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NONLINEAR PROGRAMMING, EXACT PENALTY
FUNCTIONS AND PROJECTION TECHNIQUES FOR
NON-SMOOTH FUNCTIONS*

ANDREW R. CONNf{

Abstract. We present a personal overview of various approaches to solving nonlinear programs with
nonlinear constraints that make use of the /; exact penaity function.
The advantages, disadvantages and related remaining difficulties of these approaches will be

considered.
Finally some recent research and extensions are given.

1. Introduction. Most of this article will be devoted to considerations of the
problem

NLP: minimize f(x)
xER"

subject to ¢;(x) =0, €[
yi(x) =0, [€E

where / and E are index sets and the f, ¢;’s and y,’s are assumed to be twice
continuously differentiable.

We will predominately be concerned with small and medium problems that are
well-scaled.

It is instructive to begin by considering the state-of-the-art for unconstrained
optimization.

At least for small and medium problems it is reasonable to claim that we
currently have algorithms that are both robust and efficient.

For a useful, up-to-date and lucid review of the status of unconstrained
optimization the reader is referred to Schnabel [1982]. The salient points that I
would like to make here are:

1) The algorithms and the second-order sufficiency conditions for
unconstrained optimization closely match.

2) If the Hessian is available one uses a (modified) Newton method.
Otherwise secant approximations are usually preferred with BFGS (Broyden
[1970], Fletcher [1970], Goldfarb [1970], Shanno [1970]) being the most
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popular. However, finite difference approximations to the Hessian are also
often appropriate.

3) Convergence is global (that is, convergence from an arbitrary starting
point) with an asymptotic rate of convergence which is normally Q-quadratic,
in the case of (modified) Newton, or Q-superlinear, in the case of secant
methods.

4) Finally, it is worthwhile mentioning that we are beginning to have useful
models for singular problems, eg. Schnabel and Frank [1983].

By the way of contrast let us consider the state-of-the-art for nonlinearly
constrained optimization.

We first note that there are no inherent difficulties with the theory. Moreover, it
is constructive to take the point of view that the theoretical results concerning
optimality conditions are derived via the implicit function theorem. Thus one
implicitly determines a reduced space and invokes the theory previously obtained for
unconstrained optimization and applies it to the resulting unconstrained problem in
the reduced space. Consequently, it is the projected Hessian and the projected
gradient that give the requisite second and first-order conditions.

Thus, in a certain sense the constrained problem may be considered easier than
the unconstrained problem, since each linearly independent active constraint
corresponds to a loss of one degree of freedom. This is obviously likely to result in
simplifications in the extreme cases of n linearly independent active constraints or
linear equality constraints. However, more generally, in the case of nonlinear
constraints, one does not know the true reduced space until one is at the solution even
if the correct active set is identified.

The preceding comments explain why /inearly constrained optimization is
considerably simpler than nonlinear constrained problems. Indeed, it is reasonable to
say that the state-of-the-art of linearly constrained optimization is closely comparable
to that of unconstrained optimization.

By contrast one might enquire as to whether we are asking too much in desiring a
comparable status in the case of nonlinear constraints.

We will attempt to consider this question in some detail below. In doing so, we
will look at the state-of-the-art, concentrating on the /; exact penalty function.

2. Exact Penalty Functions and NLP. We begin this section with the following
‘quote from the 11th International Symposium on Mathematical Programming, Bonn
1982. (Fletcher [1983], p. 89).

“Exact penalty functions can be used in two ways; either to provide a
transformation of the nonlinear programming problem to an unconstrained
minimization problem or as a criterion function (i.e. merit function) for use with other
direct methods for nonlinear programming.”

It is my contention that the second usage is a mistake - it is successful only in so
far as it comes close to the first usage. It is hoped that the arguments that follow will
justify this claim to the reader.

The currently most popular global methods for nonlinearly constrained nonlinear
optimization are the so-called sequential quadratic programming (SQP) methods, with
the /, exact penalty function for a merit function and (approximate) line searches.
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In these methods the search direction at iteration k is determined from the
quadratic programming problem

SQP : minimize fRy + VFEDT d + 1/2d7 w* d

subject to  ¢;(x¥) + V ¢, xF)Td =0, i €L
yi(x*) + Vg x*d=0, i€E,

where W* is the Hessian of the Lagrangian function, or some approximation to it.
The derivation of the quadratic program is based upon the following observations
in the case where ail the constraints are equality constraints.

Let
L(x,\) = f(x) — wT },
be the Lagrangian function, with
W(x) = [yi(x) walx) = w17
A=A AT,
and
E = {1,2,....t}

The method of Lagrange implies one must solve the system of n + t equations in
n + t unknowns, x and A, given by

V{x Al L(x, ?\') = 0.

Newton’s method for solving such a system gives

wk —a4*]| 8¢ V. L(x*,A9)
2.0 _[Ak]T 0 SAK = - _\y(xk) s

where
wk = Vi L(x*, 19,
Sxf = x*Tl — x%
SAk = ARTL — Ak
and
A% = [V g9 V) o T wG
Now, let us consider the quadratic programming problem
| EQP1: mini;nizc dT Y f(x*) + dT w*d
subject to  [4%]T d + ¥(x*) = 0.
At a Kuhn-Tucker point of EQP1,
whd + Vfx*) =4 p
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Thus, identifying 8x* with d and A*¥ + 8% ( equals A¥T"), with u, we are able to
determine an iteration of Newton’s method for solving the Lagrangian system directly
from the EQP1. '

However, whereas the system of equations (2.1) does not generalise naturally in
the case of inequality constraints, one readily obtains SQP as a generalisation of
EQPI.

