MENT

UNVEESFY F WATERISS &
UNIVERSITY OF WATERLOO G

T
EPARTMENT
EPARTMENT

EpA

A SEIENEE B
RN S

i

i
OMP

Purely Top-Down
Updating Algorithms
for

Stratified Search Trees

Thomas Ottmann
Michael Schrapp
Derick Wood

Data Structuring Group
CS-84-30

September, 1984

PURELY TOP-DOWN UPDATING ALGORITHMS FOR
STRATIFIED SEARCH TREES®

Thomas Ottmann'®

Michael Schrapp®
Derick Wood®

ABSTRACT

The existence of purely top-down updating algorithms for bal-
anced search trees is of importance when maintaining such trees in
a concurrent environment, where purely top-down means a single
sweep from the root to frontier along a search path. We present
algorithms for internal- and external-search trees in the general
framework of stratified trees. This enables us to demonstrate that
many classes of balanced search trees have such updating schemes,
although, for example, weight-balanced trees do not fit into this
framework.

1. INTRODUCTION

When search trees are to be maintained in a concurrent environment it is
advantageous, as [GS] point out, if updating can be carried out in a single root-
to-frontier scan of the associated search path. The reason for this is that a sim-
ple locking protocol can then be used in which a “window” {of a fixed and
predetermined size) of locked nodes is moved down the search path. This is, for
example, always the case for insertion into a binary search tree, because a search
either determines that the given key is already present, when no further action
need be taken, or it determines the external node that should be replaced by an
additional internal node. However deletion from a binary search tree is not
always carried out in a single scan if the usual technique is used, see [AHU2, K].
The usual method of deleting a given key at a node u with two non-external

(1)) Work carrted out partially under NATO Grant No. RG 155.81 and the work of the third author
was partially supported by Natural Sciences and Engineering Research Council of Canada Grant No.,
A-5692.

(2) Institute fiir Angewandte Informatik und Formale Beschreibungsverfahren, Universitat Karlsruhe,
Postfach 6380, D-7500 Karlsruhe, W. Germany.

(3 Data Structuring Group, Department of Computer Science, University of Waterloo, Waterloo,
Ontario N2L 3G1, Canada.

2 Ottm:inn, Schrapp, and Wood (

children is to replace the key at u with the maximal key in u’s left subtree and
then delete this value from u’s left subtree. Thus the deletion algorithm can back
up the search path an unbounded number of nodes. Fortunately it is possible to
modify this deletion algorithm, so that it has a single scan, by first using rota-
tions to move u to the frontier, see Figure 1.1, and removing z when one of its
children becomes an external node.

Figure 1.1

Such updating algorithms are said to be purely top-down updating algo-
rithms. For binary search trees such algorithms are easy to obtain as shown
above, but when given balanced binary search trees it is unclear whether or not
such algorithms even exist! To understand why this may be so we need the
notion of a redundant update. An insertion of a key z into a search tree 7' is
redundant if = is already present in T before the insertion. Similarly the deletion
of a key z from a search tree T is redundaent if z is not present in T prior to the
deletion. A redundant update is either a redundant insertion or a redundant dele-
tion.

When inserting a key into a height-balanced search tree, say, with a purely
top-down algorithm, it must ensure that the resulting search tree is height-
balanced whether or not the insertion is redundant. This concern with redundant
updates is the reason for the complexity of the VLSI dictionary machine [ORS)]
compared with the simple systolic search tree of [BeK]. In the case of height-
balanced search trees purely top-down updating algorithms can be found. How-
ever for weight-balanced trees [NR] the existence of purely top-down updating
algorithms remains tantalizingly open. Although [NR] give purely-top-down
updating algorithms for weight-balanced trees, these algorithms do not handle
redundant updates. Similarly [Z] gives a top-down deletion algorithm for 2-3
trees, which on closer examination requires two scans. Finally the algorithms in
[GS] are only for simple routing schemes. Furthermore the insertion algorithm
only works for even order B-trees and the hints for the construction of a deletion
algorithm are insufficient.

