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ABSTRACT

A model for a register-transfer level design specification is
proposed. Using this model, the data-path part is specified using
three types of primitives, and the control part is simply a table
associating the path-setting signals of the data-path with the con-
trol and status inputs.

The proposed model has an algebraic representation and its
application to 2 number of design situations is discussed.

Keywords: register-transfer level, data-path, design representation,
modeling.
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1. Introduction

Computer Aided Design (CAD) packages must operate on some form of
design representation. These representations have a significant effect on the
complexity of the CAD tools in the package. CAD packages should also provide
their users with the means of specifying the design, the so-called design capture
subsystem. The human friendly requirements of a design capture system, and
the process friendly requirements of tools operating on the design, are often
incompatible if not contradictory. This lack of compatibility between the user
and tool requirements on the one hand, and the often incompatible representa-
tion requirements of the tools themselves on the other, has resulted in hetero-
geneous design environments, recognized as one of the major problems facing
the CAD industry.

The availability of a single, multi-purpose intermediate representation to
be used by a number of different application tools is useful to the development
of an integrated CAD package. In this methodology, different design capture
systems are viewed as the user interfaces to the intermediate representation,
each presenting a view of the design which is friendly to the application.

Within such an environment, unique tools will be developed for different
design tasks, all operating on the proposed notation. Different user interfaces
are translated into this intermediate notation and use the variety of tools
developed. This provides the designer with a number of choices in selecting the
design capture system he may find more suitable to his style or requirements
without needing to duplicate the tool development each time.

VLSI design is performed at several levels of abstraction, each with its
own attractions and trade-offs [2,11,12,19]. Compared to conventional digital
design, the register-transfer (RT) level abstraction of VLSI design has received
more attention in recent years [1,3,4,7,8,9,13,14,18,20]. This enthusiasm can be
attributed to the repetitive structure implied by the RT-based designs and the
power of the RT-level abstraction in representing large systems in a concise and
friendly form. Both these properties are of considerable importance in VLSI
design.

While this attention to RT-level abstraction has already resulted in the
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proposal of a number of RT-level design methodologies [1,9,14], less attention
has been given to the study of the semantics of this abstraction [6]. This has
resulted in a number of proposals [5,6,10]. We believe that while these studies
propose some type of formal model for RT-level abstraction, their approaches
are either too specific to certain applications to be of general use, or too
abstract to be helpful to real design situations.

In this report we have taken on ourselves to propose a set of desirable
features for such semantic models, to propose one such model, and to demon-
strate that our model satisfies most of the proposed features.

This model is being used as the form of intermediate design representation
in a large VLSI research program at Waterloo, supported by the Canadian
Government.
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2. OBJECTIVES

The development of a model for RT-based specifications which satisfies

the requirements of multiple applications requires careful study. In our study of
some of these application areas, we found the following properties to be highly
desirable.

1]

[2]

(31

4

Computer representabllity. Design tools are computer programs
operating on design specifications represented in computer memory. To
simplify the complexity of tool development, it is important to have these
internal representations in forms which have proven suitable to computer
processing. Tabular and matrix representations are one kind of these effi-
ciently handled representations. Others are those with a suitably simple
and regular structure, often defined by one of the formal languages. On
the other hand, human oriented graphical representations are difficult to
process. Textual definitions which do not adhere to the constraints of one
of the formal languages are also hard to process.

Derlvabllity. This property requires that the specification of a new sys-
tem, obtained through the combination (interconnection) of two sub-
systems, be easily derivable from the specifications of the initial sub-
systems. This property is very important in hierarchical design and helps
with the definition of the higher levels without the need for re-definition at
every level. Stated in a more formalized way we require that: S(a+b) be
derivable from S(a) and S(b), where S(a-+b) is the specification of com-
bined modules “a’ and “b”, S(a) is the specification of “a”, and S(b) is the
specification of “b”.

Non-restrictlve. A non-restrictive specification is one which does not
restrict the applications of a design to only those foreseen by the designer.
A specification becomes restrictive when it i3 defired in terms of a large
number of high-level elements. To remove the restriction it must be speci-
fied in terms of a few primitive elements.

For example, the specification of a counter as a ‘‘counter’” may prevent its
also being used as a ‘‘register’’, but when specified as a combination of a
“register” and an “incrementer” it is not subject to this restriction.

Usage Assistance. Most design components of interest have one or more
control inputs which in addition to controlling their function, provide the
component with a certain amount of generality. For example, a shift
register needs at least two control inputs for the control of “load” and
“shift” operations. The ‘‘shift” input, in addition to controlling the
component’s shift function, expands its power to multi-shift applications.
More complex components often have a larger number of control inputs,
leading to a higher degree of programmability.

In an automated design environment, a synthesizing program trying to
assemble a number of components needs to ‘‘understand” these inputs to
create the function specified by the designer. This is possible only il the
specification of those controls is able to fully describe their effect on the
system.

It is not difficult to see that some behavior specification methods fail to
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exhibit this property. To satisfy the requirement, the specification of a
control input should describe its internal effect on the system, down to the
level of primitive elements, rather than explaining the kind of change at
the output due to the enabling of every control input. In a design specifi-
cation model which satisfies this requirement, it is possible to deduce the
behavior which results from the enabling the controls, while the opposite is
not always possible.

Storage and retrievabllity. Predesigning of frequently-used parts and
their use in future designs is an integral part of any design activity. Poly-
cell libraries are the VLSI implementation of this concept. When the size
of these libraries increases, or new additions are made, the designer can
easily lose track of what may be available. Automating the storage of
newly designed components, and helping the designer in retrieving those
potentially useful to his design is a desirable feature for any CAD system.
Storing components in a way which does not restrict their retrieval to only
those applications foreseen by the creator of the data-base is not an easy
task.

