THE SYNTAX AND SEMANTICS OF LUCID

E.A. Ashcroft*
&
W.W. Wadge**

Technical Report CS-84-24
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

August 1984

* Computer Science Laboratory, SRI International,
Menlo Park, California, U.S.A.

** Computer Science Department, University of Victoria,

B.C., Canada

Table of Contents

1 Summary
2 Syntax
2.1 Introduction
2.2 Abstract Syntax
2.3 Concrete Syntax
2.4 Example
3 Semantics
3.1 Introduction
3.2 Denotational Semantics
3.2.1 Lu(A), The Algebra of Sequences from the Universe of A
3.2.2 Environments
3.2.3 The Meaning of Terms
3.2.4 Examples
3.3 Operational Semantics
3.3.1 Examples
4 Language Extensions
4.1 Arrays
4.1.1 Ferds
4.2 Types
4.3 Tuples

IO U b b i OORD e e

1 Summary

The language Lucid has been developed, by the authors, over a period of ten years. In
that time, the language has undergone many revisions, and, even, drastic changes in
syntax. As a consequence, all of the published literature on Lucid (for example [1], [2],

[3]) does not refer to the current version of the language. With the current version, the
language has arrived, finally, at a stable, finished form. (Future changes should only be
extensions, and existing programs should remain legal.) A book has been written about
this final version [4], and it should appear in late 1984, or early 1985. This paper is
concerned with the current language, and will, we hope, encourage the reader to study
the book.

This paper will give a short description of the syntax and mathematical semantics of
Lucid, followed by a discussion of operational ideas appropriate to the language. The
first part demonstrates the formal simplicity of the language, and the second part
demonstrates the power and expressiveness of the language and the subtlety of its

. possible operational interpretations. A short final section discusses possible extensions to
the language.

2 Syntax

2.1 Introduction

Lucid is an expression language: Lucid programs are simply expressions ({erms); there
are no statements in the language. The language is definitional, and, apart from terms,
the other main syntactic category is definitions.

Terms are built up using constants, variables, operation symbols and user-defined
function symbols. (There are no procedures in the language.) Compound terms, called
where clauses, are terms with subsidiary definitions. These clauses may contain
declarations. (These declarations are not type declarations.)

Function symbols are defined in the same way as variables, as being the values of terms,
but they also have formal parameters.

De fined variables are time-varying quantities. Some variables, namely the declared
variables, are not time-varying. They are simply declared to be the current, or *frozen®,
values of expressions that are thought of as being evaluated outside the clause containing
the declarations. As will be seen, this device gives the language the ability to specify
subcomputations.

The variables and function symbols defined in a clause, together with the variables that
are declared in the clause, are called the locals of the clause. The other variables and
function symbols occurring in the clause are called the globals of the clause.

A program is simply a term in which every function symbol that is used is defined in
some clause. The variables in the program that are not local to some clause are called
the input variables of the program. (The value of the term is called the output of the
program.)

2.2 Abstract Syntax

1. A program is a term,

2. A ferm is either

a. a constant, or
b. a variable, or
c. an operation symbol together with operands, which are terms, or
d. a function symbol together with actual parameters, which are terms, or
e. a clause;
3. A clause is a subject, which is a term, together with a body;

4. A body is a set of declarations of distinct variables, and a set of definitions of
distinct variables and function symbols;

5. A declaration is a variable (the declared variable), together with a declarer
for that variable, which is a term;

6. A definition is a right-hand-side, which is a term and a left-hand-side,
which is either a variable (for a variable definition), or a function symbol
together with formal parameters, which are distinct variables (for a function
symbol definition).

The term that is a program must be such that every function symbol appearing in it is
defined in some clause.

Implicit in this syntax is the fact that the operands, actual parameters, and formal
parameters are ordered. Also, function calls always have the same number of actual

parameters as there are formal parameters in the definition of the function symbol in
question, and each operation symbol is always used with a particular number of
operands, namely the "arity® of the operation.

2.3 Concrete Syntax

The following decisions concerning concrete syntax were made for the current Lucid
implementation. ;

Nonmonadic operation symbols are written infix. Monadic operation symbols are written
prefix (no parentheses necessary).

Function symbols are always written prefix, with parentheses around the actual
parameter list, with the actual parameters separated by commas. The same convention
. is used in the left-hand-sides of definitions of function symbols, i.e., the function symbol
precedes the list of formal parameters, and the formal parameters are enclosed in
parentheses and are separated by commas.