A T e s e

Purely Top-Down Updating Algorithms 3

2. SEARCH TREES AND ROUTING SCHEMES
Recall that a tree T of n nodes is either:

(1) the empty tree if n =0; it is denoted by a nullary node, or:

(i) an (m+1)-tuple (u,Ty,...,T,) if n >0, where u is a m-ary internal

m
node, for some m =1, with subtrees Ty, ...,T,,, (in left-to-right order),
of ny,...,n, nodes, respectively, where n=1+n;+ --- +n,. The

node u is the root of T.

The height of a tree T' of n nodes, denoted by hetght(T), is defined recursively
as either 0 if n = 0 or 1+max({height(T;): 1 <i =<m}}if n >0, where
T = (u,Ty,...,T,,) Similarly the weight of a tree T of n nodes, denoted by
weight (T), is defined as 1 if n = 0 or weight(T,}+ - - - +weight(T,,) if n >0,
where T'= (u,Ty, . ..,T,,)

The nullary nodes of a tree are usually called external nodes (or leaves),
while the remaining nodes are said to be internal nodes. The weight of a tree is
simply the number of external nodes it has.

In order to illustrate the basic notions required in this paper we use the fol-
lowing class of trees as a running example.

A binary-ternary tree is a tree in which every node is either nullary, binary
or ternary. See Figure 2.1 for an example of such a tree.

Figure 2.1 A Binary-Ternary Tree

The notion of a search tree is well known, see [AHU1, AHU2, K] for exam-
ple. The basic idea is that an internal m-ary node is associated with m —1 keys
from some totally-ordered universe of keys. We take the universe of keys to be
the rationals throughout this paper. However there exist two distinct ways of
associating sets of keys with a tree to give a search tree. The most popular is to
associate keys with internal nodes giving the internal-search tree, see Figure 2.2
for an example of a binary-ternary internal-search tree. However it is also possi-
ble to associate keys with external nodes giving the external-search tree, see Fig-
ure 2.3 for an example of a binary-ternary external-search tree. In this case it is
necessary to provide routing or separating keys (also called routers in [KW}) in

4 Ottmann, Schrapp, and Wood

Figure 2.3 The Left-Maximum Scheme

the internal nodes so that searching can still be carried out correctly. Often, but
not always, the set of separating keys is a subset of the set of keys in the search
tree. In the literature there are a number of routing schemes available for assign-
ing such separating keys. We consider four methods. Figure 2.3 illustrates the
left-mazimum scheme. The separating key of a binary node u is the maximum
key in u’s left subtree. For a ternary node u the first separating kcy is the max-
imum key in u’s left subtree and the second is the maximum key in u's middle
subtree. In genecral the {th separating key is the maximum key in the ith sub-
tree. As a second method Figure 2.4 illustrates the right-mazimum scheme, for
which the i{th separating key of a node is the maximum key in the (¢ +1)st sub-
tree. When searching an external-search tree which has this routing scheme the
decision to continue the search in the first or second child of a node can only be
made after referring to the first child’s final separating key. The third method,
the (=, <) scheme, is illustrated in Figure 2.5. In this routing scheme the ith
scparating key of a node u is a key which is both greater than or equal to the
maximum key in the sth subtree of u and less than the minimum key in the
(¢ +1)st subtree of u. Fourth, and finally we have the (<, <) scheme in which
the fth separating key of a node u lies strictly between the maximum key in u’s
ith subtree and the minimum key in u’s (f+1)st subtree. In this scheme the
separating keys and the set of keys represented by the search tree are disjoint, see
Figure 2.6.

Purely Top-Down Updating Algorithms 5

Figure 2.6 The (<, <) Scheme

Whatever the routing scheme the action to be taken during a search for a query
key must be uniquely and correctly determined by the separating keys. This is
the case for each of the four routing schemes introduced above as the interested
reader can readily verify.

