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Abstract

This paper considers the congruence o~ ona free monoid where
U~ v iff u and v have the same letters and the same ordered pairs
of letters. The motivation for this comes from the study of bhi-Tocally
testable languages defined by testing pairs of words. As in the case of
locally testable Tanguages, a theorem on graph congruences is used
in order to obtain a characterization of the family of bi-TocaT1y

testable languages. Such a theorem on graph congruences is developed in

this paper.



1. Introduction

The family of Tocally testable languages plays a key role in
the study of star—free languages. It is defined as follows: The
membership of a word w in a language L is uniquely determined by
the prefix of length k -1 of w, the suffix‘of length k -1 of w,
and the set of all segments of length k appearing in. w, where k =1
is an integer depending on L. The syntactic semigroup 'S that
corresponds to a locally testable language L satisfies the condition
that for each idempotent e ¢ S, the monoid eSe is idempotent and
commutative. Conversely if S 1is the syntatic semigroup of L and
S 1is finite and satisfies the above-mentioned conditions on eSe, then
L is locally testable. The proof of this Tast statement is quite
difficult. One of the key steps in this proof is a theorem on graphs.
This theorem, due to Simon, appeared originally in [ 2 1, though it
was not formulated as a separate result on graphs. The treatment of
the theorem as a theorem on directed graphs is due to Eilenberg [ 3 ].
The theorem involves a congruence 1~ that corresponds to k =1 in
the test described above. More precisely, the prefix and suffix are
not tested (since k - 1 =0), and only segments of length one (i:e.
letters) are considered.

The next family in the hierarchy of languages of depth one
[ 1 1, after the locally testable family, is that of bi-locally test-

able languages. Membership of a word w 1in a bi-locally testable

language is determined by the prefix and suffix of length k - 1 of w,



and by the set of ordered pairs of segments of length k that appear

in w. The characterization of syntactic semigroups of bi-locally
testable languages is due to Knast [ 4 ], and uses the theorem on graphs
presented in this paper as one of the basic steps. The theorem involves
the congruence o~ that again corresponds to k = 1. This time, how-

ever, ordered pairs of letters are used.

2. The Main Theorem

We first briefly recall Eilenberg's notation for graphs [ 3 ].
A directed graph G consists of two possibly infinite sets

V (vertices) and E (edges) along with two functions
Q. ¢ E YV

If e is an edge, eo and ew are the initial and final vertices of .
e. Two edges e, and e, are consecutive iff €50 = €qw. Let

E¥ (E*) be the free semigroup (free monoid) generated by E, and

let C SQEZ be the set of words e;e, such that e; and e, are

non-consecutive. The set of (non-empty) paths of G s then
P=E" - E*CE*

If p-= @1...8, is a'path, define po = eqa and pw = e, u. The

length of the path is |p| = n, where n 2 1. A path p is a loop

Pa = pw. If p=eq...e, q= ei...e%,

about vertex v 1iff v

and pw =gqo then p and q are consecutive and pq = e1-..e ei...em



is a path. For any vertex v, 1v is a loop of length 0 about v,

i.e. 1va = ]vw = v. For technical reasons we assume that the set

{1v | v e VI of trivial paths is adjoined to P. Two paths p and p'

are coterminal iff pa =p'a and pw = p'w. An equivalence relation
on P 1is a congruence iff
(i) p~p' implies p and p' are coterminal,
(ii) If p~p'yq~q' and p and q are consecutive,
then pgq ~ p'q".
Let Tt: E* ~» 2E be the function that associates with each
word w 1in E* the set of edges (letters) appearing in w:
wr = {e ¢ E | w=wjew, for some WiaW, € E*1.
Similarly let Wiy be the set of ordered pairs of edges in w:
W, = {(el,ez) e EXE |ws= Wl W1EWo s WosWq Wy € E*}.
We define the following congruence on E*, Given x, y ¢ E*
X o~ ¥ iff XTy = YTy and Xt = yt.

If p is a path of length > 0, then pr and pT, are defined as

above, If p=1,6 for some v eV then pr1 = PTy = 6.

v
Theorem Let ~ be the smaliest congruence on P satisfying
z1(pq)2pzr(sr)222 ~ 21(PQ)22' (sr)zz2

for all PsqsrsS52q52 »Z,2' ¢ P such that

2

ZT 2 4T 0 ZoT and z'T © 24T n Z,T

~

(1)



Then for any two coterminal paths x and y the conditions x ~y and

X o~y are equivalent.