This property requires that the device model help with its systematic
placement in a library of predesigned cells, and that the model help the
designer by providing him with a query system to retrieve the cells suit-
able for his design.

Circuit optimization assistance. Optimization is a search within the
space of functionally equivalent designs, subject to constraints imposed by
the requirements of the design. While one can not expect the model itself
to embody the optimization algorithm, its ease of use in presenting the
algorithm with the design alternatives and in helping to transform one
design to another equivalent design is indeed a property of the model.

This property requires that the model should facilitate the transformation
of one design to other designs which perform the identical function in a
shorter time or with less components. This is possible if the rules of legal
transformation are easily representable in the same specification language.

In the next section of this paper we propose a new model for the RT-

based specifications of design. This is then followed by a more formal presenta-
tion of RT-based modeling with a discussion of its power. The paper ends with
an informal presentation of the application of the model in most of the areas of
application discussed in this section.
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3. MODEL DESCRIPTION

Our model is based on the assumption that the interfacing signals of every
module of a design, i.e. those used to interface the module to other modules of
the system or the environment, are one of three types;: data, control, or
representation. We call a module’s specification in terms of only two of three
axes, its “‘projection’” onto the plane formed by those two. In this way every
design has three projections, each showing certain aspects of the design, more
simply than the one comprising all three. Certain features of a design can be
represented more clearly in terms of a particular projection. The RT-level
specification is a design’s projection onto the plane of data—control, ignoring
the representation coordinate. On the other hand the distinction between two
n-bit register ICs, one with an individual “load” control fcr every flipflop, and
the other with a single “load” for all the flipflops, is only shown by its projec-
tion onto the ‘‘control-representation’ plane.

Through this abstraction we have fol-
lowed the path of other engineering disciplines
who have found it advantageous to specify
their designs by projecting then onto the planes
of an orthogonal coordinate system. In digital
design also, the independence of any two types
of the interface signals from the third leads to
the suggestion of some abstract form of ortho-
gonality, and therefore the three-dimensional
space of the digital design. This suggestion of
three-dimensionality is enforced by certain
drawings of the design. In Figure 3-1 we have
shown one such drawing.

We are using the projections of a
representation as a vehicle for specifying
designs in our design specification input
language. But for this report, this is the extent

to which the three-dimensional design will be comnection

discussed.

FIG. 3~1.

3.1. Model Primitives

We start by an informal discussion of the data-path and give a few exam-
ples of the data-paths of some well-known modules. We will have an even less
formal presentation of the control function. The intention of this section is to
introduce the reader to the proposed RT-level modeling techniques in an infor-
mal way and to demonstrate the motivations behind the more formal treatment
to come in the next section.

A data-path is a network of three types of elements, each with one or
more inputs and a single output, and interconnected according to certain rules
to be defined in the next section. We refer to these elements as the primitives.

A net is a star connection of one or more “incoming” and “outgoing”
edges connecting the input and the outputs of these primitives forming the



network. To every net we assign a value of a certain ‘“‘type”. The “‘types” of
net values will depend on the representation techniques employed by the sys-
tem. The “value” of a net, defized by the values of “incoming” edges, is passed
to the succeeding primitives through the ‘‘outgoing’” edges.
“incoming” edge values lJead to undefined net values. The value of a net is
referenced by the usual naming conventions. Following are the descriptions of
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the three primitives.
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Selectors do not have any interfacing signals along the representation axis
and therefore are fully representable by their projection onto the
data —control plane. A selector’s projection onto the data —control plane
has two inputs and one output along the dats axis, and a single input
along the control axis, Figure 3-2. The value of the data-output, at any
time, is equal to the value of the data-input selected by the control-input
at that time. Every control input has a “normal” setting which represents
its choice of input under the control input’s “‘disabled"” condition. “Ena-
bling” a selector’s control-input forces its data-output to the other data-
input value, for the duration of the “enabling” signal. The two inputs and
the output of any selector are of the same type.

A selector's function can be shown alge-
braically by:

out=inl |,~ in2

where out is the value of the outgoing
edge, in1 and in2 are the values of the
incoming edges, and | ;j is the control-
input, selecting either in1 or in2 for the
value of out. The enabling signals are
issued by the control unit. In this paper
the normally-left convention is assumed;
that is, wheu | 5 is enabled, then the right
hand expression is selected.

Combinationals do not have any inter-
facing signals along the control axis and
are therefore fully representable by their
projections onto the
data —representation plane. A
combinational’s projection onto the
data —representation plane has one or
more inputs and a single output along the
data axis, and an equal number of inputs
and outputs along the representation
axis, Figure 3-3. The value of the data
output, at any time, is a function of the
data and representation inputs at that
time. Similarly, the values of the
representation outputs at the same time
are a function of the dafa and

out

FIG.3-2.
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representatson inputs. The signal carry-
ing the value of ‘‘carry”, from one slice of
the “adder” to the next, is an example of
input and output signails along the
represntation axis.

The value of date outputs as a function
of data inputs can be shown algebraically,

using the conventional function definition

notations: out = f(in, in, ..in.), or
can be listed in tables. We use a circle,
with one or more inputs and a single out-
put, to show the projection of a
combinational  element onto the
data = control plane.

Delays do not have any interfacing sig-
nals along the control and representation
axes and have a single input and a single
output along the data axis, Figure 3-4.
In this sense they are one-dimensional ele-
ments. A delay element’s output lags its
input by one time unit. )

A delay element’s function can be shown
algebraically by:

out =A(in)
where out is the value of the outgoing

edge, and in is the value of the incoming
edge.

