MENT

EBA-w

ART
EPARTMENT
EPARTMENT

£8 SEENEE B
cE EENGE S

i
T
T

Qe
MPU
OMPU

3 ¢

YA

/8
imy

I

IVERSITY OF WATERLOO C

| The
Contour Problem

for
Polygons

Thomas Ottmann
Derick Wood

Data Structuring Group
CS-84-33

October, 1984

THE CONTOUR PROBLEM FOR POLYGONS!

Thomas Ottmann?

Derick Wood®

ABSTRACT

The union of a set § of p, not necessarily disjoint, simple
polygons in the plane determines a set of disjoint polygons, possibly
having holes. We present a plane-sweep algorithm to compute the
edges of the resulting disjoint polygons, that is their contour, which
runs in O((n+k)logn) time and O{n) space, where n is the
total number of vertices in the polygons and % is the number of
edge intersections among the polygons. The space requirement is
reduced to O(p) if the polygons are convex. '

Although the result is new, the main focus of the paper is on a
general translation principle which yields the current solution.
Given a plane-sweep algorithm for some problem for the, highly res-
tricted, isothetic, that is, rectilinear case, this algorithm can be
translated into one for the same problem for the non-isothetic case.
The translation principle enables a two-step solution to non-
isothetic problems to be obtained; first, the simpler isothetic prob-
lem is treated and, second, the translation principle is invoked to
yield the final solution.

1. INTRODUCTION

Many of the problems studied in computational geometry have the following
format:

Given a set S of objects of type T compute the function F(S).

1 The work of the first author was supported by DFG Grant Ot 64/4-2, and that of the second by a
Natural Sciences and Engineering Research Council of Canada Grant No. A-5692. The work was
carried out while both authors were visiting the Computer Science Department of the University of
Helsinki.

2 Institut fir Angewandte Informatik und Formale Beschreibungsverfahren, Universitat Karlsruhe,
D-7500 Karlsruhe, W. Germany.

3 Data Structuring Group, Department of Computer Science, University of Waterloo, Waterloo,
Ontario N2L 3G1, Canada.

2 Ottmann and Wood

For example T consists of simple polygons in the plane and F{S) is the set of
intersecting pairs in §, or T consists of simple isothetic or rectilinearly-oriented
polygons and F(S} is the set of connected components in S. Typically solution
strategies for problems of simple polygons and simple isothetic polygons are quite
different, even when both are based on the plane-sweep paradigm, since in the
latter use is made of the restricted nature of isothetic polygons. In [W, OWI,
OW?2| a method was introduced for bridging the gap between solution strategies
for two problems where the only difference is that T consists of isothetic
polygons in one case and non-isothetic polygons in the other. In overly simplistic
terms [W, OW1, OW2] present a method of translating plane-sweep solutions of
isothetic problems into plane-sweep solutions of the corresponding non-isothetic
problems. The translation principle is based on two related ideas: zig-zags and
semi-dynamic search structures. The advantage of the translation principle is
that solutions obtained for isothetic problems, which are much easier to obtain,
can be translated into solutions for non-isothetic problems with only standardized
modifications. This step-wise approach to solving non-isothetic problems is
clearly advantageous over the creation of a solution from scratch. Its only disad-
vantage is that the time complexity of such a solution is bounded from below by
2((n+k)logn), where n is the total number of vertices in the polygons and &
is the number of edge intersections among the polygons. This is simply because it
depends on the algorithm of [BO| and [Br| for finding the intersections. Until
recently this was more than acceptable since Of(n+k)logn) time was the best
upper bound known for finding the intersections in the first place. Indeed in [NP)
a number of problems are solved with this upper bound. However the recent
paper of [C] has demonstrated an O(n log>n+k) time upper bound for the edge
intersection problem and it leads us to suspect many non-isothetic problems will
yield solutions with better worst-case bounds based on the approach in [C].