The deletion of a key in an external-search tree which has either the left-

6 Ottmann, Schrapp, and Wood

maximum or tight-maximum routing scheme can cause the routing key of some
node(s) on the search path to be modified. For example deleting the key 6 in Fig-
ure 2.3 causes the separating key of the root be modified, while in Figure 2.4 it
causes the separating keys of two nodes to be modified. It is not immediately
clear that a purely top-down deletion algorithm exists for either of these schemes
since the new separating key, the predecessor of 6 in each case, is only discovered
on reaching the frontier. The (=, <) scheme on the other hand does not have
this difficulty since the separating keys do not have to be keys in the tree, hence
the deletion of the key 6 in Figure 2.5 has no effect on the separating key of the
root. The (=, <) scheme is said to be simple, while the other three schemes are
non-stmple (in [KW] these are said to be clean and dirty, respectively). Both the
left-maximum and right-maximum schemes are non-simple, but only deletion
causes difficulty so we say they are snsertion-simple, while the (<, <) scheme
causes difficulties for insertion so it is deletion-stmple. In Figure 2.6 observe that
insertion of 7 requires the root value to be changed to a successor of 7 not in the
tree. Such a value cannot be computed until the frontier is reached, so it is
unclear whether or not a purely top-down insertion algorithm exists in this case.

3. STRATIFIED TREES

Let X be some given set of trees and a be a positive integer. Then X is
said to be a-proper if for each integer ¢ = o there is at least one tree T in X
with weight (T) = t. This implies that for every set of keys of size t = a, there is
an external-search tree and an internal-search tree from X for the given set.
Most sets of trees are 1-proper, for example the set of binary-ternary trees.

Stratified trees have, as their name implies, strata or layers which consist of
trees of the same height, a height specified in advance. Let Z be a set of trees of
the same height B, l; = min({weight(T):T in Z}), and
hy = max({weight(T):Tin Z}). We call such a Z a stratum set. In Figure 3.1
a stratum set for the set of binary-ternary trees is displayed, where {, = 6 and
hy, = 8.

Figure 3.1 A Stratum Set

Purely Top-Down Updating Algorithms 7

Apart from some initial portion of a stratified tree called the apez, a strati-
ficd tree consists of layers of Z-trees. Let K = max(al,, [(I;—1)(h;~1;)1i;)
and let <y be the smallest integer such that for all {, a ={ = K, there is a
tree T in X with weight(T) =t and height(T) = 7. (The value of K is one
more than the value of K in the original definition [vLO]. This is necessary in
the proofs of Theorems 4.2 and 5.1.) Let A = {T in X : height(T) < 7}. We
say A CX is an apez set for the given Z. Figure 3.2 displays an apex set for the
set of binary-ternary trees and the stratum set of Figure 3.1.

Figure 3.2 An Apex Set

To define a set of stratified trees inductively we need a tree constructor,
which we now introduce. Let T,,...,T, be trees, T be a tree with weight ¢,
and let T’s external nodes be enumerated in left to right order from 1 to ¢.
Then we denote by T[T, ...,T,] the tree obtained by replacing, for all i,
1=1i=t, the /th external node of T with T;.

T=

7T 2 3 & B

T|= T5= If"\l Tzsz:/‘!’\ T4‘

T[TiTs) =

Figure 3.3 A Constructor Example

We say a stratum set Z is an acceptable if

8 ' Ottmann, Schrapp, and Wood

() 1<y <hy,

() {t:iy; =t =hz}={weight(T): T in Z}, and

(iii) for all T in X, where ¢ = weight(T), and all T,,...,T, in Z,
T|Ty,...,T,] isin X.

The stratum set of Figure 3.1 is acceptable.

Definition Let X be a set of trees, Z be an acceptable stratum set, and A the
apex set for Z. Then the set of Z-stratified trees, with respect to X and A, is
the smallest set of trees that satisfy:

(i) = each tree in A is Z-stratified, and

(i) if T is Z-stratified and T has weight ¢, then T[Ty, . . .,T,] is Z-stratified
forall Ty, ...,T; in Z.

The set of Z-stratified trees is denoted by S(X,Z).

In the following proposition we summarize the main results to be found in
[vLO].

Proposition 3.1 Let X, Z, A, and S(X,Z) be as defined above. Then:

(1) S(X,Z)CX.
(2) S(X,Z)is a-proper.
(3) Forall trees T in S(X,Z), height(T) = O(log(weight (T))).

