically)

In each case, P is computed by constructing the polynomial of degree 4 with undeter-
mined coefficients, substituting into the above equations and solving the final equa-
tion P_; = 0 for the undetermined coefficients. If the polynomial P exists, then
compute o as follows. (Again, this is slightly different from Kovacic’s paper; see
section 3.2.3.)

n P; .
cases (1), (2) and (3) — w is a solution of En—_lij—fw =
i=0 :
(Note that it may be impossible to obtain an explicit solution for w.)
Then, m = efm is a solution of the d.e. If no polynomial P exists for any tuple

retained from step (2), then the case cannot hold.

3.2. Preof of Kevacic’s Algerithm

In the proofs that follow, we will use the following fact several times. The d.e.

y'"" = ry has a solution of the form = = efw iff o satisfies the Riccati equation
© + wl=r.
The first half of the proof is as follows. Because m is a solution to y'' = ry,
' = rn. Since 7 = efm, n = wefw and 7'’ = u)’efm + u)zefw. Thus,
®'m + w’q = rn and dividing through by n = efm (since it is not zero), we have
o + wl=r.
’ r? 7 2z
In the converse case, define n = efm, e, o= Then, o’ = 1 (ﬂ%—
n m ne
(,)2
and w? = T‘Z . Since ® +wd=r, by assumption,

7

17

n' (n)? + (n')? .
M n? 2 m

r,

proving m'’ = rm and that 7 is a solution of y'' = ry.

3.2.1. Proof of Algorithm for Case (1)
In case (1), we are searching for a solution to the d.e. y'' = ry of the form
n= efm, w e C(x). Recall from section 3.1 that we are looking for a function

Pl
P.

I

0 + In this case, w = .

Since w € C(x), it can be expanded in a Laurent series about any point in the
complex plane. The algorithm proceeds by determining the partial fraction expan-
sion of w and is proved using the Laurent series expansion of r and the Riccati equa-
tion

o + wl=7r (3.2.1a)

(], =3 and w, = Zbi(x—c)i. Then
i—2(x—c)t j=0
o=l + — 4@, =30 4y Sp(x—c) (3.2.1b)
c X—c ¢ zz(x—c)i x—0c j=ol =L

e
We will call [w], + x—_cc, the ‘““component at ¢”’ of the expansion of w.

The major task of the algorithm is to determine parts of w, i.e. the e, and [w],
and the polynomial remainder part ..

Now we know that the poles of r are of either order 1, order 2 or even order =
4, from the necessary conditions for case (1).

Suppose c is a pole of r of order 1. Then

r= xi‘c + polynomial in x—¢ (3.2.1¢)

(We will use # as a placeholder, to denote a comiplex constant whose value is unk-
nown and unimportant.) Substitute (3.2.1b) and (3.2.1c¢) into the Riccati equation
(3.2.1a) and get

18

2

—pa a
B A . SN
(x_c)p~+1 (x_C)ZP» x—c

Since, by assumption, a, # 0, matching coefficients of Z-c °n both sides gives

a;

[
min(w+1,2p) =1 - p =< 0 and hence [w], = 3

G—c) = 0 (because p is supposed to
i=2(x—c¢

+ ®

be = 2) and 0 = P .

Use this expression and the Riccati equation (3.2.1a) again and get

2 —
—e e 2e.® 1t
———c,+ac'+ < 2+ CC+(_JC2= # -+

Matching coefficients of 5 on both sides gives —e, + ee2 =0, i.e. ¢, is either 0
X—c

or 1. The solution e, = 0 can be eliminated since in that case, the right hand side of

the above equation has a pole at ¢ and the left hand side does not.

Hence, if ¢ is a pole of r of order 1, then the compenent &t ¢ of o is

Now suppose that ¢ is a pole of r of order 2. Then

b # ... (3.2.1d)

T =0 | xc

Substitute (3.2.1b) and (3.2.1d) into the Riccati equation (3.2.1a) (as before) and
get

2
- ua a
____._L";T+...+—""T+...= b,}+#
(x—c)* (x—c)2 (x—c)? x—ec
As before, match coefficients of (—1)7 on both sides and get
X—cC
min(p+1,2p) =2 - p =1 and again [w], =0 (because p should be = 2) and
eC —
© = + ..

Now use this expression and the Riccati equation (3.2.1a) again and get

2 —
—e e.” 2e.» b &
(@) gttt w, = -+ —
(x—c)* (x=c) x—c¢ (x=c)> x~¢

Matching coefficients of 5 on both sides gives —e, + e’ = b, i.e. two possibil-

(x—c)
L - %\/1+4b.

ities for e,, e, = 3 + s VI+4b ore, =

PO |

19

Hence, if c is a pole of r of order 2, then the component at ¢ of w is

C 1 1
= — =+
x—c =272

1+4b

Now suppose that ¢ is a pole of r of order v = 27 = 4. From the proof of the
necessary conditions for case (1) (see section 2.3.) we have that @ must have a pole

a;

Mtule

of order ¥~ atc, i.e. [w],. = -,
2 ¢z (x—c)’

As defined in the statement of the algorithm (section 3.1)

#
[\/;]C = (_a)%_ e ——(x—c)z (3.2.1¢)
X—c

If we now define 7, = V7 — [V7], then r = (7, + [V7])? = 7,2 + 27.[Vr]. + ((V7],)?

and

r— (IVrl)? =72+ 27,[Vrl, (3.2.1f)

Using (3.2.1e) and (3.2.1f) and the Riccati equation (3.2.1a), we can show
(after several lines of not very interesting or important algebra) that

(o], + [VF1) - (@] = [Vr])

2 —

= —[o]’ + ﬁg ~ @, +r = ((Vrl)* - 2?2]0 - (xe_cc)z - zjc_wc - 25,[o],
The left hand side of this equation has only terms involvihg o) for
i =4, ...,v. The right hand side has terms involving (7—%:)" fori=1,..., 1’ +1
and polynomials in x—c¢. Because there are no terms with (—o) for
i = 32’—+2 v on the right hand side, the left hand side must be equal to zero and
hence either [w], = [Vr], or [w], = =[VT]., and © = =[Vr], + ;fc + 0,.

Use this expression and the Riccati equation (3.2.1a) again and (after several
more lines of not very interesting algebra) get

gl

[3]

20

ia'% e b
v b +—Cz—ac'+_—“-ﬁ+
(x—c)? G=e) (x—c)?
_— 2 — f—
+ 2ae e 2e.0 2w.a
vil _ c S - c¥e T C . + .. =0
= — xX—c L
(x—c)? (x—¢) (x—c)?
. - 1 . . -
Matching coefficients of 5 on both sides gives ia-lz’- + b + 2ae.= 0 and
(x=c)?
= 1lv 40 =lv_ b
e, = *2*(5 + a) Oor e, 2(2 a).

Hence, if ¢ is a pole of r of even order v = 4, then the component at c of the

partial fraction expansion of w is

€c 1,v b
—+ [Vrl, e.=5G +)

or

€ 1,v
e T IVEe ee=5G -3

Now, look at g, an ordinary point of r, i.e. not a pole, so that r is a polyno-
mial in x—g. Expanding » about g and using the Riccati equation (3.2.1a) and argu-

ments similar to the first case, we can show that o = fg + polynomial in x—g where
x—

f is either 0 or 1.
Collecting what we have so far, if I" is the set of poles of r, then

i +ac=2[ec i[\/?]c]+é 1

x—=c el \XTC i=1X &

+ R

o= [o], +

where [Vr], = 0if ¢ is not a pole of order = 4 and R is a polynomial in C[x].
We now determine the polynomial part R using the expansion of o about «,
namely

€
© = R + — + lower powers of x (3.2.1g)

Using arguments analogous to the previous cases we obtain e, =0,1, R =0 if
0(%)>2, e, =3 = 2VI+db, R = 0if o(x) = 2 and e, = 3(% *), R = =[V7],. if
o(®) =v=20.

Hence,

21

(3.2.1h)

e d
=3 |-+ S(C)[\/;]c] + (@) [Vrle + F '
cel \XTC =1*" 8
where s(c¢) is + or - according to the sign in the corresponding e., s(®) is + or -
according to the sign in e,, [Vr], =0 if ¢ is not a pole of r of order = 4 and
[V7]. = 0 if o(®) = 2. By expanding (3.2.1h) about = and setting it equal to

d
(3.2.1g), we obtain the equation e, = Je, + 3 1 and hence an expression for d in
cel’ i-1

terms of the ¢,’s and e, namely d = e,, — Se,.
cel’

d 4 d
If we now set P = [J(x—g;) (note that d is the degree of P) so that —E—;—; = Ex—l?
i=1 i=1~T 8§
e
and if 6 = 3 [x_cc + [\/F]C] + [Vr],, we have
cel’
w=d=0+21 (3.2.1i)
P
All of 6 is known; we require a method of determining P.
Using the Riccati equation (3.2.1a) again, and o = § + P?, we obtain
rr !2 7 1 ’2
.y sy, PP —P 2 a2 20P P
0 =8t T, W= e T
P +20P +P(®’ +0°—7r)=0 (3.2.1))

We have that if o satisfies the Riccati equation o’ + o = r then P satisfies (3.2.15).
We can verify that if P satisfies (3.2.1]), then o satisfies the Riccati equation and

I

hencen = ¢ ® satisfies the d.e.

re 2 ’ 2 1y ; ’ 2
w’+m2=6’+P P +62+26P +P _ P +20P + PO+ 67 Pr

Pl P pl P P

This completes the proof of the correctness of the algorithm for case (1).

3.2.2. Proof of Algorithm for Case (2)

In case (2), we are searching for a solution to the d.e. y'' = ry of the form

I

n=e ® where o is algebraic of degree 2 over C(x). The Galois group of the d.e. is
conjugate to a subgroup of

+ c 0 0 ¢
DT = 0 oL | ce Cx), c # 0f U 1o |ceC,c#0

22

and m2¢? is an invariant of the group. Hence, ¢ e C(x) and m{ ¢ C(x) (or else we
would have case (1)). Therefore we can write

) e fi
Mn“{“ = constant- [[(x—¢) ‘[(x—g;)
cel’ i=1

and

. 242y e, no fi
o = («:}c{) =%(:1]2':‘:2) _ 1 ;+§z— (3.2.2a)

2051" =1 X7 &;

The task of the algorithm will be to determine the ¢, and f;. (We do not need to
determine the g; explicitly.) Once ¢ is determined, there is a quadratic equation

depending on & that determines w and hence the solution.
Because n and { are solutions to the d.e., i.e. n' ' =rnand {'' = r{,
&+ 3bd + & = drd + 2r' (3.2.2b)

This has given us a relationship between ¢ (and the e, and f;), and r, a known func-

tion.

