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DENSENESS, MAXIMALITY, AND DECIDABILITY OF
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ABSTRACT

We demonstrate that there is no sub-regular maximally dense
interval of grammatical families by way of two characterizations of
sub-regular dense intervals. Moreover we prove that it is decidable
whether or not a given sub-regular interval is dense. These results
are proved using the twin notions of language forms and linguistical
families that are of interest in their own right.

1. INTRODUCTION AND OVERVIEW

The study of grammatical similarity via the tool of grammar forms now
forms a substantial chapter in the development of formal language theory. Not
only has grammar form theory contributed to our understanding of similarity, but
it has also raised many challenging and interesting problems. It is the purpose of
this paper to present the solution to one of these problems. The problem we
tackle is found when trying to refine some basic hicrarchy results for language
families. To explore this further we need to first introduce grammar forms and
their related language families. A (context-free) grammar form is simply a
context-free grammar G = (V,X P,S), where, as usual, V is a finite alphabet,
YCV is a terminal alphabet and V—X is the nonterminal alphabet,
P C(V=X)XV* is a finite set of productions, where a production (A,a) is
usually written as A -qa, and S in V—X is a sentence symbol. We use
L(G) to denote the language generated by G, as usual.

Given two grammars G' = (V',2',P',5') and G = (V,L,P,S) we say
G' is an interpretation of G, denoted by G’ = G if there is a (strict
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alphabetic) morphism h : V' =V such that A{(V'-X')C V-X, h(Z')C Z,
R(P')C P, R(S')=S, where h(P')={k(A)~h{a): A-cisinP’}. A
morphism is strict-alphabetic if it maps letters to letters; all morphisms con-
sidered in this paper are strict alphabetic. Associated with each grammar G
under interpretation is a family of languages called the grammatical family of
G. It is denoted by L(G) and is defined as L(G) = {L(G'): G’ = G}.
When a grammar is interpreted in this way it is often called a grammar form.
Since the relation = is reflexive and tramsitive IL{(G') C L(G) whenever
G' = G. Thus it is natural to consider the partially-ordered set of all grammat-
ical families ordered with respect to containment. Such investigations are tradi-
tional in formal language theory, leading to numerous hierarchy results.

For i =1,det F, be S=a’, 1S j=<i Then L(F,) is finite as is
L(F]), for all F] = F;. Moreover L(F;) C L(F;4,). It is not difficult to show
that

L(F,) c L{F,) C L(Fy) C --- C L(REG).

In a similar manner, based on deeper results in the theory it is possible to
demonstrate infinite hierarchies of regular families, linear families, and context-
free families. Showing the existence of such hierarchies, which are paths in the
poset of grammatical families, is only a first step in obtaining a better under-
standing of the structure of this poset. It should be noted that the coarser
interpretation relation, the first one to be introduced and studied by [CG] leads to
a much simpler poset structure as the recent papers [GGS1] and [GGS2] demon-
strate. In our setting a reasonable question is: whenever L(G,) C L(G,) for
two grammars G, and G, does there exist G, with L(G,) C L(G;) C (G,)?
That such is not always the case is seen by considering the following pair of
grammars:

G,:5~ab GZ:S-ablcde

Clearly L(G,) C L(G,) by the obvious length argument. That there is no G,
properly in between is demonstrated as follows.

First observe that for finite forms G and H with S as their only non-
terminal L(G)C L{H) iff G = H and H % G, where % means ‘is not an
interpretation of’, that is G <H. Clearly G < H implies L(G)C L(H).
However if L(G) C L(H) then L(G) is in L{H) and hence there is a gram-
mar F =< H with L(F)= L(G). But G and H have the same simple form
therefore G =< F and, hence, G = H. Finally proper inclusion implies
H £ G by a similar argument.

