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SPACE-ECONOMICAL PLANE-SWEEP ALGORITHMS!'

Thomas Ottmann?

Derick Wood®

ABSTRACT

Solving geometrical problems using plane sweep is now a well
understood paradigm. Often plane-sweep solutions go hand in hand
with the use of semi-dynamic data structures. One serious draw-
back of such structures is that they typically have size linear in the
number of edges or line segments in the problem at hand. In practi-
cal situations this linear storage requirement is often prohibitive.
For this reason we present two general techniques which ameliorate
the situation when the geometrical problem satisfies a sub-linear
distribution condition. An example of such a condition is: For
VLSI designs consisting of n line segments experience shows that at
most n cut the sweep line at any position. In this case our
results imply that O(\/_P) and O(V’Plogn) space plane-sweep
solutions are achievable for many problems.

1. INTRODUCTION

Hon [H, p. 3] states that it is now common for VLSI designs to consist of
more than one million rectangles. This observation delineates yet another gap
between theory and practice. On the one hand theoretical investigations into the
complexity of various computational-geometric problems, abstracted from the
area of VLSI design as well as other areas, have assumed that the input data is
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held wholly in core. This has meant that space linearly proportional to the size of
the input data is the best that can be achieved, that is it is optimal. Clearly such
an assumption is indefensible in light of Hon’s statement. On the other hand
practitioners assume the input data is stored externally and attempt to design
algorithms which do not assume the input data is wholly in core, for example see
(L.

Fortunately this gap can be closed quite simply by assuming off-line vari-
ants of computational models are used rather than their on-line variants. This
means that the storage for the input data itself is not taken into account, only
the space needed for data held or produced during processing is accounted for.
This assumption means that computational geometry problems should be re-
examined to see if they can be solved with sub-linear space requirements while
retaining good time bounds. This paper provides a starting point for such a gen-
eral investigation by examining plane-sweep algorithms, which abound in various
aspects of VLSI design tasks. See [NP] for a general introduction to plane-sweep.
During a plane-sweep the space requirements are of two distinct kinds. First,
space is always required for the objects currently intersected by the sweep line, we
call this sweep-line space and the associated structure the sweep-line structure.
Second, additional space may be required for the sweep history, that is about the
objects already swept over, this we call sweep-history space and the associated
structure the sweep-history structure. In region reporting, for example, storage of
both kinds is, apparently, necessary, see [NP], but in a recent paper [SvW] have
shown that only sweep-line space is needed if a two-sweep algorithm is used. The
importance of this result stems from the ‘square root rule’ for VLSI designs, that
is any vertical or horizontal cross section reveals proportional to Vn objects if
the whole design consists of n objects. Hence at each position of the sweep-line
there are only Vn objects intersecting it, for example if n = 1,000,000 then
we only need space proportional to 1,000 rather than to the initial pessimistic
bound of 1,000,000. [SvW] demonstrate that region reporting can, indeed, be car-
ried out using only O(Vn) space, when it is assumed that the square root rule
holds. Once they have solved the, by no means simple, problem of removing the
need for sweep-history space, the sweep-line space bound is immediate since a
fully-dynramic sweep-line data structure is used. However there are plane-sweep
algorithms in which the sweep-line data structure is semi-dynamic rather than
fully dynamic. The distinction between the two kinds of structures is that under
updating semi-dynamic structures have a pre-set fixed number of nodes, for exam-
ple vectors and hash tables, while fully-dynamic structures have a variable
number of nodes, for example a binary search tree. An example of the use, in a
plane-sweep algorithm, of a semi-dynamic structure, the segment tree, is seen in
[BW], while the use of a fully-dynamic structure is seen in [BO]. The semi-
- dynamic sweep-line structures used in various plane-sweep algorithms have space
requirements O(n), or even O(nlogn), see [BO], [BW], [Wo], [OWo], and [GO]
for example.