We can now determine the e, by looking at the poles of r and the Laurent series

expansion of r and ¢ about these poles.

Suppose ¢ is a pole of r of order 1. Then

r= ac + polynomial in x—c¢ (3.2.2¢)

y—
and

1
€

c
b = 2 + k + polynomial inx—c, keC ‘ (3.2.24)

X—c

Substituting (3.2.2¢) and (3.2.2d) into (3.2.2b), we obtain

3 2 3 1 3 3 2
e, —Zec -Eeck gec '4“80 k
—3+...+____T+....|. 2+...+ 3+ = +
(x—c) (x—c) (x—c) (x—¢c) (x—c)*
20e -
=—c2+...+______2a2+...
(x—c) (x—¢)

on both sides gives e, — 3e24+ 1,329
1
(x=c)?
—%eck + %eczk = 2ae, — 2a. Because a # 0, e, # 0, 2.

Matching coefficients of 3
(x=c)

-e,=0,2,4. Matching coefficients of on both sides gives

Hence, if c is a pole of r of order 1, then

23

e. =4

Now suppose ¢ is a pole of r of order 2. Then

r= (x_bc\};; + ch + polynomial in x—c (3.2.2¢)
ie
b = xz_i + polynomial in x—c (3.2.2f)

Substituting (3.2.2¢) and (3.2.2f) into (3.2.2b) we get

e '"“3‘6 2 le 3 2be

ol c —
¢ g+ 4 s+ 7 8 5 = C3 + e+ 4b3
(x—c¢) (x—¢) (x—¢) (x—c¢) (x—c¢)

. . . 1 . .
Matching coefficients of 3 on both sides gives e, — %ecz + %eﬁ = 2be, — 4b or

three possibilities for e., e, = 2, 2 £ 2V 1+4b. Since e, is assumed an integer, non-

integral solutions for e, may be discarded.
Hence, if c is a pole of r of order 2 then

e, =2,2%2VItdbe Z

Now suppose that ¢ is a pole of r of order v > 2. Then

r=—2_ 4 higher powers of x—c¢ (3.2.2g)
(x—c)”
le
c
b = x2—c + polynomial in x—¢ (3.2.2h)
Substitute (3.2.2g) and (3.2.2h) into (3.2.2b) and get
2 1,3
e Tz 2€ 2oe -
___C._?+...+4—c3+...+—8..£—3-+...=————c—+1+... __20"—1:_1
(x—c¢) (x—c) (x—c¢) (x—c)’ (x—c)’

Since v> 2, v+1> 3 and 2ae, — 2av =0 -¢, = v.
Hence if ¢ is a pole of r of order v > 2 then
e. =V
Now look at the g; which are poles of ¢ but ordinary points of r. Then
r = polynomial in x—g; (3.2.21)

and

24

(3.2.2))

o = =2 + k + polynomial inx—g;, keC
i

Substitute (3.2.2i) and (3.2.2j) into (3.2.2b) and get

3,2 3 1.3 3.2
f; —4fi —>fi8 5/ i
——=+ -+ 7+ s+ o+ 3+ 5 +
(x—g;) (x~g)” (—g) (x—g)” (x—g)
= # 4+ - - -
X—8;
Since there are no terms in (X on the right hand side, f; - %fl.z + %fi =
x—gi

- f; =0, 2, 4; hence all the f; in ¢ are even.

Collecting what we have so far, n%% = constant-H(x—c)e‘ - P where P € C[x]
cel’

and P? = ﬁ(x—gi)fi.

i=1
We can now use the expansion of ¢ about «, namely

1
e

(3.2.2k)

b=

+ lower powers of x
X

and arguments exactly analogous to the previous cases, to obtain e, =0, 2, 4 if
o(®)>2,e,=2,2%x2V1+4b if 0(x) = 2, and e, = v if o) = v < 2.

By expanding (3.2.2a) about », setting it equal to (3.2.2k) and extracting the

.. 1
coefficient of < on both sides, we can obtain the following equation,

le.=2e +:5f. If d is the degree of P, then 24=3f so that
i=1

cel i=1

d= %(e:)c - Eec) (an expression in terms of the e/’s and e.).

cel'

’

2 . Use this expression and (3.2.2b)

_lg % -
If we now let 6 = 2§x-—c’ thend =06 +
and obtain
P 4+ 36P" + (302 + 36" — 4")P" + (0" + 388" + 63 — 416 — 2r')VP =0 (3.2.21)
We still don’t have w, the objective of the algorithm. Xovacic introduces the
following equation, algebraic in o,

0)2 - b + _;_d)' + _:’1‘_4)2 —r=10 (3221’11)

We can verify that if o is a solution of this equation and case (2) holds, then

25

J

satisfies o’ + w? = r and hence 1 = e ® satisfies the d.e. y''=ry.

If we differentiate (3.2.2m) we get
(20 = d)o’ = ¢'0 = 6" = b’ + 1

From (3.2.2m), we have that wl—r=do — —2111)’ - %d)z so that

(20 = ¢) (0 + 02 = r) = —1(&" + 366" + 6% — 4rd - 2r') = —3 - (3.2.2b) = 0

0

so that either 2w — $ = 0 or ' + w?—r=0. Now 20 — ¢ cannot be zero, since in

that case o = %d) € C(x) and that is covered in case (1), assumed to fail for case (2).

fo

correctness of the algorithm for case (2).

Hence, o’ + w? = r and Mm=ce is a solution of the d.e. This proves the

3.2.3. Proof of Algorithm for Case (3)

In case (3), we are searching for an algebraic solution, m, of the d.e. y"" = ry
and as in previous cases, we determine it by computing the minimal polynomial for

ull f‘*’)

® = (n=e As stated in section 2.1., the order of the Galois group of the

d.e. in this case is 24, 48 or 120; the following theorem says that the degree of the
corresponding w over C(x) is then 4, 6 or 12 respectively. (See Kovacic [3] for
details of the proof.)

14

Theorem: If w = 24— where n and [are solutions of the d.e. and G is the Galois

group of the d.e. relative to m and ¢, then if G has order 24, 48 or 120, o
has degree 4, 6 or 12 respectively over C(x). Also, for any other

’

M1 . .
w1 = where v, is also a solution of the d.e., the degree of w; over
1

C(x) is greater than or equal to 4, 6 or 12 respectively, i.e. the w obtained
are minimal.

The algorithm for this case can be carried out in one of two ways: either find a
12th degree polynomial for w, factor it into irreducible factors and use any of the
factors for w; or try for a 4th degree polynomial for w, then a 6th degree polynomial
for @, and finally a 12th degree polynomial for w.

In the implementation, the second alternative was chosen since factoring a 12th
degree polynomial is difficult in Maple (if not impossible if it has algebraic exten-
sions). This is also what is done in Saunders’ algorithm for the same reasons.

26

It will be noted in the relevant places in the proof of this case of the algorithm
where the algorithms for cases (1) and (2) can be derived from this case. It turns out
that the three cases are more similar than Kovacic’s paper originally leads us to
believe.

The backbone of the algorithm (and the algorithms for cases (1) and (2)) is an
n-th order ordinary differential equation for a function ¢ defined in terms of ¢ and r
by a_; = 0, where a_ is defined by the following equations, denoted (#),,.

a, = -1

a;,_1= —a — éba; — (n=)(i+Dra; i=n,....0 (#)n

(Note that in the formula for a,_; there is no g, . term since n—i = 0 when i = n.)

14

In all three cases, we will construct ¢ as ¢ = 6 + P?, where n is the degree of w

over C(x) The function 6 is constructed as a function of the poles of r and P is then
defined in terms of 8 and r by the equation P_; = 0 where P; = P-a;.

€
In case (3), 6= %E x_cc; compare this with
cel’
€ e
6=7 [—_C— + s(c)[\/?]c] + 5(©)[V7], in case (1) and 6 = lz — in case (2).
cer \X—C 24 x—¢

The following three theorems by Kovacic are used in the proof of the algorithm
for case (3) but they apply equally well to the algorithms for cases (1) and (2).

Theorem(1): If ¢ is a solution of a_; = 0 where g; is defined by the equations

denoted (#),, and w is a solution of the equation

" n—1 ai i
w’ = oW
go (n—i)!
then q = ejm is a solution of the d.e. y'’ = ry.

Proof:
We first define the polynomial A(x) in terms of the g; as

Alw) = —u" + "il i ut
i—o (n—=i)!

or

27

a.

A(u)—zo(n l)’ a, = —1
Kovacic claims that
k+1 k+1 k-1
(2 -)"’a Al) _ 3 ;z(”) + [(n=2K)u + ¢]a ”(”) + k(n k+1)a—A(ﬂ(3 2.3a)
ou dx

for all integer k = 0. (See [3] for a proof by induction on » of this claim.) From the
definition of A(x) and the assumed definition of w, A(w) = 0. We will show that

A(w) = 0 implies that o’ + w2 = r (equivalent to m = efw is a solution of y'’' = ry),
by assuming the contrary and forcing a contradiction.
Because A(w) is a constant, dAT(m)- = 0. Then
dA(w) _ 9A(w) 3w 4 dA(w) _ 0
dx dw dx dx
w,aA(w) ¥ dA(w) _ 0
ow ox
by 2 0A(w) _ _ 0A(w) 2 _ 0A(0)
+ 0 — = - +
(e ® r) ow dx (@ =)= dw
From (3.2.3a) with k = 0,
,) 3A(w) 8A(w) 3A (w)
- = - + + /=L =
(0 + 0°—7) ™ o + (nw+d)A(w) o 0
(since A(w) = 0). Because o’ + w? —r # 0 by assumption, af;s:’) must be zero.
3'A (w) . .
Hence, we have that ool =0for/=0and!=1 Now we can use induction to
(O]
o 1A(w) . , .
prove W = 0. Assume it is true for arbitrary ! =k—1 and I=k%, i.e.
w
k-1 k k
¢ _Aw) _ 0AW) _ o g SA) _ g ey
ow Jw dw

d [8*A(w) _o
x| swk |

=0
doktl ox dwkax
(o + ol - @AW | FAW) o8 AG)
dwktl dwkox dktl

From (3.2.3a) we have

28

6k+1A ((.0)

(0" + w? — r) S

ak+lA(u)) 3k+1A((x))

= + [(n=20)w + ¢]—-——k—-- + k(n ,{H)M)

dwkax dwkax
k k=1 k+1
. Fa(w) o lA(w) . 5 " 1A (w)
Since = = 0 (by assumption), then (o' + 0~ r}————= =0,
ok eS| (by ption) () pyvEs
k+1
and since o’ + w? # r (by assumption), then %‘f—)—)— = 0.
w

The desired contradiction then falls out since

3"A(0) _ 3" [‘é a; mi] _ "é(a; a(wi)] _ 3"(a,0") — nl £0

dw" dw” (o (n—i)! Sl (n=D! " dw”
and hence A(w) = 0 implies o’ + wl=randn = efw is a solution of y'' = ry.
e %4
Thus if o satisfies 0" = 3, (=) o' where the a; correspond to a solution ¢ of
Ca=g AT
(#),, then efm is a solution of y'* = ry. This completes the proof of the theorem. O

This theorem implies that if we can construct ¢ and then calculate the
corresponding a; using (#),, we can determine an equation for w and hence a solu-
tion of the d.e.