1in

1oui

FIG. 3-4.
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4. SPECIFICATION EXAMPLES

Here we present a few examples of module specifications using the pro-
posed primitives. Treatment of these examples, especially where it deals with
the definition of the control parts, will be informal. We present a more formal
discussion of Register-Transfer type specifications in the next section.

4.1. Reglsters

We start by discussing the specification of a few kinds of registers. We
will see later that by combining these registers with suitable multiplexors and
de-multiplexors, different types of memories can be specified.

The simplest kind of register is the read-
only register, to be known as an ro—register,
specifying constant values. The data-path of
one such register is a single delay element fed

back on itself, shown graphically in Figure 4-1. !——:_1 ------ “?
This register is also shown by its algebraic ! i
form: ' o !
= s
]
! wr |
| SR IR
out = A(out) B
Const
out,-,"-, = Const. F16. 4ot

where we assume that the init subscript refers
to the placement of some initial constant value
in the refreshing loop, at the time of manufac-
ture.

The most common form of register is the read-write register, referred to as
an rw—register. The projection of the data-path of an rw —regieter onto the
data —control plane is shown grphically in Figure 4-2. Because neither the
selector mor the deiay element has any components along the representation
path, this projecticn contains all the information necessary for the specification
of such registers. The algebraic specification of rw —registers is shown by the
following set of simultaneous equations.

| ittt e e |
| i
| 1
| |
. ' :
A=out | in E I——I—Lood
= X !
out = A(A) : A :
| ]
] [}
i 0 i
| |
: :
Under “normal” conditions the registered l out |
value is circulated in the hold loop from one e !
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clock pulse to the other. This helps the regis-
ter to refresh the value last placed in it. Ena-
bling the j control-input places a new value in
the rw —register. This leads to the equivalence
of the “load” input to the register and the j
control-input of the selector. We write this in
the form of a table, associating the module-
interfacing control-lines (here the “load” sig-
nal), with the control-inputs of the selectors in
the data-path. For the rw—register this is
simply shown as follows:

j
load | Y

This table shows that for every ‘‘ena-
bling” of the “load” signal, the j controkinput
of the data-path will also be ‘‘enabled”’.

Another kind of register to be specified is
the programmable read-only register, to be
called the “‘pro-register’”. The projection of a
‘‘pro-register’” onto the data —control plane is
shown graphically in Figure 4-3. The algebraic
specification of its data-path is as follows:

A
A=out |;B D
B = [(in,out)
out
out = A(A)
FIG.4-3.

A ‘pro-register” is an ‘“ro-register” in
which the placement of the initial value in the
refresh loop is under user control. “pro-
registers’”’ are manufactured with a certain
value initialized in the refreshing loop. The
user is able to modify that value, to his liking,
through the proper application of the input
values. The control table of a “pro-register” is
similar to that of the ‘‘rweregister”. This
specification of a ‘“‘pro-register’” captures the
reprogrammability of the programmable read-
only memories, which is sometimes overlooked
in discussion of this device. Use of f
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combinatorial prevents full specification of
“pro-registers” by their data—control projec-
tion. Howeever, further specification are
beyond the scope of this example.

The last kind of register to be discussed is
an erasable-programmable-read-only register,
or an “epro-register”. ‘‘pro-registers” lose their
reprogrammability feature soon after one or
two iterations. An ‘‘epro-register’ enables the
user to recreate the initial condition of pro-
grammability, by placing the initial value back
in the register. The data =control projection
of the data-path of an “‘epro-register” is shown
in Figure 4-4. The existence of two selectors
in its data-path makes its control-table more
interesting. The followwing table relates the
“enabling” of the ¢ and j ‘“control-signals” to
the ‘“¢nabling” of the erase and progrem
control-lines.

i | J
erace | E | X
program { D | E

The following set of equations show the alge-
braic specification of the data-path.

A = [(out,in)
By = Const.
B = A(B)

C = out |,~ A
D=C|;B
out = A(D)

4.2. Multiplexors and De-multiplexors

A zelector is a simple 2-input multiplexor.
Larger multiplexors are made by forming an
inverted tree of selectors such that the
selectors of the same depth share the same
control-input. Multiplexors are fully specifiable

A
s j | Const
c B
S f—-i
D
D
out
FIG. 4-4.
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l l ...... 1 l ll

by their projection onto the data—control
plane and therefore their expansion does not
require any connections along the
representation axis. In Figure 4-5 the expan-
sion of two n-deep (2" way) multiplexors into a
single (n+1)-deep multiplexor is shown.

To construct a multi-way de-multiplexor,
we must first construct a simple two-way de-
multiplexor.  Figure 4-6  shows the
data—control projection of one such two-way
de-multiplexor using two selectors. Following
is the algebraic specification of the data-path
of the two-way de-multiplexor:

Outl = l.nl I,‘ m

outy = in |, in,

where the in siznal is the main input to be
multiplexed, and in, and in, are the alterna-
tive inputs.

11

o!-i‘

-i-in

[*1T-h

-i.-|n

FIG.4-5.

Ouf‘ outz ouf'

FIG. 4-6.

in

An alternative input specifies the value of the corresponding output signals
when it is not selected to receive the in signal. Two-way de-multiplexors can
be expanded to multi-way de-multiplexors using the same tree expansion tech-
nique used for the multiplexors. This form of expansion leads to too many
alternative inputs which are a nuisance in most applications. A more useful
expansion of de-multiplexors is the one which uses a number of selectors to
reduce the number of alternative inputs. We refer to these reduced input de-
multiplexors as the homogeneous de-multiplexors. A homogeneous four-way
de-multiplexor is shown in Figure 4-7. The following set of equations describe
the values of the four output signals in terms of the four alternative and the

main input signals.

These equations describe the data-path opera-
tions of the de-multiplexor. In these equa-
tions, the intermediate net values have been
replaced in the expressions and only the input-
output relationships are shown.