The proof of this result is the subject of the rest of this
paper, Before proceeding with the proof we make the following comments.
The congruence o~ involves testing the set WwT, of pairs of letters
appearing in a word w (or the set wr in case Wty = ¢, i.e.
lwl < 1), and is defined on E*. The theorem states that the equiva-
lence of any two coterminal paths with respect to o~  can always be
demonstrated by coterminal path transformations of the form (1). It

is easily verified that
X ~y implies x o™ Y (2)

The converse of (2) constitutes the problem.
Rule (1) is quite complex as compared to the rules in Simon's
theorem, where the rules corresponding to (1) are

X ~ x2 and xy ~ yx

for any two coterminal loops x and y. We were unable to simplify

Rule (1) or to replace it by a set of equivalent or weaker rules. The

graph of Fig., 1 provides an example of the difficulty involved. Consider

the coterminal paths

y 2 .
X=c dlcdz(a]az) a]ch(b2b1)2e1ce2c

. and y c'd1cdz(a1a2)2c'(b2b1)Ze]cezc'
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Figure 1

One easily verifies that x o~ Ve If we let Z = c'd1cd2 and
z, = eTCGZC' » we have an instance where Rule (1) applies. Ue were
unable to find a simpler set of rules for this example.

In a number of cases Rule (1) degenerates to considerably
simpler rules. It will be convenient to identify them distinctly,

even though they are covered by (1). If 2T, z2'T © 29T n Z,T then:

2122, ~ z]z'z2 (1a)
z (pq)2p22 ~ z.(p )zz'z (1b)
1 2 7 Z1\Pa 2

z]zr(sr)zz2 ~ z]z'(sr)zz2 (Tc)



3. Singularities

Let A be a finite alphabet and x ¢ A*, If x = X{3X,

aech and a ¢ (x]xz)r then a 1is a singular letter of x. If
X = xoax]bx2 where a and b are not singular letters of x and

(b, a) ¢ XT, 5 then (a, b) 1is a singular pair of x. Singular letters

and singular pairs are called singularities of x. If x = anx]bxz s
this factorization is an occurrence of (a, b). An occurrence is inner
if a¢ XJT » b ¢ XqT . Clearly every singular pair (a, b) has a
unique inner occurrence consisting of the rightmost a of x and the
leftmost b. An occurrence Xp3Xqbx, is proper if ax; and x;b have
no singularities of x ; note that every proper occurrence is necessarily
inner. A singular pair need not necessarily have a proper occurrence.
For example, let x = aebbacdfdfc . Then e is the only singular
letter of x and (a, c), (a, d), (a, f), (b, c), (b, d), (b, f) are
the singular pairs of x. The factorization (aeb)b(ac)d(fdfc) shows'
the inner occurrence of (b, d). Only (a, c¢) has a proper occurrence,

namely (aebb)a(1)c(dfdfc) .

Proposition 1. Let (a, b) be a singular pair of x.

{a) Let x = xoax1bx2 be an inner occurrence. Then
a e XgT - (xlbxz)r b e XoT = (xoax])r

(b) Let x = xoax1bx2 be a proper occurrence. Then
XqT € XgT N X5T

(c) Let x o~ Y and Tet x = xoax]bx2 and y = yoay]by2 be inner
occurrences. Then

XgT = YT XoT = Yot



(d} Let x o~ Y and let x = xoaxlbx2 be proper and y = yoaylby2 be

inner. Then ¥ has no singular letters of x.

Proof:

(a) If ace XoT then (b, a) ¢ xT, contradicting that (a, b) s
singular. If a ¢ X1 then the occurrence shown is not inner.

If at¢ XqT then a is arsingular letter of x, contradicting
that (a, b) is a singular pair. The same argumenté apply to the
claim about b.

(b) Let c ¢ X1 T3 then (a, c¢) ¢ XTy The pair (a, c¢) cannot be
singular because the occurrence of (a, b} as shown is proper.
Hence (c, a) ¢ XT,. Since a ¢ (x1bx2)r, we must have ¢ e XQT-
Thus X1 T < XgTs and XqT € X5T follows similarly.

(c) ce XoT implies (c, a) ¢ XT, = ¥T, . Hence c ¢ YT and
XqT < Yot - Similarly YT < XgT and the claim follows. By
symmetry Xyt = Yot

(d) If c e ylr is singular then (c, a),(b, c) ¢ Y¥T,. Since
XTy) = ¥Tps C must occur exactly once in Xq» to satisfy these
conditions and the condition that c¢ is a singular Tetter of «x.

But this contradicts the assumption that anx]bx2 is proper.