Other examples of this kind are easily obtained, however what happens
when there is no difference in the lengths of words generated by the two gram-
mars? For example let G, :S =ab; G,:S =aa then L(G,)C L(G,) and
all words are of length two. In [MSW1] this led to the notion of interpretations of
directed graphs and hence to directed graph families, see [S] Basically each word
specifies an edge, so a¢b is an edge betweer nodes e and b. It was
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demonstrated in [MSW1] that there are infinitely many grammatical families
between L(G,) and L(G,). Moreover for any two families G; and G, satis-
tying L(G,) € L(G,) C L(G,) G L(G,) there is a G properly in between
G, and G, that is L(G3) € L{G;) C L{(G,). For this reason we say that
the interval defined by L(G,) and L(G,), denoted by (G,,G}), is dense. In
[MSW3] a quite surprising result is proved, namely, the interval (G',G) is dense,
whenever L(G') = L(REG) and L(G) = L(CF). Thus there are dense inter-
vals of sub-regular grammatical families and also dense intervals of super-regular
grammatical families. One basic question about such intervals is: Are there max-
imal dense intervals? That is are there dense intervals which cannot be extended
either above or below while retaining density. In this paper we partially solve this
problem for regular intervals by demonstrating that there are no maximal dense
regular intervals whose upper family is Lpgs. Extending this result to all regu-
lar dense intervals is not immediate, even if it holds, whereas for context-free
dense intervals it probably does not hold.

Apart from this partial solution to the maximality question we also demon-
strate that denseness is decidable for regular intervals. It has recently been
shown that denseness is undecidable for context-free intervals [N].

These solutions are obtained by way of language forms and linguistical fam-
ilies, concepts introduced in [MSW4] and further investigated in [MSW5]. For a
regular grammar form G it is well known [OSW| that L(G) is characterized
completely by L(G), in the following sense. Consider a regular language
L'C ™ andlet L = L(G) with X the alphabet of L. We write L' =< L
if there is a strict alphabetic morphism h : £'* -« ¥ such that A(L')C L. In
analogy with the introduction of the grammatical family of a grammar form we
define the regular linguistical family of the regular language form L by:
L(L)={L": L'= L and L' isregular}. It is proved in [OSW] that if
L(G) € L(REG) then L(G)= L,(L(G)). This characterization implies that
we need only treat regular language forms and regular linguistical families, rather
than the more indirect (regular) grammar forms and regular grammatical fami-
lies.

2. SOME DEFINITIONAL AND THEORETICAL PRELIMINARIES

Given a language L and a language L' we say L' is an interpretation
of L if there is a strict alphabetic morphism h such that A(L’}C L. We
denote this by L' = L. We say L’ is a regular interpretation of L if
L'=<L and L' is regular, this is denoted by L’ f L. Note that L itself

need not be regular. Similarly we say L' is a finite intepretation of L, denoted
by L' ? L, it L'sL and L' is finite. Moreover, we write

L' <L(L' r<L,L' fL} if L'<L but L is not an interpretation of L’

(and L’ is regular, finite, respectively). If L' =L and L = L' then we say
that I, and L' are equivalent, denoted by L ~ L’.
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The corresponding linguistical families are denoted by L(L), L,(L), and
L I (L), respectively. These notions are tied together in the following theorem,
see [MSW4].

Theorem 2.1  For all languages L, and L, the following statements are
equivalent:

(1)  IL(L)) = L(L,)
(2 L,(L,) = L,(Ly)
() Ly(Ly) = Ly(Ly).

The above theorem has the obvious implication that to obtain distinct
linguistical families we only need obtain distinct regular-linguistical families or,
even, distinct finite-linguistical families. These it is assumed will be easier to han-
dle. Note that IL(L,)C L(L,) iff L, s L, iff L.J(L)CL.(Ly) iff
L(Ly) € Ly(Ly).

In analogy with the definition of dense interval for grammar forms we say
that (L,,L,) denotes an interval if L, < L, and hence L(L,) C L(L,). The
interval (L;,L,) is dense if for all languages Lg; and L, that satisfy
LysLy <L,=<L, there is an Ly with Ly <Ly <L,. Similarly we say
that an interval (L;,L,) is regular if both L, and L, are regular and it is regu-
lar dense, r-dense for short, if it is regular and for all regular languages Ly and
L that satisfy L,=sL, ~"<L4 § L, there is a regular language L; with

Ly < Ly f L,
We have defined these notions in terms of interpretations rather than in

terms of linguistical families, but since L, < L, iff L(L,) € L(L,) this is only
a matter of convenience.

Density and regular density are somewhat related as we will show below,
but we first need to define super-disjoint union.

Let L, C Xf and L, C LY be two languages. Then the super-disjoint
union of L, and L,, denoted by L,\J Lo, is their union if £, N X, = & and
is undefined otherwise. We call it super-disjoint union since it is not only a dis-
joint union (L, N L, = @), but also L, N X, =@. If L, and L, are arbi-
trary language forms, then we can always rename the alphabet of L,, say, to
obtain disjoint alphabets, hence, in this case, we assume that L, L, is always
well-defined.