The following table shows the value of
the four outputs under the different ‘“‘enabling”
conditions.

out, oUt,  out, out,
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The expansion of two n-deep de-
multiplexor trees into a single (n +1)-deep de-
multiplexor is shown in Figure 4-8.

F. Mavaddat

outy = iny |, ((inz | ;;n,) | 5, in)

outy = ((ing | ;,in,) | in ) |, in,

Outs = iﬂ»a l]ﬂ (in lJl (in‘ |12 ina ))

out4 = (in IJI (in‘ |)2 iﬂa )) l]g .'n4
jl jz out 1 out 2 out Y out 4
D D | in, ing ing in
D Efin |in, | in | ing [ I e
E D in, | in | ing | in, . iR
E E| i | ing | ins | ing | 77 )

Iy "A : [~ )
oo et
1 ....... l T . 1
o, Oyt 0y, Oy

FIG. 4-8

The imaged interconnection of two n-deep de-multiplexors and multiplex-
ors, receiving the same control signals, forms a path-selector for routing an
incoming signal into one of 2" paths and collecting the result back into a single
outgoing signal. By placing other elements in different paths of such selectors,
certain useful subsystems can be specified. One useful application of path-
selectors is in the specification of memory systems. By placing any of the dif-
ferent kinds of registers discussed in the paths of the path-selectors, different
types of memory systems can be specified. In Figure 4-9 we have shown the
specification of a simple two-word read-write memory. Several points are worth
mentioning about this memory:

First, its functional operation is fully specified by the following set of
data-path equations and the corresponding control table. Such detailed
and realistic capture of a memory sub-system function, using the opera-
tions of very simple primitives (in fact for memory function definitions
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only selectors and delay elements are used) is to our knowledge new.

out = A|;B ln
A = A(C)
B = A(D) i
C=A|E € F
D=B|,F
E=Al|,in
F=in|B

17}
|
174
t

(3]
o

o
o

read 1
read 2
write 1
write 2

m|m| ol o] -
@ o|m| o|—
g

FIG. 4-9.

2- In practice the existence of a separate control line for reading and writing
of every location is unrealistic, and the user must also specify the coded
address of the addressed location along with the specification of the
“read” or ‘‘write” operations. This converts our scheme to that of current
practice.

3- The command to load a value into a register and the path-selection
address (in a path-selector mechanism) now have the same semantic
interpretation. They are both the settings of some selector’s control-input
in the data path.

4.3. Three State and Bus operations

Traditionally, one of the problems facing most specification models has
been in the area of specifying the Bus and three-State operations of digital sys-
tems. Here we represent a floating output, the so-called third-stated, by a
selector in which the selector’s output has been connected to one of its inputs,
usually the one normally selected. The output of such a selector will confirm
the value placed by the other outputs connected to the same net under normal
conditions. On the otker hand, when its control-input is ‘‘enabled”, its output
will be that of its other input. In Figure 4-10 we have shown the data-path of
three rw —registers placed on a single Bus structure.
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A=D |, BUS
B=E|,BUS
¢ = F|,,BUS

BUS = BUS |, D
BUS = BUS | ,,E
BUS = BUS | ,,F

D = A(A)
E = A(B)
F=4(C)

F. Mavaddat

BUS

FIG. 4-10.
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5. FORMAL DEFINITION

A register-transfer-level model of a module consists of a data-path and a
control-unit. The data-path has a set of data-inputs, data-outputs, path-
selector-inputs, and status-outputs. The data-inputs and data-outputs commun-
icate with the environment and/or the other modules of the design. The path-
selector-inputs and the status-outputs communicate with the control-unit.

The control-unit has a
set of control-lines, status-
inputs, and action-outputs.
The path-selector-inputs and
status-outputs of the data-
path are connected to the

action-outputs and  status- Data~inputs [ po— "] Data outpurs
inputs of the control-unit. The
SChemat’.ic repres?nta.tion of a Status-outputs Path-selector -inputs
module is shown in Figure 5-1. . i

Status-inputs ¢ Action - outputs

Control = unit

Control - lines

FI1G.5-1.

5.1. The Data-Path

A data-path is a bipartite directed graph G = (V,E) with partitioned sub-
sets X and Y, such that for all v€EV, v€X if v is a primstive, and v€Y if it is a
net. Only the data terminals of a selector participate in the formation of the
data-path.

We assign a value to every net equal to the value of its incoming edges,
which should not contradict each other. The net value is passed to its adjacent
nodes (which must be primitives) through its outgoing edges. The set of all
control-inputs of the selector type vertices, @, forms the path-selector-inputs of
the data-path. If @ is empty, i.e. no selectors are present in the data-path,
then the data-path has a fixed structure with nothing to control.

A port is a net with one incoming or one outgoing edge which enters or
leaves the data-path. Some output ports with logical values are called probes
and are used to feed back the data-path status to the control-unit. The set of
all probes in the data-path, R, forms its status-outputs. If R is empty, i.e. the
data-path is not probed, the action of the control-unit will be independent of the
status of the data-path. The graph representation of the epro—register data~
path, discussed earlier, is shown in Figure 5-2. This example has one data-
input, one data-output, two path-selector-inputs, and zero status-outputs.
Obviously the action of control on an epro—register is independent of its
status.
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§.1.1. Data-Path Characteristic
Equations

We write one equation for every
incoming edge of every net, relating
the value of the net to the values of
the nets feeding the preceding
primitives. The bipartite property of
the data-path graph guarantees that
only three kinds of equations,
corresponding to the three types of the
primitives, need to be written.

For every edge coming from a
delay element in the data-path we
write:

net; = A(net,)

FIG. 5-2.

where net; and net; are the reference
names of the input and output nets.