This distinction between sweep-history and sweep-line structures and the
associated space requirements leads to two separate, but inter-connected avenues
of investigation. Since [SvW] have already examined sweep-history structures to
some extent we turn to the study of sweep-line structures and, hence semi-
dynamic sweep-line structures.
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We present two similar techniques for saving space in sweep-line structures.
The first depends on the cross-section number C, the maximum number of
objects intersecting the sweep-line during the plane sweep. For VLSI designs
C = O(\/;) as we have already mentioned. We give a simple and generally
applicable technique which ensures that only two sweep-line structures need be
kept requiring O(f{C)) space when the usual semi-dynamic sweep-line structure
require O(f(n)) space, for n the number of objects. The second depends on the
partial order above™ among the objects. It only requires one sweep-line struc-
ture requiring O(f(M)) space, where M is the length of the longest maximal
chain in the partial order and O(f(n)) space is required by the usual semi-
dynamic structure. To illustrate these ideas we use as a running example, the
Line Segment Intersection Problem (LSIP), but we emphasize that this is not res-
trictive, it has been chosen since it is a basic problem underlying other more com-
plex problems, and, at the same time, is simple enough not to obscure the ideas
we wish to present. We first treat these ideas for the isothetic variant of the
LSIP, that is only horizontal and vertical line segments are allowed. In Section 2
we present a solution to the Isothetic LSIP (ILSIP) using a semi-dynamic sweep-
line structure, then in Section 3 we present the first space-saving technique and in
Section 4 the second. In Section 5 we discuss how these ideas can be carried over
to the general, nonisothetic, LSIP and, finally, in Section 6 we discuss some open
problems and the relationship of our work to that of {[SYW].

Notation: Throughout the paper we use n to denote the size of input data and
k to denote the size of the output data.

Assumptions: Throughout the paper we assume:

(i)  The endpoints of the LSIP are presented off-line in sorted order. Hence
their sorting time and their size is ignored in analyzing algorithms.

(i) We only treat worst-case time and space asymptotic complexity measures.
(iii) We assume the comparison-based model of computation [AHU] throughout.

2. THE ISOTHETIC LINE-SEGMENT-INTERSECTION PROBLEM

The Isothetic Line-Segment-Intersection Problem (ISLIP) of size n=1 can
be stated as follows:

Given n horizontal end vertical line segments in the plane with no
two line segments being co-linear, determine all intersecting pairs con-
sisting of a vertical and a horizontal line segment.

This problem was first posed and solved in |BOJ; their solution is time- and
space-optimal for a comparison-based model of computation. First we sketch
their solution in order to recall the plane-sweep paradigm and second, we modify
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it to introduce semi-dynramic sweep-line data structures.

A vertical line which sweeps through the plane from left to right or vice
versa, is said to be a (vertical) sweep-line. Given an instance of the ILSIP, a
sweep line cuts, at each position, a number of horizontal line segments and over-
laps some vertical line segments — the set of active objects, This set only
changes during the sweep when an endpoint is met. The n line segments provide
at most 2n endpoints and, therefore, at most 2n positions at which the set of
active objects changes, see Figure 2.1.

'

+
I_l_é’:_'-_ o

!
T

S
]
'

Figure 2.1
The plane sweep approach

A horizontal-vertical intersection is obtained whenever a vertical line segment is
met which intersects an active horizontal line segment. Moreover, since active
horizontal line segments appear as points on the sweep line intersections can be
detected by means of a range query with a newly active vertical line segment on
the set of active points. In other words a two-dimensional problem has been
replaced by at most 2n one-dimensional problems. A high level version of this
solution is:

{The sweep points are the z-values of the left and right endpoints of horizontal
line segments and the z-values of the vertical line segments sorted by their z-
values}

while Sweep points not exhausted do

begin Obtain next endpoint {z,E), say, where z is the z-value of the end-
point and E the segment to which it belongs.

if z is a left endpoint of £ then
Add E to set of active horizontal line segments else
if z is a right endpoint of £ then
Remove E from the set of active horizontal line segments else
{E is a vertical line segment} ‘
Perform a range query with E on the set of active horizontal line
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segments reporting all intersecting pairs discovered.
end

To convert this high level solution into an efficient algorithm requires a sweep-
line data structure which can represent points on a line, allows efficient updating,
and provides efficient range querying. The solution in this case is straightforward
— a balanced search tree, for example the AVL tree JAHU]. This is because the
horizontal line segments are represented, for our purposes, by their y-values. A
range query is easily accommodated in such a search tree, see Figure 2.2, and for
an AVL tree with n nodes it requires O(logn +k) time, where & is the number
of line sequents falling within the query interval. Overall the algorithm requires
O(nlogn+k) time and O(n) space, where k is the number of intersecting
pairs. This is because there are at most 2n actions which are either updates of
the sweep-line structure or a query with respect to it.