We now relate dense and regular dense intervals.

Theorem 2.2  Let (L,L,) be a regular interval. If (L,,L,) is dense then
(Ly,Ly) is regular dense.

Proof: Consider an arbitrary regular interval (Lj,L,) that satisfies
L, = L; and L, = L,; clearly such an interval always exists. Since (L,L,) is
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dense there is an Ly with Ly < Lg <L, Now by Theorem 2.1 this implies

there is a finite language F' which is an interpretation of Ly but not of L;. Con-
sider L = L4ty F. Clearly Ly $ L, L is regular, therefore L ? Lg, and, hence

L< L,. In other words (L,,L,) is a regular dense interval. O

If an interval (L,,L,) contains no language L properly in between L, and
L,, then we say that L, is a predecessor of L, and L, has a predecessor.

Predecessors and density are complementary notions, since we have:

Proposition 2.3  Let (L,,L,) be an interval. Then (L, L,) is dense iff it
contains no language L having a predecessor in the interval.

It turns out that characterizing those languages which have predecessors is
one step on the way to characterizing those intervals which are dense. For this
purpose we require three auxiliary notions.

Let L be a language and X be its alphabet. We say L is coherent if for all
non-empty disjoint alphabets £, and X, with X, U X, = L, there is a word z
in L with z in D¥Z,E*E, 5% U D*E, 545, L% We say L is incoherent oth-
erwise. Observe that if L is incoherent then there are L, and L, with
L =L\yL, where @+ L #{\}, i =12

A language form L is minimal if there is no language form L' C L with
L(L'y = L(L). If L is finite, then minimality is clearly decidable and if L is
finite and non-minimal then the construction of an equivalent minimal L' C L
is straightforward.

We now introduce our third notion, looping languages. A language L is
looping if either L contains a word containing two appearances of the same

letter, or there exist distinct words w,,...,w, in L and distinct letters
ay,...,a, in alph(L), for n = 2, such that e, and a;,, are in w,,

1=: <n and ¢, and e, are in w,. If L is not looping we say it is nonloop-
ing. (alph(L) is the smallest alphabet X such that L C X*))

Given a language form L, L’ is a nonlooping interpretation of L, denoted
by L' =L if L'=L and L’ is nonlooping. We therefore have L, (L) as

well.
In [MSW2] the following result is to be found.

Proposition 2.4  Let L be a finite language.
(i) If L is minimal and coherent, then L has a predecessor iff L is non-
looping.

(i) If L is minimal, then L has a predecessor iff L = KU N for some
K and nontrivial N, where N i3 nonlooping.
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We extend this result to arbitrary languages, by first treating the coherent case.

Theorem 2.5  Let L be a coherent minimal language. Then L has a prede-
~ cessor iff L is nonlooping.

Proof: If L is finite the result follows by Proposition 2.4, therefore assume L
is infinite. Since each language is over a finite alphabet an infinite language is
always looping. Therefore we only need demonstrate that an infinite language
never has a predecessor to complete the Theorem. Assume L has a predecessor
P. We argue by contradiction demonstrating that there is always a language
properly in between P and L. By Theorem 2.1, there exists a finite F' with
F< I and F £ P. This implies P < Py F < L. We also have L ¥ P\ F.
This follows from the coherence of L, the finiteness of F, and P < L. Thus
P <Py F <L and we have obtained a language properly in between P and
L as required, therefore L has no predecessor. D

We now generalize the second part of Proposition 2.4.

Theorem 2.8 Let L be a minimal language. Then L has a predecessor iff
L = K\J N, for some language K and some nontrivial, nonlooping N.

Proof:  The proof for finite L is to be found in [MSW2]. The infinite case fol-
lows analogously, we merely give a brief proof sketch. Assume L is infinite. If
L is coherent then L has no predecessor by Theorem 2.5 ard it has no decompo-
sition of the required form. Thus the Theorem holds in this case. Therefore
assume L is incoherent. If L = K\J N, where NN is nontrivial and nonlooping,
then N has a predecessor P and we need to show that K\ P is a predecessor
of L. On the other hand if L has no nontrivial, nonlooping component N, then
it only remains to demonstrate that there is a language properly in between P
and L for any P < L. In both cases we make heavy use of the observation that
if a coherent language @ satisfies @ = L, then @ is an interpretation of some
coherent component of L. 0O

3. THE DENSITY CHARACTERIZATION THEOREMS

One of the major obstacles to proving decidability results for intervals of
grammatical families has been the lack of a density characterization theorem for
such intervals. In the present section we provide such theorems which are then
used to provide examples of dense intervals.