Proposition 2. Proper occurrences of singular pairs do not overlap,

i.e. suppose x = xoax1bx2 and x = yocyldy2 where the occurrences
are proper; then either |xO| > |y0cy1d| or !yol > |x0ax1b|, and

a, b, c, d are all distinct.
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Proof: Without Toss of generality, assume that |x0| < Iyol. Then
cy1d is to the right of Xg Suppose first the overlap has the form
b=c and x = xoax]by]dyz. Then b ¢ (xoax1)r because (a, b) is
inner as shown and b ¢ (y1dy2) because (b, d} = (¢, d) is inner as
shown. Hence b 1is a singular letter, contradicting that (a, b) is a
singular pair. Thus this type of overlap cannot occur. Next suppose
X = xoax”cx]zbymdy2 . Weknow a#b and c#d. If c=0b then
the occurrence (xO)a(x1]cx12)b(y12dy2) of (a, b) 1is not inner; hence
c#b. Now b ¢ (xoax]]cx]z)r because (a, b) is inner. Also
c ¢ (x]Zby]zdyz)r because (c, d) is inner. Hence (c, b) is a
singular pair of x, contradicting that the occurrence of (a, b) is
proper. Again, this type of overlap cannot occur. Thirdly, if a = c,
then x = xoax1by12dy2 and the occurrence of (a, d) cannot be proper.
This is a contradiction. Similarly we can't have b =d . Finally, we
can't have (c, d) occur in x; because the occurrence of (a, b) s
proper. Hence, no overlap can occur.

We already know that a # b, a #¢c, b#c, b#d, and ¢ # d.

One " verifies also that a # d.

4, Alignment of Singularities

We introduce the following notation to reduce the number of
cases that have to be considered. Let

uawbv



represent the usual word uawbv, with a,b ¢ A, or the word uav. The
latter case occurs when w =1 and a = b. Frequently it is possible
to handle both cases by the same arguments, and this notation permits

this.

Proposition 3. Let x = anx]bx2 be a proper occurrence of (a, b).
Suppose Yy o~ X and y = yoay1by2 where the occurrence of (a, b) is
inner. Then either the occurrence of (a, b) in y is proper or ay]b

contains exactly one proper occurrence of a singular pair of x.

Proof: Suppose (a, b) in y is not proper. By Proposition 1(d)
2 has no singular Tetters; hence it must have at least one singular
pair. Suppose it has two proper occurrences of singular pairs. By

Proposition 2 they do not overlap, so y has the form

Y = Yga¥ygt¥q19Y108Y13fy14bY;

where {c, d) and (e, f) are the two proper occurrences. ‘Now
(d, e) « ¥Tp = XT,
(b, e) & Yo because b is leftmost and e 1is rightmost
(d, a) ¢ yt, because a is rightmost and d is leftmost.
Thus (e, b) and (a, d) are singular pairs of x. Therefore
d ¢ XgT » and d ¢ XqT because xoax1bx2 shows a proper pair (a, b).
Similarly e ¢ XoT and e ¢ 1T+ Hence (d, e) cannot occur in x.

This is a contradiction, showing that exactly one singular pair can be

proper in ¥q-
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Proposition 4. Let x = xoax]bx2 be a proper occurrence of (a, b)
in x. Suppose that x o~ Y but y has no proper occurrence of

(a, b). By Proposition 3 y has the form y = yoay10cy1]dy]2by2

where the occurrence of (a, b) is inner, either a#c or b # d, and
the occurrence of (c, d) 1is proper. Then

x==xmcx02ax1bx2]dx22

where the occurrence of (¢, d) is inner.

Proof: Observe that (a, d) « yt, but (d, a) ¢ yt, because a is
rightmost and d 1is leftmost. Hence (a, d) ¢ XTo and (d, a) ¢ XTy.
Thus d ¢ Xgr- Also d ¢ X7 because the singular pair (a, d) would
appear in ax]b and the latter is assumed to be proper. Thus

d e (bxz)r and x = Xoax12fglf¥22 , where d ¢ Xo1T- Similarly,

(c, b) ¢ XTp s (b, ¢) $XT2 and Xpd = XOIEfgzi , giving the desired

form for x.

Lemma 1. Let x o~ Y s where x and y are coterminal paths in a graph.
Then there exists y' ~y such that a proper occurrence of a singularity
exists in x iff it exists in y' . Further, if x = xoax1bx2 where

(a, b) is proper, then y' = yéax]byé .