Any SQP approach must be able to consider the following (see for example
Fletcher [1983] or Powell [1983]),

i) infeasible or unbounded quadratic subpreblems,

ii) unbounded multiplier approximations,

iii) unbounded Hessian approximations,

iv) the Maratos effect - that is, a stepsize of one produces ascent on the /;
merit function arbitrarily close to the solution, x”, of the original constrained

problem.

It is my opinion that all these complications are a manifestation of the fact that
the model problem for the search direction does not come directly from the merit
Sfunction, but is more closely related to the Lagrangian system.

Recently, much work on SQP methods has been devoted to overcoming the above
mentioned difficulties.

Methods to overcome the Maratos effect include the second-order correction (see,
for example Coleman and Conn [1982b]) and the Watchdog Technique of
Chamberlain et al (Chamberlain, Lemaréchal, Pedersen and Powell [1982]).

Methods to overcome inconsistent quadratic subproblems include relaxations of
the constraints, (see, for example, Biggs [1975] and Murray and Wright [1978] and
the approach of Fletcher, (Fletcher [1985]).

Fletcher’s method avoids most of the difficulties mentioned above. It is useful to
consider his development as follows.

Essentially, instead of using a (possibly unobtainable) solution to the quadratic
subproblem, SQP, to determine a search direction, followed by a line search on the /,
penalty function, Fletcher uses an /; penalty formulation for the quadratic
programming problem with a trust region. Thus in a certain sense the merit function
and the model problem are more compatible and, for example, since one is using a
penalty function approach to solve the quadratic programming problem, it is not
essential that the constraints be consistent.

However, one should note that in the sense I will describe below, the quadratic
programming problem is still the “wrong” subproblem. Furthermore, the trust region
is updated on the basis of the overall /; merit function, not the /; function for the
subproblem. The reader is referred to Fletcher [1985] for more details.

Presumably, any method that emulates the theoretical optimality conditions for
nonlinearly constrained optimization and is comparable with the techniques available
for unconstrained optimization will, asymptotically at least, make use of
(approximations to) the projected Hessian of the Lagrangian along the null space
associated with the active constraint gradients. Furthermore, at least for non-singular
problems, the algorithm must be globally convergent with an asymptotic rate that is
better than linear.
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As a consequence, it is clear that asymptotically the curvature of the active
constraints is crucial. From the sequential quadratic programming point of view an
equivalent statement is that the Hessian term of the quadratic programming
subproblem is crucial. SQP methods use wk = V2, L(x*, A¥). In the light of the
comments just made, this is reasonable in a neighbourhood of x* provided good
multiplier estimates, A¥, are available. However, it seems sensible to ask how
reasonable it is to use the same approximation globally?

We will now give details of a method that derives its search direction directly
from the /, merit function and, although asymptotically it approximates the projected
Hessian of the Lagrangian in the neighbourhood of a solution, globally it uses quite
different approximations, in general.

3. The Method of Coleman and Conn. The basis of the method described in
Coleman and Conn [1982a] and [1982b] is the following.

Consider the problem NLP with corresponding /, exact penalty function
p(x, W), defined by p(x, ) = uf(x) — Z min {0, ¢;(x)} + T | wix) | .

Suppose, without loss of generality that I = {1,...,%} and that
E = {1,...,t,}. Furthermore, assume that at the point y, for given, small positive
g,
| 00) | <e 1€4,C1I
| wi(p) | <& i€4, CE
with A; and A, maximal, in the sense that

| ¢;(y) | > & whenever i & A;,and |y;(y) | > & wheneveri & A,. Such
constraints are termed near-active, and we note that they are g-feasible.
Clearly

plx, p) = r(x) + ,-e)i, [ wx) | — iEZA, min (0, ¢;(x)),

where

r(x) =uflx) + ié‘ [y | - jé’ min (0, ¢;(x)).

The first observation we would like to make is that r(x) is differentiable in a
neighbourhood of y. In fact, under the assumption that f, y;’s and ¢;’s are twice
continuously  differentiable, r(x) 1is ‘twice continuously differentiable in a
neighbourhood of y. Thus a second-order Taylor’s expansion of r(x) exists about y
and is a valid model. Consequently, we consider the following nonlinear subproblem.

QPQC:  minimize r(y) + dT V. riy) + 1/2d7 V2 r(y) d

subject to y;(y) + dT V. y(0) + 1/2d7 VL wi(y) d = w(), i €A4,,
o) +d7 V, 0,0) + 1/2d7 VI ¢i(0) d = :(»), i € A4;.

We remark that the constraints signify that the near-active constraints do not change
up to second-order on moving from y toy + d.

Thus solving QPQC is indeed a reasonable extension of a Newton method,
applied to the unconstrained minimization of a twice continuously differentiable
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8 ANDREW R. CONN

function, to the piecewise differentiable function p(x, p). Moreover, as we will see
shortly, the necessary asymptotic conditions for a second-order nonlinearly constrained
nonlinear programming algorithm are maintained. Furthermore it is not difficult to
anticipate the extension to secant type methods.

We remark that the subproblem QPQC enables us to model directly the /,
penality function, locally, up to second-order, in the sense that in a direction d that
satisfies the given (quadratic) constraints, the second-order change in p is indeed
givenbyd” V r +1/2d7 V*rd.

Unfortunately, it would appear that the problem of minimizing a quadratic
function subject to quadratic constraints is almost as difficult as solving the general
NLP probiem. Consequently, it is necessary to make further observations.