First we need to introduce some additional notation and terminology con-
cerning nonlooping languages. We say that two languages L, and L, are non-
looping equivalent, denoted by L, ~ Ly, if L,(L,) = L,(L,) and are nonloop-

ing inequivalent, denoted by L, #L,, if Ln(Ll) # L,(L,). We also say that a

language L is nonlooping complete or n-complete if L, (L) is the family of all
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nonlooping languages.

Theorem 3.1 The First Density Characterization Theorem
Given two languages L, and L, with L, <L,, then (L,,L,) is dense iff
Ly~ L, Similarly if L, and L, are regular, then (L,,L,) is r-dense iff

L, = L,.

Proof: The second statement follows from the first by way of Theorem 2.2,
hence we will only prove the first statement here.

Without loss of generality assume both L; and L, are minimal.
if: Assume L, = L,. Observe that for all L satisfying

LisL=sL,
we have L ~ L;, i =1,2. Hence, if we show that for L, -~ L, and

L, <L, thereis an L such that L, < L < L,, then the “if-part” fol-
lows immediately.

Let L, =Ly M, --- U M,,, for distinct, nontrivial coherent
minimal nonlooping M;, 1 =i <m and L, looping, where L; can-
not be further decomposed under {J into a nontrivial nonlooping
language and a looping language. We say the above decomposition of L,
is a mazimal nonlooping decomposition of L,. Similarly, let
Ly =L/YK;U -+ K; bea maximal nonlooping decomposition of
L,. Note that L{ = L;, since 2 looping language cannot be an interpre-
tation of a nonlooping one.

Since Ly =~ L,, M; =L;, 1=i=m. Furthermore M; $L]

since if it were, then M; =< L, which contradicts the minimality of L,.
Therefore M; = K § for some j. Similarly K is an interpretation of
the same M;, otherwise L, is not minimal. Hence M, ~ K, This
implies we can write L; as L{Y M,y - - UM, U N ---UN,,
where n = 0 and the N; are nontrivial, coherent, minimal, and non-
looping.

Note that Lj # . Otherwise L, = and n =0, hence
L, ~ L,, a contradiction.

Finally consider minimal Ly and L, such that
LisLy<L;= L,

Then by similar arguments to those for L; above we can express L; as
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Ly My U MuaUNY - UN,
and L, as
LMy - UM, UNUY ---UN,

where 1 St s 3s=<n.

Moreover Lg can be expressed as JiY ---WUJ, and Lj as

K@ - GJKq, where each of the Jj and K; are looping and

coherent. We now show that we can always construct an L such that

Ly <L <L, thatis (Ly,L,) is dense. :

(i) e =1t. In this case there exists an i such that for all j,
1<j=sp ecithee J;$K; or J; <K;. For otherwise
Ly~ L; and hence Lz~ L,. Since K, is looping it has no
predecessor (by Theorem 2.5). Therefore consider 2 K! < K;
which also satisfies K #J;, 1= j=p. Such a K; must exist
since there are only finitely many Jj = K,, but infinitely many ine-
quivalent K/ with K < K;. To conclude this subcase observe that
L3\ K| is properly between Lg and L,.

(i) s >t. Now N,y ---UN, =K, ---y K,, otherwise L,
would not be minimal. In particular this implies N,,, < K; for
some {, 1 =i =g. Consider a K such that N,;, < K < K;.
Surely such a K exists and furthermore as in subcase (i)
Ly <L;u K] <L,

only if: Assume (L,,L,) is dense. If L; %L,, then there exists a coherent non-

looping N with N <L, such that N % L;. But this implies
L, <L,UN =L, and by Theorem 26 L,|J P is a predecessor of
Lig N, if P is a predecessor of N. But this implies {L,L,) is not
dense, a contradiction. O

Corollary 3.2  For an arbitrary regular language L, (L,a*) i3 r-dense iff L
is n-complete and L (L) C L(REG).
Corocllary 3.3 For two arbitrary languages L, and L, with L, § L,

(Ly,Ly) is not r-dense if L, is nonlooping.