g
Y4 | Y2
‘values in the range

Figure 2.2
A range query

An AVL tree is a fully dynamic data structure or FD data structure, that is it
grows and shrinks as a result of insertions and deletions; its size is always of the
same order as the number of items it represents. We now replace this structure
with a semi-dynamic data structure or SD data structure which does not grow
and shrink in this fashion. We will discuss later why such a structure can be a ‘a
good thing.” We refer to the above algorithm as the FD algorithm when an FD
structure is used and as the SD algorithm when an SD structure is used.

The y-values associated with the given set of horizontal line segments are
known in advance, they do not take us by surprise during the plane sweep.
Therefore we can construct a search tree for the whole set before the sweep com-
mences, Then rather than inserting and deleting nodes we merely mark items as
present or absent. (Recall that we have assumed the y-values of the horizontal
line segments to be pairwise distinct.) See Figure 2.3. It is easy to arrange that
the search tree is of minimal height, hence such updating is again logarithmic. A
range query, at first sight, also appears to be logarithmic modulo the reporting
time. Unfortunately this is not so as a little thought shows.



6 Ottmann and Wood

Figure 2.3
A semi-dynamic search tree

The reason is that a range query may include within it many nodes whose
associated y-values are absent. So a range query may take time linear in the size
of the tree. To avoid this difficulty we associate with each node the set of all
present values in its subtree. We call these present sets. In Figure 2.4 the
present sets corresponding to Figure 2.3 are shown. First observe that insertion
and deletion in such a modified tree, while not as simple as before is not difficult.
On insertion of a y-value y,;, y, is added to all present sets on the search path
as well as being marked as present. On deletion of a y-value y;, y; is removed
from all present sets on the search path and also marked as absent. Implement-
ing the present sets as doubly-linked lists ensures that the removal of a item takes
constant time — once it has been found. To find the appearances of y; in all
present sets we simply link the appearances together on insertion, linking them to
the node containing y;. Then, on deletion of y; the node containing y, is first
found, when its appearances are traced and removed one by one. Thus updating
is still a logarithmic operation. A range query is now answered by using the
present sets to avoid traversing subtrees. For example the query [y’,y"] where
¥ <y <yz and yy <y" <y, visits the blocked-out and hacheed nodes
shown in Figure 2.5. The blocked-out nodes fall within the range, while the
hacheed nodes do not. The right subtrees of the blocked-out nodes that are on
the search path of y' are within the range also, as are the left subtrees for y".
Thus the answer to the range query is the union of the present sets at nodes
Y3, ¥e and yg which is {ys,yg,yo} that is the y-values at the blocked-out nodes
together with the present sets associated with the roots of the subtrees in the
range. Since Oflogn) nodes are visited and no subtrees are investigated the
query time is Of(logn+%) once more, where k is the number of reported values.
Readers familiar with the segment tree of [B1] ([BW] is more easily accessible)
will see much similarity. We call the semi-dynamic structure we have described
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the semi-dynamic range tree. Observe that it requires O(nlogn) space in the
worst case since each present value is added to O{logn) present sets and O{n)
values are present. Thus our modified algorithm requires O(nlogn+k) time
and O(nlogn) space — a deterioration in performance over the original algo-
rithm. Therefore it is natural to ask: Why use semi-dynamic structures? First
we must point out that such a structure has been introduced for the ILSIP for
pedagogic rather than algorithmic purposes. It is a bad choice here. However
there are problems for which no fully dynamic structure with logarithmic perfor-
mance is known to exist, for example the measure problem in 3-space [vLW], the
rectangle containment problem [VW], the contour problem [LP, Wo], the con-
nected components problem [EvLOW), the region reporting problem [NP, SvW],
etc. In these cases we are, at present, forced to use semi-dynamic sweep-line
structures. For other problems a semi-dynamic structure turns out to be a better
choice, in terms of simplicity and space utilization, for example in hidden-line
elimination [OWW, OW2).