In a standard way (see, for example, Gill, Murray and Wright [1981]), assuming
full-rank, let us define a matrix of “near-active” constraint gradients, 4 by

4=V, . ... V1Ql
where
Y = P, ki € A;
= Vi, kj €4,
and

l4;| + 14| =
We also require an associated #nX(n — t) matrix Z satisfying
ATz =0,
ztz=1,_,.

Thus the columns of Z form an orthonormal basis for the space orthogonal to the
space spanned by the gradients of the near-active constraints.

We will now solve alternative problems to QPQC depending upon whether the
projected “gradient” of p(x, p), Z7 V r is “small” or not. Note that Z7 V r is an
exact representation of the first-order change of p along the space spanned by the
columns of Z, even though p need not be differentiable over the entire space.

In the case where Z7 V r is not considered small QPQC is replaced by the
straightforward quadratic programming problem that is obtained by ignoring the
curvature terms in the constraints, namely

QP1: minidmize r) +dT V) +1/2d7 Vir@p)d

subjectto d7 Vy,(») =0, i=1,...,1t

The replacement is justified with the following remarks.

ZT Y r “large” implies that the first-order change of the penalty function along
the space orthogonal to the gradients of the active constraints is large in the
neighbourhood of the point y. Consequently, the curvatures of the active constraints
are not significant. That is, they are “swamped” by the changes in the reduced space
- it is easy to obtain sufficient decrease of p. Sufficient decrease is all that is
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required, since, clearly, one is not in any asymptotic region by virtue of the fact that
the projected gradient is not small.

One could equally justify dropping the V2 r term (i.e. replacing QP1 by an LP)
and indeed in certain contexts (e.g. large sparse problems) this might be reasonable.
However, our intent is to produce a quadratic model function in a certain reduced
space. What is being said here is that the ideal reduction is on a nonlinear manifold
but, owing to the nature of the projected gradient, a linear approximation to the

manifold will suffice.
We note that at iteration k of our intended algorithm (which corresponds to

y = x* ), the second-order terms of SQP, W* are not equivalent to V2 r(x*), the
second-order terms in QPI, unless i) \¥ = 0 and ii) x* is e-feasible for NLP.

If ZT V r is small a different approach is taken. We first consider the fact that
at a Kuhn-Tucker point for QPQC, x¥, say, there exist multipliers A; such that

(3.1) Y or(x*) + V2 r(xk)d = iEzA A [V 1% + VEy(xk) d]

where 4, = A; U A,.
[Note that equation (3.1) could be considered to be an approximation to

Vr(xk+d)=.e)5i A VoGt +d) 1.

We next observe that ZT ¥ r being small is equivalent to being in the
neighbourhood of a stationary point in the restricted space determined by the near-
active constraints. Thus one may obtain a “good” approximation for A; by solving
v r(x*y = é A; ¥ v:(x*) in the least squares sense. Using the usual active set

1

strategy (see, for example Gill, Murray and Wright [1981]), one may conclude that a
A; “out-of-kilter” - ie. A; < O i € 4;, implies that one has not correctly identified
the active set [or at least, one is far from the stationary point, since indeed, for a
nonlinear problem, one may have the right active constraints but the current gradient
values may be far from the values at a stationary point]. In this case, there is
essentially one significant degree of freedom obtained by “dropping” a single active
constraint corresponding to an out-of-kilter multiplier A, say; we take the resulting
projected gradient direction. [This is equivalent to replacing QPQC with the linear
programming problem o

r?ligilxrlliz:: r(x*y + d7 V r(x%)

subject to dT Vv (x¥) =0, i€ Ay, d7 V ¢;(x¥) > 01

Otherwise, we have a good approximation A; for the A; and all the A;’s (A;’s) are in-
kilter. Thus (3.1) may be replaced, approximately, by

(32 Vre) + Ve - 2k VineHd = 0k Ve,

But, (3.2) is satisfied by a Kuhn-Tucker point of the quadratic program
QP2: mini}nizc r(x¥) +dT 7 r(x*) + 17247 [VEr(x*) — EzA A V2y(xH)] d

subject to dT 7 y(x*y =0, i€4,.
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We note that

a) W* = V2r(x*) — T X V2y(x*), in general.
i€4,

b) We use multiplier estimates A; only when good estimates are available [ -

otherwise they are not necessary].

¢) In the asymptotic region, by definition, there are no clearly violated

constraints (i.e. |y; (x*)| > & or ¢&; (x*) < —¢), I'|ZT V r(x*)] | is

small (where the subscript £ on Z indicates that Z is determined at x*), and

W* is equivalent to V2 r(x¥) — EEA A V2yi(x*) with the additional
a4,

proviso that the A;'s are likely to be good approximations to the true
multipliers. [We use the term ‘equivalent to’ to denote the fact that in
general the quadratic programming multipliers are not identical with the
multipliers obtained from the least squares estimates, except in the limit].

In the neighbourhood of a stationary point [ - projected gradient small, multiplier
estimates in-kilter] we would like the near-active constraints to be active.
In other words, we require that

(3.3) Y(x* + dk +vky =0, i€ a4,
Approximating (3.3) by
Yilx* + d%) + V(BT v =0, i€a4,
we choose
(3.4) vE = — 4l T(x* + d%),
where A, denotes the pseudo-inverse of the matrix 4 evaluated at x* and

Te) = o) o). .. .70, 4, =[1,2,....1].

[Remark: the gradients of the constraints are not re-evaluated at x* +d*. ]

We note that ultimately Newton steps will be taken, in the sense that d* + v*
gives descent on p(x,u). That is, the Maratos effect does not take place.

For more details, the interested reader is urged to consult the references Coleman
and Conn [1982a] and [1982b] already cited above.