For every edge coming from a combinational element in the data-path we
write:
net,» = f(net_,-,.l,netj.,.z' ..... ,netj...,,)
where net; is the reference name of the output net, net,.; for 1<k <n are the

reference names of the n input nets, and f is a function describing the opera-
tion of the combinational.

Finally, for every edge coming from a selector in the data-path we write:
net,v = net,-l mct,,

where net; is the reference name of the output net, net; and net, are the refer-
ence names of the input nets, and |, is the selection operator, controlled by the
I control-input, assigning either the value of net; or net; to net,.

When the incoming (or outgoing) edge of a net is connected to the
environment, we write:
net; = in;

(or)

out;

J=net,~

where net; is the reference name of the corresponding net, and in; ( out; ) is
the value of the jth input (output) stream to the data-path.

The set of simultaneous equations written for every incoming edge of
every net in the data-path are the characteristic equations of that data-path.
The number of such equations, NV, is shown by the following equation:

N = 3d,(v)
veY
where Y is the partitioned subset containing the nets, and d;(v) is the indegree
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of the sth v.

5.2. The Control Unit

The control-unit is a device with three sets of terminals: the set of
-control-lines, C, the set of status-inputs, S, and the non-empty set of action-
lines, A. The control-lines, if present, are under the control of other modules or
the environment. There is a one-to-one correspondence between the elements of
Q@ and R, and those of A and S respectively.

We assume that the truth values of the probes are assigned to the
corresponding status-inputs of the control-unit through the R to S correspon-
dence, while the control-unit’s actions affect the data-path’s path-selector-inputs
through the A to @ correspondence.

We are proposing a synchronous model with a global clock, ¢, oscillating
between the T and F values with a period equal to the delay value associated
with the delay primitives. All system activities are synchronized with the
occurence of the T period of the global clock and should settle to a stable condi-
tion within that clock period.

A control-unit’s action depends on the current enabling state of the
control-lines and the state of its status-inputs. For simplicity we will assume
that only one control-line is enabled at a time and later demonstrate that this
restriction can be relaxed.

We associate the unique tables C and A with every control-line, assuming
a one-to-one correspondence between the columns of C and L €2°%, and the
columns of A and A, such that ¢,;€{T.F,X} and a; €{E,D X} for 1Si<m,
0sjs<|L|, and 1sk=<|A|, where m is the number of rows in A and C.
According to this definition an empty L may have a maximum table entry size
of one. We will assume that such a table always has a single T entry, known as
the ‘“‘unconditional’” table.

We define the ith row of C to be satisfied iff, the corresponding control-
line is enabled, the value of the global clock is T, and the truth values of the
elements in L match the corresponding table entries of the ith line of C. The
X entries in the table match both the T' and F values of the corresponding ele-
ment in L. The ith row of A is “activated” iff the sth row of C is “satis-
fied”. Certain probe conditions may ‘‘satisfy’’ more than one row of the table,
which is used to execute parallel activities within the module.

When the sth row of A is “activated”, the corresponding elements of A
are enabled or disabled for the respective E or D table entries, which in turn
affects control-input settings in the data-path. The action of X type activa-
tions on the selector setting may depend on the technology. When more than
one row is “activated”, “strong” entries (D and E) in the same column should
not contradict each other; the X entries may be overruled by stronger E and D
entries.

This definition is ‘‘complete” if every true period of the global clock ¢ is
accompanied by the *“‘enabling” of at least one of the control-lines. If this is not
guaranteed then the state of all selectors’ control-inputs should be specified for
the periods of “inactivity””. We assume the existence of an “‘implicit” control
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line which is ‘‘enabled” whenever all “explicit”’ control-lines remain ‘‘disabled”
during the true period of the global clock. The “implicit” control-line is
treated, and must act, like all other “‘explicit”’ control-lines.

5.2.1. Extending the Control Unit

The table-based specification of the control-unit is a simple and powerful
scheme for designing familiar types of control, and is related to horizontal
microprograms. In the rest of this section we will look at a sequence of conven-
tions which progressively simplify the task of design specification and improve
the expressive power of the model.

The first convention combines the tables associated with each control-line,
by side-concatenating them. This is always possible, because the table pair
associated with every control-line have an equal number of rows. The table
entries are the same as those in the original tables. The following is an example
of this convention:

c & 8q 8y a, aqs a,
C11 ees ves Cin a1 oee ven al,
Cm1 .es ces Cmn [ =1 oo eee amp

The second convention combines the control-tables of all (or several)
control-lines into a single table. This is achieved by first extending the tables
into equal width and then concatenating them columnwise.

Tables are extended to the same width by adding columns to their condi-
tion parts. The extended condition parts must have identical columns which are
the union of all columns of the individual tables prior to this extension. Every
entry in the extended table which corresponds to a column not present in the
original tables, receives an X value. To specify the section corresponding to
each control-line, in the concatenated form, the control-line label is placed next
to the corresponding rows of the table. This convention assumes that by “‘ena~
bling” each control-line, the corresponding rows of the table are the only candi-
dates for being ‘‘satisfied’’.

The third convention removes the labeling of the control-table rows by
treating the control-lines like those of the status-inputs. This is possible by
adding one extra condition column for every set of identical control-line labels
to be removed. Suppose that the rows i to s +k of the concatenated table have
the same row labels and we have added the jth column for the removal of these
labels. The new table, to be called the ‘“unified” table, receives an F entry
everywhere in the jth column, except at positions: ¢; ;,6;+1 ,-.-.,Cisk,; Which
receive the T value. The logic controlling the *satisfaction” of the model
remains unchanged.