Notwithstanding the results in [C] we feel that the translation principle is
important in its own right as a contribution to programming methodology.
Moreover we anticipate that a similar translation principle can be obtained based
on the results in [C]. We examine a particular problem, namely T consists of
simple polygons and F(S) is the set of disjoint polygons defined by the union of
the polygons in S, the contour problem. As far as we are aware this problem has
not been treated explicitly in the literature, although a solution could perhaps be
obtained from the results in [NP]. In the isothetic case it has received much
attention after its introduction in [LP], see [G1, G2, G3, Wo]. We translate the
solution given in [Wo] for the isothetic case, which is time- and space-optimal, to
give a solution for the non-isothetic case which requires O((n +k)logn) time
and O(r) space, where n is the total number of vertices in the given polygons
and k is the number of edge intersections.

" The paper consists of two further sections. In Section 2 the use of zig-zags -
is motivated by way of semi-dynamic structures. The contour algorithm is
presented in Section 3 paralleling its presentation in [Wo] for isothetic polygons.

Contour Problem for Polygons 3

2. SEMI-DYNAMIC STRUCTURES AND ZIG-ZAGS

When computing, off-line, properties of sets of isothetic or rectilinear
polygons in the plane the plane-sweep paradigm has become a valued tool for
deriving efficient and often optimal algorithms. Such an approach often makes
use of semi-dynamic search data structures, that is data structures whose skele-
tel, or underlying, structure is computed before the plane-sweep begins. Inser-
tions into and deletions from a semi-dynamic search structure do not change its
skeletal form, updates only modify information at its nodes. For example the seg-
ment tree of [BW], the tile tree of [E] or [Mc|, the layered segment tree of [VW],
and the visibility tree of [Wo|. Semi-dynamic structures can be used when treat-
ing such off-line problems because they satisfy the following corditions:

(1) The values to be inserted and subsequently deleted are known in advance.

{2) The values, which correspond to endpoints of vertical line segments and to
horizontal line segments, are totally ordered with respect to the initial posi-
tion of the sweep line, see Figure 2.1, and this order never changes.

Figure 2.1

However when we consider sets of (non-isothetic) polygons in the plane Condition
(2) does not hold as is easy to see in Figure 2.2 with the line segments a,b,c,
and d. The first difficulty is how to compare them? If we consider the y-
projections of their left endpoints as in Figure 2.1 we obtain the ordering a,c,b,d,
but if we take the y-projections of their right endpoints we obtain c¢,b,d,a. This-
reflects the well known fact that, in general, non-paraliel line segments in the
plane cannot be totally ordered. Condition (2) stems from the need for a semi-
dynamic search structure to be organized according to a fixed total order. Since
non-isothetic polygons do not satisfy Condition (2) it appears that semi-dynamic
structures cannot be obtained in this setting. This, fortunately, is not the case,
since we can partition a set of polygons in the plane into mazimal zig-zags, which
are a restricted class of line segment curves. The zig-zags, as we shall see, are
totally ordered just as the endpoints and horizontal line segments are in the
isothetic case. Thus for these more complex elements Condition (2) is satisfied
and semi-dynamic search structures can be used. Indeed the same semi-dynamic

4 Ottmann and Wood

Figure 2.2

search structures that are introduced in [BW, E, Mc, VW, Wo] for isothetic prob-
lems can be used, directly, for their non-isothetic variants. This translation result
is demonstrated in the present paper for the visibility tree [Wo| and the contour
problem. Before we present the algorithm we must first define the 2ig-zag parti-
tion of a set of polygons. For this purpose we identify polygons with their edges.
Moreover we assume no vertical edges are present and no three edges have a com-
mon intersection point. '

Definition A zig-zag is a line segment curve which is monotonic with respect
to . Given a set S of polygons in the plane a zig-zag in S is mazimal if it can-
not be extended at either end. Two zig-zags 2z and z° in S cross if there are
points (z,,¥,) and (z,,¥,) in_z and points (z,,y}) and (z,,y5) in 2" such that
¥y, <y; and y, >y, The zig-zag partition of S is a set Z of maximal
zig-zags satisfying | J edges{z) = | edges(s) and for all 2z,,z, in 2Z,
€2 s€S
z, ¥ zo, implies z; and z, do not cross and z;MNz, is a finite set of points.

Such a partition is unique and consists of O(n} maximal zig-zags. Note that if
two zig-zags z; and z, in the partition share an z-value z, that is (z,v,) is in
zy, (z,y,) isin 2y and y, < y,, then z; is below z, at all shared z-values.