(4) S(X,Z) is a logarithmically-maintainable set of trees, that is if T in
S(X,Z) is a search tree, then an insertion into or a deletion from T and
the subsequent restructuring to again obtain a tree in S(X,Z) can be car-
ried out in O(log(weight (T))) steps.

Thus the Z-stratified trees are balanced subsets of X. As [vLO] point out, if X is
one of the well known sets of (height-) balanced trees, for example AVL trees, 2-3
trees, and son trees, then it has a Z-stratified subset. However as is proved in
[OSW2] the weight-balanced trees of [NR] do not have such Z-stratified subsects.

4. SIMPLE ROUTING SCHEMES

In this section we consider simple routing schemes, since this enables us to
concentrate on the main idea of purely top-down updating algorithms. In order
to achieve purely top-down updating algorithms we must ensure that once the
frontier of the given tree has been reached, the insertion or deletion of an external
node not only results in a stratified tree but also this is accomplished solely by
local restructuring. In other words we only allow restructuring within a bounded
region or window R of the external node being considered, indeed the window is

Purely Top-Down Updating Algorithms 9

always two layers deep and consists of a Z-tree and the Z-trees attached to its
external nodes, except when in layers 0 and 1 when it consists of an apex and the
Z-trees attached to its external nodes. See Figure 4.1.

tayer i=|

Figure 4.1 The Generic Situation, 2si< f

One way of implementing this is to ensure that the 7-tree containing the external
node in question should have neither the minimum nor the maximum weight.
Since I, may equal hy—1 such a Z-tree does not always exist. We show below
that we may, without loss of generality, assume [, # h,—1, so we proceed on
this assumption. In order to perform the updating operation we may either leave
the Z-tree unchanged in the case of a redundant operation or replace it by a Z-
tree with either one more or one less external node giving a new stratified tree.
This leaves the problem of identifying the Z-tree of the desired weight .in the
proper position, that is where the addition or removal of a key has to be carried
out. As we don’t know the structure of the tree at the frontier when starting at
the root, we must take into account the possibility that either a maximum or
minimum weighted Z-tree may occur.

We do this by building a Z-tree of the desired weight higher up in the given
tree (close to the apex) and, essentially, moving it down the search path. This is
similar to the strategy used in the modified deletion algorithm in Section 1. But
first we show that [, = h,;—1 need not occur.

Lemma 4.1 Let X,7,A,K,f8,7 be as above.

_ Let X,Z and _S(X,Z) define a set of Z-stratified trees. Then thercisa
Z such that S(X,Z) isa set of Z-stratified trees with 3 <ly < hz—4.

Proof: Treat two Z-tree layers as one 7 -tree layer. Thus B = 28, l§ = lé,
and hy = hf. Clearly S(X,Z) Jorms a set of Z-stratified irees. Moreover
sinece I, =2 we have lé; >3 and since hy >1l; 22 we have

10 Ottmann, Schrapp, and Wood

hy = h3 = (lz+1) = l;+2,+1 = I7+5, that is hz > 1;+4 as required.
]

That Proposition 3.1 holds for S(X Z) follows directly from its validity
for S(X,Z). However the values of K and 7 need to be changed as does apex
set. We now return to the updating algorithm.