The following theorem says that the equation for o obtained using the g;
corresponding to ¢ is the minimal polynomial for w. Further, ¢ is proved to be a
function in C(x).

Theorem(2): If the degree of w over C{x) is n, then ¢ is a solution of iz_l = 0 where
a; is defined by (#),, and ¢ is a rational function of x with coefficients
inC, i.e. ¢ € C(x).

Proof:

Let A(x) be a polynomial with coefficients in C(x), and let A(x) be the minimal poly-
nomial for w. Let deg A(x) = n so that the degree of w over C(x) is n, then A(x) can
be of the form

a- n ai
ul
(n—l)' i=0(”_i)!

Consider the following polynomial B (u)

Alw) = —u" + 2

29

Bw) = ()22 4 240)

+ (nu + &)A(u)

where ¢ = a,_; and ¢ € C(x). We will show that ¢ satisfies a_; = 0 where the 4; are
defined by (#),, by determining the coefficients of powers of u in B(u).

. 0A .
The «"*! term in B(x) comes from —uz—a—(f)— and nuA (x) and is
o ma" anu" +1 +1
—ut gyt g = fnanu” + nau""t =0
JA 0A .
The »" term comes from —u? ag‘) , %, nuA(u) and $A(u) and is
(n—1a,_w"" %2 a'u" a, w1 a,u"
—u? - n-l + = +nu-L+¢- 2
1! 0! 1! 0!
= —(n=1Da,_1¥" + a,'u" + na,_u" + ba,u”
= (a,-1 + a," + dau" =
since @, = —1, a,’ = 0 and since & = a,_;, ¢a, = —a,_;. Hence, there are no u"*!

or u” terms in B(x) and the degree of B(u) is less than n.
Now B(w) = 0 as follows

dA(w) + A {(w)
dw ax

B(w) = (r—coz) + (nw + ¢)A(w)

_ m,aA(m) + 9A ()

e) 4 (o + 0)a) = LEL 4 (r + $)a) = 0

since A(w) = 0 by definition because it is the minimal polynomial for w. Hence, the
coefficients of w! in B(w) for i < n must all be zero. The o’ term in B(w) is

(+Dajv; , , Va1 ,, a' e g
T it T i @ PEn TR oy sy ey Tl

B r(i+1a; 1 _ (i-Va; 4 na; . dba; ;
T m=i—Dt T (=it (=it =i |
R G- nay ;
gy [(n D+ ra; =1+ 1) a;_1+ (i=i+1) + a;" + d)ai]w
S —)(i+1 + + a’ + i
= =i [(n Di+ra; .1+ a;_1 + g d)a,-]u)

So (n—i)(i+Dra; 1+ a1+ a’ +ba; =0 for all i=0,..., n where a_;=0.

These are exactly the equations defining (#), so ¢ is a solution of a_; =0 as

30

required. This completes the proof of the theorem. O

What do we have now? We have that ¢ € C(x) is a solution of a_; = 0 defined

n~1 a.
. e no o i
by (#), iff o satisfying @ E:o (=D)]

braic of degree n over C(x). The algorithms for all three cases use this fact; impli-

w' is a solution of ®’ + w* = r and is alge-

citly in cases (1) and (2), and explicitly in case (3). We progressively try n = 1,
n=2,n=4, n=6, n =12, At each step we attempt to find a ¢ in C{x) satisfying

n—1 a; .
(#),. If that is possible then the minimal polynomial for w is —w” + 3 mu’
i=0

it is not possible, we proceed to the next value of n. If no value of n produces a ¢ in

If

C(x) then there is no solution to the d.e. y'" = ry.

The following theorem provides a way of building the function ¢.

Theorem(3): If u is any homogeneous polynomial of degree n in solutions m and { of

the d.e. then ¢ = uT is a solution of (#),. (Note: for example,
n2§3 +3q¢tis a homogeneous polynomial of degree 5 in solutions of
the d.e.)

See [3] for the details of the proof.

1
12 _(um), '
We require that ¢ be in C(x) so that & = uT = m—,;l——— must be in C(x). If uT

u
is in C(x) or ¥™, m=1, is in C(x) then this requirement is satisfied. The functions u

are written in terms of the invariants of the Galois group of the d.e. for each case.
(See section 2.2 for the derivation of the invariants.) Recall that the invariant of the
Galois group of the d.e. is a function of m and { left fixed by all ¢ in the group, i.e.
it is a function in C(x).

Table 1 - Galois group invariants

n u . invariant m
1 mn u'lu 1
2 ¢ u? 2
4 1|4+ 8112;3 u’ 3
6 1 —ng> u? 2
12 'ﬁllg_ll'ﬂécé_'ﬂcll u 1

We can then write the invariant in terms of the poles of r and certain exponents e,

and a polynomial part. Recall that in case (1),

?

$="-=0=3 [T + S(C)[\/?]c] +o@)(Vrl 4

cel
and in case (2),

1,2 1, 2.0y
G Es e p

¢ =)

For case (3), we combine the cases n = 4, 6, 12 by writing

12

Wt = TG0 [l g

cel’ i=1
12
R
_ 12(u) _ LE eC + P’
% 24 x—c P

u

Pl
P

31

The e.’s are determined in a manner analogous to the process described for cases (1)

and (2), and so will not be covered again here. The derivation is slightly more com-

plicated here because of the parameter n, but basically the same.

The results are as follows. If ¢ is a pole of r of order 1, thene, = 12. If cis a
pole of r of order 2, thene, = 6 + kV1+4b, where kis one of 0,£3,£6if n = 4, kis

one of 0,2, x4, +x6if n = 6, and kisoneof 0,1, . . . ,x61if n = 12,

Similarly, if the order of r at « is greater than 2, then e, = 6 + k and if the
order of r at o« is 2, then e, =6+ kV1+4b, where k= 0,%23,26 if n =4,

k=0,%22,x4,26ifn =06, and k = 0,%x1, . . ., x6if n = 12,

It can also be shown that %f,- is an integer for all { so that for n = 4,

ud = P3H(x-—c)e‘; for n =6, u? = Pzﬂ(x—-c)ec; and for n =12, u = PH(x—c)ec,
cel’ cel cel’

where the degree of P, d = %(ew - %ec), is a non-negative integer.
C

Compare the above results for case (3) those obtained in cases (1) and (2). The

order of the invariant m 1is defined to be the least
%(um)v
¢=—meC(x).

u

integer

that

Table 2 - Formulas for e,

n m e, (corderl) e, (corder?2) k
11 1 LieviTan -1,

2 2 4 2(1+kV1+4b) -1,0,1

4 3 12 3(2+kV1tdb) -2,-1,0, 1,2
6 2 12 23+kV1+4p) 3,...., 3
12 1 12 6+kV1+4b 6, ..., 6

The value calculated for e, if ¢ is a pole of r of order 1 is n - m; the value calculated

for e, if c is a pole of r of order 2 is m(g + kV1+4b) where k = —g—, . %

So for case (3) we have

12
n 7

u' ") nw P’

= = ——— = -+

¢ 12 12§x—c P

e Pl
If weset® = 25— then & = 6 + — as expected.
12§~x—c ¢ P p

We now set P; = P - g; and demonstrate that the recursive relations for P are

correct. Kovacic actually sets P; = sl p. a;, where § = [[(x—c), with no justifi-
cel’

cation at all. This is completely unnecessary and obscures the similarities of the
three cases.

IfPi=P~ai,thenPn=P-an=—P. Also

P'__l =pP - ai_l =P - (-ai’ - d)az- - (n—i)(i+1)raz+1)

i

L4

I;]ai = (n=)0+1)rP; 4y

= —Pa; = Pda; — (n—i)(i+1)Pra; ., = —Pa;’ — P[O +

—Pa;’ — P8a; — P'a; — (n—i)(i+1)rP; 1 = —P;' — 6P; — (n—{)(i+1)rP;

Becausea_; =0, thenP_; = 0.

33

Hence P is defined by the following equations

P, = —P
Py = =P/ = 6P; — (n=0)(i+1)rP; 14
and

_1 =0 (identically)

Rewriting the equation for w in terms of P; gives

; n-1 a " n~1 Pa; P; o n P; ;
0= —o"+ = —Pw" + = g,Po" + = St
R D N e TR 2 O TP X e T

n P

. [I _
e, Ew(n——i)! w =0

i=0

We can now verify that these two sets of equations for P and o are the same as
those produced in cases (1) and (2) as follows.

In case (1), n = 1.

PO = “Pl’ - OPl - (1—1)(1+1)7‘P2
=P’ + 0P

P'—l = _Pol - GPO - (1—0)(0+1)7P1

i

—(P" + 6P) — 6(P’ + 6P) — r(—P) = —P'' — §'P — 0P’ — 0P’ — 62P + rP

—P'" —20P" — (8" + 62— r)P

because P_; = a_;-P = 0 (because a_; = 0) then

P +20P + (8 +0°—7r)P=0 (3.2.3b)
-
Also ,2:’0 (1_ N ® 0 so that
Py Py
0 1_
a=on® T a-me =0
PO + le =0

P+ 6P — Pu =0

34

W= =g 4 (3.2.3c)

Note that (3.2.3b) and (3.2.3c) are the same equations as those produced for case
(1), namely (3.2.1j) and (3.2.1i) respectively.