Declarations have the words is current separating the declared variable and the declarer
for that variable. Definitions are written as equations. Declarations and definitions are
always terminated with a semicolon.

Clauses are written with the subject first and then the body. The body is enclosed by
the words vhere and end, and the declarations are always written before the definitions.

2.4 Example

The following program {which computes the running root mean square of its input a)
illustrates most of the features of the syntax of Lucid.

sqroot (avg(square(a)))
where
square(x) = x*x;
avg(y) = mean
where
n = 2 fby n+l;
mean = y fby mean + d;
d = (next y - mean) / n;
end;
sqroot(z) = approx ssa err < 0.0001
where
Z is current z;
approx = Z/2 fby (approx + Z/approx)/2;
err = abs(square(approx)-2);
end;
end

3 Semantics

3.1 Introduction

The primary semantics is denotational. Any implementation that produces outputs that
are those specified by the denotational semantics is a correct implementation. The
denotational semantics does not specify operational details, and there are several
different ways of thinking operationally about Lucid programs, none of which might
correspond to an actual implementation, but all of which might be helpful in
understanding programs or designing programs. Some of these possible ways are
discussed in the subsection about operational semantics.

3.2 Denotational Semantics

Lucid is actually a family of languages, not one particular language. Any one of these
languages is differentiated from the others in the family by its choice of the data objects
that programs can use, and the simple operations on these objects, and the constants,
that are available as primitives. In other words, the language is characterized by an

algebra. If the algebra is A, we will denote the corresponding version of Lucid by
Lucid(A).

We will consider an algebra to be a function from the symbols in its signature to their
meanings, elements of the universe (carrier) of the algebra for constants, and operations
over the universe of the algebra for operation symbols.

Because the denotational semantics of Lucid is given using fixpoint theory, the algebra
on which a Lucid language is based has to be a continuous algebra. That is, the
universe of the algebra must be a complete partial order (cpo), and all the operations in
the algebra must be continuous (using the ordering of the cpo).

3.2.1 Lu(A), The Algebré of Sequences from the Universe of A

Given a continuous algebra A, we can define a continuous algebra Lu(A) as follows. The
signature of Lu(A) is the set of symbols in the signiture of A, together with various
*Lucid operation symbols®. These latter include the monadic operation symbol next and
the dyadic operation symbol fby (which is read "followed by®). (Different members of
the Lucid family may have different Lucid operators in addition to these, but they will
all be definable in terms of next and fby.) The universe of Lu(A) is the set of all infinite
sequences of elements of the universe of A. (We can consider an infinite sequence of
elements of a set S to be a function from the set of natural numbers into S.) The
operation symbols, other than next and fby, are assigned, as meanings, operations on the
_ universe of Lu(A) that are the pointwise extensions of the meanings given to the symbols
by the algebra A. For example, in Lu(A) the addition of two sequences means simply the
sequence of results produced by adding (according to A) corresponding elements of the
two arguments.

The operation symbol next is assigned the operation nezt which, given a sequence,
produces the same sequence but with the first element missing. (That is, the first
element of nezxt(X) is the second element of X, and so on.} The operation symbol fby is
assigned the operation fby which, given two sequences, produces the sequence consisting
of the second sequence but with the first element of the first sequence at the front.
(That is, the first element of fby(X,Y)is the first element of X, and the second element
of fby(X,Y) is the first element of Y, and so on.)

(It is easy to verify that Lu(A) is a continuous algebra if we take as the ordering on the
universe of Lu(A) the pointwise extension of the ordering on the universe of A. That is,
sequence X is less than or equal to sequence Y (by Lu(A)'s ordering) if and only if the

t-th element of X is less than or equal to the ¢-th element of Y (by A's ordering), for all

i)

The algebras Lu(A) will give meaning to the constants and operation symbols in
Lucid(A) programs, but, in addition to constants and operation symbols, Lucid programs
contain variables and function symbols. To give meanings to programs in a denotational
manner, we must give meaning to the variables and function symbols. This is done by
environments.

3.2.2 Environments

An environment is a function that maps variables into elements of Lu{A) and function
symbols into operations on the universe of Lu(A), of the appropriate arity. (For
theoretical simplicity, the domain of an environment is the set of all variables and
function symbols, but, in practice, only the variables and function symbols occurring in
the program in question will be relevant.)

We now have all the mathematical apparatus necessary for the specification of the
semantics of Lucid programs. To specify the meaning of a Lucid(A) program P, it is
necessary to be given an environment that gives meanings to all of the input variables of
P (what it says about the other variables and the function symbols is irrelevant). Since a
program is simply a term, to give meaning to programs it is sufficient to give a general
definition of the meaning of terms, given an environment.