The following algorithm formalizes the ideas expressed above. Let T, the
given stratified tree, be decomposed into its apex T and [layers. Let T; be the
tree in layer i on the search path. Let w; denote the weight of T;, wy the
weight of T, and wg the weight of a window R. Note that the height of a layer
is the height of the Z-trees in the layer while the height of the apex is known
when constructing the tree from the empty tree. (Every time a new layer is
formed, the height of the apex is updated, if necessary. In other words the stra-
tification of the tree is known globally.) Let z be the key to the inserted or
deleted, see Figure 4.2. Since, in simple routing schemes the set of routing values
need not be a subset of the keys represented by the search tree it is not necessary
to modify them during updating. Of course in the final layer a routing value may
need to be removed or added simply because a key has been deleted or inserted,
respectively, but this is the only exception. Therefore it is only necessary to
ensure that Tf satisfies [, < wy < hy so that redundant updates can be
accommodated. However, as already pointed out, this is insufficient for either
deletion in an internal search tree or updating a search tree with a non-simple
routing scheme. For in this non-simple case we also have to provide the means of
forcing some key or routing value down the tree from one layer to another. This
is simply because a key or routing value at an internal node may need to be
deleted as a result of the update. For this reason we introduce a more complex
updating algorithm for the simple case which provides for a uniform treatment of
the simple .and non-simple cases. The additional complexity arises because we
require that I, <w; <hgz=—1, for all i, 1 =i =< f — the invariant. The
reasons for this requirement are dealt with in Section 5. Furthermore as each
layer is dealt with we first require an even stronger condition, namely
l, <w; < hy—3 — the strengthened invariant. This is a non-empty interval
since, by Lemma 4.1, we may always assume hy—4 > ;. The stronger require-
ment always enables us to position 7T, to include the search path for z, but at
the expense of 7; gaming at most 2 further nodes, in which case
l; <w; <hyz—1 still holds. Then UPDATE(x,T) begins at the root of T
(and, hence, of T}).

Algorithm UPDATE(z, T);
begin
if weight(T)=K then
(I)- {If the update is not redundant then construct a new Z-stratified
tree T' with weight (T)+1 or weight(T)—1 external nodes contain-
ing the updated set of keys}
else
begin {There must be at least one layer}

Purely Top-Down Updating Algorithms 11

ANV SACS
\ * J
Y

weight (T) external nodes

Figure 4.2 The Search Path for =

i := 1; {The current layer}
{Determine T, from the apex T and z}
if layer one does not satisfy the invariant then
(I1) {Completely restructure T, and layer 1 with at most one extra
layer so that the layers satisfy the invariant, and T, and possibly
T, remain on the search path};
{Update the height of the apex};
if an extra layer has been added then begin ¢ := 2; f = f+1

end;
repeat
t:=1+1;
{Determine the next Z-tree T; from the search path of z in
T; 1}
, if layer ¢ does not satis{y the invariant then
(1) {Rebuild T; _; and all the trees of layer ¢ appended to T} _,

such that T; remains on the search path and layer ¢ satisfies

the invariant.}
until { = [
(IV) {Insert or delete z in 7 if it is a non-redundant update}
end
end {UPDATE};

Theorem 4.2 Let S(X,Z) be a class of Z-stratified trees with a stmple rout-
ing scheme. Then for any tree T in S(X,Z) end any key z, UPDATE(z,T)
is again a tree in S(X,Z).

or

or

12 Ottmann, Schrapp, and Wood

Proof: We consider the four possible restructurings separately.

Restructuring I w; = K.

In this case a new tree of the appropriate size is to be found in S(X,Z) if
one is needed.

Restructuring II: T has at least one layer.

In this case I? consists of T, and layer one and K+1 = wp = Kh,. R
is replaced by an R’ consisting of an apex T and at most two layers,
each satisfying the strengthened invariant. That this is always possible is
secn by computing the bounds on wg-. A minimal value of wp: is
obtained when R’ consists of an apex and a single layer. The apex may
have weight as small as « and each Z-tree in layer one, apart from one,
may be as small as [,. The remaining Z-tree has weight at least [,+1
yielding a total weight of al;+1. However since wp: = wp, we have
wp = K +1, by assumption and since K = al, this implies

wR' 2 alz+l.

that is the smallest replacement R’ can be accommodated. Note that this
is the only place in the proof where the modified value of K is needed.
The upper bound is obtained when R’ consists of an apex and two layers
and these are as large as possible. That is w, = K and the Z-trees all
have weight h; apart from onc in each layer with weight A, —4. Hence:

We require that the bounds on wp are themselves bounded from below
and above by the bounds on wp in order that a replacement tree in
S(X,Z) for R, satisfying the strengthened invariant, can be found. Since
we have already shown that wp = wp. it remains to show that:

Now this holds if:

4(hz+1)/(hz_1) = Khz
But h, = [,+5 = 8, by assumption, and 8/(h;—1) is maximized when
h is minimized, that is h, = 8 yielding 8/7. Now 51/7 =< Kh, since
K = ol, 23 and h; = 8. Thus we have shown that the apex and first
layer can always be reconstructed to satisfy the strengthened invariant.
We leave to Lemma 4.3 the task of showing that 7, (and T,) can always

be positioned to include the search path for = at the cost of w, (and w,)
only satisfying the invariant.