In case (2), n = 2.

P2= —P

Py

“'Pz' - BP:)_ - (2“2)(2‘*‘1)7‘1’3

P’ + 8P

PO = —P]_’ - GPl - (2—1)(1+1)I’P2

— (P’ + 8P) — 8(P' + 6P) — 2r(—P)

—P'" — @'P — OP' — 8P — 6°P + 2rP

—P'" — 28P' — (8’ + 6% — 2r)P

I

P—l = "POI - GPO - (2—0)(0+1)7P1

P+ 20'P’' + 20P"" + (8" + 02— 2r)P' + (8" + 260" — 2r')P + 6P + 20%F’
+ 06'P + 6%P — 2r86P — 2rP’ — 2r0P

=P + 30P" + (30’ + 36% — 47)P’ + (8" + 300’ + 05 — 4r0 — 2r')P
Because P_; must be zero then

P+ 30P"" + (30" + 362 — 4r)P’ + (8'' + 306’ + 6° — 4r6 — 2r')P = (B.2.3d)

2 Pi .
—_— ! —
Also igﬂ 2= ® 0, so that
P P P
0 wo + L u)l + 2 ®
2-0)! 2-1n! (2-2)!

2_0
Lo+ Pio + Pyl =
240 1@ 2w =

(=P = 20P" — (8" + 6% — 2r)P) + (P’ + 6P)w + (—P)w’ =

—(=P'" = 20P' — (8’ + 6% — 2r)P)’ — 8(—P'' — 26P' — (8’ + 6% — 2r)P) — 2r(P' + 6P)

I 1y 14 ’ 2
) P’ + 6P 1| —=P"" —26P" — (6’ + 8- — 2r)P
w® + {———_P w + 5 _p
3 P’ 1P 20P’ , 2
® [6 P]w+2{P + 7 + (6 6 2r)
PI Prr PV 2
. — "= 8 + —
Since ¢ = 6 + R b 6 P P] then

m2—¢w+%(6’+92—2r)=0

35

o

=0

(3.2.3e)

Note that (3.2.3d) and (3.2.3e) are the same equations as those produced for case

(2), namely (3.2.21) and (3.2.2m) respectively.

Noticing that the equations for P and o could be unified for all three cases was

of benefit in implementing the algorithm. Saunders’ [5] had unified only steps (1)

and (2) of the algorithm and implemented step (3) separately for

ecach of the three

cases. In the implementation for Maple, step {3) could also be implemented as a sin-

gle procedure.

CHAPTER 4

Saunders’ Algorithm

4.1. Saunders’ Modifications to Kovacic’s Algorithm

Saunders {5] has produced a modified version of Kovacic’s algorithm where
most of the algorithm has been unified to avoid implementing each of the cases
separately. In his algorithm, only the final portion of step (3) remained to be imple-
mented separately for each case. By noting the similarities of the three cases, it was
possible to unify this step as well.

Saunders does not prove that his version of Kovacic’s algorithm does in fact
correctly implement Kovacic’s algorithm and it is certainly not obvious that the two
are the same algorithm. In fact, in the course of comparing the two, several bugs
were discovered in Saunders’ algorithm. A corrected version is presented here and
verified correct by comparison with Kovacic’s algorithm as given in section 3.1.

Saunders’ algorithm is noteworthy in that he has unified the computation of 4
(the degree of P) and 6 in steps (1) and (2) of Kovacic’s algorithm. (Recall that we

’

P
in terms of ¢ and r.) We have now unified the computation of P and o in step (3) of

Kovacic’s algorithm; see section 3.2.3 for details.

are computing a function ¢ = 6 + , then obtaining the minimal polynomial for

Saunders’ unification is carried out by computing “parts” of 4 and 6. Recall
that in Kovacic’s algorithm, d = constant - (eoc — E"c] for all three cases, and that

cel’

the e.’s and e, were of the form expression; + k- expression,, where

k=—2.....5. Here, we will compute the sum of all the expression;’s in d as e,

and each expression; as e;, with { = 0 for e,.

A similar process is carried out for 8. Recall that in Kovacic’s algorithm, the

€c

main component of 8 was the sum 3} .
cal X7 C

In a preliminary step of the algorithm, we normalise r = ? where ged(s,t) = 1

and s and ¢ are polynomials in C[x]. We then perform a square-free decomposition
on ¢t and obtain ¢t = tl-t22-133---tmm. We will not have to determine all the poles of r

36

37

as in Kovacic’s algorithm, only the poles with even order. We also determine the

order of r at », o(») = degt — degs.

Next, we determine which of the three cases are possible (equivalently, what

degrees of w over C(x) are possible) by checking the necessary conditions and creat-

ing a list L of possible degrees as follows.

1elL if t; = 1 for all odd i = 2 and o() is even or > 2
2elL ift, # lort; # 1for someoddi =3
4,6,12¢L if t; = 1 for all i > 2 and o(x) = 2

Then, the algorithm is as follows.

Step (1)
Form parts of 4 and 6.

. 1 3
(2) eg = ymin(o(x),2) — ;degt — Sdegt;
1 3

=’ =t
_ 4 471
(b) find the poles ¢y, ¢, of r of order 2 (i.e. the roots of 1)

for i from 1 to k; do

b; = the coefficient of ;2 in the partial fraction expansion
X—¢;
e; = A/1+4b;
e
Gi = !
X—=C;
od
(c) if 1eL then find the poles Chyt1r - = - 2 Cx of order 4, 6, 8 , ..

roots of 14, tg., . . ., 1)

for i from k,+1 to k do

[V?}Ci = the sum of terms involving

X"'Cl'

order of the pole ¢;, in the Laurent series expansion of V7

a; = the coefficient of (x—c)izA in [\/;]Ci

v

-2
b; = the coefficient of (x—¢;) 2 inr - ([\/;]Ci)2
b;
el- = "&;
€;
8, = 2[Vr], + ——

of r

m (i.e. the

and v the

[SIE]

38

od
(d) if o(*) > 2 then
€g = 1
90 = 0
elsif o(®) = 2 then
by = the coefficient of —15 in the Laurent series expansion of r at »
X
eg = VI+4b,
90 =0
else
if 1 € L then
[Vr]l. = the sum of terms involving x’, for i = %0 and
v = o(®), in the Laurent series expansion of Vr at «
ay = the coefficient of x 2 in [Vrle
=41
by = the coefficient of x 2 in r — ([V7].)?
by
0= G
60 - 2[\/;]:»
else
€qg =
90 =
fi
fi
Step (2)
Form the trial d’s and 8’s.
for each n in L (in increasing order) do
if n =1thenm = kelsem = ky fi
if n = 2 and o(«) < 2 then
ey = 0
90 = 0
fi
for all sequences s = (sp, . . . , s,,) where s; € {—123,—%+1, ,%} do

m
d= n-eg, + speg — >sie;
i=1

if d is an integer = 0 then

3%

0 = neﬁx + zosiei

apply step (3) to d and 6
if successful then
RETURN(sclution)
fi
fi
od
od
FAIL(Q); (no solution exists)

Step (3)

Find the polynomial P (if possible) and w.
form P in terms of undetermined coefficients a;

P = adxd + ad_lxd—l + - -

+ ag
generate the recursive relations P;

P = -P

for i from n by -1 to 0 do

P;_1=—P/ — 0P; — (n—i)(i+1)rP; ;4

i

n

od
solve P_; = 0 for the g;
if a solution exists then
generate the minimal polynomial for w

minpoly = 0
for i from 0 to n do
. s P; i
minpoly = minpoly + _(;szT)—'.w

od
solve minpoly for

RETURN(solution as efw)
e.se

not successful
fi

The following corrections were made to Saunders’ original algorithm. The

expression for d in step (2) was d = n - e; — X s;e;. Unless one multiplied the
i=0

490

expressions for eg by -1, this expression was incorrect. The corrected expression is
more desirable simply because it corresponds more closely to the expression for d in
Kovacic’s algorithm. (See step (2) in section 3.1.)

Also, it was stated that e and 8 were only computed if o(®) was < 2, and were
never computed if 1 was not in the list L, i.e. if case (1) was not possible. This will
be seen to be untrue in the following section.

4.2. Proof of Saunders’ (Corrected) Algorithm

In order to verify this algorithm, we will require several identities. If
t= tl-tzz- t33---tm’", with the ¢; square-free and pair-wise relatively prime, then

degt = degt; + 2-degt, + 3-degtz + - - - + m-degt,
and

degt, = the number of poles of r of order k

Also,
v R 2
t ty 2 tm
and
i B degtk 1
4 =1X—a;
where the a; , j = 1, . . . ,degt; are the roots of #, i.e. the poles of r of order k.

Now, we will verify the corrected version of Saunders’ algorithm for each of the
three cases of Kovacic’s algorithm, i.e. n =1, n =2 and n = 4, 6 or 12. In all
cases, the verification consists of proving that the d’s and 8’s computed agree for the
two algorithms. The d’s and &’s computed by Saunders’ algorithm will be denoted 4,

and 6,; those computed by Kovacic’s algorithm will be denoted by 4; and 6,.
Case (1)

n=1

k
d; = 1-eg, + sgeq — 215
i=1

ky k
%min(o(co),Z) - %degt - %degtl + sgeg — 288 — D Si€;
i=1 i'=k2+1

) k
1. 1 1
= me(a(OO),Z) — degt; — Edegtz -7 S, v-degt, + sgeg — Z}lsiei - 3 s

les of i=kat1l
os)exv>2 2
v even
1 T 1 £
= min(o(*),2) + spep— X 1— 3 S - Zsie,— X ;v X e
4 2 = 4 1
cel' cel’ i=1 cel’ i=kyt1
poles of poles of poles of
order 1 order 2 _order v>>2

v even

= 4min(o(),2) + spep~ I 1= 3 (5 +sVITR) = 3 (v +s2)
poles

poles of poles of
order 1 order 2 order ¥>2
v even

Compare this formula with the formula for d.

d,=e,— e,
cel’

ee= S 1= B GHRVITE) - 3 (utky) wherek=xg

les of 'ierof ceI‘f
orderl order2 oRter v
veven
The three sums are clearly equal in the two formulas since s; = —%, C. '21

when n = 1. It remains to show that lmin(a(<><>),2) + sgeg corresponds to e,.