Proof:
(i) If x = X;ex, where e is a singular letter, we must have
Y = Y189, s since the occurrence ofa.singular letter is always

proper.
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(ii) Suppose x = xoax1bx2 and y = yoay1by2 where both occurrences
are proper. By Proposition 1(b), X]T € XgT 0 X,T and
XgT = YgTs  XpT = Yot by Proposition 1(c). Thus
X{T € Yol N Yot - Also Y1T € YT 0 Yot . Since Xq and y, are
coterminal paths, we can apply Rule (la):

¥ = (ygalyy(by,) ~ (yga)x (by,) = y*' .

(iii) Suppose y 1is as above, but the occurrence of (a, b) is not
proper. Then, by Proposition 3,

R AR AP (3)

where (c, d) 1is proper and (a, b) is inner and either a # ¢

or d #b or both. Then, by Proposition 4,

X = xmcxozax]bxz]dx22 (4)

where (a, b) is proper, (c, d) is inner and either a # ¢ or
b #d or both.
Case 1: a#c¢c,b=4d

We have the following factorizations:
X = XOICXOZaX]bXZ’
Y = Yoa¥10%¥115Y,-
Let u = ywcy”by2 , S0 that y = Ygau where a is rightmost.
Then a ¢ utr and (xoza)r ¢ ut . However, (xoza)r c yt because

X o~ Y implies xt = ytr. Therefore there must exist precisely

one suffix w = eygpau of y such that (ona)T c wr but

(xoza)r ¢ (ygza u)t , where Yool denotes Ygp2 Wwhen e # a

and y,,a = 1, when e =a . Note that e ¢ (ygza u)r and also
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that e must be a letter of x02a y let Xgpd = xézexgza » where

where e ¢ XgoT- Then

= ! 1"
X xmcxozexozax]bx2
Y = Y1111, = Yo -

Consider the loop h = &Y923¥19%%02 - We claim that this loop can
be inserted after Yo in 'y by using Rule (1a). For we have
(eyozay]oc)r < wr by the definition of w above. Also
xézr c (xoza)r cwt . Thus ht c wr .

Next we must verify that ht c YorT - By construction e s
rightmost in y . Thus f ¢ cbeT implies (f, e) ¢ XTy = YT,
and f e Yort - Hence CXOZT c yo]r . _In fact we have

(XO])T < Yg11 by the same argument. Now f « (eyozay]O)T implies
(f, ¢) ¢ YT, = XT, and f ¢ X1 T because ¢ is rightmost in x

as shown. Thus f ¢ Yor7- Altogether, ht c YorT - Inserting

two copies of the loop h we have
Y T Y18Y0p2¥19%Y110Y;
D2
~ Yo1(eYpayqgtxg,) “eygayy geyy by,
= y01eyoza(ylocxézeyoza)zylo°y11by2

Let 21 % Yg1®go? 5 P = Yip¢ » 9 = xézeyoza > 2= Y1 o and
z, = by2 . Then
2
y ~ z;(pq)"pzz, .
We now show that 2zt < z,1 n z

1 oT In fact, f ¢ 1t implies

(c, ) ¢ yt, and so (f, ¢) 1in YT, = X1, because
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(cy b) = (c, d) 1is proper in y . Thus f ¢ X01T < YT > and
we have f ¢ ZT . Therefore 2zT e 21T . Similarly f ¢ ¥11°
implies (f, b) « yT, and (b, f) ¢ yt, . Hence f e y,r and
2T C 22‘1'.

Let z' = Xq - Then XqT € Z3T 0 Z,T by similar arguments.

We are now in a position to apply Rule (1b):
y ~ z.(pq)%pzz
1 2
2_4
~ z7(pq)"z'z,

_ . 2
= Y0102 (¥10%028Y o2 ) X1 bY 5

1]

. )2
[yg1(#Y092Y10%02) @Y g2 12%1 09,

yiax1byé =y'
which has the desired form. We can also write

¥ = Yyeygas ax by, = yoa%ax;by,
where g = aymcx(’)zeyo2 . Recall that proper singularities do
not overlap. In y = yoay.locynby2 we have the proper
singularities in Yo®¥10 and in 2 and the pair (c, b). By
Proposition 3 the segment ay10cy]1b has only one proper
singularity; hence there are none in ayqq - Now in y' we have
the proper singularities of Yo?¥10 and Yo and the pair
(a, b) which replaced (¢, b). The segment g2 is free of
singularities, since each pair (f, f') ¢ gt x gt appears at

2

least twice in 92 if f#f" , and g~ can't have any singular

letters. This Teaves the possibility that there is a proper
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singularity in Yo9 of the type f ¢ Yo » f' ¢« g . But

1 1] 1
9T < YT < Yol - Hence either (f', f) ¢ Yoo and (f, f')
is not singular, or (f, f') ¢ Yoo and the signularity in
Yo was not proper. Thus y' has only the proper singulari-

ties of y with (c, d) replaced by (a, b).