This follows by observing that if L, is nonlooping then L, £ L, and hence
Ly #Ly. On the other hand if L, is looping then it can generate arbitrarily long

chains of words (or broken loops, see [MSW2]) and L, cannot. Hence once again
L, +L,.
n

Corollary 3.4 The interval (L,a*) is mnot r-dense, where
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L = (a* — {a®}) U {ab,ba,b}.

Proof:  Consider the language M = {ab,acd,bef}. Clearly M is nonlooping
and M is minimal and coherent. Now both a and b appear in a word of length
3. Therefore letting h be a morphism such that k(M) C L, it follows that
h(acd) = h(bef) = aaa and hence k(ab) = aa. But ac is not in L, hence
M £ L and by Corollary 3.2 (L,a*) is not dense. O

To enable us to present specific r-dense intervals of the form (L,a*) we
need to strengthen Theorem 3.1 for the case of n-completeness. This we now do
by way of the following definitions.

Let L € * be an arbitrary nonlooping language and let L' =1 — X.
We say a word w in L is an end word if

alph(w) N alph(L’ = {w}) = {a}, for some @ in E.

In this case we say a connects w and L' —{w}.

Lemma 3.5

(1) Every nontrivial, coherent, nonlooping language N has at least one end
word if #N = 2,

(i) If N i3 a coherent, nonlooping language and w is an end word in N,
then N —{w} i3 coherent.

Proof: Immediate. O

We are now ready to state and prove our second characterization theorem.

Theorem 3.8 The Second Density Characterization Theorem
Let L be an arbitrary language.

Then (L,a*) is r-dense iff L has a nontrivial subset L’ for which the
SJollowing condition obtains:

For all letters a in alph(L') and for all i, j = 0 thereis ¢ word
z tn (alph(L')) and a word y in (alph(L'))! such that zay is
in L',

In other words L {3 n-complete iff st has such a subset L’.

Proof: In this proof whenever an n-complete language is mentioned we always
assume it is also minimal in the sense that every proper subset of it is not n-
complete. Clearly this is no loss of generality since each n-complete language has
a minimal n-complete subset.

Because of Corollary 3.2 we only need consider the case that L is n-
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complete, since a* is obviously n-complete. Moreover we observe that L is n-
complete iff N = L for every coherent nonlooping language N.

if: To show that L is n-complete we need to prove that every nonlooping
coherent language N has a morphic image in L’ and hence in L. We
prove this by induction on the cardinality of N. Note that L’ contains
words of all lengths. For #N = 1, since the only word must consist of
distinct letters it trivally has a morphic image in L'.

Now assume that for some k& = 1, every coherent, nonlooping N
with #N =< k, has a morphic image which is a subset of L’.

Let N be a nonlooping language with #N = k+1. For w an end
word in N there is a morphism & such that h(N—{w}) is a subset of L.

Consider the symbol a which connects w and L. Then we can
write w as b, ...b;ab;4,...b,, where 0 =5 ¢ =< n. Clearly there is a
word v in L' satisfying

v = z,h(a)z,,

where |z,| =i and |z,| = n—i. Note that the letters b, ...,b,
are distinct from each other and from alph(N—{w}). Hence we can
extend h to these new symbols such that h(w) = v. In other words

h(N) C L’ completing this part of the proof.

only if: L is minimal and n-complete by assumption, hence we prove it satisfies
the property in the Theorem statement.

Let a be a letter in alph(L) and let zay be a word in L. Clearly
there must be at least one such word otherwise ¢ would not be in
alph(L).

Now there is a nonlooping language N such that whenever
h(N) € L, then there is a word w in N with h(w) = zay. If this is
not the case L—{zay} is also n-complete, contradicting the minimality
of L. We define nonlooping languages NIH forall i, j =0 by:

For every symbol ¢ in alph(N) add a word

. al...a"Sbl...bj
to N, where ¢; and b, are new symbols for every symbol
¢ in alph(N).

Now since each M, is nonlooping we have M,; < L forall i, j =0.
Moreover whenever g(M,-j) C L, for some morphism g, then
g(w) = zay by the above remarks. Hence g(a;...a;eb;.. .bj)
=z,ay, , for some 3 in alph(N), where z,] =i and [yl = 7.
Since z,ay, is in L, L satisfies the property in the Theorem statement,
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completing the proof. O

This leads immediately to some specific examples of n-complete languages
and hence dense intervals.

