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1. Introduction

An advantage of logic programming is the justification of results in terms of logical
implication, a much more intuitive notion than the fixpoints used in the semantics of
programming languages other than pure Prolog. But, as a conceptually equivalent
notion, fixpoints play a useful role in the semantics of logic programs [6,1].

So far, we know two ways in which results of logic programs are justified: by
means of successful SLD-derivations and by means of finite and failed SLD-trees [5,1].
A successful SLD-derivation has as result a positive assertion which is a logical
implication of the program regarded as a theory of first-order logic [8,5]. A finite and
failed SLD-tree has as result a negation which is a logical implication cf a certain theory
which is a strengthened version of the program (called the “completion”) [4].

In this paper we are concerned with a more general notion of result from logic
programs, with a correspondingly weaker justification: from the results in this more
general sense one does not conclude a logical implication. Our work relates results of
computations of logic programs to greatest fixpoints of the associated transformation,
and hence to greatest models rather than least models. The latter are (for logic
programs) intersections of all models, hence contain assertions true in all models; hence
the logical implication referred to above. '

Let us consider the usual notion of output of a logic program, for example the
program P below.

P= {m'm(oy Y, y)» 8“m(8'(x)» Y, 8(2)) - sum(z, y,2)}

‘I' Current address: Unit for Computer Science, Department of Mathematical Sciences, McMaster University,
1280 Main Street West, Hamilton, Ontario, L8S 418, Canada.



Consider the SLD-derivation

q = « sum(u,v,s(s(w)))
| u = s(u,)
a1 = = sumfuy, v, o(v))

| uy = s(u,)
g, = « sum(u,, v, w)
| u,=0,v = w
g3= O
This successful SLD-derivation produces the answer
sum(s(s(0)), v, s(s(v)))

which is the initial query with the composition of substitutions applied to it. This
answer is justified by: (see [5])

P = Y v. sum(s(s(0)),v,s(s(v))).

Here we consider answers in a different, but related, sense: the set of all variable-free
instances of the above conclusion restricted to the Herbrand universe of P and the
initial question:

[sum(s(s(0)), v, s(s(v)))]

where [e] is the ground set of e: the set of all variable-free instances of the expression e
belonging to the Herbrand universe Hp of the program P. It may happen that the
initial query contains a functor not occurring in P. Then the Herbrand universe Hp
should also include this functor. To avoid this complication we assume without loss of
generality that the initial query contains only functors from P.

In the above example the answer is obtained by the composition of all
substitutions of the derivation. This composition is only available at the end of the
computation. Using it suggests a batch view of computation. Let us see if it is possible
to view computation of logic programs as a continuing process. This suggests that we
look at the partial answer associated with each step. In the above example the partial
results as accumulated in the first argument make up the following decreasing sequence
of sets:

[u], [s(u )], [s(s(u,))], [s(s(0))]

We view the sequence as one of successive approrimations to the final result
[s(8(0))] = {s(s(0))}, which is the intersection of all elements of the sequence. This view
of computation, where an output argument initially denotes the set of all possible
answers and where this denotation progressively narrows down as the computation
proceeds, was proposed by L. Nolin [12]. Its mathematical treatment [9] goes under the
name of sort theory.
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The continuing-process view of computation is particularly appropriate in the case
of infinite derivations, where a result in the usual sense does not exist. For example, for
the same program P, there exists the nonterminating derivation

« sum (u, 8(0), u)
| v = s(uy) 2
- sum (uy, 5(0), u,)

| uy=s(u) 0,

The partial results are the elements of the nested sequence

[u] 2 [u6,] D [u0,0,] D -~

ie.
[u] 2 [s(uy)] 2 [s(s(uz))] 2
In the absence of a last element one is tempted to consider as result the limit
N {{s"(u,)] | n € N}

which is, however, empty. This is because the sets are included in the usual Herbrand
universe. Its terms are finite objects; none of them is in all the sets of the sequence.

Yet infinite computations in Prolog are useful: see [2,10]. For this reason mainly
we propose to include infinite terms. Mathematically speaking, we replace the
Herbrand universe H by its completion, defined as follows [8]. To begin with we define
a metric d on the terms of the Herbrand universe.

digty=0 if t=1¢
d(t,tprime) = g il ad)Rat)} e o g

where a,(t) denotes the cut at height n of tree t. In other words, the exponent of the
power of 2 is minus the smallest depth where ¢ and t' differ.

