Data-Driven Prototyping and Implementation
of File Processing Programs Using the
Data Transform Method

C.Jd. Lucena*
R.C.B. Martins*
D.D. Cowan**

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

Research Report CS-84-28
September 1984

*Pontificia Universidade Catolica, Rio de Janeiro, Brazil

**Dept. of Computer Science, University of Waterloo,
Waterioo, Ontario, Canada, N2L 3GI

Data-Driven Prototyping and Implementation of File
Processing Programs Using the Data Transform Method

Lucena, C.J., Martins, R.C.B.,

Pontificia Universidade Catolica,
Rio de Janeiro, Brazil

Cowan, D.D.,

University of Waterloo,
Waterloo Ontario Canada

ABSTRACT

This paper describes a substantial extension to the method proposed by
Jackson whereby a program is designed from a description of its input and output
data. By extending the concepts of input and output both structure-clash and
backtracking problems can be integrated into the basic Jackson method. This
technique is called the Data Transform Method [DTM]. The paper describes how
DTM may be applied to file-processing problems and shows that a program
schema results which can be used to assist with the semi-automatic production of
software. Finally a specific problem involving backtracking is developed to
illustrate how DTM is used in practice.

Keywords: data-driven programming, data transformations, data transform
method, file processing, Jackson method, program design, program prototyping

“l do not know why, but I have never seen a machine that, however perfect in the
philosopher’s description, is perfect In its mechanical functioning. Whereas a peasant’s
billhook, which no philosopher has ever described, always functions as it ghould...®
Umberto Eco “The Name of the Roge*

1. Introduction

The Data Transform Method [DTM] is an extension of the ideas of Jackson [1] and Warnier
[2] which use the specifications of the input and output data to assist in determining the structure
of a program.

Preliminary descriptions of the data transform method (DTM) together with accompanying
examples have already been published in the literature. In [3] the DTM is described in conjunction
with a classical programming problem, the sorting problem, to illustrate the concepts and show
how to handle a problem that involves some backtracking. In [4] attention was centered on the
solution of some programming examples, classified by Jackson [1] as structure-clash problems.

The goals of the previous publications have been to show how the limitations of a powerful
technique such as Jackson’s basic method can be overcome and how his basic method ¢an be used
as the basis for a far more general program-design approach, namely the DTM approach.

The present paper describes again the ideas associated with the DTM approach but uses a
more concise formalism and examines the question of how prototypes of programs developed
through DTM can be transformed into production programs. As in previous publications the

e

presentation is based on a typical file processing example; namely the problem of delimited strings
[1}.

The DTM uses the idea of applying data transformations to the problem data as they are
specified at the problem statement level, and so uses the notions of problem reduction and
problem decomposition as they are defined in the theory of problems {5]. The DTM transforms
the space of solutions of the original problem into a space in which the problem can be
decomposed into a set of sub-problems which are solvable by Jackson’s basic method. The
transformation steps are standard and put the problem in a canonical form that can be described
a8 being an executable specification. The prototype constructed in this manner is a program
design which is correct by construction.

The DTM extends the applicability of the Jackson basic method, since important problems
that are not handled directly through the method (such as backtracking and structure clashes, can
now be programmed through a uniform approach. The following results, which are stated here
without proof, have been proven [6] and serve to characterize the relationship between the DTM
and Jackson's basic method:

(i) The class of Jackson-solvable problems is properly included in the class of g.8.m.-(general
sequential machine) solvable problems.

(i) The class of g.s.m.-solvable problems is properly incladed in the class of DTM-solvable
problems

(iii) The class of structure-clash problems and the class of backtracking problems are properly
included in the class of DTM solvable problems.

(iv) The class of pushdown-transducers solvable problems such as the recognition of ww?®, is
included in the class of DTM-solvable problems.