Under this convention there is no need to allocate a separate column to
the specification of the “implicit” control-line, and extra logic to detect the
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occurence of the‘‘implicit” control-line condition. This is looked after by enter-
ing F values in every position associated with the ‘‘explicit’’ control-line columns
and the “implicit” rows.

The concept of a “unified”’ control-table is also used to specify the action
of the encoded control-lines. Under the control-line encoding convention more
than one control-line may be “‘enabled” at any time and the pattern of the
“enablings” signifies the action to be taken by the data-path.

To specify the action of an encoded set of control-lines, one row is
assigned to every unique encoding pattern, with entries to guarantee the “satis-
faction” of that row iff the correct pattern of the control-line “‘enablings”
occurs. It is not difficult to see that the original scheme of “enabling” one
control-line at a time is a special case of this more generalized scheme.

The last convention to be discussed deals with the specification of the con-
trol hierarchies. In the next section, while discussing the application of the pro-
posed model to the specification of a hierarchical example, we will present the
necessary conventions.

The proposed specification improvements enable us to efficiently merge
the control-tables, associated with different control-lines, into an integrated con-
trol scheme, unifying all table pairs into a single table. One example of this
sequence of conventions, starting with three simple control-line specifications,
and progressively combining them into the ‘“unified” table representation is
shown in Figure 5-3.

AL CACACA - LACALES ‘-'3’1';'“1“2“3 ®| 8,]8,/83] 9,/ 0,0,
T{X|E|D|X E|{D|E FIFIX|E|E X|X|FJE|E|D
FIT|D|D|E FIT|IE|D|D X{X|T{0|D|E
FIFJE(E|D T(F|D|E|D

TIT|X|E|E
$1[S2[83] 91 95 93 C4|C2|C3| 31| B2f %3] 94| 92/ 93
GT(XIX]JE D X TIFIFITIX|X]E|[D|X
GiF|T|(X]D D E T|IF|F|F|X|X|DID|E
G|F|F|[XJE E D T{F|FIFFIX|E|E!|D
Col X|XI|X]JE D E FIT|F|X|X|X{E|D|E
S F[X[F|X E E FIF|T(F[X|[FIX|E]E
C3|F{X|TJE D D FIF|TIF|XIT]JE|D|D
C3T|X|F{D E D FIFIT|(T|[X|F]JD|E|D
C3(T|X|TIX E E FIF|[TIT|X|T{XIE|E
O|X|X|F|{E E D FIF|FIX|X|F|E|E|D
®|X[X|T]D D E FIF|IF|X[{X|T]ID|D|E

FIG. 5-3.
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5.2.2. Example

In the following example, pairs of
consecutive numbers are read from a
single infinite-input sequence and out-
putted in sorted pairs. Input and out-
put values are advanced by a global
clock pulse and value pairs are
separated by an extra clock used for
the calculation period. A typical input
sequence will therefore look like:
iliz#isil#isio# ...... ’ where ]
represents the pair separator as well as
the space holder for the third period of
the clock activity.

The graphical specification of the
module’s data-path is shown in Figure
5-4. In order to illustrate the tech-
nique, we have chosen a rather simple
design, ignoring some important con-
siderations required in real designs.

Part of the data-path is a two-bit
counter which loops through the
sequence of values FF, FT, and TF,
never generating the TT output. As a
result we have omitted this possibility
from the control-table. The f and g
combinationals used in the design of
the counter have no signals along the
representation axis and therefore are
fully specifiable by their deta input-
output relationship shown below: FIG. 5-4.

01'°2"f|9

F{F|IF|T
F{TH§T]|F
T|{FHF|F

The following table shows the function of the control unit. The first two
entries, ‘‘satisfied”’ during the first and second cycles of the counter operation,
read the consecutive pair values from the input stream. The ‘‘activations” of
the third and the fourth entries are mutually exclusive, and depend on the rela-
tive size of the last two values read, leading to the exchange of the values or
their holding during the third counter value.
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clock | e; lea |l s | 51k
F|FI|X||D}{D|D
F|T|X|D|D]|D
T|{F|TIE|D]|D
T|F|FJEJE}E

This design has no control-lines and the only external signal to “activate”
the table is the clock pulse. Therefore, we have associated this table with the
enabling of the clock pulse.
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6. EXAMPLES OF APPLICATIONS

We now discuss the degree to which our proposal satisfies the objectives
set earlier in this paper. These discussions are informal and it is not our inten-
tion to make any claim beyond the intuitive level. We will show that the pro-
posed notation has been developed with attention to the objectives and has the
potential of application to many of the areas of intended application.

It is easy to see, without the need for supporting evidence, that the model
meets the requirements of some of the objectives. For example, techniques of
using tables to show the flow of control, and algebraic equations to show the
flow of data, have efficient internal representations and are easy to process.
This helps to ease the development of simulation packages to support the
model.

It is also not difficult to see that the use of only three types of primitive
elements, each with simple semantics, will help the cause of non-restrictive
specification.

On the other hand, whether the model meets the expectations of other
areas of application is not always easy to see and needs some explanation. In
the remainder of this section, we will try to demonstrate, through examples,
that the proposed model has the potential of meeting the objectives of a number
of other applications.

68.1. Application to Derivabllity

We ccusider a limited class of

synthesis activities, where the data- —{ Data-path Data-path |—
paths of the modules, interconnected
at their inputs and the outputs, form a
larger data-path, and the control func-
tion is defined through a hierarchy of
definitions. This form of module syn-
thesis is not uncommon and covers a . 1
reasonable number of design activities. High level.
In Figure 6-1 we have shown a
schematic representation of the syn-
thesis of two modules into a new
module in this simple form.

[Control-unit] | [Control-unit|

[ WNext tevel controi |

FIG. 6-1.