This metric allows us to define the completion H of H in much the same way as
the set of reals may be defined as a completion of the set of rationals. The metric on
H makes it possible to define Cauchy sequences of elements of H, and to define the
usual equivalence relation between Cauchy sequences. H is now the set of equivalence
classes of Cauchy sequences.

Given a term t, we define the in finttary ground set of t as the set of all variable-
free instances of ¢ occurring in . Note that the infinitary ground set of any term £ is
the topological closure (in the topology introduced above) of the ground set of t. Hence
the infinitary ground set is closed for any ¢. In the sequel we are only concerned with
the infinitary case, so [t] will henceforth mean the in finitary ground set of ¢.

Consider the mapping from rationals into reals where a rational ¢ maps into the
equivalence class containing the Cauchy sequence ¢, q, q, - --. The reals which are
not images under this mapping are the irrational reals. The elements of H which are
not images under the corresponding mapping from H can be regarded as infinite terms,
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as H already contains all finite terms constructible from the given vocabulary.

It has been observed by Mycielski and Taylor [8] that H is a compact metric space
provided that finitely many symbols are used for the generation of H. This
compactness property is what we are after: it guarantees that mested sequences of
nonempty closed subsets have a nonempty intersection [3].

2. Tree derivations

We use the definitions usual in the syntax and semantics of logic programs [6,1].
In addition to these we also need those presented in this section. We also use the same
terminology, except that nowadays we prefer to use ‘query” instead of ‘‘goal
statement’’.

The Herbrand base Bp, which is usually defined as the set of all atomic formulas
with terms in Hp, is here defined as the infinitary counterpart: the set of atomic
formulas with terms in Hp.

With each logic program P we associate a mapping Tp from subsets of Bp to
subsets of Bp, and defined as follows.

Definition: A € Tp(I) iff there exists a variable-free instance (using terms from Hp)
A« B,,...,B, ofaclause in Psuchthat {B,,...,B,}CI.

We have extended the usual definition of T by replacing Hp by Hp. We may drop the
subscript P when the program is obvious from the context.

The main component of an SLD-derivation in the sense of [1] is a sequence of
negative clauses. We find it useful to consider a tree form for each of these clauses,
called and-trees. Such trees have atomic formulas as nodes; some of the leaf nodes may
be marked closed. An and-tree is called closed if all its leaves are marked closed. And-
trees are defined in the course of the definition of a ‘‘tree derivation.

A treec derivation for a program P is a sequence of quadruples of the form
< at,p, tc, § > where at is an and-tree, p is a pointer, ¢c is a clause in P and 0 is a
substitution. The pointer p ‘‘points” to a non-closed leaf node of at (‘“closed leaves”
are defined presently). We can think of it as an integer such that the leaf node pointed
to is the p-th non-closed leaf node counted from the left. A quadruple
Q'= <at',p'ic', 0" > is P-derived from a quadruple Q@ = < at,p,ic, 8 > iff p
points to G, ic is A « By, ..., B, such that # is a most general unifier of G and A
and at' is at with B,, ..., B, attached as descendants of G and then with # applied to
all nodes. In case &k = 0 in the clause sc, no node is attached, the substitution is also
applied and G is marked closed.

We are now in a position to define a tree derivation for a program P and a query
~ A with A an atomic formula (we can assume this without loss of generality). It is a
sequence of quadruples where the first has A as and-tree containing one node and each
next quadruple is P-derived from the previous one.

When we replace in a tree derivation in each quadruple the and-tree by a query
consisting of the nonclosed leaf nodes of the and-tree in order from left to right, we
have substantially the SLD-derivation from [1]. It is clear that, when an and-tree has
closed leaves only, its quadruple can have no successor in a derivation. The
corresponding SLD-derivation is called success ful; we use this attribute also for the tree
derivation. In the last quadruple of a successful tree derivation, only the first
component is defined (and it is a closed and-tree).
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We illustrate tree derivations using program P of section 1. The completed
Herbrand universe Hp is {s"(0) | n € N} u{s*}. Let the query be « sum(u, s(0), u).
The tree component of the n-th quadruple of the tree derivation is

sum(s™{u,), 8(0), s"(u,))

sum(u,,, 8(0),u,)

Note that
lg] n TE(Bp) = {sum(s"(a), 2(0), s"(a)) | a€H,}

where q is the atom in the query « sum(u, s(0), u). Apparently the right-hand side is
the ground set of the root of the tree in the n-th quadruple of the tree derivation.
Theorem 3.1 (see below) shows that this equality is not a coincidence.

Lemma 2.1.

Any variable-free instance from Hp of the root of a closed and-tree for a program
Pisin T,'.!'“ {D), where m is the length of a longest path from the root to a leaf of the
and-tree.