It often happens that, a loss in efficiency accompanies the increase in generality. Although a
DTM canonical solution is meant to be an executable specification or rapid prototype for a file
processing problem it is important to stress that the specification as produced also allows for the
derivation of an efficient final implementation. While the prototype can be developed with
computer assistance, through a dialogue between a simple software system and the programmer,
the process of generating an efficient implementation, although it can be guided in part by a series
of well-defined steps, depends ultimately on the particular application under consideration.
Section 4 presents the derivation of a practical implementation for the prototype developed in
Section 3.

Before moving to Section 2, where the DTM approach is presented through a concise
formalism, an abstract machine model of DTM is described which provides an early intuitive
description of the method.

File-processing programs can be presented in an abstract manner as a program P which
accepts as input a file of elementary data items and produces a file of entities called a report. A
picture showing one input file with each elementary item designated by a subscripted ¢ and a
report designated by I, is shown in Figure 1. Even multiple input and output files can be viewed
in this manner.

This abstract view of a program P can be modified so that a new program P, accepts the
elementary data items but its output is now a file or sequence of partial reports. The file of
partial reports is created by recording as output each step in the report creation where the last
partial report is the complete report or output. Such a picture is shown in Figure 2 where each
partial report is designated by a subscripted I. It is clear that the original program could be
obtained from P, by the simple step of discarding all but the last element of the output file.

Another level of abstraction is introduced into the DTM model where a program P,
processes as input a stream of data called a paired-I/O-unit and produces as output a paired-1/0O-
unit. This abstraction is shown in Figure 3. The paired-1/O-units each contain the input and
output which exists at a point in the operation of the program. Figure 3 only shows the initial
input and final output and so the paired-I/O-units show a full input of elementary items and an

e | e € = P — 1,
Figure 1
erle]| .. |e, = P, ——x] ... |,
Figure 2

empty output and a full output of partial reports and an empty input. In other words, before the
programs start operation the output is empty and after the program is finished the input is
exhausted or empty. This pairing of input and output into paired-I/O-units provides a symmetry
between input and output data structures and hence is the way the DTM avoids the problem of
structure clashes. Program P, should be derivable from program P, since P, would just discard
one-half of the paired-I/O-unit.

Ljlefeg] ... e

> P,
o: A S

Figure 3

One final level of abstraction is necessary in the DTM. This new level is shown in Figure 4
where the program P, is introduced and is shown accepting a paired-I/O-unit as input and
producing a sequence of paired-I/O-units as output. The method of generating the output is also
shown in the Figure. Program P, is decomposed into a number of programs P3‘_ which

incrementally process the paired-I/O-unit at the input and gradually transform it into the
sequence of paired-I/O-units at the output.

At each stage P3._ the input is contcatenated with the results of that stage to produce the

output. This means that the input and output are both sequences containing a complete history
of the computation to that point and the final output is a complete history of the computation.
Since there is now a complete history of the computation present at each stage, there is no need
to backtrack. It should be clear that program P, can be derived from P, by retaining only the
last member of the output sequence.

The DTM as shown in the Figures is expanded in the next few sections. A detailed
description of the approach and the coding of problems involving backtracking is presented.

The DTM is primarily mechanical in nature except for the construction of the components
which constitute P;. Hence software tools can be developed which should allow computer-aided
development of software.

ol .. I I,
€ € 63 64 85 € el Cs 84 35 €
1 2 n . P3 S e it P3 P—3
A 1 € 2
7'2
L

T o-—

es|es]es P A
- el e |e, S - x| €y || - eg | ey eg
N Nz e
L 1 L 1 ce l,
Figure 4

2. The Data Transform Method

DTM has been described in earlier versions of the present formalism {3,4]. When proposing a
new programming methodology, in particular one that claims to extend the power of an existing
method (Jackson's method), it is important to characterise precisely the problem-solving approach
on which it is based. This can be done when we think about programs as solving problems and
use concepts from the theory of problems [5].

A problem is a structure P = <D ,0,q> where the elements of D are the problem data, the
elements of O are the solutions and q is a binary relation between D and O representing the
problem’s conditions.

A program solves a problem P if it defines a relation between D and O such that

VdeED q(d;f(d)) (1)

A solution space S for a problem is the set of all solutions, that is,
S(P) ={s:D-0|sCq}.