Other expansion methods, which mix the functions of control and data are
also possible. One example of this generalized form of synthesis is the design of
programmable architectures. For example, in a microprocessor, which is prob-
ably a good example of mixed synthesis, the data-path of its control part is used
as the control-unit of its data-path.

We have chosen the design of a
hardware sorter as our example of
hierarchical design. The hardware
sorter accepts n numbers, and outputs
them in sorted form, under the control
of a number of control-lines.

Data-in | ardware sorter |Datc-gn

Strobe Compare Drop

FIG.6-2-a.
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This design will output the sorted list immediately after the entry of the
last input value. Such automatons are known to operate in real time. Our
design reads the unsorted numbers, one at a time, at its input and outputs the
sorted list at its output. Three control-lines control the operations of the sorter
unit, Figure 6-2-a. The strobe control-line strobes (reads) the next number into
the unit. This should be followed by the enabling of the compare control-line,
which compares the last input value with the smallest value currently in the
unit and presents the smallest new value at the unit's output. To create room
for the entry of the next number, the drop control-line is enabled, dropping the
current smallest value from the unit. The repetitive enabling of the strobe,
compare, and drop control-lines, in a loop form, sorts any list of n values,
where n is the internal capacity of the sorting unit. To compensate for the ini-
tial values in the sort unit and the values strobed after completion of the last
entry, each list must be appended by a sufficient number of very small and very
large valies at both ends.

Datain e ond Shift Shift ond
:] compare compare | compare
Data-out
h ICy |Ls R2(Ca L2 Fa CslLs

Control ~ unijt

Strobe Compare Drop
FIG. 6-2-b.
We realize the sort unit using a i l'-g
linear array of ‘“shift and compare” '
units and a single register, all con- R
nected as in Figure 6-2-b. Input

numbers are presented to the left

“shift and compare” unit and the '@ )

sorted numbers are returned by the

same unit. The function of the top R

level control-unit, in which the input

control-lines to the “sort-unit” are L, /!’
related to the control-lines of the “shift Le q

and compare’”’ and the “‘register’’ units,

. Control-unit
is shown below.

1]

FIG.6-2-¢.
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Ry |Ci | Ly |Ry | Ca | Ly Ry | Cs | Ly | 1

strobe | E | D | D | E D)} D E D|D|E
compare | D E|]D]|D E|D|D E|D]|D
drop | D | D|E|D|D}JE|D|DJE|D

Next in the hierarchy we have to realize the “shift and compare” units.
The internal design of one such unit is shown in Figure 6-2-c. The data-path is
made of two ‘‘registers”, two selectors, and a “‘comparator’”’. The two registers
hold two numbers of the ‘“‘sort-unit’’. The L and R control-lines “load” the
numbers present at the left and the right inputs of the “shift and compare” unit
into the registere. The C control-line compares the two values and exchanges
their position if the the one on top is the smaller of the two. This leaves the
smallest value in the lower register after every enabling of the C control-line. It
is easy to show, by inductive methods, that when these elements are configured
in an array, and closed at the right by a register, the result of applying a con-
tinuous sequence of “strobe ”, ‘“‘compare’”’, and ‘“‘drop” control-lines is that the
value in every lower register is always the smallest of all those to its right. The
functional specification of the control-unit, relating the control-line inputs of the
“shift and compare’” unit to the those controlling the “register’” and selector
operations, is shown below.

Ry[Cy[Ls[Re[ColLg|Rs[Calty] /]

Strobe E|D|D|{E|D|D|E|D|D|E

Compare ID|E|D|D|E[D|D|E|D]|D

Drop D|D|E|{D|DIE|D|D|E|D

Nil DiDID|D{D|D|D|D|DID
Ko Y2llotee :@sl"sl'-atﬁ
X|EIE]|D X|E[E|D L X]JE{E|D
T)DE|E T|D|E|E C T|DI|EE
FIX|DjD FIX|D}|D C FIXID|D
X|E|D|E X|E{DE R X|E{DIE
Nil X|X|D|D Nil X} X|D|D Nil X1 X|D[D
'./ 3 raf' |

Load,|E| Load,[E Load E Lood,| € E
Nil Dl Nil D Nil Nil D! Nil D

3 @ &

FIG. 6-3.

3 8 &
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k{j L)L,
L|XJE|E|D
CIT|{D|E]E
CIFIX}|D|D
R|XHE}|D|E

Nl | X X]|D|D
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The lowest level in the hierarchy, which relates all the units to the primi-
tives of the proposed model, is the design of the “registers’’. This was included
in the discussion of rw—register, in section 4-1. In Figure 6-3 we have shown a
graphical representation of the total hierarchy of the ‘‘sort-unit” control func-

tions.

8.2. Application to Mechanical Proof techniques

The ability to prove assertions
about a design is a powerful technique
in the development of a number of
design tools, the most obvious being
the development of the design verifica-
tion tools. Less obvious of these appli-
cations is its use in ‘helping with
usage”, and ‘“component retrieval’.
Instead of presenting a formal frame-
work for the development of mechani-
cal proof activities, which we are
currently considering as a separate
activity, we present here an informal
scheme of reasoning about an example
which demonstrates the suitability of
the model to mechanical deduction.

Let us consider the data-path of
Figure 6-4 and find out whether it can
compute the f, (f(f,(z))) expres-
sion through successive enabling of
some sequence of the control-lines. We
are also interested in finding the
sequence, should one exist. Following
are the set of equations describing the
data-path and the table specifying the
effect of the control-lines on the data-
path.

" out

FiG. 6-4.

To search for the answer we have to go through a number of steps which

lead to the sequence, should one exist.

1-  First we cut the network at all delay ele-
ments. This provides us with a number
of sub-graphs with new input and output
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A=out |;B
B=Cl|;in
c=F|,G
F = fy(out)
G = [, out)
out = A(A)

LOAD
F1
F2
Nil

" OO = -
O =] = |-
Ml o] o] K]

points. Figure 6-5 shows the data-path of
Figure 6-4 after the cutting at the delay
elements.