Case 2: a=c¢c,b# d'

This follows by left-right symmetry from Case 1. This
time a loop is inserted on the right side and Rule (1c) is

applied.

Case 3: a#c,b#d

Proceed as in Case 1 inserting first the left loop, then

the right loop, and apply Rule (1).

In all cases of (iii) we can transform y into y' in such

a way that the proper singularities of y' are the same as

those of y except that (c, d) has been replaced by (a, b).

Now consider two words x, y ¢ A* such that «x o~ Y . Clearly
each singular Tetter of x must also be a singular letter of y and
vice versa. Also, if (a, b) has a proper occurrence in x then either
(a, b) 1is also proper in y , or (a, b) occurs in y with another
proper pair (c, d) , as in Propositions 3 and 4. As shown above, we can
find y' such that y' ~y and the singularities of y' are those of
y » with the exception that (c, d) has been replaced by (a, b). By
repeating this process we find y' ~y such that y' has

exactly the same singularities as x. It is easily verified that these
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singularities must appear in y' 1in the same order as in x. Thus we
may assume at this point that x and y have the same singularities
and that they have the form:

X = XpS1XqSp +ev SpXo

" YoS1Y152 o S

where m20, x, , i=0, ..., m, do not have any singularities of

~<
1

x and either $s;Te ec A, or $; = awib is a proper singular

pair of x.

5. Segments Between Singularities

Refér to the factorizations of x and y above that show
all the proper singularities. In this section we will show that the
segments Y5 between proper singularities can be replaced by the
segments X by using only Rule (1). The main result here is Lemma 2,

but we need several preliminary results first.

Proposition 5. Let

X = XpXoXg = (XOS] ces x1.s1.)x1.+](s.iﬂxi+2 cee SpXe) s

i20, m=20 , where i] = XSy +ee XiSi 22 = X34 » and

X3 = (51.+]x1.+2 - smxm) , and let

y = y1y2y3 = (yos] e yisi)yi+l(si+]yi+2 cas smym)
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be similarly defined, where x o~ Y s X and y are coterminal, and x
and y have the same proper singularities. Then 22 and }2 are

coterminal and

- - -

X1T = ¥qT X3T = §3T
(X]xz)T = (‘y]‘yZ)T (X2X3)T = (y2y3)T
Proof: If x has no proper singularities then 22 = X and 92 =y

and the claims easily follow. If x has exactly one singularity then

either X = 1, Xo = Xg s X3 T SqXp OF Xp = XaSeou X5 = Xq o, and
X3 = 1. 1In the first case e 1, Yo = ¥ and Y3 = sly] . Again
the claim is easily verified here, and the second case is symmetric.

The general case follows easily with the aid of Proposition 1(c).

Proposition 6. Let x ¢ A* have the factorization

X T XgXpX3 T XX 3%p0%3
where x, = X,j8%X,p » @ c A, and a ¢ (X]XZ])T . If x, has no
singularities of x , then

(x2]a)T c (x22x3)r .

Proof: Since a appears in Xo and Xo has no singularities of x ,
we have (a, a) « XT, . Because a ¢ (x1x2])r, we must have

a e« (x22x3)1. Also e ¢ Xo1T implies (e, a) « XoTy Since Xo has
no singularities of x , we have (a, e) ¢ XTy and e ¢ (XZZXB)T'
Thus (x21a)1 € (x22x3)r.
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Proposition 7. Let x,y ¢ A* have the factorizations

X = XqXoX3 = XpXp13%50%g

VI NYpl3 T Y @Y
where Xy and Yo have no singularities of x , and Xy = Xp13%5s s
Yp = ¥p1@py » ac A, a ¢ (x]xz])r u (y]yZ])T. Then
(X2X3)T = (y2y3)1 implies (x22x3)r = (y22y3)r.

Proof: (X22X3)T = (x21ax22x3)r = (x2x3)1 by Proposition 6. Similarly
(y22y3)r = (yzya)r and the claim follows. 0O

Let X,y € A* be such that xt = yr and let B be a given
subset of xt . Let X and y be prefixes of x and y respectively.

The pair (X, y) 1is called a B-pair iff
XT=yT 2B .