A derivation of a program using DTM requires that input (d €D) and output (0 € O} specifications
be given and a program be constructed in which equation (1) holds.

Jackson’s basic method tries to determine inmitially a direct mapping between a data
structure for d and a data structure for o, where (d;0)€p. A difficulty occurs in solving certain
classes of problems because backtracking and structure clashes arise. DTM starts by expressing
the abstract notions of €D and 0 €O instead of attempting to look for a data representations
for these two entities.

s

The strategy for program derivation through the data transform method consists of applying
the concept of problem reduction and decomposition while using Hoare’s general data type
construction mechanisms {7}.

Program reduction and decomposition are applied in a way which will leave us with a set of
Jackson-solvable problems.

The reduction of a problem Py = <D;,04,99> to a problem P; = <D,0,,q,> is a pair
of functions Py, = {ins,ret} where ins (for insert) is an unary function from D, to D,,
ins:Dy~D, and ret (for retrieve) is an unary function from O, to O, ret:0,+0,, such that, for
all f,€S(P,), ret.f,.ins €S(P;). A sufficient condition for the pair {ins,ret} to be a reduction of
P, to P, is that ret.q,.sns Cq,, where

The first step of DTM consists of defining D, and O, as the cartesian product of D, and
O,, that is, D, = O, = DyX0,, and the functions ins and ret such that

Vdy €D, ina(dy) = (dy;4)
and
leEDl VOOEOO’ ret(do,oo) = 00
where A stands for a well defined element in O (usually the empty sequence). In other words the
reduction through ins and ret makes use of the data type constructor cartesian-product (record)
which is one of the three basic constructors proposed by Hoare [7]. The input and output data of

P, have now, trivially, the same structure (independent cf any chosen representations for d and
o). Figure 5 illustrates this step.

Figure 5

The second step of DTM consists of defining a new reduction 7', = {make,last} of the
problem P, = <D,,0,,q, > to a problem P, = <D,,0,,q,>, where

D, =0, =DX0

= §

D,=0,=D,;

make: D,- D, ‘, builds a unitary sequence from a given argument, and last :Dl'-o D/, returns the
last element of a sequence. This reduction is needed to avoid the backtracking problem since the
sequence mechanism provides a history of the computation.

Figure 5 now takes the form presented in Figure 6.

We now describe a standard program schema that decomposes the problem P, into a series
of smaller problems that can be solved through Jackson’s basic method. The schema is illustrated
in the diagram presented in Figure 7.

Figure 6

Jinished

transform

Figure 7

A Pascal-like pseudo-code description of the program schema described in Figure 7 is
presented in Figure 8.

The function update for the class of file processing problems, is defined as

Program schema:

type D, = seq of objects,;
O, = objects,;
DyXO4y = record
1:Dg;
r:0
. end;
(DX 0y) = seq of DyXOy;

var z,dy:D;
¥,04:0;

Procedure P,;

»

var z4:(DyX0p) ;

begin
T3 < Tos
while not finished(z;) do
zg « update(z,);
Yo <%y
end{P,};

Procedure P,;

*

var 2,,9,(Dy X 0y) ;

begin
T, «~ make(z,);
Py;

¥, = last(y,)
end{P,};

Procedure P,
var 7,,4,:DgX0y;

begin
T8 +~5%;
z,.r~4
Py;
Yy~ur;
end{P};

begin
z = copy(dy);
P, ‘
0g = copy(y)
end{schemal}.

Figure 8

update(zg) = append(zg, transform (last(zg))

where transform is a function from Dy X O, to DX O, which contributes to the solution of the
problem.