92, Y5 Y Y7, Yo s Vio)

{!'2, ¥3.Ye, Y7} {Yn» Yio}

§¥2.v3

g 2 g v

Figure 2.4
The semi-dynamic range tree
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Figure 2.5

In the mext two sections we discuss how the space requirements for the
semi-dynamic range tree can be lowered, often substantially, when used as a
sweep-line structure.

3. SPACE ECONOMY — THE FIRST APPROACH

In this section we assume that C, the cross-section number, is the max-
imum number of active horizontal line segments over all positions of the sweep
line for the given instance of ILSIP.

First, note that C is easily calculated in O(n) time and O(1) space.
Simply maintain, for each position of the sweep line, the number of active hor-
izontal line segments, updating the current maximum if necessary.

Second we wish, if possible to modify the SD algorithm for ILSIP to use
O(ClogC) space rather than O{nlogn) space. The FD algorithm uses only
O(C) space, but the SD algorithm, as explained in Section 2, does not satisfy
the O(ClogC) space requirement. We present a generally applicable technique
to do this. It is worthwhile, at this stage, commenting on the space-
economization technique introduced in [SYW]. They are also -concerned with
reducing the storage used by data structures during a plane sweep, however they
attack a different problem. A number of plane-sweep algorithms require that
information about objects already swept over be kept, that is the sweep-history
structure, for example in computing connected components [EVLOW], closure
[SSW], or region reporting [NP, SvW]. This information typically requires O(n)
space even though the active objects may require only O(C) space. [SvW] avoid
the space for this extra information by use of a two-sweep algorithm for region
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reporting. Because their basic data structures are fully dynamic this ensures that
O{C) space is required over all. Thus the approaches of [SYW] and ourselves
are complementary rather than overlapping.

Third, we emphasize once more that for n > 1,000,000 O(n) and
O(nlogn) space algorithms are prohibitively space consuming, since most com-
puter systems give low priority to programs with such space requirements, if they
have this amount of core available. However if C' = Vn as is the case in VLSI
circuits, then O(C) and even O(ClogC) space are acceptable.

Let us turn to consider our general technique for ILSIP. The idea is simple,
we keep two semi-dynamic sweep-line tree structures each having C' nodes. We
call them OLD and NEW; they are both of minimal height. Now when the
plane-sweep begins we examine the first C horizontal line segments and arrange
for OLD to be an SD range tree for them. This means that the plane sweep
must look ahead in order to accumulate the information. For this purpose we
assume the horizontal and vertical line segment endpoints are kept in separate
files. Modifying the algorithm of Section 2 to accommodate this change is
straightforward. When the sweep line meets the (C'+1)st horizontal line segment
the look-ahead technique is used to make NEW a SD range tree for the
{C +1)st to 2Cth horizontal line segments. The sweep line during this stage first
performs insertions into OLD, then insertions into NEW, and deletions from
both. When a vertical line segment is met its associated range query takes place
on both OLD and NEW, clearly the reports from OLD and NEW are disjoint
and the range query performs correctly since the query is decomposable [B2].

first Chis second Chis
NS [ TN NN

A NEW

Figure 3.1

For now we ignore the time taken by this process, concentrating solely on the
O(ClogC) space that is required in the worst case. On reaching the third set of
C horizontal line segments our approach is somewhat different. First we merge
OLD and NEW back into OLD. This is necessary since we cannot guarantee
that either OLD or NEW is empty at this stage. Schematically we have Figure
3.2. We perform the merge by, literally, merging the present sets at the roots of
both OLD and NEW into one sorted list of at most C items. This is then used
as the basis for re-constructing OLD. When re-building OLD, all the y-values
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n
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third C Me

Figure 3.2

are present so the present sets are particularly easy to construct. This process
requires O(ClogC') time over all, as does the construction of eack SD range
tree for C' items. Finally the third set of C' horizontal line segments is associ-
ated with NEW, hence this stage is similar to that obtaining on meeting the
(C +1)st horizontal line segment. This approach keeps two sweep-line structures
throughout the plane sweep each requiring O{ClogC) space, thus our space
requirements have been met. '
It remains to analyze the time taken by this new approach.

Since there are at most [n/C sets of C horizontal line segments the time
taken to tailor the structures to current needs is:

O([n/C1 - ClogC) = O(nlogC)

since at each stage at most two structures are tailored.