Proof.

Let an and-tree and a variable-free substitution of its root be given. Apply this
substitution throughout the and-tree. Apply an arbitrary variable-free substitution to
any remaining variables in the and-tree. Every instance of a closed leaf node is in 7(J).
Hence, of the resulting and-tree it is true that any node is in 7% *1(@) where k is the
length of a longest path to a leaf reachable from it. This follows from the definition of
T and of and-trees O

Note that this lemma is a strengthened version of theorem 5.1 of [1] which states
that variable-free instances of the root are in T"(&), where n is the length of the
derivation corresponding to the given and-tree. If the clauses used in the derivation
have at most one atom in their conditions, then n = m; otherwisen > m 0O

An and-tree is defined to be k-fair if the shortest path from a nonclosed leaf to the
root has length k. An and-tree is defined to be fasr if there is no nonclosed leaf. Hence
a successful and-tree is fair, and so are certain infinite and-trees.

Lemma 2.2.
Every variable-free instance of the root of a k-fair and-tree is in T} (Bj).
Proof.

As in the proof of lemma 2.1, consider a variable-free instance of the entire and-
tree. Because leal nodes are not necessarily closed, we only assume that they are in Bp.
Now, the definition of Tp and of and-trees imply that every node n is in T} (B,), where
k is the length of a shortest path from n to a leaf node descendant O
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An SLD-derivation is defined to be k- fasir if the last and-tree in the corresponding
tree derivation is k- fair. Two derivations (SLD-or tree-) are defined to be homologous
if they refer to the same program, if they have the same length, and if, for each ¢, the
pointer and the input clause components of the i-th quadruples are the same. Note
that a derivation homologous to a successful one is successful.

In resolution theorem-proving “lifting lemmas” play an important role. For SLD-
derivations the following one is useful.

Lemma 2.3.

Let there exist a derivation of P u{N6}, where P is a program and N a query.
Then there exists a homologous derivation of P u {N} O

3. Semantics of fair derivations

Our aim is to provide semantic justification for derivations independent of whether
they are successful. In this section we give a characterization of the results of k-fair
derivations. Our main result is the following.

Theorem 3.1
For all k£ = 0,1,..., for all atomic formulas ¢, and for all programs P,

[q] n Tpk(BP) =U{lg6,-- 4,
| 3 a k-fair derivation using program P, starting with

«q, and having #,, ..., 8, as substitutions

Proof.

Suppose that a k-fair derivation exists, starting with « q. In the tree form of the
derivation the last tree is one where no nonclosed leaf is closer to the root (which is
gf, -+ 0,) than k. For every A € [g 0, - - 8,] there exists a variable-free instance of
the entire and-tree having A as root. By lemma 2.2, A € T*(B).

It remains to show that for every A = [q] n T*(B) there exists a k-fair derivation
starting from A. We prove this by induction on k. It is obvious for k¥ = 0. Let us
assume it for k — 1. A € T*(B) implies that there is a variable-free instance
RO +~Q, 0, » @0 of a clause C = (R «Qy,..., Q,)in P such that Rf = A and
Q.0,..., Qq 0 are in TF~ l(B) By the induction assumptlon, (k—1)-fair derivations
exist, starting from Q; 8, fors = 1,..., q. Let t,, .. , t; be the (k—1)-fair and-trees
that exist by the induction assumptxon at. the end of these derivations. Let t be the
tree having «~ A asroot and ¢, . . » t; as subtrees.

Note that t is not necessari!y an and-tree. However, we can derive one from ¢.
Let # be the most general unifier of A and R; hence 8 = ¢ for some substitution €.
Now t can be used to construct a k-fair and-tree ¢’ with «~ A as root. The successors of
the root in t' are Q, 0, . . ., Q, q The induction assumption guarantees the existence
of (k—1)fair and-trees ¢,,... . with @, 9§ ..., @, 7 as roots. By the lifting
lemma 2.3 (k—1)-fair and-trees with Q1M ..., @, n as roots exist, and these are the
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subtrees of the k-fair and-tree ¢t with « A as root O

Theorem 3.1 is useful for characterizing infinite computations of Prolog programs.
These are not mere curiosities of interest only to theoreticians: in [3] it is shown that
Prolog provides an elegant formalism for programming in the style typical of the
LUCID language. A simple example of this style used in Prolog is the following:

list-succ(u-z,8(u)y) « list-succ(z,y) (1)

where list-succ(a, ) means that a and g are infinite sequences of natural numbers in
successor notation (0,5(0),5%(0), ...) and that f is, element for element, the successor of
a. The query

« list-suce(0-2,2) (2)

asks whether a z exists such that list-succ(0-z,2). This indeed is the case: it is the
infinite sequence &(0) - s%(0) - 63(0) : -+ . The query will cause Prolog to construct the
sequence as far as resources of time and space allow.