4
o() > 2 then

1 i 1 1 1,1
gmin(o(*),2) + speg = 2+ E31= 5 = 5 =ey
and if o(») = 2 then
Fmin(0().2) + speg = 2+ 25 VI+db = 5 = 3VItdb = e
and if o(») < 2 then
1 . 1 1
me(o(w),2) +osgeg= gVt =5
so d; = d; for case (1).

Now

Y Ztl) k
—_— 4 — + Soeo + Esiei + 2 siBi
t 3 i=1 iI=kyt1

==

41

NI

If

42

1 1

1 2 i 2 :
=2 2 .t 2 + 58+ 280+ X 86
cel X6 cel’ X7 C; cell X € i=1 imkyt1
poles of poles of poles of
order 1 order 2 order v>2
v even
1 %—‘-Fsiei %v-&-siei -
=3 + > —+ 3 |+ 25{Vr],. | + 589
polesof ¥ € polesof * Cj poles of x=c; ' “
order 1 order 2 order v>>2
v even
1 %-%siv 1+4b %v+si%
=3 + St S =+ 25V |+ 58
polesof X € poles of Y poles of X—& !
order 1 order 2 order v>>2
v even
i = =B n_ 41
Since s; IRRREE *-
1 %+si\/1+4b i—v+s£§—
0= 3 ——+ J T+ T |- +signls) [Vrl,| + sefg
polesof * — € poles of X—¢; poles of x=C
order 1 order 2 order v>2
v even

Recall that the formula for 6, is

s [XT - s(c)[v’r‘]c) + s(@)Vrl

Bk =
cel
. 1+ kVitdp Tv+ik2 " o~
= + I — + s(c)[Vr] .| + s(= -
St ST S | @IV + sV
poles of poles of poles of
order 1 order 2 order v>>2

veven

Clearly, the three sums are equal in the two formulas. It remains to show that s¢0
corresponds to s(=)[V7r].. If o() = 2 then

8090 = 1%0 =0
and if o() < 2 then
sofp = £2-2[Vrle = s@)[Vrl.

so 8, = 6, for case (1) and Saunders’ algorithm is verified correct for n = 1.

Case (2)
n=2

43

k2
dy = 2-eq, + sgeg — 2151-8,-
i=

k2
_ 1. 1 3
= 5mlﬂ(0(°°),2) - Sdegt - Edegtl + sgeg — Z‘,lsiei

ky

= Imin(o(x),2) — 2degt; — degr, — £ vdegr, + soeq - 3¢

v>2

ky
1 .. 1
= Ernm(o(oo),?,) + Sp€o — E 2 - czd‘ 1 - E 58 — E —2—v

cel’ i=1 cel’
poles of poles of poles of
order 1 order 2 order v>2
. 1
= Imin(o(»),2) + sgeg— I 2— 3 1+5VIFb -~ 3 v
poles of poles of poles of
order 1 order 2 order v>2

2 poles of poles of poles of
order 1 order 2 order v>>2

= l[min(o(oo),z) + 2500 34— 3 2425VI+db — 3 v]

Recall that the formula for 4, is

4= 3 (6= =~ Zec)

cel’

ew— S 4- 3 2+%VIFIE - 3 v
cel

s S of
poles of poles of poles
order 1 order 2 order v>2

The three sums are clearly equal in the two formulas since

5; = —%, . % =—-1,001=0,£1 when n=2. It remains to show that

min(o(«),2) + 2sgey corresponds to e,.. If o() > 2 then
min(o(®),2) + 2speg = 2 + 2-5p°1 =2 + 255 = e,
and if o(») = 2 then
min(o(),2) + 2sgeg = 2 + 25gV1+4b = e,
and if o(®) = v < 2 then
min(o(«),2) + 2sgeg = v + 259000 =v = e,
so that d; = d; for case (2).

Now

ky
2:8p, + zﬂsiei

44

=t ,itl k2
= — + + 5060 + Esiei
! 5] i=1
1 k
=y -2 +5 1+25‘_v+se+§s’ei
- _ oY0 —
cel fx—ci cel fx ¢ el] =1X7C
Beder 1 Peter 2 order v-2
1
’ 1+5;V1+4b 5V
=3 3 ——— -+ 548
polesofx_cf poles of X—¢; poles of X
order 1 order 2 order v>2
. 4 2+2s;VI+4b v
=2l + 3y — + 2500
poles of ¥ — € poles of x=¢; polesof *~ i
order 1 order 2 order v>2
Recall that the formula for 8 is
1w e
0= 15—
2C€I~X“'C
_ils 4 s 2+2kV1+4b N v
el X7 C cel’ x—=c cel X*7C
poles of poles of poles of
order 1 order 2 order v>2

Clearly the three sums are equal in the two formulas.

Since 65 = 0 in this case

regardless of the value of o(«), we have 6, = 6, for case (2) and Saunders’ algorithm

is verified correct for n = 2.

Case (3)

n=4,6,12
)

d, = n-eg, + spgeg — > 5;e;
i=1

ky

. 3
Fmin(o(),2) — 7degr — degt; + spe0 — T8¢

i=1

ky

H__. n
Zmin(o(),2) — ndegt; — Sdegt; + spep — I se

i=1

45

k2
= %-min(o(w),2) +sgeg— S n— 3 % - Sse;

cel’ cel’ i=1
poles of poles of
order 1 order 2

. 12 N 12
order 1 order 2

Compare this formula with the formula for 4.

dy = Tni (ex - Z:rec)

Zlew— 3 12— 3 6+2kVitap

12

cel’ cel
poles of poles of
order 1 order 2

The three sums are clearly equal in the two formulas since

5; = —g C . % =0,%£1,x2, ... ,i»’zi when n= 4, 6 or 12. It remains to show

that 3-min(o(),2) + lngsoeo corresponds 10 e... If o(®) > 2 then
. 12 12 12
3-min(o(«®),2) + - Soeo = 3.2 + ‘;,”'30'1 =6+ 50 = €x
and if o{(») = 2 then
3-min(o(«),2) + 172s0e0 =32+ ZgVIHah = 6 + Z5VI+db = e,

and o(») < 2 does not occur in case (3).

Now
k
Gs = nOﬁx -+ Esiei
i=0
il N b
= — + + Soeo + ZS,-('),-
t 1 i=0
n ky
= 2 = 2 —_. T sfot Xs;6;
cel XTC; cel’ C; i=0
poles of poles of
order 1 order 2
n
E n 2 —2"+Si€i N o
= 5%
poles of ¥ — € polesof X €

n —’21—+Sl\/1+4b
by X
polwofx_ci poles of X=¢;
order 1 order 2

-+ 8090

6+125,V1+4b
n 12 n't
+ z + —SOeO
pol&sofx_ci poles of X=&; n
order 1 order 2

Recall that the formula for 8 is

e
= ¢
=20,

cel X~ C
1 6+ 2k V1+4b
1
= > + 2
12 cer X7C cel’ x=c
poles of poles of
order 1 order 2

Clearly, the sums are equal in the two formulas. Since 85 = 0 for any value of o(®),

then 6, = 6, for case (3) and Saunders’ algorithm is verified correct for n =4,6,12.

Hence, the corrected version of Saunders’ algorithm is verified correct as
presented.

46

CHAPTER 5

Implementation in Maple

5.1. Details of the Implementation

The implementation in Maple follows Saunders’ variant of the algorithm fairly
closely. Several subsections of the implementation will be discussed further here.

The square-free decomposition required in the preliminary step of Saunders’
algorithm is done using Yun’s algorithm (c) as follows. If P is a primitive polyno-
mial, its square-free decomposition P-P3-P3---P" is computed by:

G «gcd[P,d—P]

dx
P
Civ5
dpP dc,
4——/“_’_‘“‘
Dy -G dx

for i from 1 while C; # 1 do
Pi “« ng(cl’Dl)

C;
Civiep

i

D; dCiy,
Div1vp =

4

od

A proof that this algorithm does calculate the square-free decomposition of P may be
found in [7].

The procedure to find the roots of the parts t5,t4,1, was developed to cir-
cumvent intrinsic limitations in Maple’s solve routine. (See section 5.2 for further
details.) First, Maple’s solve is called to determine the roots. If solve finds all the
roots (the number of roots should be the degree of the input polynomial), then rad-
simp is called to simplify them. Otherwise, factor is called in an attempt to reduce
the polynomial to factors that can be handled by solve. If factor cannot produce any

factors, the differential equation cannot be solved and the routine fails.

In step 1 of Saunders’ algorithm, the calculation of the 4; and of [\/?]Ci requires

47

48

computation of coefficients of the Laurent series expansion of a rational function at
its poles. The function is never explicitly expanded in a Laurent series; instead the
method of undetermined coefficients is used. This also requires long division of the

rational function to reduce % to squo + ﬂfﬂ where deg(srem) < deg(t). The algo-
rithm used for division is algorithm D by Knuth [4].

Then, if a is a root of ¢t with multiplicity m, t(x) = (x—a)"-g(x) and f is a poly-

nomial in x

srem _ srem _ Ay Ayt o Aq + _ﬁ
t (@-a)™g G-a)" (x—a)"? x—a g
where
A = 1 d"7E | srem
SN CEDINP T

X=a
This algorithm is from the CRC Standard Mathematical Tables [6].

The calculation of [V;]Ci also uses this algorithm for undetermined coefficients.

If ¢; is a pole of order v = 27 = 4, then [\/;]ci is the sum of terms involving

Y
X Cl‘)

for i = 2,3, ... ,7in the Laurent series expansion of VT at c;. So

a a._. a
Vil = e
i (x—¢)" (x—¢;)° (x—¢;)
and ([\/?]C.)2 agrees with (V7)? = r for powers of _1—k’ k=++2,....,21. We
i xX—cC;:)

i
exploit this fact by squaring [\/;]Ci‘ and obtaining expressions equal to the coefficients

1
of —————-in r, then using the undetermined coefficients algorithm on r.

X—=C;
a a._q as v 1 v
VI = | oo s T T T | T 2 | 2
' (x—c;) (x=c;) (x=¢; il (xmc)' L

We first solve for a. by noting

2 o s 1 .

a; = coefficient of —————inr

(x'—ci) T

Then each succeeding coefficient, a,_y,a,_5, . . . ,a; can be solved for using the

i 1 . .
equation 3, a;a;; = coefficient of ——— in r and substitution of previously com-
j=i-= X—=C;

puted a’s.