The time taken for the foreground tasks of insertion and deletion each take
O(logC) time, while a range query requires OflogC' + k} time. Therefore the
algorithm requires, over all,

O(nlogC + k) time and O(ClogC) space.
It C =Vn thisyields O(nlogn + k) time and O(Vn logn) space, while if

C = logn we obtain O(nloglogn + k) time and O(logn loglogn) space.
In the next section we consider a different approach.
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4. SPACE ECONOMY — THE SECOND APPROACH

While the approach taken in the previous section is an eminently practical
technique it leaves open the question of whether or not a single sweep-line struc-
ture with C nodes can be used. If only C slots are available at each sweep-line
position, then during the plane sweep many horizontal line segments must be
identified with the same slot. This in turn implies that the total order of horizon-
tal line segments at each sweep-line position must be maintained and, further,
maintained efficiently. We first demonstrate that such maintenance can require
O(ClogC) time for an SD range tree. In Figure 4.1 we have a set of n hor-
izontal line segments for which C = 2 and which have the property that a new
line segment is always added below the active ones to maintain the total order
and a line segment is always deleted when it is topmost in the current total order.
This figure can easily be generalized, for any value of C, which implies that for
all 1, segments ¢, s+1,..., i+C—1 must be in slots 1,2, ...,C, respectively.
But this means that the addition of segment :{ +C and the removal of segment i
forces a shift of the items so that segments i+1,...,i+C are in slots
1,...,C, respectively. This takes at least C) time for many sweep-line
structures and for an SD range tree requires O{(ClogC) time since the present
sets need to be recomputed. Clearly such a time bound for one update is prohibi-
tively expensive, thus we wish to avoid re-assigning values to slots when once they
have been assigned. If each incoming segment never changes its slot assignment
during its lifetime, then this implies that at each sweep-line position the segments
must occur in the sweep-line structure in an order which is their total ordering
with respect to the sweep-line. Clearly n slots are always sufficient to guarantee
this, however we wish to economize on space. This gives rise to the Minimal
Slot Assignment Problem (MSAP) which can be stated as:

Given a set of n nonoverlapping horizontal line segments in the plane
find the smallest positive integer N which satisfies the condition that
the segments can be assigned slots tn the range 1..N such that the total
order of line segments at each sweep-line position equals the total
order given by their slot assignments.

The above argument shows that the cross-section number C is an inap-
propriate measure when requiring a single semi-dynamic sweep-line structure, that
is when solving the MSAP. To see what the appropriate measure is we define a
relation above for horizontal line segments as follows:

For two horizontal line segments L, and L, L, above L, holds iff L,
and L, have an z-value z, in common and the y-value of L, at z is
greater than the y-value of L, at z.

In Figure 4.1 1 above i+1 holdsfor all i, 1 == ¢ < n. The transitive closure of
this relation, denoted by above"', is a partial order on the set of horizontal line
segments. In Figure 4.1 i above™ Jyforall i, 1 j<n. Nowin Figure 4.1
the set of n line segments forms a mazimal chain in above™, since
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Figure 4.1
1above™ 2above 3 - - - above® n. This is the reason that 2 slots are insufficient

as a solution to this instance of the MSAP. The relation above™ was intro-
duced in [GY] and has been studied in [OW1] and [ChOSSW]|. In the partial order
of Figure 4.1 there is one and only one maximal chain however, in general, there
are many. The length of the longest maximal chain M, provides a lower bound
on the minimal number N of slots required, which is clearly n in Figure 4.1.
However it is possible that the longest maximal chain is much smaller than n. In
Figure 42 we  have n = 10, C =3 and M=5 via
a above™ d above™ € above™ i above™ J. A possible slot assignment is:

e, f,b,c
d,h

€, g

i

J

i | QO 0D

and another is:

a

d,c

e b,k
5,f.9
J

| OB

Clearly the longest maximal chains must be assigned slots 1,...,M when
M = N, but apart from these assignments there is considerable freedom with
the assignment of the other segments. There isn’t complete freedom, since the
assignment must be consistent with the partial order, so ¢ and A, for example
cannot be assigned the same slot, since this implies ; and g must share a slot,
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Figure 4.2

which is inconsistent with the partial order, above™. Indeed the MSAP can be
rephrased to require only that the slot assignment is consistent with the partial
order above™.