3.2.3 The Meaning of Terms

- Assuming a continuous algebra A, the meaning M(?,E) of a term ¢ in an environment E
is defined as follows.

1. If t is a constant k, M(t E) = A(k).
2. If t is a variable z, M(t,E) = E(z).

3.If t is an operation symbol r together with operands e,, e,, .., €, M(t,E) is
A(r) applied to M(e,E), M{e2,E), s Mle ,E).

4.1f t is a function symbol f, together with actual parameters e, e,, .., €,
M(t,E) is E(f) applied to M(e ,E), M(e,,E), .., M(e_,E).

5.If t is a clause with subject S and declarations d and definitions D, M(t,E) is
defined a point at a time, as follows. The i-th element of M(t,E) is the i-th
element of M(S,G), where G is the least environment that agrees with Ei'
except possibly for the locals defined in D, and satisfies all the definitions in
D. The environment E, is like E, only the value of each variable, declared in
d to be the current value of e, is the constant sequence that is everywhere
equal to the ¢-th value of M(e,E).

This completes the definition of M(t,E), apart from saying what it means for an
environment to satisfy a definition. This is done in terms of M, so these two things are
really defined simultaneously, mutually recursively. An environment E satisfies a

definition of a variable z with right-hand-side e if the value of z is M(e,E). It satisfies a
definition of a function symbol f with formal parameters g and right-hand-side e if, for
all environments F that differ from E only in the values given to the variables g, the
value of the function symbol f, applied to the values given to g by F, is M(e,F).

The existence of least environments, which is needed for the cases when the term being
evaluated is a clause, is guaranteed by an argument from fixpoint theory that depends
crucially on the fact that the algebra in question is a continuous algebra.

3.2.4 Examples

1. First we will give definitions for several functions that, in practice, are really
Lucid operations, in most Lucid interpreters. '

a.

first(s) = y where y = s fby y; end;

This function simply returns a constant sequence, each element of
which is the first element of the sequence that is its argument.

whenever(a,p) = if first p then first a fby x
else x fi
vhere
x = vhenever(next s, next p);
end;

This function gives the sequence of elements, taken from the sequence
that is its first argument, for which the corresponding elements, in the
sequence that is its second argument, are true (and no previous
elements are other than true or false). If the sequence so specified is
finite, the actual sequence is *padded out® with an infinite number of
*undefined® elements, usually called bottom.

asa(a,p) = first whenever(a,p);

This function (which is pronounced "as soon as*) simply gives the
constant sequence, every element of which is the element of its first
argument which is in the position at which the sequence that is its
second argument is true for the first time (having previously been
false). If there is no such position, the elements of the sequence are all

bottom.
s/n
where
s =] fby s + next j;
n=1fbyn+1;
end

This program has one input variable, j, and its meaning in an environment E
will depend on the value given to j by E. The value of the program will be
the value of s/n in the environment £’ which differs from E only in that it
gives meanings to s and n that satisfy the definitions of these variables in the
body of the where clause. If E{j), and hence E'{j), is the sequence <1, 2, 3,
...>, then E'{s} is the sequence <1, 3, 6, 10, ...>. (Note that E'(next j) is
<2, 3, 4, ...>, so the claimed value of s satisfies the equation next s = s +
next j, because + works pointwise in Lu{A).) Since E{n)is <1, 2, 3, ...>, the
value of the program is <1, 1.5, 2, 2.5, ...>. The program computes the
running average of the values of j. The program could be used as the body

of a function avg, as follows:
avg(j) = s/n
vwhere
§ = j fby s + next j;
n=11byn+1;
end;

This function, obviously, gives the running average of its argument. The
function avg in Section 2.4 does the same thing, but in a better way. The
function given here keeps a running sum of its argument, which could get to
be a very large number, which could cause overflow. The function given in
Section 2.4 avoids this problem.

avg((a ~ M)*(a - M)) ssa i eq 10
where
avg(j) = s/n
where
s = j fby 8 + next j;
n=1+14byn+1;
end;
M = avg(a) asa i eq 10;
i=11byi«+1];
end

This program contains the definition of the function avg given in 2. It also
uses asa as a Lucid operation.

In this program, X is constantly the average value of the first ten values of
the input variable a. The value of the program is constantly the average
value of the squares of the divergences of the first ten values of & from the
value of ¥. In other words, the value of the program is constantly the
variance of the first ten values of a.