Let PB(x, y) be the set of all B-pairs of x and y . This set is
nonempty since (x, y) e PB(x, y) . Define the binary relation < on

Pa(x, ¥) by
(x> ¥1) s (xp5 ¥5) 3FF X < [x] and [y < |y, .

One verifies that < 1is a partial order on PB(x, y) .

Proposition 8. PB(x, ¥) has a unique minimal element with respect

to <.
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Proof: Because P is finite it suffices to show that for all

Py = (xg5 ¥1)s Py = (%95 ¥5) in Pg(x, y) there exists

p = (X, ¥) ¢ PB(x, y) such that p < p; and D s py. If Py S Pys Tet
p= Py - If Py < Py let p = Po- Now suppose neither Py <Py nor

Py < Pq- Suppose also that lx]I > |x2|. Then, since Py $ Pos We
must have [y, | < |y,[. Now

X2T c X.I'r = y1T c yz'r = Xz'r.,
Llet p = (XZ’ y]). Then p is a B-pair and p < Py P < P,.  Similarly,
if |x]] < [x2|, then |y1| > |y2|. Let p = (xq2 ¥,) s then p s the
required B-pair. Finally the case ]x]l = ]xz[ cannot occur, for then

either Py <Py O p, < pg. 0

Lemma 2. Let x and y be coterminal paths such that x o~ Y and

suppose that x and y have the factorizations:
X = XpXaX3 Y= NYa¥3

where Xo and y, are coterminal and do not contain any singularities

of x and
X-[T = y]T X3T = y3T
(X]XZ)T = (.V'I.yz)T (X2X3)T = (yZ.Y3)T

Then y ~ YiXo¥3-

Proof: The proof proceeds by induction on |le + |y2[.

Basis: |x2l + |y2I = 0

Here Xy = Yo = 1 and y = y]1y3 ~ YiXo¥g -
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Induction Step: |[x,| + ly,| >0

We assume that the lemma holds for all cases where
Ix,1 + |y, < k. Suppose now that |x2] + |y2| = k+1. The proof will

be decomposed into several cases.

Case 1: X,T < Xq1 and X,T < X3T
Here y,T < (yTyz)r = (x1x2)r = XT = YqT Similarly
YT < YT Also XoT € YqT A YaT. By Rule 1(a)

Y = YYp¥y m YiXpYse

Case 2: x,T ¢ X1 T

Note that YoT ¢ Y13 otherwise
XpT © (x]xz)r = (y]yz)r = Y37 = X7, which is a contradiction. Let a
be the first letter of X5 from the left that does not appear in Xy
Similarly let b be the first letter of Yo from the left that is not
in ¥q- Then Xo = Xp1@Xnos Yo = y2]by22 and
X = XqXy1@8%poXs s Where a ¢ (XyXpq)T = Xj7 s (5)
y = y1y21by22y3 » Wwhere b 4: (y]yz])'[ = y]T . (6)

We consider next two subcases.

Case 2.1: a=>b

Here we have

Y = ¥9¥pq@Yp0¥5 5 Where a § (yi¥,)T = yyT s (7)

and x is as in (5). Now X1 and Yy are coterminal and
Xp1Ts ¥Yo1T < ¥qTe By Proposition 6, YpqT < (y22y3)r. By Propositions
6 and 7, XpqT < (X22X3)T = (y22y3)r. By Rule (1a)
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¥ = () () (aypp¥3) ~ (¥9)(xy9)(ay,0y4) = y*. (8)
Now let xi = X1X5q25 xé = X905 and xé = X3 Then
X = x'xéxé = (x]x21a)(x22)(x3). (9)

Similarly, let yi = ¥iX5q2 > yé = Yoo > and yé =Yg - Then
Y = ypY¥3 = (%512 (¥p,) (v5). (10)

We verify the 4 conditions of the lemma:
(i) XT = (xx5q2)7 = (y]x21a)T = yqT.
(1) (o)t = (xqxp)T = (yy,)T = (yqyh).
(1i1) xér ¥ XT =Ygt = yér.
(iv) (XéXé)T = (X22X3)T = (y22y3)T = (yéyé)r by Proposition 7.

Note that xé is a proper factor of Xo and yé is a proper
factor of Yo- Hence xé and yé do not contain any singularities of

X. Evidently fxéf + [yé[ < |x2| + [y2| and we can apply the induction
hypothesis:

- Tytyl o oylylyl = =
VUOT 1YYy Y VXY T YiXp1@%po¥3 T YiXa¥3.
Altogether y ~ y' ~ Y1%o¥3 and the induction step goes through in this

case.