Finally, for those deeply attached to quadratic programs we note that the
asymptotic (Newton) step given by x**! = x* + 8%, where 8% = g% + v*, with d*
defined by QP2 and v* defined by (3.4), is the unique solution to the quadratic
programming probiem

QP3: minimize r(x¥) + 87 V r(x*) + 1/2 8T Z,) (Z7 B, Z,) (ZF B)

subject to A7 § + I'(x* — Z(ZT B, Zp)™! ZF V r(x%)) = 0,
where
B =VirGh) = T & Vv, and Z[ B Z,
! |

is positive definite. Moreover, we note that under the second-order sufficiency
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conditions in the neighbourhood of a local constrained optimum, our projected Hessian
ZT B, Z, is guaranteed to be positive definite.

4. Discussion. In attempting to construct a method for nonlinearly constrained
optimization that is ideal, in the sense that one is able to do as well as unconstrained
techniques, we require, conceptually at least, direct reduction.

The method of Lagrange can be derived from (an implicit) reduction. However,
commonly used approximations based upon the method of Lagrange are quite distinct
from approximations one might anticipate from direct reduction.

This is most easily appreciated by considering a particular example.

Example 4.1
minimize u + v + w?
x=[u,y,w]

subject to —u + 3v —ww =1,

This example is chosen because direct substitution gives rise to an unconstrained
quadratic problem, although the constrained problem is a2 QPQC.
Thus using the explicit reduction

u =3y —w — 1,
one obtains the equivalent unconstrained problem

minimize 3v + v — w + w? — 1,

(v'w)
2 -1
-1 2
with eigenvalues 1 and 3, and gradient (g,, g,) = (3 + 2v — w, —v + 2w).
Thus, one step of Newton’s method, from any starting point produces the
unconstrained minimum, (v, w) = (—2, —1), from which it can be deduced that the

optimum value of # and A is, # = —9, A = —1, with corresponding objective
function value -4. For, example, starting at °, w% = (0, 0)

vl g 2/3 1/3 3 -2
= —H_l = — = .
w! gw 1/3 2/3 0 -1
We note that, referring to the original constrained problem, although the Hessian
of the Lagrangian is not positive definite, the (orthogonally) projected Hessian is

positive definite at (0,0) [with eigenvalues 0.113 and 3.696].
Let us now consider Newton’s method on the Lagrangian equations

Lu,v,w,\)=u + v+ w> = AM—u +3v —ww — 1).

with corresponding Hessian matrix,

H:

Newton’s method for the system of equations V5 L(u, v, w, A) = 0 gives
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2
0 0 0 1 Su* 1 + Ak
0 2 A —34+wk v wk — 3k + Ak wk
0 Ak 2 vk Swh| | awk + ARk
1 —3+wk vE 0 Bk wk — kv wE
Suppose

[% v°, w° A% = [0, 0, 0, 0].
Then one obtains _
8?\0= "‘1, 8W0=0, BVQ= —3/2and5u0= —11/2

as the unique solution to the above system.
We also note that wl(ul, vl wl) = (), but although Al = l‘,

VS, v wh), #= ALV oy (al, vl wh,
and f(u!, vi, w)) = —13/4.
The problem is that
VaarLu,v,w,A) =0
is not linear in u, v, w, A, even if we have A = A, whereas, we already observed, the

corresponding reduced system is linear.

For example, starting at [—1, 0, 0, —1] the Newton iteration on the Lagrangian
system  gives OAy=0, 8wy = —1, 8y = —2, duy= —6, and  thus
[u!, v}, w!, Al] = [=7, —2, —1, —1], an infeasible point with corresponding
objective value -2.

We now consider the method of Coleman and Conn starting at the same point,
[#% v°, w0 A°] = [—1, 0, 0, —1]. We have the following computations:

r(x) = f(x),
-1 3/V10 ¢ 1
A= 3|, z=|1/Vioo|, vr=] 0|,
0 0 1 0

and ZT V r = (3/ 0‘ 10 , whose norm is not considered small. Hence

2/10 0
T 2 =

and thus we obtain d'=(—9/2, —3/2,0)7. Minimizing along d’
p(x, u) = p(u, v, w, u), with say p = 1 [actually, the solution in this case is
independent of p since the nonlinear contribution to the constraint is zero], we obtain
(!, v, wh) = (—11/2, —3/2, 0).

In order to understand more clearly the difference between direct reduction and
the method of Lagrange, we need to examine more closely the derivation of the

Lagrangian technique via the implicit function theorem.
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The basic idea is as follows (for more details the reader is referred to Avriel

[1976], for example).
Supposing one has the underlying problem

minimize  f(x)

xER"
subject to y;(x) =0, i=1,..., m, m=n
By suitable rearrangement one may define A;, i = 1,...,m uniquely as the solution

to the system of linear equations

}”:‘ 3y (x") 3 = 216D

4.1
( ) i=1 Bx] 6xj

Now, by applying the implicit function theorem to the constraint equations, there exist
real functions A;(x,+, - - X,) such that
X; = hj(me, [P ,x,,), Jj = I....m

Some straightforward algebra then gives

$asGD _F e 2D | O mCes e x)

k=1 3 xp i=1 3 x, d x;
* m .9 x'
(4.2) D AC20 N P A /120 R
d x; i=1 d x;

We note that (4.1) are the first m equations of the standard Lagrangian system.
(4.1) along with (4.2) determine the next n — m equations, namely

_G_f_@_ g xi'awi—()c‘)=

0, j=m+1,...,n,

(4.3)
but, the derivation depends upon (4.1) being satisfied.