Restructuring III: There are at least two layers.

Purely Top-Down Updating Algorithms 13

Now ¢ = 2 and we have the generic situation portrayed in Figure 4.1, If
w; satisfies [, +1=w; <h,—1 then the invariant holds and no restruc-
turing is necessary. We can always restructure R to give R’ so that T}
satisfies the strengthened invariant. This follows because wpy satisfies
Ly(ly+1) < wp < hy(h,—1) and wg: must satisfy
Izl +1 = wpr = hyhy—4. Now the interval for wp+ contains the
interval for wy hence every R can be reconstructed as required. Again
we refer to Lemma 4.3 for the proof that the new T; can always be repo-

sitioned to include the search path for z.

Restructuring IV: We have reached Tf and:
lzH1=w;=h;—2
Now an insertion yields:
lp+2=w;=<hz—1
while a deletion yields:
l,= wy = hy—3

giving, in both cases, a Z-stratified tree once more. O

The algorithm clearly can be carried out in time Oflogn), where
n = weight (T), since a single pass from the root to the frontier is performed and
for each node on the search path only a constant number of other nodes are
visited.

We now prove that 7; can always be repositioned in layer ¢ so as to

include the search path for z. However this requires {,+1 < w; < h,—4 since
repositioning may result in 7; obtaining extra nodes.

Lemma 4.3 Let R be a window on layers 1—1 and ¢ in a Z-stratified tree
T having either a simple or non-simple routing scheme. Then assuming T, _,
contains the search path for some key z and l,+1 =< w, < h,~—4, then T,
can always be repositioned to include the search path for z such that w; then

satisfies ly+1 =< w;, < h,—2.

Proof: If the search path for z is in 7; then the Lemma holds. Therefore
assume it is not in 7, but is in some Z-tree D a left or right sibling of T;.
Without loss of generality assume D is to the left of 7; and that they are adja-
cent. Let the external node of D which is on the search path of z be at position
k relative to the leftmost external node of D. See Figure 4.3.
If l;#1=<w;, =< h,—2 then let D be the new T;. Otherwise there are

three cases to consider.
Case 11 wp = I,

Interchanging 7, and D ensures that T; contains the search path for

T since w; = [,+1 > k.

14 Ottmann, Schrapp, and Wood

]
13
&

Figure 4.3 Repositioning T;

Case 22 wp = hy—1.
Move the rightmost external node of D to T;. If k¥ = h,;—2 then let
D be the new T, otherwise the search path for z is in T; (the addi-

tional node). In both cases [;+1 = w; = h,—2 holds.
Case & wp = hy.

Move the two rightmost external nodes of D to T;. If k = h,—2
then let D be the new T, otherwise the search path for z goes
through one of the newly added nodes of T;. Again, in both cases,
l,+1 = w; = h,—2 holds.

This completes the case analysis and the Lemma. 0O

5. NON-SIMPLE ROUTING SCHEMES AND INTERNAL-SEARCH
TREES :

We only consider non-simple routing schemes for which an insertion or dele-
tion affects at most one separating key in the tree and this critical separating key
can be identified when traversing the search path. This assumption is used to
modify UPDATE so that an update operation can be carried out in one pass.

When a separating key which might be affected by the update operation is
identified (it need not be affected if the operation is redundant) the tree is res-
tructured so that the critical separating key remains within the window as it
moves down the search path. Observe that separating keys are never changed
only the internal nodes of Z-trees on two layers are reassembled in a different
way. The following theorem shows that all restructurings can be carried out so
that one separating key can be moved down the search path together with the
structure needed to carry out the update operation.

Theorem 5.1 Let S(X, Z) be a set of Z-stratified trees with a non-simple

Purely Top-Down Updating Algorithms 15

routing scheme. Then for any tree T in S(X, Z) and any key z, UPDATE(z, T)
yields a tree sn S(X, Z).