The function append has the usual meaning of the operator normally associated with the
type sequence, that is

append: (DX 0g) X (DX Og) = (DX Oy}
and
append((ly, ..., L) = (Iy, ... 1, ,0)
A correctness criterion for the program schema can be expressed as follows:
() update(zs) = append(z,, transform(last(z,)))
(i) Vzz€ (DOXOO)., smllr(transform(zg).s, z4.7)

(iii) smlir is a well-founded relation in DyX D such that any d€D, is in a finite smllr chain
starting at A: smlir(A,dy),smilr(dy},dg?)...emllr(do™,d,) (this is the usual criterion for a file
proccssing program)

(iv) last(zs).s = A finished(z,) = true.

Transform and finished must be specified so as to satisfy the previous conditions. We can
now state the partial correctness conditions for the class of programs.

(v) Vz,€(DyXO0,)’, finished(z) = g,(5,make(0g.i, A)
(Vi) Vz,€(DgX0,)" gy(zq,make(og.i, A)) = qllast(zg).r,dy)

Intuitively, the relation smilr guarantees that in each step the transform function
contributes something to the solution of the problem. The smllr relation, which is a well-founded

relation, characterizes the empty element as a distinguished element that will necessarily be
reached to accomplish the termination of the program.

Condition (v) guarantees that when the program stops T4 is the solution of the problem for
which the input is obtained from d, by the application of ins and make Condition (vi) ensures
that the reduction from the original problem P, to P, is good, i.e., that the element from z3
obtained by the application of ret and last is the solution to the original problem with input dy.

3. The Delimited Strings Problem

Jackson in his book “Principles of Program Design“ [1] proposes the following problem (pg.
130; problem 10). A program component is to be designed which will analyse a character string,
recognizing and printing two substrings, 5, and S,. S, is terminated by a character “@*, and S,
by a character “&*; the complete string is terminated by a character “% <.

On entry to the component two items of input data are available: the complete string, and a
pointer or subscript which points to a current location in the string. S, is defined to be the
substring whose first character is the character pointed at and whose last character is the
terminating “@°* S, has as its first character the character following the terminating “@* of S
and its last character is a terminating “&“. Either or both strings may be empty of non-
terminating characters.

It is known that the complete string is terminated by a “%*“ sign within 100 characters of
the current location on entry: this fact can, and should, be relied on. However, it is not known
that correct substrings S, and S, are present. If both are present and correct, a report should be
printed in the form

GOOD STRING
8 =xxxxxxxxx@

So=yyyyyy&
otherwise the string should be printed from the current location up to the terminator, in the form

BAD STRING
CHAR-001=f
CHAR-002=g

CﬁAR-nnn=%

To design a solution to the problem using DTM, we need to characterize first the abstract
domains of Dy and O;. This can be done through the next program shown in Figure 9.

Program delimited strings;

type D, = file of char;
O = partial —report;
DX 0O, = record
i:Dy;
r:0y
‘end;
(DX 0y) = file of (DaXOy);

var z,dy:Dy;
¥,00:0,;

begin
z ~ copy(d,);
firstred(z,y);

0y + copy(y)
end.

Figure 9

The procedure firstred is respomsible for the reduction Py, = {ins,ret} and is listed in
Figure 10.

Procedure firstred(z:D; var y:0,);
var 2,,9,:DyXOg;

begin
EPRIE X
z,.r«A
secondred(z,,y,);
y-ypr

end;

Figure 10

The assignments making use of the selectors ¢ and r play the role of the functions ins and
ret. The procedure secondred is responsible for the second step towards placing a program design
in a canonical form. The code which looks very much like the previous procedure is in Figure 11.

Procedure secondred(z,:DyX Oy;var y,:D X Op);
Var Z,,Y5:(D X OO)‘

begin
24 = make(z,);
Jirstdecomp(2,,9,);

¥, « last(y,)
end;

Figure 11

At this point we have finished the reduction phase and are able to proceed to the first step
in the decomposition which will be expressed by the procedure firstdecomp in Figure 12.

Procedure firstdecomp(zQ:(DOXOO)., var y,:(DyX 0,)°);
var xs:(DOXOO)‘

begin
while not length (last(zg).i) = 0 do
z4 « update(z;);
Yo =23
end;

Figure 12

The functions update and transform in Figure 13 complete the canonical form used to
express the program design. In fact, in the procedure firstdecomp we have already characterized
the predicate finished as length (last (z3).f) = O as required in the problem statement.