Asymptotically, (4.1) is approximately satisfied. It is approximately satisfied by
Coieman and Conn’s algorithm whenever multiplier estimates are used in the
neighbourhood of a stationary point. It is in this sense that I mean that the system of
equations corresponding to the Lagrangian has no global interpretation consistent with
direct reduction. Moreover, I consider the (implicit function theorem) derivation of
the Lagrangian technique to be the derivation that is consistent with the approach I
wish to take. That is, the relationship between constrained theory and constrained
algorithms should enhance the possibility of producing methods as satisfactory as
those currently available for unconstrained problems.

Arguably, the system of equations one should be solving via Newton’s method
ought to involve iterations of the type

3
(4.4) B* [ 8;] = —g~
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where
moog oy (xk k
gk = X SWT) e afGh j=L....m
i=1 9% 9 x;
m ah(xk.}.;"'xk)
k k 5 m n
7 §= s ﬂxj
R VA1 R
g = =y, Jj=n+1....n+m
and
B = (gi),t=,...,n+m,j=l,....n+m
6’aj
where k;, is defined by
xj=hj(xm+],...,x,,), j=1,...,m,
and
o, =x;, j=1,...,n
=N, j=n+1,...,n+m
The difficulty, of course, is that the he,s = 1,...,m, are implicit functions,

Furthermore, the argument is, that if we wish to emulate the reduction technique
globally, the local behaviour distant from the asymptotic neighbourhood of x*, is
described by the model (4.4) and not the model (4.1), (4.3) and feasibility.

An alternative approach is to reject the reduction point of view but just state that
ultimately : -

Vi L™, A% = 0.

The difficulty with this is that one has abandoned the optimization model and
replaced it by a nonlinear system of equations model for which there is no natural
merit function. In addition, a solution to the Lagrangian system need not solve the
given problem. It is generally recognized that the system of equations problem is
more difficult than the unconstrained optimization problem for exactly the reason that
in order to globalise the method it is necessary to have a merit function. Usually the
merit function chosen is the least squares function (see, for example Dennis and
Schnabel [1983], chapter 6).

Thus, from one point of view one might say that Lagrangian/SQP techniques are
a global approach based upon an asymptotic result - one is using an equations model
that can be rather bad globally. The standard approach to globalising the nonlinear
equation methods is to use a merit function, usually the /, function. Obviously, SQP
methods use a merit function closer to the /, function, namely the /; penalty function

plx, pn).
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In contrast, the claim is that Coleman and Conn always use a model that is not
locally invalid, irrespective of whether one is in the asymptotic region or not.

However, one interpretation of the problem that globally involves the least
squares estimates of the Lagrangian multipliers and the corresponding Lagrangian
Hessian, at least in the case of equality constraints, is given below.

Suppose one considers the problem

EQP : minimize f(x)

xXER"
subject to v;(x) = 0, I€E.

A reasonable objective is to determine a new point x* via a quadratic model of
some sort, such that f(x*) < f(x) and I'(xT) = I'(x). {I" denotes the vector whose

components are the constraint functions ¥;].
It is not obvious as to how this can be achieved because of the nonlinearity of I'.

However, suppose one tries to construct a suitable quadratic model on the linear
manifold M = x + <Z>. The question is, what function should be modelled in M?
One possible answer follows.

Let x + Zw denote any point in M and let g(w) represent the function we wish
to model. If ¥(w) denotes the “nearest” point to x + Zw such that I'(X(w)) = I'(x)

then it is reasonable to define g(w) = f(¥(w)). Unfortunately g(w) is not explicitly
available. = A compromise is to  define g(w) = f(u(w)), where

u(w) = x + Zw + A'A T(w) and A T'(w) denotes T'(x) — I'(x + Zw)
If one then uses the model function
gw) = fuw)) = f(x + Zw — A'AT(w)),

then g(w) represents the change in f evaluated on the linear manifoid with a linear
least squares correction to reflect the nonlinearity of the constraints.

We note that the gradient and the Hessian of g(w) evaluated at w = 0 are given
by v
Vg0 = ZT V, f(x)

and
Vi g0)=ZT[Vif(x)— TN Viy(x)Z,

i€E
where A = 4 ¥, f(x).
These observations were brought to my attention by T. F. Coleman and are

essentially contained in Fletcher [1981], chapter 12.
Although the above is a reasonabie global interpretation of the Lagrangian

multiplier and Hessian it is not, in my opinion, one which recommends itself
algorithmically. In particular, the range space step amounts to an undamped Newton
step on the constraints. Such a step seems particularly undesirable when the projected
gradient onto the linear approximation to the manifold is large. On the other hand, it
does not appear computationally desirable to perform a line search on the range space

step.

5. Secant Methods. Having motivated and discussed the merits and difficulties
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of various Newton-like approaches to the nonlinearly constrained problem we would
now like to consider the generalisation of the Coleman/Conn approach.

Our aim is to develop a method that

i} uses secant approximations throughout,
if) approximates only projected Hessians
and
iii) maintains a comparable (i.e. better than linear) rate of convergence.
The objectives seem reasonable since
a) the second-order sufficiency conditions suggest it is possible, -
b) if the number of active constraints is large, considerable savings may be
realised,
and c¢) in the neighbourhood of a local minimum the projected Lagrangian
Hessian is positive definite.

In other words, we are in a situation that parallels the unconstrained case.
However, there are some differences. These include the fact that inherited positive
definiteness is not so easy to maintain as in the unconstrained case [se¢ below] and
there are some advantages to recurring more than the projected Hessian. This latter
observation is a consequence of our earlier remark that if the problem has non-linear
constraints one doesn’t know the true projected space even if the correct active set is

identified.
Details of the asymptotics of such a secant approach are given in Coleman and

Conn [1984].