In Figure 2.4 the zig-zag partition of the polygons of Figure 2.2 is displayed.
Algorithmically a maximal zig-zag can be found by starting at the leftmost point
p of a polygon and tracing out one of the paths from p following the rules
illustrated in Figure 2.3. The transitive closure of the below relation induces a
partial order in Z. This is extended to a total order by also defining 2, to be
below 2z, if they share no z-value and 2z, is to the left of z,. This ordering was
introduced in [GY] and is called the ‘below plus consulting left’ relation there.
The total order of the zig-zag partition in Figure 2.4 is given at the right of the
polygons. In Figure 2.5 we display the zig-zag partition of 2 standard set of
isothetic polygons rotated through 45°.

Using the Bentley-Ottmann-Shamos-Hoey [BO] algorithm with Brown’s

Contour Problem for Polygons 5

Figure 2.3

Figure 2.4

improvement [Br] the zig-zag partition can be computed in O({n+k)logn) time
and O(n) space [OW1], where n is the total number of vertices in the polygons
and k& is the number of pair-wise edge-intersections. Even if this can be
improved to require O(nlog?n+k) time along the lines of {C], because the con-
tour algorithm requires O{(n+k}logn) time and O{n) space, there is little
incentive for the attempt.

In the next section we derive the contour algorithm.

6) Ottmann and Wood

Figure 2.5

3. THE CONTOUR ALGORITHM

Before giving a high-level version of the CONTOUR algorithm we introduce
some additional useful terminology.

Each zig-zag has one left endpoint and one right endpoint. Each sweep
point within a zig-zag is either a bend point, that is a common endpoint of two
edges, or an intersection point. These are displayed in Figures 3.1(a}-{d); the
interior of the polygon is indicated by shading.

During the plane-sweep of the polygons the edges of the zig-zags (or the
polygons) can be classified as being either blocking or unblocking edges. An edge
is blocking if the interior of its polygon appears to its right, Figure 3.2(a), and is
unblocking otherwise, Figure 3.2(b).

) During a plane sweep bend points do not affect the contour except to intro-
duce a new vertex. However endpoints and intersection points may affect the
contour as a careful examination of Figure 3.1 indicates. In extending the
isothetic contour algorithm to the non-isothetic case we treat endpoints as if they
are vertical edges. Bend points are treated as if they correspond to the common
endpoint of two horizontal edges, while intersection points are treated similarly to
either endpoints or bend points. In Figure 3.1(d) the first and fourth intersection
points are similar to bend points, and the second and third to endpoints.

Following [Wo] and replacing references to horizontal and vertical line seg-
ments with zig-zags we have the following high-level algorithm.

Algorithm CONTOUR

On entry: A set S of p simple polygons which have no vertical edges and in
which no three edges have 2 common intersection point.

On exit: The edges of the union of S such that no two adjacent edges have
the same direction.

Contour Problem for Polygons 7

<G

(a) 1eft endpoint

= >

(b) right endpoint

(c} bend point

(d) intersection point

Figure 3.1

begin

1. Call the zig-zag partition algorithm [OW1] — this yields the O(n +k) sweep

points in z-sorted order and the O(n} zig-zags in below order, that is in

_ their total ordering. Initialize the set V of visible active zig-zags to @ and
the set B of blocking intervals to &J.

2. For each sweep point z, corresponding to a left, right, bend, or intersection
point do

2.1 =z is a left endpoint.
Activate the corresponding two zig-zags. If either or both of them are
visible add them to V and initiate the corresponding edges of the con-
tour. Add their open interval to B and if this blocks any previously
visible zig-zags then remove them from V and terminate the
corresponding edges.

Ottmann and Wood
{a) blocking edges (b}unblocking edges

Figure 3.2

2.2 =z is a right endpoint.

De-activate the corresponding two zig-zags. If either or both of them
are visible remove them from V and terminate the corresponding edges
of the contour. Remove their open interval from B and if this

. unblocks any previously blocked zig-zags then add them to V' and ini-

tiate the corresponding edges.