49

The calculation of [V7r], is very similar. If the order of r at ® is v = —21, then
[Vr]. is the sum of terms involving x;, i = 0, . . . ,7 in the Laurent series expansion
of Vr at =, i.e.

[Vile=ax"+ -+ +ag
and ([V7r].)? agrees with r for powers of x¥, k=0, ...,2r. A formula can be

derived for the coefficients as before and matched with coefficients of powers of x in

squo.
In step (2) of Saunders’ algorithm, it is necessary to generate all possible
sequences (sg,81, . - . .5,) where each s5;¢{0,£1,£2, ... ,i%}. The quantities s,

are implemented as a one-dimensional table of rational numbers and the entire vector
treated as a m+1 digit number base n+1 in order to generate all the combinations. If

the vector s is initialised to

Sm Sm~—1 50
_n _n _n
2 2 2
then repeatedly adding 1 until s is
Sm Sm—1 S0
n n n
2 2 2

will produce all the combinations required.

As in Saunders’ implementation, step 3 of the algorithm is implemented in three
separate procedures for n = 1, n = 2, and n = 4, 6, 12. The three routines are very
similar, Each generates a polynomial p of degree d as
x4 + ad_lxd_l + + ax + ag and then generates an expression as a function of p
and the given 6 that must be zero. By computing the numerator of the generated
expression (using normal and numerator), then extracting the coefficients of each
power of x, a set of expressions is found, each of which must be zero. These equa-
tions are linear functions of the unknown coefficients a; and can be solved using a
linear equation solver (courtesy of M. B. Monagan). This routine is noteworthy in

that it can handle the case where the system of equations is overdetermined.

5.2. Limitations of the Implementation

While the algorithm as stated claims to solve any d.e. of the form
ay'’" + by’ + ¢y = 0 where a, b, ¢ e C(x), the implemented algorithm will handle only
a subset of these equations for a number of reasons.

50

In the preliminary step of the implemented algorithm, it is necessary to compute
r as % where gcd(s,7) = 1. As long as r € Q(x), Maple’s normal will correctly sim-

plify r to the form required. At present, however, it will not accept constants such
as V2. In this case, calling radsimp will correctly normalise but radsimp will not

correctly handle any more complicated constants, such as exp(2) for example.

It is clear that more powerful normalisation facilities are needed in Maple to
handle the non-rational coefficients.

In the first step of the implemented algorithm, it is necessary to find the roots of
a polynomial in C[x]. In reality, the polynomial must be in Q[x] for several reasons.
First, the roots computed by solve are simplified using radsimp which can handle
rationals and rationals to rational powers, and no other constants. Then, if solve is
unable to find the roots of the polynomial, Maple’s factor package is called and it
can only factor over the integers (actually over the Gaussian integers if (-1)**(1/2) is

represented as 1).

The use of the factor package could be a limitation in and of itself in that it is
very slow and relatively untested. Fortunately, for most of the examples tested (and
hopefully most of the examples to be tried in the future), the polynomial we require
the roots of is of low degree, generally not more than degree 4 and can be ade-
guately handled by solve and radsimp.

Another problem with Maple’s solve function manifested itself when implement-
ing step 3 of the algorithm. In that stage, a polynomial is constructed with undeter-
mined coefficients and an expression depending on that polynomial is set to zero.
The unknown coefficients are determined by expanding the expression and extracting
the coefficients of each power of the dependent variable. This often results in an
over-determined system of equations. Maple’s solve routine will only handle a
square system of equations, i.e. »n equations in n unknowns. However, M. B.
Monagan was able to provide a linear equation solver that handles both under- and
over- determined systems of equations as well as square systems. This routine (or a
variant of it) should be provided in the Maple library.

Two problemns arise in the final stages of the implemented algorithm. In step 3

. . . thi .
in all 3 cases, the solution is returned as efSome ng. Then in the course of transform-
ing the equation from the form y'’ = ry back to the input form az'' + bz + ¢z = 0,

another efSome "8 is computed. In the course of testing, the limitations of Maple’s
integrator were clearly demonstrated at this point. It is a well-known fact that much

more work is needed on this function and I will not belabour the point.

51

In the cases where the integral could be computed, the second problem became
evident. If the solution to the d.e. is a polynomial, it will often be computed as
eloglpolynomial) 4 since Maple had no knowledge of the relationship between exp and
log, it would remain in that form in the output solution. This form could hardly be
considered simplified and it seemed clear that any user of the package would not
appreciate such a solution. Fortunately, B. Char produced a simplifier for expres-

sions with exp’s and log’s. This system of routines knows the basic rules of exponen-

tials and logarithms, namely % - e? = ¢7? and logx + logy = logxy, and also knows
that exp and log are related by exp(log(- - -)) = ---. (It does not yet know that
log(exp(- - -)) = - - - ; hopefully, this can also be implemented.)

5.3. Some Further Observations

The implemented algorithm was tested extensively using the equations in Kamke
[1]. During this testing another problem was noted, namely that the algorithm will
not handle parameterised equations, i.e. if the input equation is ay’’ + by’ + ¢y = 0,
then a, b and ¢ must be polynomials in x and no other parameters. In step (2), a
decision must be made as to whether the quantity 4 is greater than or equal to zero
and is an integer. If the expression for d is parameterised and the question was sim-
ply, is d = 0, we could proceed by following the two cases, d < 0 and d = 0,
through the remainder of the code and outputting the conditions on 4 along with the
solutions computed in each case. However, the question, is 4 an integer, does not
lend itself to handling a finite number of cases. A true constant must be determined
for 4.

In step (3) of the algorithm for case (3) only, an equation for w is computed of
degree 4, 6 or 12. It may be impossible to produce an explicit expression for one of
the solutions of this equation if it is of degree 6 or 12. In that case, we return an

unevaluated integral, efm, in the solution and a condition on v, namely the equation
we were unable to solve.

These two cases demonstrate a clear need for Maple (or any other system) to be
able to handle and simplify expressions with side relations. The system must have
certain basic side relations built in, e.g. 24+ 1= 0, sinx + cos®x = 1, etc. The user
must also be able to add side relations to the knowledge of the system, whether

directly or indirectly, e.g. via conditions on a solution to a differential equation.

In the preliminary step of the algorithm, it is necessary to perform a square-free
factorisation of a polynomial. Square-free factorisation is also required by Maple’s
radsimp routine, (undoubtedly) by the factor package, and by the Risch integration
package (as yet, not in the Maple library). It is probably also used by other routines

52

as well. It is recommended that a good square-free factorisation routine (for both
univariate and multivariate polynomials) be added to the Maple library. The four
routines mentioned above all use a slightly different square-free factorisation routine,
though they may all be using the same algorithm.

The determination of the coefficients of the partial fraction expansion of a r in
step (1) of the algorithm requires a routine to do polynomial long division. Maple’s
divide routine divides only if the input polynomials divide exactly. It is suggested
that a library routine to do quotient-remainder division might be useful to a number
of packages.

APPENDIX A

Source Code

53

54

read ‘/u/csmith/cs787/radsimp.m*;

read ‘/u/csmith/essay/lsolve.m*;

read ‘/u/bwchar/mathware/symbolic/maple/functioncall’;

read ‘/u/bwchar/mathware/symbolic/maple/lncontract’;

read ‘/u/bwchar/mathware/symbolic/maple/scanmap’;

TR R OB KR OE R KR E KRR HRE R KK EREE®

3

F oW % %

--> osolve: Solve second order ordinary differential equations

Calling sequence: osolve(in_ode,dep,indep)

Purpose: Solves second order ordinary differential equations
of the forma*y” + b*y’ 4+ ¢c*y = 0 using
Kovacic’s algorithm for second order linear
homogeneous equations

Input: in_ode - either an equation or an expression assumed
equal to zero representing the differential

equation to be solved

dep - the dependent variable to be solved for, given
as an undefined function e.g. y(x)

indep - the independent variable

Output: function value -- a set of two independent solutions
of the o.d.e. if they can be found

Functions required: odeorder,kovode

osolve : = proc(in_ode,dep,indep)

local ode,a,b,c,d,i;

if type(in_ode,‘="*) then
ode := expand(op(l,in_ode)-op(2,in_ode));

else
ode : = expand(in_ode);
fi;

if odeorder(ode,dep,indep) <> 2 then
ERROR(‘not a second order o.d.e‘);
fi;

if type(ode,‘+ ‘) then
for i from 1 to nops(ede) do
op(i,ode);
if has(«, diff(diff(dep,indep),indep)) then
a:= a+ “/diff(diff(dep,indep),indep);
elif has(“,diff(dep,indep)) then
b := b + “/ diff(dep,indep);
elif has(“,dep) then
c:=c¢+ “/dep;
else
d:=d+ 9
fi;
od;
else
if has(ode,diff(diff(dep,indep),indep)) then
a := ode / diff(diff(dep,indep),indep);
elif has(ode, diff(dep,indep)) then
b := ode / diff(dep,indep);
elif has(ode,dep) then

¢ := ode / dep;
else

d := ode;
fi;

fi;

if (indets(a) + indets(b) + indets(c)) - {indep} <> {} then
ERROR(‘invalid coefficients*);
fi;

if d <> 0 then

print(‘WARNING: non-homogeneous, trying homogeneous case);
fi;
kovode(a,b,c,indep);

end;

56

57

--> odeorder: Determines the order of an ordinary differential equation
Calling sequence: odeorder(ode,dep,indep)
Purpose: Determines the order of an o.d.e., i.e. the highest
derivative of the dependent variable with respect to
the independent variable.
Input: ode - an equation representing the o.d.e.
dep - the dependent variable, e.g. y(x)

indep - the independent variable, e.g. x

Output: function value -- integer order of the o.d.e., -1 if the

input equation is not an o.d.e.