Proof: The proof is based on that of Theorem 4.2. But instead of just redis-
tributing the external nodes within layer ¢, we ensure that a separating key for z
occurring in T; _; can be moved into T; so that it contains the search path for =
and satisfies |, <w; <h,.

The method used is a natural generalization of the rotation used for deletion
in Figure 1.1. A critical separating key equals the query key and is assumed to
route the query key to the left of the critical key (in the (<, <) and left-
- maximum routing scheme such is the case). The case of routing to the right is
dealt with symmetrically. Moreover if a critical key is in T, _; then there must be
a key at an external node of T;_, which is less than it, and one which is greater
than it. (For if there is no key at an external node of 7; _; which is less than the
critical key then the critical key must separate T, _; from some other tree Tz'—l
in layer 1—1 and, hence, it cannot be in 7, _;.) This ensures that when the criti-
cal key z is in T;_, it must separate two Z-trees T; and V in layer i. This is
illustrated in Figure 5.1.

layer i-l

&- layer |

Figure 5.1 A Critical Separating Key

It is assumed that the steps outlined in UPDATE and Theorem 4.2 have been- car-
ried out up to layer :—1. Restructurings I and IV, the termination cases, are
straightforward. Restructurings II and III are similar so we only treat III in more
detail. We have the generic situation of Figure 4.1 once more. First carry out
any restructuring of R which is necessary following the proof of Theorem 4.2
ensuring that the search path for z goes through T;. The result of this restruc-
turing is to give the generic situation of Figure 5.1 in which I, +1=w; <h,—2.
To move the critical key z we simply attach either external node g to T, or p to
V. Since z separates T, from V and, in particular, p from ¢, this movement will

16 Ottmann, Schrapp, and Wood

cause the critical key z to be repositioned in either T; or V, respectively. The
new separating key to be placed at r should separate either ¢ from the remainder
of V or the remainder of T; from p, respectively. These separating keys are to be
found in V and T}, respectively. Since the separating keys can be re-positioned
appropriately, it only remains to demonstrate that the restructuring of T; or V' is
always possible, We assume, without loss of generality, that V has weight no
greater than any of its siblings to the right of 7;. There are two cases to con-

sider.

Case 11wy = [,+1.
Move ¢ from V to T;, hence l;+1 = w; < hy;—1.

Case 20wy = 1.
Move p to V, hence l;+1 =< wy, = h;—1 and V is the new T;.

This completes the case analysis and the theorem. O

We are left with the case of stratified internal-search trees. As pointed out
in the introduction internal-search trees are only insertion-simple. But deletion
can be carried out as specified in Theorem 5.1, the only difference being that at
the final layer the critical key is removed since it s the key. Thus we have:

Corollary 5.2 Let S(X,Z) be a set of Z-stratified internal-search trees.
Then for any tree T' in S(X,Z) and any key = UPDATE(z,T) yiclds a tree in
S(X, %),

6. CONCLUDING REMARKS

In addition to the algorithm given for stratified trees, a purely top-down
updating algorithm can also be developed for unbalanced trees with different
routing schemes. The downward movement of a separating key can be achieved
by rotations. A feature of our algorithm is that it deals with insertions and dele-
tions so that it is oblivious to the kind of update required until the final layer is
reached.

In Section 5 we have omly considered non-simple routing schemes chosen
from the four given in Section 2. In these cases the separating keys depend on at
most two keys. In particular for the (<, <) scheme these values depend on the
minimal key in the subtree immediately to the right of a separating key and the
maximal key in the subtree immediately to its left. Other routing schemes with
the value of the separating key depending on more than these keys can also be
considered. As long as the separating key depends on at most &, keys immedi-
ately to its left and at most k, keys immediately to its right, where &k, and k, are
constants, our algorithm can be used with the following rider: The window at the

Purely Top-Down Updating Algorithms 17

final layer of the tree must be large cnough to contain all the separating keys
affected by the deletion or insertion of a key. Note that the height of a window
is O(log(2(k,+k,)—1)) = O(1). In this case we always, have to move at most
one separating key downwards. Only if the value of a separating key depends on
keys which are not within a constant range to the left or right of the separating
key might it be necessary to move more than one separating key down the search
path; also the size of the window almost certainly increases in this case. It seems
to us that even with such a routing scheme a purely top-down updating algorithm
can be achieved albeit having little practical significance.