Case 2.2: a#b

Refer to (5) and (6). Since b « (y]yz)r -yt = (x]xz)r - Xyt

we must have b ¢ XooTu Similarly a YooT and
X = XpXoXy = x](xz]axzz)x3 = x]x2]a(s]bsz)x3, (11)

where Xoo = s1bs2 and b ¢ (x]xz]as1)r, and
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Y = Y9¥o¥g = ¥ (¥pqbyoolys = ¥q¥oib(tiat,y)yss (12)
where y,, = tiat, and a ¢ (y1y21bt1)T. In other words the Teftmost

appearances of b in x and a 1in y are shown.

Let (351)T U (bt1)T B. The prefixes X1Xo of X1Xo and

Y1¥7 of Y1¥o satisfy
(X'[xz)T = (y'l.yz)T > B.
Thus (x1x2, y]yz) is a B-pair. By Proposition 8, there exists a

minimal B-pair (X, y¥). Since beB and b ¢ (x1x2]as])r we have
|x1x21as]b! < X[ =[x, (13)

Similarly
lyq¥oqbtial = 1¥1 = |yq9,] (14)

Let c be the last letter of x and d the last letter of y , and
let X =pc and y = qd. We claim first that ¢ # d. Note that
¢ ¢ pt, for otherwise the pair (p, y) would be a shorter B-pair.
Similarly d & qt. Assume now that ¢ =d. If c ¢ B, then (p, q) is
a B-pair, contradicting the assumption that (pc, qc) is minimal. Thus
¢ ¢ B = (asybty)t. Since |x]x2]as1b] < |pc| and ¢ & pt, the condition
C e (as1b)T jmplies ¢ = b. But then c ¢ (y]yZ]bt])T and  y,¥,,bt,
is a proper prefix of y. This implies ¢ ¢ qr which is a
contradiction. Hence we cannot have ¢ ¢ (as]b)r and we must have
e tyt. This is again a contradiction of the fact that c ¢ gr.
Therefore c¢ # d.

From (13) and (11) it is clear that either c=b or c#b

and ¢ ¢ So- Both cases can be handled by the notation
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pc = xTx21a51b521. (15)

For if ¢ = b, let Sy1 T 1. Otherwise let So1 be the shortest prefix

of S, that ends in c. In either case let Sy = $5155,- Similarly
qd = y1y2]bt1at2] (16)

where t2 = t21t22 and t21 =1 if d = a, and t21 is the shortest

prefix of t2 that ends in d, otherwise. Now let

f = as1b521,

We now arrive at the decompositions of x and y :

X = XqXoXg = x1x2]ax22x3 = XIXZTaS]b52X3 (a7)

= X1%21881PSp1890%3 = XqXg1FS pX5 = Pesyoxg,
Y T Y¥o¥3 = Y¥rbYpp¥3 = Yi¥pbtjatyy, (18)
= VY 1btatygtyoys T yiYp9typys = adt,oys.
Consider next where ¢ can appear in y. Since
¢ e (pc)t = (gd)T, we must have ¢ « (y1y2]bt1at2])r. If ¢ e (y1y21)r

then ¢ ¢ X4T and ¢ € pt which is a contradiction. Hence

C e (bt]at21)r = gt. Similarly d e (aSTbSZ])T = fr. Let

f

asibs,; = ujdu,c, where d ¢ u,r, (19)

g = btjaty; = vicvyd, where c ¢ VoT. (20)

In other words we take the rightmost appearances of d in f and ¢
in g. We now have the factorizations illustrated in Figure 2. Of
necessity, the figure shows a particular case and should only be used as

a visual aid.
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We will deal with the factorization
X = XqXpX3 = (x1x2]f)(522)( 3)s | (21)
where xi = x]x21f, xé = Soos x3 = Xj3. We begin with
Y= VY 9tpY3
and we will show that y ~ y' where
Y' = yyayy = (yxoF)vedty,) (ys) (22)

where yi = ylxz]f, yé = VZdtZZ’ and yé = Y3- The proof is given in
Lemma 3 below. Assuming this result we next show that all the conditions

of Lemma 2 apply to (21) and (22).