In Figure 4.2 the number of slots is exactly M. Therefore it is natural to
ask whether or not M slots are always achievable. To demonstrate this we
present an inductive slot assignment algorithm which we prove always requires
exactly M slots. Assume light is shining vertically down on the line segments
from above. Then the line segments a,f,b, and ¢ of Figure 4.2 are completely
illuminated, while the other segments are either partially illuminated or in com-
plete shadow, see Figure 4.3. The fully illuminated segments are assigned slot 1
and are then removed. Observe that this reduces the length of the maximal chain
of the partial order above™ for the remaining set by 1. The process is repeated
for slot 2, and so on until all segments have been assigned slots. Again this
requires, by our previous arguments, at least M slots. That it requires at most
M steps to remove all elements is immediate, otherwise a maximal chain of
length greater than M would have been found.

W)
7, i A

BHINENNN

Figure 4.3

Before providing an efficient algorithm for solving MSAP we briefly discuss
how we use such an assignment during a plane sweep. Assume each horizontal
line segment carries its slot number with it. During the preprocessing step of the
plane-sweep algorithm a semi-dynamic range tree with M nodes is constructed
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based on the integers 1..M. Insertion and deletion takes place by using the slot
number as search key, while a range query refers to the y-values of the line seg-
ments actually represented at the time. Since the slot numbers of the line seg-
ments are consistent with their partial order the modified plane-sweep algorithm
operates correctly. -

Thus we obtain:

Theorem 4.1 Given an tnstance of ILSIP of size n having M as the
length of its longest mazimal chain, then the SD algorithm sketched above
solves it in O(nlogM + k) time and O(M) space.

But how do we compute a minimal slot assignment efficiently in time and
space? We present a time-optimal algorithm which requires O(n) space. The
problem of finding a space-efficient solution is left open, but the reader should
note then the O{n) space requirement is not that bad. It occurs in a very
specific and simple algorithm using a simple data structure. However once we
have found a minimal slot assignment, we may use it for many algorithms and
many complex data structures.

Computing a Minimal Slot Assignment

Perform a top-to-bottom sweep of the horizontal line segments painting the
sweep line with the assigned color of each line segment as it is met. This ensures
that we only need keep the current painted intervals of the sweep line, since ear-
lier covered paint is never seen again. The sweep line is painted in color O ini-
tially, and the corresponding interval of a new line segment is painted in color (1
+ the maximum color it covers). For example the line segments of Figure 4.3
give the colored snapshots of the sweep line displayed in Figure 4.4.

initialy 9

a,b,c o , 1 , 0o , 1 ] 10
q 0 2 t, o ., 1 0 1.0
R 0:3 2 1 0 L1 . 0 .1.0
" 0.3 2 1 o ., 1 0 2 1,0
. 5.34 2 1 Lo -

i,f,0 P42 10, 1,001, 3 —2_ 40
i 034 s 3 . 2 1.0

Figure 4.4

An AVL tree can be used to efficiently maintain the colored intervals. A colored
interval is associated with a single node; its endpoints serve as search keys
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branching left depends on the left endpoint and branching right on the right end-
point. An incoming interval is treated as a range query with deletion. The range
query determines all intervals it completely covers together with the, at most, two
intervals it partially covers. All completely covered intervals are deleted, the
maximum of their colors being noted. The, at most, two intervals partially
covered are shrunk, that is either a left endpoint moves further right or a right
endpoint further left. The maximum of all effected intervals is now known and
this value plus one is the color of the new interval which is now inserted.

Since there are n horizontal line segments the time taken over all is
O(nlogn) since an interval is only completely covered at most once in its life-
time and therefore is only deleted at most once. So although a particular incom-
ing interval may cause O(n) deletions, these never occur again, thus the amor-
tized cost is O(nlogn). Unfortunately as we are carrying out a top-to-bottom
sweep rather than a left-to-right sweep the space requirement is O(n).