The update suggested is natural in the sense that it is a straightforward
generalisation derived from projecting the unconstrained secant method. For
consistency with the details given in Coleman and Conn [1984] we shall describe a
method based upon Davidon-Fletcher-Powell. Corresponding results are readily
obtained for a projected Broyden-Fietcher-Goldfarb-Shanno update.

We now define some essential notation.

In the modified Newton method of Coleman and Conn described in section 3 the
direction d* can be considered to be defined by

d* = — z2,(ZT G, Z,) ' ZT v r*

where
G, =1 : Casel
= V2,k : Case2
= Virk — T & Viqk :Case3
i€A,
Case 1: corresponds to taking the projected negative gradient direction (the
projected gradient is small and at least one multiplier approximation is
out-of-kiiter).

Note: in this case Z; corresponds to a basis for the null space of the
gradients of the t active constraints with the out-of-kilter constraint
removed i.e. Z; has n ~ ¢ + 1 columns.

Case 2: corresponds to the projected gradient not being considered small.
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Case 3: corresponds to a small projected gradient with all multiplier estimates in-
kilter.

In the secant context we wish to redefine d¥ by d* = —Z; By ' ZF V r* where
B, denotes the current approximation to the projected Hessian ZT Gy Z, with Gy
defined as above. We emphasize that if we have ¢ active constraints at iteration k,
By isan (n—t) X (n—t) [or, in case 1, an (n—¢+1) X (n—1t-+1)] matrix.
Let

(5.1) sk = zF [x& — x] and y* = Z{[V p(x) — VB(xi)]

where
V or(x) — T AV y(x) ,if A* available
i€d,

vV p(x) = ' [i.e. ZT V r(x) small] and in—kilter,

V r(x) , otherwise

and
xim = x* + dk.
Clearly s* is the projected null space step and y* is the projected difference in the

“gradient” of p. [The superscript k on x has sometimes become a subscript in an

attempt to avoid cluttering the superscripts.]
The rank two update that corresponds to Davidon-Fletcher-Powell is given by

¥ = B s*1 *17 + *1 * — B s*17
[s¥17 y*
[s*17D* — By s*1y* *17
([s¥17 y*)?

What follows is then an adaption of Broyden, Dennis and Moré [1973], the
asymptotic analysis in Coleman and Conn [1982a] and the characterization of Dembo,
Eisenstat and Steihaug [1982].

Under the basic assumptions (see Coleman and Conn [1984] for more details)

a) f » Yi € Cz’ .

b) second-order sufficiency conditions hold at x*,

¢c) {x*} € W, a compact set,

d) linear independence of the active constraints at x ", and

e) the correct active set is identified,
we prove the following theorem Coleman and Conn [1984].

Byyy = By +

Theorem 5.1
If

X ax T =X = o] X = X7 ],
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and
LIl + LIkl =0l 1ZEV 51T+ 1 ITH ],
then
[k =" [ =0 (] 5+ = x7| ),
where

rkAZT 7 ok + |, ZT 8, rf 2T + A7 8,
§ =Xkt — 3k HF =2 V) Z,,

and x” is a stationary point of p(x, u).
Remark: The statement of Theorem 5.1 is compatible with the approach taken by
Dembo, Eisenstat and Steihaug, adapted to the constrained problem. It takes some

straightforward algebra to show that

LIrkL] = o] 1B = 2T V2 B(x") Z)2Z7 [x** — x*11 )
Thus,
[l | =o(l 1ZFV 2]
implies that,
[ [[Bx — ZF V2 p(x") Z.] ZT[x** — x*] | | = o | [x**! = x* [ ],

using Z/V rf = =B, Z[[x**! — x*] and | | B; | | is uniformly bounded below.

This is more like the Broyden, Dennis and Moré statement. However, note that there
is an omission in this latter interpretation. The above only considers the null space
component of the step. When the range space step is considered a two step superlinear
convergence rate results. We remark that r},‘ reflects the accuracy to which the system

V25, ZT 8 = —Z[ Vr* is satisfied, whereas r& reflects the accuracy to which
Af8* = —I'* is solved. Not surpisingly (since there are no constraints) this
component is absent from the Broyden, Dennis and Moré statements.

The result of Theorem 5.1 is closely related to that given by Powell [1978]:
however, the conditions given do not presuppose a particular aigorithm class.

It is then shown (Coleman and Conn [1984], Theorem 3.6) that under appropriate
conditions, the secant method above, necessarily satisfies
LIkl L+ 1kl =0l 1ZT Vel | + [ IT*[|), and consequently an
asymptotic two-step superlinear convergence rate is attained.

More recently, other researchers have considered asymptotic results pertaining to
secant methods for nonlinear constrained optimization problems that update projected
Hessians (see e.g. Nocedal and Overton {1984], Fontecilla [1983] and Byrd [1984]).

There remains one difficulty with globalising the above secant results - the
question of inherited positive definiteness. If one wished to extended directly the
unconstrained results one requires that s7 y is strictly positive where, as above
[equation (5.1)] , s and y are the projected differences in null space step and
gradient. In Coleman and Conn [1984] this is proven in a neighbourhood of
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x*, zI v? ﬁ(x')Z-) - in other words, asymptotically. Furthermore, it is easy to
prove globaily for convex problems.