The program designer can ignore the details of this method of program development. Only
the notion of a DTM abstract machine needs to be kept in mind since all the steps described
previously that led to the canonical form can be easily mechanized. In this case the details were
left in the text for a better understanding of the underlying ideas.

f
The canonical form which provides the setting for the program design car already guarantee
that the program will terminate as long as the procedure process guarantees that

length(zg) < length(zg).

The question of producing the report for the delimited strings problem is made quite simple if we
choose to center our attention on a character as the basic logical entity.

The procedure process in Figure 14 will be assigned the task of constructing the report Vg
from the input z;. The construction of this report will depend on the state of the report.

The construction of this report will depend upon the history of the computation which will
be contained in a variable called type:

(i) if type has the value “# then only characters other than @, & and % have been read.
ii) if fype has the value “@*“ then string S, is complete and S, has been partially read.
1 2

Function update(z4:(DyX 00)'):(Dox 00)*;

var y3(DoX Oo)';
z,(DoX0g)

begin
Yg - Tg;
24 = last (y,);
x4 « transform(z ,)
update + append(y;,z,)
end;
end;

Function transform(z ;:DyX04):D¢XOy;

var 75,26:D;
¥5.96:00;

begin
Zg = T,.8;
Yg = Yur;
process(z5,¥5,%4,9g);
transform.i « zg;
transform.r « yg
end;

J

Figure 13
(i) if type has the value “&“ then string S, is complete.
(iv) if type has the value “c“ then the entire string has been read correctly.

(v) if type has the value “w“ then the string is incorrect. The reading and removal of a
character from z; determines the state of the report and its form.

Note that the functions first and fatl used at the beginning of the procedure process have
the usual meaning; first removes the first element in a sequence and tail returns the entire
sequence without the first element.

The reader should note that if a direct mapping between the I/O data structures had been
tried without previously generalizing the problem a backtracking situation would have arisen
which is not Jackson-solvable. By transforming the problem using DTM a data-driven prototype
has been produced because the procedure process can be constructed using Jackson’s basic
method. We illustrate this by presenting in Figure 15, 16 and 17 the I/O diagrams and the
process diagram using Jackson’s notation.

Since process guarantees that the length of z¢ is always strictly smaller than z;, the
termination of the program is always assured. Since the length zero is reached in the states “c“ or
“w“ it is easy to develop an argument that shows the total correctness of the program design.

Procedure process{z;:D ;y5:0¢;var z¢:D; var yg:0);

type state = (“#“@*“&“ “C* “w*);
partial —report = case state of
“#¢< : record
“@* : file of char;
“0%% : file of char
end;
“@* : record
“@* : file of char;
“&% : file of char;
“0%% : file of char
end;
“c“ : record
“@* : file of char;
“&«: file of char
end;
“w“ ; record
“07% : file of char
end
otherwise
end;

var type:state;
letter:char;
¥5,¥¢:partial-report,

begin
letter := first(z;);
zg 1= tail(zg);

{state determination}

case letter of

“@<: if type = “#“{undefined}
then type ;= “@*“
else type := “#<

“&if type = “@¢
then type := “C* {correct}
else type := “#*;

“O5% . if type = “&*“

“© &

then type := “c
else type := “w*; {error}
otherwise

if type # “@* or “&*“ or “%“
then type ;= “#<
end;

{report generation}

case type of
“#< : begin
¥5-@ := append(y;.cletier);
¥6-% = append(y;.%,letter)
end;

“@* : begin
3/5-@ = y5-@;
¥g-& 1= append(yg.&letter);
¥5-% := append(y5.%,letter)

end;
“c“ : begin
¥ @ = 315-@;
Ye-& = y5.&
end;
“w“ : begin
ys.% = y5.%
end;
othenyise
end;
end;
Figure 14
input
letter
char® @° &° %°
Figure 15

4. Derivation of an Implementation from the Program Design.

It is not the goal of this paper to elaborate on the advantages of rapid data-driven
prototyping. This issue has been extensively discussed in the literature, and has been one of the
major motivations for the formulation of DTM. In the present section it is illustrated how a
production program can be produced from a DTM design.