2.3 =z is a bend point.
Update the current position in the zig-zag corresponding to z.
2.4 r is an intersection point.
Update the current positions in the two zig-zags corresponding to z,
removing them from V and terminating their visible edges if necessary
(see Figure 3.1(d)).
end CONTOUR.

Step 1 implies that CONTOUR requires O(n-+k) space since the zig-zags

are pre-computed and available for Step 2. But this is not necessary, it is suffi-
cient only to determine the left endpoint of each zig-zag and their total order dur-
ing Step 1. This then requires only O(n) space, since there are only O(n) zig-
zags. Additionally during Step 2 the re-discovery of the zig-zags is carried on as a
background task using the algorithm in [OWI1], again with an O(n) space
requirement. For simplicity of presentation however we assume that the zig-zags
are pre-computed in Step 1.

Step 2 requires a data structure for B and V which supports:

the insertion of a zig-zag into V, the determination of its visibility status,
and if it is visible initiating the corresponding visible edge.

the deletion of a zig-zag from V, the determination of its visibility status,

Contour Problem for Polygons 9

and if it is visible terminating the corresponding visible edge. .

(iii) the insertion of an open interval into B, terminating the edges of all newly
hidden zig-zags. :

(iv) the deletion of an open interval from B, initiating the edges of all newly
visible zig-zags, and releasing the blocking intervals or portions thereof,
which belong to the same polygon and which it overlaps.

In [Wo] the visibility tree is introduced for the isothetic case. We demon-
strate that it also fills our present needs. It requires O(n) space, Oflogn) time
for each of (i) and (ii), O(logn+e) time for (iii), where e is the number of ter-
minated edges, and Of(rlogn+e) time for (iv), where r is the number of
released intervals and ¢ the number of initiated edges.

The visibility tree is constructed as follows. Let there be m zig-zags which

are enumerated as 2z, . . .,2, so that z; below z; if and onlyif ¢ < j. LetT
be a minimal-height binary tree with m external nodes, labelled in left-to-right
order with z,, ...,z,. The external node labelled z; also represents the closed-

open interval [z;,7;,4,), 1 = ¢ = m, where 2z, ., = +%. Such an interval is
well defined since zig-zags never cross each other. We call such an interval a zig-
zag interval or z-interval for short. In a natural manner each internal node u
‘represents a closed-open interval {2,2,4,), where z is the lowest zig-zag, with
respect to below, in its subtree T(z) and 2z, is the highest, with respect to
below. Thus the root of T represents the interval [z,, +%).

With each node u in T we associate the following values:

(i) interval(u) — the interval represented by u.

(i) active(u) — for external nodes only, whether the associated zig-zag is
currently active or not.

(iii) #cover(u) — the number of z-intervals which cover or block u, see below.
(iv) visible(x) — the set of active zig-zags in T'(u}) that are visible if T(u} is
considered independently from T.

Initially, for each node u in T, active(r) is false, #cover(v) = 0, and
visible(u) = @ . Note that for the sets B and V, B is the set of z-intervals in
T without their bottommost endpoint and V = visible(root) . Let I = (z,z;),
1=<1{ < j=<m, be an open z-interval, then [is inserted into T at all nodes u
in T which satisfy:

interval(v) C [2,2;) and interval (parent (u)) & [2,2;) ,

where parent(u) has the obvious meaning. Inserting the closed-open interval
corresponding to an open interval causes some minor technical difficulties which
we treat below. Each such node u is said to be covered by I. It can be shown
that at most O(logm) nodes are covered by any such 7, for example see [BW].

10 Ot¢tmann and Wood

Moreover at every covered node u we add one to #cover(u) . Also active(u) will
be set of true, where v has z-value z or Zj if the zig-zags are iritiating
edges. If they are terminating edges then active(u) will be set to false.

In Figure 3.3 we display an example visibility tree in which we only indicate
whether or not #cover(x) = 0. Two z-intervals have been inserted: (z,,25) and
(23,25); the covered nodes are filled in. There are 6 active points,
2y,29,23,25,2¢, and z7; these are indicated by check marks. The visible field of
each node is displayed. Observe that the removal of (zg, 35) does not make
either 23 or zg visible, since they are still blocked by (z,, 2;).

fae, 27}

Figure 3.3

The cover-search algorithm for such a tree is as follows:

Algorithm COVERSEARCH (T ,u,I)

On entry: A visibility tree T with root u, and a z-interval I = [z,o,zj) ,
I1=si<j=<m.