Summarizing we have:

Theorem 4.2  Given n nonoverlapping horizontal line segments in the plane
the MSAP can be solved in O(nlogn) time and O(n) space. Moreover this
i3 a time-optimal solution:

Proof: That O(nlogn) time and O(n) space is sufficient is demonstrated
by the above algorithm. Under the usual assumptions for a comparison-based
model of computation O(nlogn) time is necessary, since we can use the
minimal slot assignment algorithm to sort n distinct integers in the following
way. Given n integers y,,...,y, represent them by unit horizontal intervals
with endpoints {0,y;,) and (1,y;), 1 = ¢ =< n. These have M = n and hence
are assigned slot numbers s,,...,s, such that the inverse permutation
(84 - - - ,8,) provides the sorted order of (y,,...,y,). Since sorting requires
O(nlogn) time in the given model so does the minimal slot assignment prob-
lem.

If we also assume the usual on-line model of computation the algorithm is
also space optimal, but given our off-line model O(n) space is not necessarily
optimal. O

5. THE LINE SEGMENT INTERSECTION PROBLEM

The Line-Segment-Intersection Problem (LSIP) of size n = 1 can be
stated as follows:

Given n arbitrarily-oriented line segments in the plane with no two
segments being co-linear and no three having a common intersection
point, determine all pairs of intersecting line segments.

This problem was also first posed and solved in [BO] using plane-sweep based on
the ideas in [ShH|. The space requirements of the solution given in [BO] were
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reduced to linear-space requirements in [Br] leading to an O(nlogn + klogn)
time and O(n) space solution. This was improved recently by [Ch] using divide
and conquer to give an O(nlog’n + k) time and O{n) space solution. How-
ever we only discuss the plane-sweep solution. We begin by sketching, very
briefly, the solution developed by {BO, Br]. Observe that two arbitrarily-oriented
line segments may change their relative ordering, in the total order at a sweep-
line position, at subsequent sweep-line positions. This occurs at their intersection
point if they intersect. Thus thé sweep-line structure must allow such changes to
be carried out efficiently. Furthermore intersections are no longer detected by
range queries unless an incoming segment happens to be vertical. They are
detected by observing that two intersecting segments become adjacent in the
sweep-line structure to the left of their intersection point. New adjacencies occur
as a result of insertioms, deletions, and interchanging the relative order of two
intersecting line segments. This implies we need to be able to insert and delete
segments, interchange adjacent segments, and find the successor or predecessor of
a given segment. Whenever new adjacencies are created they are tested for inter-
section. If they intersect then, using the improvement due to [Br], only the left-
most intersection point, to the right of the sweep line, for each of the two line
segments is maintained. Since each line segment can only have one such earliest
intersection point this ensures an O(n) space requirement. Note that future
intersection points are also sweep points; they correspond to interchange opera-
tions. Modifying the FD algorithm for ILSIP to give an FD algorithm for LSIP
is straightforward — an AVL tree can be used once more. To convert the FD
algorithm into an SD algorithm use the semi-dynamic range tree modified so
that two additional items of information appear at each node, namely the left-
most and rightmost present values in its subtree. This enables the successor and
predecessor operations to be carried out in logarithmic time. Note that the inter-
change operation can be implemented with the successor, deletion, and insertion
operations. We leave to the reader the task of deriving the two algorithms in full
detail.

Let us first examine the effect of the cross-section number C' on the FD
algorithm. Immediately the sweep-line structure requires only O(C') space and
therefore O(logC') time for each access. The space requirement follows by hav-
ing two sweep-point structures. The original sweep points are held in secondary
storage as before, while the next C' intersection points, at most, are held in core.
The next sweep point is the minimum of the two minima — a constant time com-
parison is all that is needed. Hence the FD algorithm requires
O(nlogC + klogC) time and O(C) space over all — a clear and immediate
improvement.

However modifying the SD algorithm to use less space is no longer as sim-
ple as it is for the ILSIP.

The First Approach

In the approach to space economy introduced in Section 3 we need to
replace one SD structure of size O(n) with two of size O(C). The insertion,
deletion, and interchange of line segments causes no difficulty whatsoever.
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However the method of detecting intersecting pairs needs to be modified. Inter-
secting pairs are detected in the SD algorithm when they become adjacent in the
sweep-line structure. When we have two structures it may happen that the two
intersecting line segments are in different structures and so never become adja-
cent in the original sense.

The solution to this problem is as follows. Assume a line segment L, is
deleted from or inserted into one of the structures and the new adjacencies are
detected. Then the predecessor and successor of L in the remaining structure
are found. The actual adjacencies are amongst these four and are easily deter-
mined.