Initially Jackson's motation is used to outline the typical prototype produced by DTM
through the steps described in the previous section.

output

partial —report ‘

[\

#0 @0 CD wo

Figure 16

process

partial —report ‘

processing
state #° state @° state c° state w°

/L AN

report @| |report %| [report @| |[report & | [report %) |report @ [report & | |report %

Figure 17

Looking at Figure 18 it appears that the program can be substantially reduced in size by
removing the overhead that was necessary to simulate a DTM abstract machine.

Since the two reductions defined by {ins, ret} and {make, last} always occur in the program
schema (Figure 8), the procedures firstred and secondred can be combined into a single procedure
called reduce. The new version of the schema with this transformation is shown in Figure 19.

Before proceeding it is important that the reader be aware that the method is not being
simplified or optimized but rather the implementation of the method for a Pascal-like machine is
being developed. If, for instance, a fundamentally different base-machine was available, say a
functional machine, the method would still hold but implementation procedures would look quite
different.

In file-processing applications the history of the computation is often not required since the
program is usually handling the last component of the sequence. Since after testing a data-driven
prototype for a file-processing application we normally cease to be interested in the sequence of

computation produced by the executable specification, we note that the procedures firstdecomp
and update may be merged and that the type (D XO) can be eliminated. These modifications

lead to the program schema in Figure 20.

Finally the invocation of the procedures update and reduce can be replaced with the body of
the procedures in the main program body. The program schema now takes the form shown in

Figure 21.

Using this latest version of the program schema and replacing the general names of the
variables by the mames of variables used in the solution of the problem of delimited strings

presented in Section 3, the schema is as shown in Figure 22.

DTM
copy Jirstred copy
ins secondred ret

make Jirstdecomp last
upda,te.

last transform | |append

- : process :_ :

Figure 18

Program achema;

type D, =
0, =
(DX 0p) = record
i:Dyg;
r:0,
end

(DX 0,)° = seq of (DX 0,)

var dg,z:D;
00,¥:0y¢;
Z4,71,91: DX 0y; .
Y3:22.92.23:(DgX 0p) ;

procedure updalte(D XO)‘;
begin
Ys = 23
Y4 = last(z3);
z, « transform(z,);
update « append(y;,z,)
end {update};

procedure firstdecomp;
begin
T3 = Ty
while not length (last(23).5) = 0 do
z4 + update(z;);
Yy = T
end { firstdecomp};

procedure reduce;

begin
PRI H
Tr - A
Yo +~ make(z,);
firstdecomp;
Yy + last(y,);
Y-y

end {reduce};

begin
z + copy(d,);
reduce;
0o + copy(y)
end {schema}

Figure 19

Program schema;

type Dy, =
0, =
{DyX0y) = record
£:Dyg;
r:0
end;
var dg,2:Dy;
00,4:0y;

23:20,99:(Dg X Og);
procedure update;

begin
T3 = Ta
while not length(z4.1) = 0 do
rg «transform(zg),
Yo =23
end {update};

procedure reduce;

begin
Tyl +T;
T,.r = A
update;
y-yor
end {reduce}

begin
z « copy(dy);
reduce;
09 = copy(y)
end {schema}

Figure 20

Program schema;

type D, =
0, =
(DX 04) = record
$:Dy;
r:0,
end;

var dy,z:D;
00,¥:0g;
2:D X 0y;

begin
z « copy(d,);
Zo8 - 2;
Zo.r = A;
while not length(z,.4) = 0 do
T, + update(z,);
Y - z,1;
09 = copy(y)
end {schemal};

Figure 21

Program delimitedstrings;

type
state = (“#“,“@“,“C“,“W“);
partial —report = case state of
“#¢ . record
“@* : file of char;
“0%% : file of char
end;
“@?*“ : record
“@* : file of char;
“&* : file of char;
“0%“ : file of char
end;
¢“ : record
“@¢« : file of char;
“&“: file of char
end;
w* : record
“07% - file of char
end;
otherwise
end;

143

.