Functions required:

ot o oW ok oW oW OO WO OO OER K OH K OHH R WK

odeorder : = proc(ode,dep,indep)

if type(ode, function) and (op(0,o0de) = ’diff’) then
if op(2,0de) <> indep then
RETURN(-1);
elif op(1,0de) = dep then
RETURN(1);
else
odeorder(op(1,ode),dep,indep);
if “ = -1 then
RETURN(-1);
else
RETURN(“+1);
fi;
fi;
elif type(ode,‘+) or type(ode,‘*‘) then

map(odeorder,{op(ode)},dep,indep);
RETURN(max(op(“)));
elif type(ode, ‘***) then
RETURN/((odeorder(op(1,ode),dep,indep));
else
RETURN(-1);
fi;

end;

58

59

--> kovode: Kovacic’s algorithm for second order o.d.e.’s
Calling sequence: kovode(fa,fb,fc,var)

Purpose: Solve a second order linear homoegeneous differential
equation of the form fa * y” + fb*y’ + fc*y = 0

Input: fa,fb,fc - coefficients in the differential equation,
must be in Q(x)

Output: function value -- set of two independent solutions of
the o.d.e. and possibly an equation
that is a condition on the solutions

Functions required: normal,numerator,rdivide,sqfr,undetcoeff,
roots,radsimp,solve,step3nl,step3n2,step3nd,

esimp,int

#Hoth % o ok oFH oW ok oE O OO OB OO OFHOHE K E R

kovode : = proc(fa,fb,fc,var)
local s,t,squo,srem,tcont,sdec, m, ord_inf, listl, oddti, i, j,k,1,
d,theta, dfix,thetafix, ds,thetas, t1,12, trest,rlist2, rlisthigher,

k1,k2,soln,solnl,soln2,ac,rt,nu,vtemp,n,alls,sprod;

transform the equation to the form z” = (s/t)*z

w
Ii

2*diff(fb,var)*fa - 2*fb*diff(fa,var) + fb*fb - 4*fa*fc;
t:= 4*fa*fa;

step 0 - preliminaries

normal(s/t);
s := numerator(“,’t’);

rdivide(s,t,var,’squo’,’srem’);

sdec : = sqfr(t,var,’tcont’);
m : = nops(sdec);
t : = tcont;

for i from 1 to m do
t:=t* op(i,sdec)**i;
od;
if m > 0 then
t1 : = op(1,sdec);
else
tl := 1,
fi;
if m > 1 then
t2 : = op(2,sdec);

else
2:=1;
fi;
ord_inf : = degree(t,var) - degree(s,var);
listl : = [];

oddti : = true;
for i from 3 by 2 to m do
if op(i,sdec) <> 1 then
oddti : = false;
break;
fi;
od;

if oddti and (type(ord_inf/2,integer) or (ord_inf > 2)) then
listl : = [op(listl),1];
fi;

if not oddti or (t2 <> 1) then
listl : = [op(list]),2];
fi;

if (m <= 2) and (ord_inf >= 2) then
listl : = [op(listl),4,6,12];

60

fi;

if nops(list]) = 0 then
FAIL();
fi;

step 1 - form parts for d and theta

dfix : = (min(ord_inf,2) - degree(t,var) - 3 * degree(tl,var)) / 4;
thetafix : = normal((diff(t,var) / t + 3 * diff(t1,var) / t1) / 4);

rlist2 : = roots(t2,var);
12 1= t2 / lcoeff(t2);
k2 := nops(rlist2);

for i from 1 to k2 do
trest 1= t/t2%*2;
rt : = op(i,rlist2);
for j from 1 to i-1 do
trest : = trest * (var - op(j,rlist2))**2;
od;
for j from i+ 1 to k2 do
trest : = trest * (var - op(j,rlist2))**2;
od;
undetcoeff(srem, trest, var,rt,2,2);
d[i] : = radsimp((1+4*<)**(1/2));
theta[i] : = radsimp(d[i]/(var-rt));
od;

k1l := k2;
if member(1,listl) then
for i from 4 by 2 to m do
op(i,sdec);
rlisthigher : = roots(“,var);
sdec : = [op(1..i-1,sdec), ““lcoeff(“<),op(i+1..m,sdec)];
nu:= 1/2;

for j from 1 to nops(rlisthigher) do

kl:= k1 + 1;
rt : = op(j,rlisthigher);
trest : = t/ op(i,sdec)**i;
for 1 from 1 to j-1 do
trest : = trest * (var-op(l,rlisthigher))**i;
od;
for 1 from j+ 1 to nops(rlisthigher) do
trest : = trest * (var-op(l,rlisthigher))**i;
od;
undetcoeff(srem,trest,var,rt,2*nu,2*nu);
ac[nu] := radsimp(“**(1/2));
for k from nu-1 by -1 to 2 do
acl[k] : = vtemp;
0;
for 1 from nu by -1 to k do
“ 4+ ac[l] * ac[nu+k-1];
od;
ac[k] : = solve(“=undetcoeff(srem,trest,var,rt,2*nu,k+ nu),vtemp);
od;
0;
for k from 2 to nu-1 do
“+ aclk] * ac[nu+1-k];
od;
d[k1} : = (undetcoeff(srem,trest,var,rt,2*nu,nu+1) - “)/ac[nul;
0;
for k from 2 to nu do
“ 4+ ac[k] / (var - rt)**k;
od;
theta[kl] := 2 * « + d[k1]/ (var - rt);
od;
od;
fi;

if ord_inf > 2 then
d[o] : = 1;
theta[0] : = 0;
elif ord_inf = 2 then
Icoeff(s) / lcoeff(t);
d[0] : = radsimp{((1+4*<)**(1/2));

theta[0] := 0;
elif member(1,listl) then
nu := (-ord_inf) / 2;

ac[nu] : = radsimp(coeff(squo,var,2*nu)**(1/2));
for i from nu-1 by -1 to 0 do

ac[i] : = vtemp;

0;

for j from i to nu do
“ + ac[j] * ac[i+ nu-j];

od;

ac[i] : = solve(“=coeff(squo,var,i+nu),vtemp);
od;
0;
for 1 from O to nu-1 do

“ 4+ ac[l] * ac[nu-1-1];
od;
if nu = 0 then

coeff(srem,var,degree(t,var)-1)/lcoeff(t) - <;
else

coeff(squo,var,nu-1) -

fi;
if “ = 0 then
d[0] : = 0;
else
d[0] : = ¢/ ac[nu];
fi;
0;

for 1 from 0 to nu do
“ 4+ ac[l] * var**l;

od;

theta[0] := 2*<
else

d[0] := 0;

theta[0] : = 0;
fi;

step 2 - form trial d’s and theta’s

for i from 1 to nops(listl) do

n := op(i,listl);

if n = 1 then
m:= kl;
else
m:= k2;
fi;

if (n = 2) and (ord_inf < 2) then
d[0] := 0;
theta[0] : = O;

fi;

for j from 0 to m do
sq[j] := -1/2 * n;
od;

alls : = false;
while not alls do

sq[0] * d[0];
for 1 from 1 to m do
“-sq[l] * d[1];
od;
ds := radsimp(n * dfix +);

if type(ds,integer) and ds > = 0 then
0;
for 1 from 0 to m do
“ + sq[l] * theta[l];
od;
thetas : = radsimp(n * thetafix + <);

step 3 - determine polynomial P if possible and hence omega and solution
soln := step3(n,ds,thetas,s/t,var);
if op(1,[soln]) <> ‘@FAIL‘ then

fb/fa;
solnl := exp(int(-1/2 * < var)) * op(1,[soln]);

soln2 := solnl *
int(esimp(exp(-int(““,var))/{(solnl*solnl)),var);

if nops([soln]) = 1 then
RETURN([esimp(solnl),esimp(soln2)]);

else
RETURN (([esimp(solnl),esimp(soln2)],op(2,[soln]));

fi;

fi;
fi;

for j from m by -1 to 0 do
if sq[j] = (1/2 * n) then

sq[j} := -1/2 * n;
else
sqfjl := sq[jl + 1;
break;
fi;
od;
if j < C then
alls : = true;
fi;
od;
od;
FAILQ);

end;

65

--> step3: Step 3 of Kovacic’s algorithm

Calling sequence: step3(n,d,theta,rhs,var)

Purpose: Perform step 3 of Kovacic’s algorithm

Input: n -- degree of omega over C(x)

d -- degree of the polynomial to be constructed

Hodk oo R OE R KR KR R R kR

theta -- trial function theta

rhs -- right hand side of the o.d.e 2’ = r*z

var -- independant variable of the o.d.e.

3

Output: function value -- solution of the o.d.e. z” = r*z

namely exp(int{omega))

Functions required: radsimp,numerator,Lsolve,int

F % oW oF oW R Ok R K R H

step3 : = proc(n,d,theta,rhs,var)

local p,listv,i,a,pr,sete,soln,trial,w;

p 1= var**d;

listv : = [];

for i from d-1 by -1 to 0 do
a.i := evaln(a.i);
p:=p -+ a.i* var**i;
listv : = [op(listv),a.i];

od;

pr[n] := -p;
for i from n by -1 to 0 do

pr[i-1] := normal(-diff(pr[i],var) - theta * pr[i]
- (n-i) * (i+1) * rhs * pr[i+1]);
od;

trial : = expand(numerator(radsimp(pr[-11)));

if trial <> 0 then

sete : = {};

for i from ldegree(trial,var) to degree(trial,var) do
coeff(trial, var,i);
if “ <> 0 then

sete : = sete + {“};

fi;

od;

soln : = Lsolve(sete,listv);
if op(1,[soln]) = [] then

RETURN(‘@FAIL);
fi;

for i from d-1 by -1 to 0 do
a.i:= op(2,op(d-i,soln));
od;
fi;

trial := 0;
for i from 0 to n do
trial : = trial + pr[i] * w**i/ (n-1)!;

od;
[solve(trial,w)];
if <= [] then

RETURN(exp(int(‘@ W*(var),var)),subs(w= ‘@ W",trial)=0);
fi;

w 1= radsimp(op(1,“));

exp(int(w,var));

RETURN(“);

end;

68

--> roots: Find the roots of a polynomial

Calling sequence: roots(poly,var)

Purpose: Find the roots of a given polynomial in Z[var]

Input: poly -- a univariate polynomial in var with integer
coefficients

var -- the indeterminate of the polynomial
Output: function value -- a list of the radically simplified
roots of the polynomial, an ERROR
if we could not find degree(poly,var)

roots, i.e. all of them

Functions required: solve,radsimp,factor

F o ok ok oI O o o oW O W W OH W OH W OR KR KK HK

roots := proc(poly,var)

local newp,rlist,i;

if degree(poly,var) = 0 then
RETURN([]);

fi;

soln : = [solve(poly,var)];

if nops(soln) = degree(poly,var) then
RETURN{map(radsimp,soln));

fi;

newp : = factor(poly);

if newp = poly then

69

ERROR(‘unable to find roots of the demoninator‘);
fi;

rlist : = [];
for i from 1 to nops(newp) do
roots(op(i,newp),var);
rlist : = [op(rlist),op(9)];
od;