We have defined the result of this infinite computation to be
N {[list-succ(0-z, 2,)8,--0,] | n € N} (3)

when 0; substitutes s*(0) - z; for z;_,. We saw that this intersection is nonempty when
the completion H of the Herbrand universe is the underlying domain. The query (2)
yields only one possible derivation with program (1). This derivation is k-fair for all
k € N. Hence our theorem implies that the result (3) of this infinite derivation is

[list-suce(0-z , z)] n N {T* (B): k € N}.

Another application of theorem 3.1 establishes a connection between k-fairness and
depth of finitely failed SLD-trees. Suppose that an atom A begins a k-fair derivation.
According to theorem 3.1, A € T* (B). By theorem 7.1 in [1], A is not the root of any
finitely failed SLD-tree of depth at most k.

Conversely, suppose that no k-fair derivation starts from A. According to
theorem 3.1, A does not belong to T*(B). By the results of Lassez and Maher [7] it
follows that a finitely failed SLD-tree exists with A as root. The depth of this tree must
be at least k, and may exceed k by an arbitrary large number.

4. Least and greatest models and fixpoints
An interesting consequence of theorem 3.1 is
[q nN{T* (B):k eN}=U{[g8,6, -]
| 3 a fair derivation using program P, starting with
- g, and haviag 0,, 0,,... as substitutions

} (4)

The inclusion of the right-hand side in the left-hand side is obvious. Note that
A € T¥(B); hence k-fair derivations start from «A for all k. The other inclusion now
follows from the fact that among all k-fair derivations for a given k, at least one must
be extendable to a fair derivation.
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Note that in (4), N {T (B): k € N} is the greatest fixpoint of Tp. This result is
due to Tiuryn [14] and was independently proved by Nait Abdallah [10,11]. The
greatest fixpoint is also the greatest model of the completion of the program P [i].
Thus our theorem enables infinite fair computations to be characterized by means of
greatest models or fixpoints.

More familiar is the use of least fixpoints to characterize results, in the finitary
case, of computations, as pioneered by Scott [13]. (Note that Theorem 3.1 also holds in
the finitary case.) In the context of logic programming [8] introduces least fixpoints and
shows that Herbrand models of logic programs are closely related to fixpoints of the
transformations associated with the programs. Lemma 2.1. (and the similar theorem
5.1. in [1]) show that the result of a successful derivation is in 7% (&) for some finite k.
As, in the finitary case, U {T* (@):k € N} is the least fixpoint of 7, successful
derivations approximate the least fixpoint.

Because @ is an instance of ‘‘bottom” in Scott’s partially ordered sets of data, we
call such a characterization “‘bottom-up”. Theorem 3.1 takes B as starting point,
which plays the role of Scott’s “top”. Hence it provides a ‘“top-down” characterization
of results of logic programs.

Thus it seems that we have two competing models of computation: one using least
fixpoints and one using greatest fixpoints. Some reflection shows that the two fixpoints
play different, and, to a certain extent, complementary roles.

Theorem 3.1 is most widely applicable: it applies to all derivations (failed or
successful, finite or infinite; they are k-fair for some k). And it provides approximations
to the greatest fixpoint. Because it applies to all derivations, it applies to all initial
segments of a given derivation. Hence the approximations are obtained as the
derivation is being constructed, in a continuing process.

Given any atomic query ~q, a good picture of this process is obtained by
considering a ‘“‘microcosm” consisting only of the ground set [g], neglecting its
complement B — [g]. This means that any set now is only considered through its
intersection with [g]. As a successful derivation is constructed, theorem 3.1 can be used
to characterize the partial results as belonging to T*(B), for nondecreasing k, being
approximations to the greatest fixpcint. As soon as success is reached at the end, the
result is known to be in T"(&). Thus the partial results are bounded only by sets above
the greatest fixpoints, whereas the final result is bounded by a set below the least, a
drastic improvement usually.

- The improvement is not only quantitative. The least fixpoint is the least Herbrand
model, which is the intersection of all Herbrand models (as the program contains Horn
clauses only). It can be shown [6] that an atom is the result of a successful derivation if
and only if it is a logical consequence of the program. This is a much stronger
conclusion than any that can be drawn from Theorem 3.1.
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