Acknowledgement

The authors wish to thank P. Widinayer for many helpful discussions and
suggestions. Also we wish to thank the referee who was so dismayed at our prel-
iminary version that drastic updating was insisted upon resulting in the present
version. Ilowever, as always the authors are solely reponsible for any remaining
obfuscation,

REFERENCES

[AHU1] Aho, A.V., Hoperoft, J.E., and Ullmann, J.D., The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

[AHUZ2] Aho, AV, Hopcroft, J.E., and Ullmann, JD., Data Structures and Algo-
rithms, Addison-Wesley, Reading, Mass., 1983.

[AVL] Adel'son-Vel’skii, G.M., and Landis, EM., An Information Organization
Algorithm, Doklady Akad. Nauk SSR 146 (1962), 263-266, transl. Sovict
Math. Dokl. 8 (1962), 1259-1262.

[BM] Bayer, R., and McCreight, E.M., Organisation and Maintenance of Large
Ordered Indexes, Acta Informatica 1 (1972), 173-189.

[BeK] Bentley, J.L., and Kung, H.T., Two Papers on a Tree-Structured Parallel
Computer, Carnegie-Mellon University, Computer Science Technical
Report CMU-CS-79-142, 1979.

[GS] Guibas, L.J.,, and Sedgewick, R., A Dichromatic Framework for Balanced
Trees, Proceedings 19th Annual IEEE Symposium on Foundetions of
computer Science, Ann Arbor, October 16-18 (1978), 8-21.

[} Knuth, D.E., The Art of Computer Programming, Vol. 3: Sorting and
Searching, Addison-Wesley, Reading, Mass. 1973.

[KW] Kwong, Y.S,, and Wood, D., On B-Trees: Routing Schemes and Con-
currency, Proceedings of the 1980 ACM/SIGMOD International Con fer-
ence on. Management of Data (1980), 207-213.

[NR] Nievergelt, J., and Reingold, E.M., Binary Search Trees of Bounded Bal-
ance, STAM Journal on Computing 2 (1973), 33-43.

18

Ottmann, Schrapp, and Wood

[ORRS] Ottmann, Th., Rosenberg, AL, and Snyder, L.J., A Dictionary Machine

[Os1]

[052]

(for VLSI), IEEE Transactions on Computers EC-31 (1983), 892-897.

Ottmann, Th., and Schrapp, M., A Purely Top-Down Insertion Algorithm
for 1-2 Brother Trees, University of Karlsruhe, Technical Report No. 92
(1980). :

Ottmann, Th., and Schrapp, M., 1-Pass Top-Down Update Schemes for
Balanced Search Trees, Proceedings Tth Conference on Graphtheorctic
Concepts in Computer Science WGS1, J. Mihlbacher (ed.), Carl Hanser
Verlag, Vienna (1982), 279-292.

[OSW1] Ottmann, Th., Schrapp, M., and Wood, D., On 1-Pass Top-Down Update

Algorithms for Stratified Search Trees, University of Waterloo, Computer
Science Technical Report CS-82-11, 1982.

[OSW2] Ottmann, Th., Schrapp, M., and Wood, D., Weight Balanced Trees are

[OW]

Is]

[v1.0]

2]

not Stratified, unpublished manuscript, 1984,

Ottmann, Th., and Wood, D., 1-2 Brother Trees or AVL Trees Revisited,
The Computer Journal 23 (1980), 248-255,

Schrapp, M., 1-Pass Top-Down Update Schemes for Search Trees: Design,
Analysis, and Application, Doctoral Dissertation, Universitit Karlsruhe,
1984.

van Leeuwen, J., and Overmars, M.H., Stratified Balanced Search Trees,
Acta Informatica 18 (1982), 345-359.

Zaki, A.S., Top-Down Deletion Algorithm for Minimum-Order B-Trees,
University of Washington, Technical Report (ca. 1978).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