On exit: The nodes covered by I are given.

begin
if u is an external node then
{interval(u) N I # B} report u;
return
else {u is an internal node }
if interval{u) C I then
report u;

Contour Problem for Polygons 11

return
else {interval{u) § I}
if interval(left(v)) N I # & then
COVIRSEARCH(T left(),E);
if interval(right(z)) NI # & then
COVERSEARCH(T right{v),I);
return;
end
end COVERSEARCH.

It is important to note that visible(u) can be reconstructed from the visible
sets at ¢’s children. In other words:

if #cover(z) = 0 then
visible(u) := visible(left(uv)) U visible(right(u)) ;
else ‘
visible(v) := &

where left{v) and right(uz) have the obvious meanings.

Whenever a z-interval I is inserted into or deleted from T we update the
visible sets for all nodes which I covers and for all ancestors of these nodes using
the reconstruction rule given above. Fortunately I not only covers at most
O(logm) nodes, but these nodes 2lso have a total of O(logm) ancestors. Of
course this updating need only be carried out when #cover(z) becomes either
zeroc or non-zero. Unfortunately forming the union of two visible sets may take
O(n} time, but we discuss below how this can be avoided.

It only remains to discover the newly hidden and newly visible zig-zags on
inserting a z-interval I into T or deleting a z-interval I from T, respectively.
Assume. I, corresponding to two zig-zags, covers node u, #cover(z) =0, and
visible(u) # & . Then not only do we obtain #cover{u) =1, but also
visible(u) becomes (&, since all zig-zags in visible(u} are now blocked. How-
ever they may not be newly hidden, since some ancestor of u may be covered
already by some other edge. Fortunately during COVERSEARCH we can keep
track of the cover status of the ancestors of the current node. We introduce a
boolean parameter upcover for this purpose. The modification of COVER-
SEARCH to give COVERSEARCH (T, u,I,upcover) is easily obtained.

To summarize, if a z-interval I covers a node u, with #cover(u) = 0 and
visible(u) # &, then:

Set #cover{u)to 1;

if not upcover then terminate all edges corresponding to zig-zags in visible{u) ;

Set visible(u) to & .

This deals with the termination of edges. We now consider their initiation.

When deleting a z-interval I of a polygon @, we need to determine the 2-
intervals of @ which are released by I . Now although many z-intervals can be

12 Ottmann and Wood

released, it cannot release ‘territory’ which it doesn’t own. This is illustrated in
Figure 3.4, where on the left is a sequence of z-intervals of @ at the current
scamn point. The relationship of a z-interval I to the z-intervals of @ at the
current scan point can only be of the forms shown in Figure 3.4 as z-intervals
(a)-{d). We cannot have the z-interval (e) of Figure 3.4 since this would involve
releasing an unblocked z-interval, correspondirg to a cavity or hele Q .

- —

(s} {s) (e) (d) (o)

Figure 3.4

To find the z-intervals to be released by I it suffices to determine which z-
intervals belonging to @ are stabbed by its endpoints, remove all z-intervals
belonging to @ in between and modify the stabbed z-intervals appropriately.
For example, in Figure 3.4(d) I stabs z-intervals 1 and 4, causing 2 and 3 to be
completely released and 1 and 4 to be partly released. Since z-intervals in the
visibility tree do not identify the polygon they belong to, we use a subsidiary bal-
-anced search tree, for each polygon, for this purpose. Initially these trees are
empty, but whenever a z-interval of a polygon € is inserted into the visibility
tree, it is also inserted into @’s search tree, or rather its endpoints are. The
determination of the z-intervals to be deleted from a search tree and the visibility
tree on meeting a z-interval, as in Figure 3.4(d), is now straightforward. Assume
the z-interval belongs to polygon @ and it corresponds to (zi,zj). Then @Q's
search tree is queried with both 2z, and z;, separately. They are either both
found or one ot both of them stab a z-interval internally. To find the endpoints
of the stabbed intervals, simply carry out a successor or predecessor search. In all
cases two z-values 2 and z; are found in the search tree satisfying
5S4 <z =< z;-. All values from Z to z;— in the search tree are deleted from
it and, moreover, the z-intervals they determine are deleted from the visibility
tree. If 2z # z then (4,z) is a z-interval and, similarly, if 2z # z; then
(2;,2}) is a z-interval. If either or both of these z-intervals exist they are
inserted into @Q’s search tree and into the visibility tree. Thus we are only left
with the problem of how the previously hidden zig-zags which start newly visible