The usual “trick” in unconstrained optimization is to use the line search, since
at the minimum along the line, 87 g¥*! = 0, and 87 g* < 0 implies that 87 y > 0,
where 8 is the difference in x (i.e. the search direction), g is the objective function
gradient and y is the gradient difference. One undesirable feature of this approach is
that although our (quadratic) model is a local one our condition depends upon a non-
local result, namely that the average curvature is positive. Thus, for example, if one
is in the neighbourhood of a local maximum and one begins descending, this may
necessitate a very long step indeed - in fact to a region where the previous Hessian
approximation is totally invalid. It is this non-local characterization of the line-search
resolution of the problem that causes difficulty in the nonlinearly constrained context.
Our projective affine space determined by the gradients of the active constraints at
the end of the step may bear no relation to the affine space at the start of the step.

‘Thus the approach one might take is to use the line search to ensure that
[d*17 Z, ZT VP is small enough, since [d¥])T Z, ZI V5 < 0. The difficulty is
then to ensure that p(x* + 1 d* + a v¥) < p(x*) where the scalar 7 is determined
by the line search and the scalar o is determined by the second-order correction
(@ =0 or 1 in our present implementation). This approach is currently under
investigation. However, I feel that it is likely to be inferior to an approach that can
intelligently abandon positive definiteness and make use of directions of negative
curvature since this latter approach is more consistent with the idea of -using a local
quadratic model (c.f. trust region methods).

6. Miscellanea.

Degeneracy: Degeneracy is a difficulty whose importance is gradually being
recognised. In particular there are classes of problems for which degeneracy (often,
as near-degeneracy) occurs frequently. There are some similarities between
degeneracy and singular optimization/nonlinear equation problems. Two approaches
that are currently being considered are special perturbations and less degenerate
subproblems.

An cxample of the former is given, in the context of multifacility location
problems, by Calamai and Conn [1985]. The basic idea is the following: in linear
programming, perturbations have the attribute that an optimum for the perturbed
problem lies at a vertex. Unfortunately, this is not true, in general, for nonlinear
problems. However, for specially structured problems the perturbation can be
carefully chosen so that the only points of interest for the perturbed problem are
easily obtainable vertices. This is important if, for example, one considers that for a
general nonlinear problem with n + m active constraints at the solution (that is, at
least m redundancies), a perturbed problem (with arbitrarily small perturbations) may
have no active constraints at the (perturbed) solution.

An example of the latter approach in the context of nonlinear /; problems (but
which has broad application) is given by Bartels and Busovaca [1984]. The basic idea
is as follows: suppose one is optimal for the /, problem:

m
minimize £ | f;(x)]
x =1

=
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that is presumed non-degenerate.
At optimality

oY) + I Vi) =0,

with |A;| =< 1, i € 4, where A4 is the index of active constraints and o; =sgnf;(x)
(see, for example Bartels, Conn and Sinclair [1978]).

The difficulty in the degenerate case is that, because of the linear dependence of
the active constraints, the A; are no longer uniquely defined. However, even in this
instance, multipliers, A;,, at an optimal point do exist that satisfy |A;] = 1.
Consequently, these conditions may be added explicitly as constraints. In other words
one recognises optimality by solving

iécivfi(x) + igA’l" V filx) =0

~

subject to —1 < ); < 1.

Moreover, if no solution exists, an optimal point has not been found, but a descent
direction can be readily constructed.

Soft Constraints: In engineering practice it is not uncommon to have soft
constraints - that is, constraints that are only approximate in the sense that one is
willing in certain circumstances to allow some of them to be (moderately) violated.
One may consider penalty functions to be appropriate for such environments since the
problem for which some of the constraints are soft may in fact be infeasible as stated,
although meaningful solutions may well be attainable.

Choice of the Penalty Parameter: 1 feel there is still no significant progress in
determining an ideal value for exact /, penalty function(s) penalty parameter(s). The
difficulty is that, ignoring the computational cost, one has no real idea as to what an
ideal penalty parameter choice is globally. One is not even sure as to whether it
should be constant or changing. Although changing parameters destroy most
conventional global convergence proofs, the asymptotic bounds may be an
inappropriate choice far from the neighbourhood of the solution.

Large Sparse Problems: This is an active research area and is still relatively

open. However, there may be some particular advantages in using the /;, exact
penalty function when there are just a few constraints that destroy an otherwise highly
structured problem. For example, suppose one has a problem for which all but one of
the constraints involves only a few of the variables. If this single constraint is
explicitly included in the penalty function, with a low priority for activation, then one
is able to exploit the separable structure of the remaining constraints. For similar
reasons, the /., exact penalty function is also attractive.

7. Applications - new and old. As was mentioned in more detail in [Conn
1982], I would like to emphasize that there are problems for which one might not
normally consider exact penalty function techniques but for which they are very useful
indeed. In particular, linear programming problems, quadratic programming
problems, problems with special structure (for example, continuous multifacility
location problems) and problems with linear constraints.

I would like to end this article by describing briefly three examples of current
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research that incorporates extensions of the ideas described above.
The first topic relates to the comments made earlier in §4 concerning the merit

function for SQP methods viewed as a method for solving the Lagrangian system of

equations.

i) System of equations.
Find, if possible, a solution to the system of equations

fl(x) = 0’
fZ(x) = 0’
SE: o L
‘ x €R ,yma general positive integer
Sm(x) = 0.