We write an expression for every output
point in terms of the main and the new
input points. This relates the main out-
put net and the delay element input net
values to the main input net and the
delay element output net values.

FIG. 6-5.

A=out|,B
B=C|,-in
C=f1(0ut)|k fz(out)

We re-write the expressions obtained at step 2 in a form describing the
output point values for every ‘‘enabling” of the control-lines.

LOAD A =in
F, A= f,(out)
F, A= f;(out)

Nil  out = A(A)

In this step we apply substitution techniques by matching the expression
to be computed with the equations derived in step 3. The substitution of
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any equation will imply the enabling of the corresponding comntrol signal.
It and when the sequence terminates, the reverse enumeration of the
enabled control-lines is the sequence of steps to be executed for the com-
putation of the corresponding expression. Following is the list of substitu-
tions and their corresponding control signals.

Tilout) = £1(fAS (=)

implies the need for
out = f,(f,(z)) prior to the enabling of F1.

Joout) = fo(f4(z))
implies the need for
out = f,(z) prior to the enabling of F2.

Jilout) = fy(z)
implies the need for
out = z prior to the enabling of F1.

in =z
implies the need for
in = z prior to the enabling of LOAD.

We find out that the computation can be implemented by “LOADING”
the z from the input and enabling “F1”, “F2”, and “F1” in sequence.

6.3. Design Transformations

As the computer aids to design mature, design tasks traditionally in the
domain of the human designer, become new candidates for computerized aid.
Design optimization i8 a good example of this kind of activity which has
received much attention in the recent years [3,15,16,17).

The capability of transforming a given specification of a design to the
specification of another, functionally equivalent design, is a necessary operation
of any optimizing program. It is through the application of these transforma-
tions, guided by some criteria of optimum search, that optimization is mechan-
ized.

In this section, we will demonstrate, through an example, that the pro-
posed notation provides the necessary mechanisms for transforming designs
among functionally equivalent implementations. No suggestion of universally
optimum result is implied by the example. Our discussion will be limited to
demonstrating the notation’s adaptability to the kind of operations needed for
the writing of more sophisticated optimization algorithms.

In this example we propose a simple algorithm, operating on SDC-based
specifications, transforming a highly parallel, single step computation into a
highly serial single ALU equivalent network. To better describe the steps of the
algorithm we apply the procedure to an optimization problem proposed in [6].
We start by describing the problem.

Suppose we are given the initial design
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shown in Figure 6-6-a. This data-path
represents a highly parallel circuit which com-
putes two output values as a function of two
input values at every beat of the input clock.
The input values are presented with the beat of
the clock. Lacking any delay element, the out-
put will be available during the same clock
pulse. For large circuits of this kind the clock
period should be long enough to allow for the
propagation of values along the longest path of
the circuit. Such data-paths must not have
any closed paths. We assign the value ‘‘zero”
to all nodes of this data-path, indicating that
they all operate at the same beat of the clock,
(i.e. the beat “zero”), on different steps of the
same computation.

We are interested in transforming this
circuit into an equivalent circuit in which a sin-
gle ALU is multiplexed between the functions
performed by the individual combinational ele-
ments. The steps to be taken in transforming
such parallel computation networks into the
fully sequential equivalent are zs follows:

1-  Assign an integer delay value ¢, 1Si<n
and n is the number of combinational
elements in the circuit, to every node of
the graph. The re-timed value of every
successor node should exceed that of all
its predecessors. The result of this re-
timing, applied to Figure 6-6-a, is shown
in Figure 6-6-b.

2-  Add m delay elements to the data-path
to guarantee the correct arrival of related
tokens of data at every combinational
element. Figure 6-6-c shows the network
after the introduction of delays. Ignoring
the pipelining possibility, each delay ele-
ment will be used once during the life-
time of a computation. The period of
usage of every delay element is shown
next to its symbol. Terminate this step
by assigning a unique name to every net
of the data-path.

3- Draw the usage chart of the m delay

FIG. 6-6-0. FI1G.6-6-b.
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Fi1G.6-6-c.
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elements. Every delay element appears
once in the life-time of every computa-
tion, Figure 6-6-d. :

Draw a new usage chart, using only &
delay elements, where k is the maximum
number of delay elements needed simul-
taneously. The new delay elements are
multiplexed among those used singly.

Allocate the m singly used delay elements
among the k¥ multiplexed elements, trying
to assign those used in series to the same
member, Figure 6-6-e.

Design a new circuit by selecting a single
ALU and k delay elements. Label every
input and output of the multiplexed ele-
ments with the names of all nets they are
being multiplexed among.

Precede every input multiplexed between
J=2 places with a j input selector. Label
the selector inputs with the multiplexed
net names. The result of this element
selection and labeling procedure is shown
in Figure 6-6-f.

Complete net connections with identical
names. Select a unique name for multiple
named nets. Simplify selectors by group-
ing several inputs of the same name with
a single input. The result of this step
applied to our example is shown in Fig-
ures 6-6-g and 6-6-h. Realizing that two
of the selector-delay combinations, with a
tight feed-back loop around them, are in
fact regular register, transforms the
design to that of Figure 6-7-i which is
almost identical to the one reported in [6]
as the most economical realization of the
proposed circuit. In our scheme we have
realized that one of the three registers, as
proposed in [6] is in fact a simple delay of
one unit which in most VLSI implementa-
tions has a simpler realization than that
of a static or dynamic register.

S —
Dg ‘erveeee ——————. el
Dy tov cerriienenns ._.
Dy “rorreeeieeanes PO
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