2 = Vadty,

is a proper factor of Yoo -Hence xé and yé contain no singularities

First, xé = Syo is a proper factor of Xo and y

of x. Second, xé and yé are coterminal. Third, y ~y' (Lemma 3)
implies y o~ y' and so x o~ y'. Finally, we verify the four

conditions on the alphabets of the factors:

(1) xir = (x X2]f)T = (y]XZ]f)T = yir.
(1) (XiXé)T = (x x2 (y1y2)r = (qd)t v tooT
= (pe)t u toyT = (x1x2]f)t U tooT
= (y1x2]f)1 U tooT = (y]xz]f)r U (vzd)r U tooT
because (Vzd)T c (y]yz)r. Therefore
(xixé)r = (y]xz]fvzdtzz)r = (yiyé)r.
(i11) XéT = X3T = YoT = yér.
(iv) Since y; ends in f which ends in ¢, e e (yiyi)t implies
1 273
(c, &) ¢ y't, = XT,. Hence e e (522x3)T’ because c¢ ¢ pr.

Therefore yéyé T < (X5x3)T.



= (.V21gt22.Y3)T-
(.YZ]Q)T < (t22y3)'f-
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Conversely, (XéXé)T = (522X3)T c (x2x3)T = (YZY3)T

(xpx3)T = (y3¥3)7.

By Proposition ¢ applied to the letter d 1in g,

Hence (xéxé)r < (t22y3)T c (yéyé)r. Thus

Now all the conditions of Lemma 2 are satisfied. Since

Y' T YYoY3 v Y Xp¥3 = YyXgifs,oys

through.

Case 3: x,T ¢ X4T

[x3] + 151 < [x5] + [y,], the induction hypothesis applies and
- 1%Y3

Therefore y ~y' ~ YiXp¥5 as claimed, and the induction step goes

This follows from Case 2 by left-right duality.

Since the induction step goes through

holds.

Lemma 3. Let x, y, and y' be defined as

Then y ~y'.

Proof:

(a) We first show that the graph consisting of

is strongly connected. Since the node buw
by the path tys all the nodes in the path
- [ 1} ] s
fo. Let So1 = Sp1507 where Sp7 18 the
that is connected to fo. Similarly, aw
= | 1] 1 3
by $7- Let t21 21851 where tz] is

t21 connected to ga. See Figure 3.

in all cases, the Temma

in the proof of Lemma 2.

the edges in C = ftr v grt.
is connected to aa = fo
as]b are connected to
tongest prefix of So1

is connected to ba = qu

the longest prefix of



S21

y__.¥

H

t21

1%

Figure 3

Now sﬁ] cannot have any edges in common with as1b521 or bt]atz].

Otherwise the w end of the common edge could be connected to fa.

Hence
SE]T n (bt1até])r = ¢,
Also, (pc)t > (qd)T, i.e.
(x1x21a51bsé])r U SE]T > (y]yz]bt]até])t = (y]yZT)t u (bt]até])r.
Consequently we have:
(x]x21a51bsé])r > (y]y21bt]até])r.
Similarly the reverse inclusion holds and
(x]xZ]as]bséT)r = (y]y21bt1até])T > B = (351)T U (bt1)r.

1 . .
Therefore (x]x21as]b52], y]yZ]bt1até]) is a B-pair. However (pc, qd)
is a minimal B-pair. Hence we must have sé1 = So1s té] = t21, fw
is connected to fo and gu 1{s connected to ga. Hence the graph is

strongly connected since f and g have a common edge.
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(b} In view of (a) there exist paths h and k such that

ha = fw, hw = fao, ht < C

ka = gw, kw = ga, k1t < C.

Let f' = u2ch and g' = vzdk. Then f'fg'g 1is a Toop about the
vertex dw = gw and f'fg'g < C. Now

Y = Y1Y19tp,Y3
~ (y],y2'[g)(f'fglg)3t22y3
by (l1a), because (y}yzlg)T = (qd)t = (tc)t o C, and
Cc (t22y3)1 by Proposition 6. Thus

2

y y1y219(f'f9'9)3t22y3
= YY1 (9 ) ((Fg')(gf"))PFg gty

[yy 10y (sF)I0(Fg" ) (9F)I°T Fg' gt ]

Now Rule (1c) can be applied, yielding
] L] 2 ]
Y ~ ¥y%pq(fg'af ') fg'gt,oy,
where we have replaced y21gf' by Xo1 The alphabet conditions

on  Xoy and Yoy We easily verified. Thus

)2

2

y fg'gt, oy,

2

¥i%p1(fa'gf!
= ¥1%p1f9' (9f'fg' ) gt,oy4

~ ¥1Xpqfa'gt,,y5 » by Rule (1a)
= y1x21fv2d(kv]cv2d)t22y3

~ ¥1X21fv2dt22y3 » by Rule (7a)
=y'.

Hence the lemma holds.
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This concludes the proof of Lemmas 2 and 3. By combining

Lemmas 1 and 2 we have the theorem.
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