RETURN (rlist);

end;

70

ok o o3k o3k oW o oFR o oI oW oo oW oW oH oW OO oW oW oW % W%

sqfr

--> sqfr: Perform a square-free factorization of a polynomial

Calling sequence: sqfr(poly,var,’cont’)
Purpose: Do a square-free factorization of a univariate polynomial
Input: poly -- a univariate polynomial with integer coefficients
var -- the indeterminate of the polynomial
Output: function value -- a list of the form [t1,t2,t3,...,tm]
where poly = t1 * t2%*2 ¥ {3%*3 *
oo ¥ tm**m
’cont’ -- (call-by-name) if the third argument is
present the integer content of poly is assigned
to the name ’cont’

Functions required: primpart,ged

Reference: Yun’s paper “On Square-Free Decomposition Algorithms«

: = proc(poly,var,cont)

local i,signp,pp,tc, tlistl,c,d;

signp : = sign(poly);

€X

pand(poly) / signp;

if nargs > 2 then
pp : = primpart(“,{var},’tc’);
cont := tc * signp;

else

fi;

pp : = primpart(“,{var});

71

tlistl : = [];

expand(diff(pp,var));
ng(pp, «’ ’C,, ,d,);

for i from 1 while c <> 1 do
expand(d - diff(c,var));
ged(ce, ¢, ’¢’,’d);
tlistl : = [op(tlistl), “];

od;

tlistl;

end;

72

73

--> undetcoeff: Determine the coefficient of a factor in a partial
fraction expansion

Calling sequence: undetcoeff(num,rden,var,root,m,ex);
Purpose: Determine the coefficient of 1 / (var - root)**ex
in the partial fraction expansion of
num / (rden * (var - root)**m)

Input: num -- polynomial with rational coefficients as above
rden -- polynomial with rational coefficients as above
var -- indeterminate of quotient
root -- root of the denominator of quotient
m -- multiplicity of root in denominator
ex -- particular coefficient required

Output: function value -- coefficient as described above

Functions required: normal, rsubs (only until 3.1 is released)

Reference: CRC Standard Mathematical Tables

o3k 3k oF o ot o o oH oI oo OO oo oH O oW OO oW OE W WKW W KK

undetcoeff : = proc(num,rden,var,root,m,ex)

local k,p,i;

I

m - ex;

num / rden;

forifrom 1 to k do

p : = diff(p,var);
od;

p : = normal(p);

RETURN((rsubs(p,var=root)/(k!));

end;

74

75

--> rdivide: Divide one polynomial by another and return quotient and
remainder

Calling sequence: rdivide(a,b,var,’quo’,’rem’)

Purpose: Divides a polynomial “a“ by a polynomial “b“ and produces
the quotient and remainder polynomials

Input: a -- univariate polynomial with rational coefficients

b -- univariate polynomial with rational coefficients

var -- indeterminate of the two polynomials

Output: function value -- none (of any relevance)

'quo’ -- (call-by-name) the quotient when a is divided
by b

rem’ -- (call-by-name) the remainder when a is divided
by b

Functions required:

Reference: Knuth, Volume 1, Algorithm D

F o o o ok % o oW OO O o OH W oW oFH oK oW W% W Kk KRR OHK R R K

rdivide : = proc(a,b,var,quo,rem)

local m,n,exa,exb,i,j,u,v,q;

m : = degree(a,var);
n := degree(b,var);
exa := expand(a);

exb : = expand(b);

for i from 0 to m do

ufi] : = coeff(exa,var,i);
od;
for i from m+1 to n-1 do
ufi] : = 0;
od;

for i from 0 to n do
v[i] : = coeff(exb,var,i);
od;

for i from m-n by -1 to 0 do
q[i] : = u[n+1i] / v[n];
for j from n+i-1 by -1 to i do
ufjl := ufjl - qfi] * v[j-il;
od;
od;

0;

for i from 0 to n-1 do
“ 4+ ufi] * var**i;

od;

rem :=

0;

for i from 0 to m-n do
“« 4+ q[i] * var®*i;

od;

quo 1=

end;

76

77

#

#

#--> esimp: Simplify expressions with exponentials and logarithms

#

Calling sequence: esimp(expr)

#

Purpose: Simplify an expression with exp’s and log’s (In’s)

using the standard rules for exp’s and log’ and

the rule exp(log(...)) = ...

#

Input: expr -- expression with exp’s and log’

#

Output: function value -- simplified version of expr

#

Functions required: scanmap,expcontract,Incontract,explnsimp

#

#

esimp := proc(expr)
scanmap(expr,[expcontract,Incontract,explnsimp]);
RETURN();

end;

save ‘/u/csmith/essay/kovode.m*;

quit;

APPENDIX B

Examples and Tests

An Example of the Use of Kovacic’s Algorithm

We will consider the differential equation

x27" — 2z =
Making the transformation
b
y=z- e—fzdx =z
the equation becomes
'y 2
y = ';2')’
so that
-2
X

There is only one pole of r, ¢ = 0, and it has order 2, so that I' = {2}. The order of
r at © is degree(xz) — degree(2) = 2.

Checking the necessary conditions (section 2.3), we find that all three cases are
possible so we must try the sub-algorithms for all three cases.

First, the algorithm for case (1). The pole ¢ =0 is of order 2 so
Ey= {% + k\V1+4b}, k = i—;—, where b = 2 (the coefficient of %in the partial frac-
tion expansion of r at 0), i.e. Eg = {% + %\/m, % - %\/1—-1—43} = {2, —1}

The orderof ratxis2s0 E = {% + kV1+4b}, k = i%, where b = 2 (the coef-

ficient of iz in the Laurent series expansion of r at), i.e.
b .
E, = {3 + 1V1+42, 3 - JVI+42 = {2, -1},

There are four possible tuples to consider; (eg,e.) = (2,2), (2,—1), (—1,2) and

e
(=1,—-1). Sinced = e, — e, and 6 = Eﬁ, the possible values for d and 6 are

cel cel’

78

79

€q € d 0

2 2 o 2
X
2 a1 3 2
X
-123__1
X
1 1 o =L
X

We can eliminate the second tuple since in that case d is not a non-negative integer.

We now search for a monic polynomial of degree d satisfying
P 4+ 20P" + (6’ + 8% — r)P = 0. For the first tuple, d = 0 so P must be 1. We
check whether this satisfies the required equation.

2
2 2 2 2 -2, 4 2
1+ |12+ & -S| =2+ S-S5 =0
X [x] [x] 2 2 2 2

So we have the correct P and 6.

Now
P’ 2 1’ 2
©=0+ P x * 1 x
and the solution is
fa

n=¢ * = g2logx — 2

We can transform this back using the inverse transformation

b
5 -dx
2

and get zy = x“. Then by the method of reduction of order, the second solution is

_I%dx
22=zl-f£——2—dx=x2-f 1 dx=x2-f%dx=x2-

2% (xz) s

-13 _ -1

x3 3x

80

An Example of the Use of the Laple Implementation

The following is a listing of a Maple session using the imiplementation of
Kovacic’s algorithm.

Script started on Fri Aug 12 21:04:31 1983
Warning: no access to tty; thus no job control in this shell. ..
% maple <testrun
N/
N .
\ MAPLE / Version 3.0 --- May 1983

read ‘/u/csmith/essay/kovode.m‘;
words used 1399

prettyprint : = 0;

words used 34125

prettyprint : = 0

eql := diff(y(x),x,x) + y(x) = 0;
eql := diff(diff(y(x),x),x)+y(x)=0
osolve(eql,y(x),x);

words used 36194

words used 132824

[exp((-1)*I*x),1/2/T*exp(I*x)]

eq2 : = diff(y(x),x,x) + 4*x*diff(y(x),x) + (4*x**2+2)*y(x) = 0;
eq2 : = diff(diff(y(x),x),x)+4*x*diff(y(x),x)+ (4*x**2+2)*y(x)=0
osolve(eq2,y(x),x);

words used 134826

words used 147080

[exp((-1)*x**2),exp((-1)*x**2)*x]

eqd 1= x**2*diff(y(x),x,x) - 2*x*diff(y(x),x) + (x**2+2)*y(x) = 0;
eqd : = x**2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+ (x**2+2)*y(x)=0

81

osolve(eq4,y(x),x);
words used 149144

words used 206842

[x*exp((-1)*I*x),1/2*x/T*exp(I*x)}]

eqS 1= (x-2)**2*diff(y(x),x,x) - (x-2)*diff(y(x),x) - 3*y(x) = 0;

eqS 1= (x+ (-2))**2*diff(diff(y(x),x),x)-(x+ (-2))*diff(y(x),x)-3*y(x)=0
osolve(eq5,y(x),x);

words used 208881

words used 279114

[(x+ (-2))**(-3/2)* (x**2-4*x+4)**(1/4), (-8*x+ 6*x* *2-2%x **3+ 1/4%x**4}*
(x+ (-2))**(-372)* (x**2-4*x+ 4)**(1/4)]

map(radsimp, “);

words used 281126

words used 418931

[(x+ (-2))**(-1), (-8*x+ 6*x**2-2*x**3+ 1/4*x**4)/(x+ (-2))]
quit;

Final 'words used’=420608, storage= 1047028

%

script done on Fri Aug 12 21:12:15 1983

[5]

Bibliography

Kamke, E., Differentialgleichungen Losungsmethoden und Losungen, New
York, Chelsea Publishing Co., (1948).

Kaplansky, 1., An Introduction to Differential Algebra, Hermann, Paris, (1957).

Kovacic, Jerald J., “An Algorithm for Solving Second Order Linear Homo-
geneous Differential Equations’, (preprint), (19797).

Knuth, Donald E., The Art of Computer Programming, Volume II, Seminumeri-
cal Algorithms, Addison-Wesley, Menlo Park, California, (1973).

Saunders, B. David, ‘“An Implementation of Kovacic’s Algorithm for Solving
Second Order Linear Homogeneous Differential Equations”, pp. 105-108 in
Proceedings of the 1981 ACM Symposium on Symbolic and Algebraic Computa-
tion, Association for Computing Machinery, (1981).

Selby, Samuel M., CRC Standard Mathematical Tables, CRC Fress, Inc.
Cleveland, Chio, (1974).

5

Yun, David Y. Y., “On Square-Free Decomposition Algorithms”, pp. 26-35 in
Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computa-
tion, Association for Computing Machinery, (1976).

82

	