Corollary 3.7 L, = {a,b}* — {a* b* : i =2} is n-complete and hence
(L,,e%*) i3 an r-dense interval.

Proof: L, clearly satisfies the condition of Theorem 3.6. O

Corollary 3.8 L, = {a,b,c}*—{a® b3 ¢c% aab, aac, aba, ace, baa, caa, bbe,
bch, cbb} is n-complete.

More importantly:

Corollary 3.9 Let X, ={ae5...,0,} eand K, = (Sm*—Efn)
U {e,ey,a0a5, . .., e,a,}. Then K, is n-complete.

4. DECIDABILITY AND MAXIMALITY

In this section we first prove that n-completeness is decidable for context-
free languages, and then show that there is no maximally r-dense interval (L,a¥).

Theorem 4.1 N-completeness i3 decidable for contezt-free languages.

Proof: L is n-complete iff it has a subset L’, which satisfies the condition of
Theorem 3.6, that is L’ = L N X* for some X C alph(L). Now define finite
substitutions &, for all ¢ in X by:

8,(a) = {f,a}
6,(6)={f} forall b in X b # e,

where f is a new symbol. Clearly L’ satisfies the condition of Theorem 3.6 iff
M, = §(L')N f*af* equals f*af* forall ¢ in .

This is decidable since f*af* is a bounded regular set and M, is context-
free. O

This together with Theorem 3.1 immediately gives:

Corollary 4.2 Given a context-free (regular) language L it is decidable
whether or not (L,a*) is dense (r-dense).
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In order to prove the maximality result we need to consider directed cycles
of length m, denoted by C,,. Letting L, = {al,aQ, cee, am} we define C,,
by:

Cpn = {e05,850a4, ... ,0,0,}.
It is a straightforward observation that
C, =< C,, iff r =0 (mod m).

On the other hand every nonlooping language N C Z? is an interpretation of
C,, forall m = 1.

We now have:

Lemma 4.3 Let L be an n-complete language. Then there is an m and ¢
bijection g such that g(C,) QL.

Proof: We only need consider L’ = {wisin L:|w| = 2}. Let #L’ = r.
Now since all nonlooping languages are interpretations of L, then in particular
P, = {o,89,0504, ..., 0,0, 1,0, 440,10}

where the a;’s are different letters for different i’s, is an interpretation of L’,
that is there is a morphism h such that A(P,) C L’. Now h cannot be one-to-
one, since #P = r+1 > #L’'. Therefore kb merges at least two letters and
hence there is an m =1 such that C, Q h(P,). But this implies
9(C,,) © L' © L for some bijection g completing the proof. O

We also need:

Lemma 4.4 Let L, and L, be {regular) languages. Then there is a (regular)
language L such that

L(L) = L(L;) N L(Ly)
and

Lr(L) = Lr(Ll) n Lr(L2)'

Proof:  This follows along the lines of the proof of Theorem 4.2 in [MSW5] and
therefore it is left to the reader. O

We are now able to prove our final result:

Theorem 4.5  There is no (regular) language L such that (L,a*) is mazi-
mally dense (r-dense).

Proof: = We show that every dense interval (L,a*) can be extended. In other
words that there exists an L such that Ly < L and (Lgy,a¥) is dense.
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From Lemma 4.3 we know that there is an integer m == 1 and a bijection
g such that g(C,,) € L. Let m, be the greatest such m.

Immediately L’ ={w is in L :{w] =2} is not an interpretation of
Cing+1) since Cp, £ Cong+1-

Now consider K, ., from Corollary 3.9. Then C, 4, Q K, 4, and
moreover L is not an interpretation of K., .. Now let Ly be a language such
that

LLo) = L(L) N L{Kpp 1)
Note that L, < L, since L is not in L(Kmoﬂ) and so it is not in L(L,).

It remains to demonstrate that L, is n-complete. However L is n-
complete by assumption and Kmo+1 is n-complete by Corollary 3.9. Hence L, is

n-complete and (L,,a*) is both dense and an extension of (L,a*) as required.

If L is regular, then L; can be chosen to be regular (Lemma 4.4) since

K oF1 is regular. Hence by Theorem 2.2, the “‘regular” version of the theorem

m
follows. D
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