It only remains to observe that as an interchange can be carried out as a
sequence of deletions and insertions the first approach can indeed be implemented
correctly. Furthermore it runs in O(nlogC + klogC) time, since at most C
intersection points need be kept at any stage. The space requirement is once
again O(ClogC) if vertical line segments are allowed and O(C) otherwise.

The Second Approach

The transitive closure of the relation above, denoted by above+, is no jonger
a partial order for LSIP and this causes some difficulty. In Figure 5.1 & abovea
and o aboveb and hence in above™ we have:

aabove™ b and baboveta

but a # b, that is above is not anti-symmetric and is, therefore, not a partial
order.

However all is not lost since the notion of (maximal) zig-zags introduced in
[OW1] are partially ordered under above™. We first define this notion. A zig-
zag is a curve which consists of line segments and is monotonic with respect to
the z-axis. Given a set of line segments in the plane they form many zig-zags.
We say a zig-zag in such a set is mazimal if it cannot be extended into a longer
zig-zag at either end and we say two zig-zags cross if their order of appearance,
on two vertical lines which cut them, is different. In Figure 5.2 six maximal non-
crossing zig-zags are formed, namely @¢,b,c,d,e, and f, from nine line segments,
which partition the figure. The maximal noncrossing zig-zags are intersection-
free with the possible exception of endpoints and intersection points. A partition
of a set of line segments into maximal noncrossing zig-zags is unique and, more-
over the zig-zags are partially ordered by above™. If there are n line segments
then there are O(n) maximal zig-zags. In [OW1] it is demonstrated how the
maximal zig-zags can be computed, for a set of n (arbitrarily-oriented) line seg-
ments, in O(nlogn + klogn) time and O(n) space, where k is the number of
intersecting pairs of line segments. We now seem to have come full circle; to
solve the LSIP with little space using a semi-dynamic range tree we need to solve
the LSIP. At this point it is worthwhile recalling that we are using LSIP solely
to illustrate the space-economization techmique, not to solve the LSIP problem



18 Ottmann and Wood

itself. In general we wish to solve some problem X using a single semi-dynamic
sweep-line structure and this involves solving LSIP first. For this purpose we can
use the first technique with a fully-dynamic sweep-line structure which uses no
more space than the solution to problem X since C = M. In practice such a
pre-processing step is relatively inexpensive, namely O(nlogC + klogC) time
and O(ClogC) space. These comments should be born in mind during the
remainder of this section. In [OW2, OWo, WOW] the general applicability of
zig-zags in translating plane-sweep solutions for isothetic problems into plane-
sweep solutions for the corresponding nonisothetic problems is demonstrated.

b

, <

Figure 5.1

Figure 5.2

Once the zig-zags and their partial ordering are known we can treat them as
we did horizontal line segments in the previous two sections. The one major
difference is that a line segment may be associated with many different zig-zags
and, hence, with many different slots. But at each position of the sweep-line a
line segment is only associated with one slot. Its slot changes occur because it
moves from one zig-zag to another as a result of an intersection, which changes
its position in the partial order. Thus the semi-dynamic sweep-line structure
requires O(Mlog M)  space and the algorithm runs in time
O(nlog M + klog M). As explained above a two-sweep algorithm for some
problem X consisting of n line segments runs in time bounded from below by
Q{nlogM + klogM + nlogC + klogC) = R(nlogM + klogM) and in
space bounded from below by 2(C + Mlog M) = 2(Mlog M).
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6. CONCLUDING REMARKS

Surprisingly there has been little theoretical investigation of space-
economical plane-sweep algorithms even though such algorithms have significant
practical applications. We have demonstrated two simple space-saving tech-
niques, the first not only being the simpler of the two but also being the most
practical. One pleasant side effect of using space-saving techniques is that they
also yield time savings as well. Thus we obtain faster algorithms using less space
— surely a desirable goal.

At the same time a number of new problems are raised. For example can
the minimal slot assignment for line segments {or zig-zags) be computed in sub-
linear space? The algorithm given in the present paper depends on a top-to-
bottom scan rather than a left-to-right one, therefore our space-saving techniques
are inapplicable. At first glance no algorithm using a left-to-right scan exists, but
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