Contour Problem for Polygons 13

edges are found.

Consider a node u which is covered by I, a released z-interval. Then we
can recompute visible(u) from its children. Visible(u) contains, however, only
candidate visible zig-zags or edges, since they may still be blocked further up the
tree. But once more we can make use of parameter upcover to discover whether
or not this is the case, as in insertion. ‘ '

We have, in the foregoing, concentrated exclusively on actions (iii) and (iv)
on the visibility tree, so we now turn, belatedly, to actions (i) and (ii), the inser-
tion and deletion of a zig-zag z. In both cases we search for the external node u
representing z in the tree. If z is inserted then active(u):=+true
and visible(u}) := {2} if cover(v) = @ . If z is deleted then active(u):=false
and visible(u) := @ . In both cases the visible sets are updated for all nodes on
the search path, and their corresponding edges are initiated or terminated if
necessary.

Efficiency Considerations

To avoid copying of visible sets during a disjoint-union operation we keep
only one global copy of the visibie set associated with the root of the visibility
tree. This is represented as a doubly-linked list, denoted by GV. Iitially GV is
empty. At each node u in the tree visible(u) is represented by two pointers
firstv(u) and lastv(u). They either both point to the first and last elements of
visiblefu) in GV or both are nil. The reason for this is that visible(u) is the set
of zig-zags visible with respect to T(u), however they may be blocked further up
the tree and, therefore be hidden globally.

With this representation the operation:
visible(n) := visible(left(u)) U visible(right(u))

can be carried out as the simple catenation of two doubly-linked lists, that is the
_elements of the doubly-linked list pointed to by lastv(left(v}) and firstv(right(u})
‘should be linked together while

Jirstv(u) = firstt;(left(u))
and

lastv(u) := lastv(right(u)).

Note that the order of the elements in visible(lefi(r)) and in visiblefright(u))
is not disturbed by their catenation. Thus the visible and hidden sets at nodes in
T(u) are unaffected by this operation.

We have replaced a putatively O(n) time union with a constant time union
and also reduced the space requirements for visible(u) to a constant rather than
O(n).

14 Ottmann and Wood

It is now straightforward to determine that actions (i) and (ii) require
O(log m) time. This follows because a search requires Oflog m) time, the
updating at the corresponding external node requires constant time, and recom-
puting a visible set at an ancestor also requires constant time (the catenation of
two lists), thus O(log m) time over all. '

For action (iii) COVERSEARCH requires O(logm) time to determine the
nodes to be updated, the updating of the visible sets at these nodes requires
Oflog m) time, and the initiation or termination of e edges requires O(e) time,
giving Of(log m+e) time overall. Now an action of type (iv), that is a single
deletion of a z-interval corresponding to a right edge can cause O(n) z-intervals
to be released from the. visibility tree, that is it can take O(nlogm) time. How-
ever the time for deleting n+% z-intervals is O{(n+k)logm) overall. In other
words Of(logm) time when amortized over the n +k deletion operations. To see
this use a charging argument. When a deletion causes a z-interval to be com-
pletely released charge the z-interval one unit. When a deletion causes a z-
interval to only be partly released, then charge the deletion operation one unit.
Each deletion may partly release at most two z-intervals, hence the total charged
to the at most n+k deletions is 2n+2k. Similarly each z-interval can only be -
charged once, when it is finally released completely. This results in a total charge
of at most n+k, giving a grand total of at most 3(n+%) units. Each unit
represents a constant number of deletions and possible insertions, that is
O(logm) time. Thus, overall, the deletions take O((n+k)logm) time.