One approach is to solve SE via the nonlinear /, technique of Bartels and Conn [1981]
modified to handle degeneracy as in Bartels and Busovaca [1984]. One merely notes
here that in the case where some of the functions are (almost) linear the proposed

nonlinear /; technique seems particularly appropriate and furthermore the direction
m

model subproblem and the merit function X |f;(x)| are consistent. The above is
R :

i=

ongoing research with my colleagues R.H. Bartels and S. Busovaca.

ii) Non-smooth problems. ‘
This is joint work with P.F. O’Neill and details are given in Conn and O’Neill

[1983].
The problem is
NSP: minimize f(x)
X

subject to ¢;(x) =0, i €1
Yi(x) =0, i €EE
where the f, ¢;’s and y;’s may be non-differentiable or even discontinuous.

However, the f,®;’s and y;’s cannot be too pathological since the basic
approach is to separate the underlying problem into a sequence of related smooth

problems.
Essentially, we “partition” the problem into “cells” such that inside each cell we

have continuous (differentiable) problems .
A penalty function approach is then especially desirable since almost all of the

cell subproblems will only be “loosely” solved.
One then addresses the following questions

a) Which problems are so partitionable?
b) How does one use “solutions” to the continuous subproblems to solve the

original problem?
¢) What does one mean by a solution to the original problem?

- We have designed and implemented algorithms based on these ideas.
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An example of one of several applications is the compound alternative feasible set
problem viz.

minimize f%(x)

subject to

fitx)y=0, i€l
or filx)=0, i€

or filx)=0, i €I”™

i.e. minimize f° subject to satisfying at Jeast one of the systems P, 1=j<m,
being satisfied. '
iii) Semi-infinite Programming

This is joint work with N.I.M. Gould and details are given in Conn and Gould
[1984].

The problem is

SIP: minimize f(x)
xER"

subject to ¢;(x, ) =0, forallz € T,CRF i=1,....m,

where p; is some integer.
Thus, one has a finite number of variables but an infinite number of constraints.

Our aim was to produce a global method. The basis was a generalisation of the
I, exact penalty function approach to nonlinear programming. For simplicity of
exposition, I will consider the convex case, i.e. f convex, ¢;(x, t) concave in x, T;
convex and ¢;(x, ) convex in ¢ over T;.
Let

Qi(X) C T,"
be defined by
Qi(.X') = {t | ¢,'(x, t) = 0}

We note that, if the 7’s were discrete sets SIP becomes simply a nonlinear
programming problem with corresponding /; exact penalty function, written somewhat
eccentrically as,

p(x? l'L) = p'f(x) - i§l !Ef?,(x) ¢i(x9 t)a

di(x, 1) t € Qi(x)
since min [0, ¢;(x, 1)] = 0 réeQx)

This suggests a generalisation obtained by considering the limit as the discrete T;
tends to continuous 7;. Thus we solve SIP by using the exact penalty function




NON-SMOOTH FUNCTIONS 23

m f ¢i(x! t) dt
plr, ) = 1S (x) — 2

Q(x)

dt

[One can motivate the necessity of the support function f dt by considering the
Q(x)

case when ¢(x, ¢) is constant and negative on a region £);.]

More generally, in the non-convex case p(x, W) is discontinuous. However, the
problem only occurs because the region of integration splits and is readily overcome
by employing a simple trick. The interested reader is referred to Conn and Gould
[1984] for details.

The algorithm is then very much like that described for the nonlinear
programming problem. p is partitioned as p = p; + p, where p; is that part of p that
is differentiable in a prescribed neighbourhood of the current point and p,, in contrast,
contains all discontinuities in the first derivative. One then attempts to minimize p by
minimizing p; subject to p, not changing, up to the chosen order, if possible.
Otherwise the derivative of p, can be written as a linear combination of the gradients
of the V, &;(x, t;)’s that are “active” - i.e. those that determine p,.

In this latter situation one can investigate relaxing the “zero rate of change” of
one of the ¢;(x, ¢;)’s to obtain descent.

If one is not able to determine descent in this manner it is possible to conclude
that one is at a stationary point of p.

Clearly, such an algorithm would require, at Jeast, first derivatives of py(x, p),
which necessitates the evaluation of at most mn integrals.

These derivatives are somewhat cumbersome to calculate. As an illustration
consider the simplest case, where 7; C R and Q;(x) = [a;(x), b;(x)].

Then one may write

plx, 1) = 1 f(x) — ‘21 ®;(x),
. 1=

where

Dy(x) = pi(x) / qi(x) with py(x) = [ &y(x, 1) dt and g;(x) = [ ar.
Qx) | Q(x)

In this case
Vi Pi(x) _ pi(x) V. qi(x)

V, ®ix) =
« q:(x) [g: ()]
where
bi(x)
Vepx)= [ V,oix,t)dt
ay(x)
and

V. di(x, 4:(x) V. dilx, bi(x))}

Vi i) = Vi bilx) = Vi ailx) = { Ve m) Y, nx b))
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For some problems that arise frequently the structure enables these integrals to

be evaluated simply.
Our test results to date correspond to a first-order algorithm tested on small

problems to verify the viability of the method. The integrals were evaluated using

adaptive quadrature.
Our ongoing research on semi-infinite problems is in investigating second-order

methods. We also wish to investigate an approach based upon

P (X, ) = 1 f(x) — lmin min ¢;(x, )},

<i=m 1€Q,(x)

as well as considering rates of convergence.

8. Conclusion. This article owes much to my splendid colleagues, both at
Waterloo and in the mathematical community at large. Much of my interest in exact
penalty functions has been motivated by the work of all of us to develop good
algorithms for problems with nonlinear constraints. We have made a beginning, but

there is much that remains to be done.

My opinions, set out above, are based on the current state-of-the-art as I perceive
it. However, they are merely my opinions, and they should be viewed accordingly. If
at times they are enlightening, then I am lucky - if they are wrong or misleading, then
the blame is entirely mine.
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