D, = file of char;
O, = partial —report;
DyX 0, = record

i:Dy;
r:0,
end;
var
do,z:Dy;
00:9:0¢;
T4:DX Oy;

Procedure process(var z,.i:D, var z2,.r:0,);

var
type:char;
letter:char;

begin
letter := first(z,.i};
Ty = tail(z,.8);
type 1= “#<
case letter of
“@« :if type = “H<
then type := “@*
else type := “#<
“&“:if type = “@*“
then type ;= “c“
else type := “w*;
“O3“: if type = “&“

then type := “c
else type := “w¢;
otherwise
if type # “@*“ or “&“ or “%“
then type = “#<
end

case type of
“#“ : begin
2,.r.% := append(z,.r.@ [letter);
z,.r.% = append(z,.r.%,letter)
end;
“@*“ : begin
2,r.@ = 2,.r.@;
zyr. & = append(z,.r. & letter);
To.r. % = append(z,.r.%,letter)
end;
“c“: begin
2,r.@ = 2,.r.@;
Tor & = r,r &
end;
“w*“ : begin
2o.r.% = 2,.r.%
end;
otherwise
end
end;

z = copy(d,);

Tyl 1= 2,

Tor = A

while not length(z,.{) = 0 do

process(z,.1,2,.7);
Y= zor;
0y = copy(y)
end {delimitedstrings}

Figure 22

6. Conclusions

The paper has shown that a prototype program can be derived using the Jackson approach
embedded in the Data Transform Method (DTM). Since most of the prototype can be
characterized by a program schema it is only necessary to concentrate on the development of the
lower level procedure called “process“. We believe that this method of program formulation and
prototyping simplifies program development. There is also an extra benefit in that total program
correctness is almost a by-product.

Since there is one program schema which can be followed for every file-processing problem it
should be clear that the program development process can be partially automated. In fact several
prototyping tools have already been created and tested. Future work will concentrate on
developing a user-friendly interface based on expert systems.

8. Acknowledgements

The work described in this paper was sponsored by several agencies and the authors
gratefully acknowledge the assistance of NSERC, WATFAC, and FINEP.

7. References

[l] Jackson, M.; “Principles of Program Design“, A.P.1.C., Studies in Data Processing, No. 12,
Academic Press, London, 1975.

[2] Warnier, J.D., “Logical Construction of Programs,“ New York, Van Nostrand Reinhold,
1979.

[3] Lucena, C.J., Martins, R.C.B., Velosos, P.A.S., Cowan, D.D., “The Data Transform
Programming Method: An Example For File Processing Problems“, pp. 388-397, Proceedings
of the 7th International Conference on Software Engineering, Orlando, Florida, 1984.

[4] Lucena, C.J., Martins, R.C.B., Veloso, P.A.S., Cowan, D.D., “A Theoretical proposal for a
CASD System Extending Jackson's Method for Program Construction“, to appear in
Advanced Automation, edited by Julius T. Tou, Plenum Publishers, 1984.

[5] Veloso, P.AS., Veloso, S RM.,, “Problem Decomposition and Reduction: Applicability,
Soundness, Completeness; Trapp, R., Klir, ., Pickler, F. (eds); Progress in Cybernetics and
Systems Research, Vol. VIII, (Proc. of the 5th EMSCR, Vienna, 1980): Hemisphere Publ.
Co. 1980.

[6] Martins, R.C.B., “The Data Transform Method“, Doctoral Thesis, Computer Science
Department, Catholic University, Rio de Janeiro, Brazil (in Portuguese). :

[7} Hoare, C.AR., “Notes on Data Structuring in Dahl, Dijkstra, EW. Hoare, C.A.R.,
Structured Programming, Academic Press, 1972.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