The space requirements for the visibility tree during CONTOUR is O(n)
as is the space requirement for the p subsidiary search trees, since there are at
most n distinct zig-zags. Moreover the visible sets also require O(n) space,
since each of the n zig-zags appears at most once in the global visibility list, and
constant space is required at each node. Thus the tree requires O(n) space in
the worst case since 2=<m < n .

These remarks lead to:

Theorem 3.1 Given a set of simple polygons consisting of n wvertices, the
edges of the resulting disjoint polygons can be computed in O({n+k)log n)
time and O(n) space, where k is the number of edge intersections.

Finally, if the given polygons are convex, then the space requirement can be
reduced since we only keep one z-interval for each polygon. Thus we obtain:

Theorem 3.2 Given a set of p convezr polygons consisting of n vertices,
the edges of the resulting disjoint polygons can be computed in O((n+k) log n)
time and O(p) space, where k i3 the number of edge intersections.

Contour Problem for Polygons 15

REFERENCES

BO]
[BW]
IBx)

€]

[E]

[G1]

[G2)

[G3]

[GY]

[LP]
[Mc]

[NP]
[ow1]

[ow2]

VW]

Bentley, J.L. and Ottmann, Th., Algorithms for Reporting and Count-
ing Geometric Intersections, IEEE Transactions on Computers C-28
(1979), 643-647.

Bentley, J.L., and Wood, D., An Optimal Worst-Case Algorithm for
Reporting Intersections of Rectangles, IEEE Transactions.on Comput-
ers C-29 (1980), 571-577.

Brown, K.Q., Comments on ‘Algorithms for Reporting and Counting
Geometric Intersections’, IEEE Transactions on Computers C-29
(1981), 147-148.

Chazelle, B., Reporting and Counting Arbitrary Planar Intersections,
Brown University, Computer Science Technical Report CS-83-16, 1983.

Edelsbrunner, H., Dynamic Data Structures for Orthogonal Intersection
Queries, Technical University of Graz, Graz, Austria, Institute fiir Infor-
mationsverarbeitung, Report F59 (1980).

Giiting, R.H., An Optimal Contour Algorithm for Iso-Oriented Rectan-
gles, Journal of Algorithms (1984), to appear.

Giiting, R.H., Optimal Divide-and-Conquer Algorithms to Compute
Measure and Contour for a Set of Iso-Rectangles, Acta Informatice
(1984), to appear.

Giiting, R.H., Conquering Contours: Efficient Algorithms for Computa-
tional Geometry. Doctoral Dissertation, Universitit Dortmund, 1983.

Guibas, L.J.,, and Yao, F.F., On Translating a Set of Rectangles,
Proceedings of the 12th Annual ACM Symposium on Theory of Com-
puting (1980), 154-160.

Lipski, W., and Preparata, F.P., Finding the Contour of a Union of Iso-
Oriented Rectangles, Journal of Algorithms 1 (1980), 235-246.

McCreight, E.M., Efficient Algorithms for Enumerating Intersecting
Intervals and Rectangles, Report CSL-80-9, Xerox PARC, (1980).

Nievergelt, J. and Preparata, F.P., Plane-Sweep Algorithms for Inter-
secting Geometric Figures, Communications of the ACM 25 (1982),
739-747.

Ottmann, Th. and Widmayer, P., On Translating a Set of Line Seg-
ments, Computer Vision, Graphics, and Image Processing 24 (1983),
382-389.

Ottmann, Th., and Widmayer, P., Solving Visibility Problems by Using
Skeleton Structures. Mathematical Foundations of Computer Science,
Springer-Verlag Lecture Notes in Computer Science 176 (1984), 459-
470.

Vaishnavi, VK., and Wood, D., Rectilinear Line Segment Intersection,
Layered Segment Trees and Dynamization, Journal of Algorithms 2
(1982), 160-176.

16

W]

[Wol

Ottmann and Wood

Widmayer, P., Computational Complexity in Computer Graphics and
VLSI Design. Doctoral Dissertation, Universitdt Karlsruhe, 1983.

Wood, D., The Contour Problem for Rectilinear Polygons, Information
Processing Letters (1984), to appear. '

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