Notice how the average of the first ten values of a is subtracted from each of
the values of a. This is expressed by a - 8. The fact that ¥ is a constant
sequence is crucial here.

Example 3 above contained two occurrences of asa, one in the definition of ¥
and one in the subject of the outermost vhere clause. Both of these give
constant sequences. We have seen how the the fact that the sequence ¥ is
constant is crucial to the correctness of the program. What about the other
asa, in the subject of the outermost where clause? Surely we do not need to
endlessly repeat the same value; once would be enough.

To achieve this, all that is necessary is to replace the subject term by ((a

- ¥)+(a - ¥)) asa I eq 10 fby eod. The constant eod stands for "end of data®.
Whenever the output of a program is eod, the execution of the program
terminates. With this change, the program produces the variance of the first
ten values of a and then terminates normally.

10

We could also change the program to give not just the variance of the first
ten values of a, but the variance of all the values. That is, we can change the
program to produce the running variance of a. All we have to do is
successively replace the number 10 by the values 1, 2, 3, 4, etc., and
recompute the variance each time. This can be done by using a where clause

with a declaration.
avg((a - M)*(a - ¥)) asa i eq T

where
avg(j) = s/n
where
s = j fby 5 + next §;
n=11fbyn+y;
end;
M= avg(a) ssa i eq T;
i=11fbyi+1;
end
where
T is current t;
end
where
t=11fbyt+1;
end

With this program, to get its value at any time, say time £, we evaluate its
subject term at time £. To evaluate the subject at time ¢, we evaluate iis
subject at time £, in an environment in which T is constantly the ¢-th value of
t. This subject is just the program in Example 3, but with 10 replaced by 1.
Thus we successively compute the variances of one, two, three, etc. elements
of a. Note that now it is important that the program in Example 3 produce a
constant sequence, because different elements of these constant sequences are
used as the values of the enclosing where clause.

Pover(p) = pov asa index eq N
where
N is current n;
P is current p;
pov = 1 fby pow * p;
end;

11

This is an example of a function definition. It illustrates the conventional,

and most common, use of the is current declaration. It also uses the Lucid
constant index, which denotes the sequence <0, 1, 2, 3, ...>. In addition it
illustrates the fact that functions can have global variables.

The function Power raises its argument to the power n. (The variable nis a
global of the definition.) That is, the value of Pover(e) at any time ¢ is the
t-th value of e raised to the power n, where n is the ¢-th value of n.

The function is quite conventional (but inefficient, since it calculates its result
by repeated multiplication). It obeys the convention that anything, even
zero, raised to the power zero is one.

avg((a - W)x(a - W)
where
M is current avg(a);
avg(j) = s/n
where
8§ = j fby s + next j;
n=1fbyn+1i;
end;
end

This program, like Example 4, gives the running variance of a. At any point,
it gives the variance of the values of a up to that point. Clearly it is a much
simpler program than Example 4.

Notice how the where clause works. At any point, the value of the program
at that point is obtained by *freezing® at that point the value of the running
average of a. (This is called .} This is subtracted from all the values of 2
{not just from the value of a at the point in question), the results are squared,
and a running average is kept of these squares. The value of the program is
the value of this average at the point in question. This is the running
variance of a. The program calculates essentially the same things as does
Example 4, and uses them in the same ways, but makes much cleverer use of
the where clause construct, and makes cleverer use of the is current
declaration than does Example 5.

12

Neither this nor the earlier example are the best programs for computing the
running variance. We haven’t talked yet about the operational semanties of
Lucid, but it should be clear already that this way of computing the variance
gives an algorithm whose complexity at any point varies as the square of the
number of elements of a being considered up to that point.

3.3 Operational Semantics

The semantics given Section 3.2 is mathematical. It gives very little intuitive idea of
how programs would work, how they would behave. This is not an oversight; the
mathematical semantics has priority. It is simple and reasonably elegant, and can be
used to justify various program transformation rules and logical inference rules for
program verification. However, the fact that the denotational semantics has priority
when questions arise about the meanings of particular programs does not rule out the
possibility of giving an operational semantics. In fact, such a semantics is very useful, as
. an aid to program design and program understanding.

Rather than attempt to give a complete, formal, operational description of the language
we will consider various example programs and give various ways of looking at the
operational behavior of the programs.

b

There are three main features in Lucid that have operational significance:

1. The definition of variable values using fby
2. The different interpretations of the where clause construct

3. The interpretation of defined functions.
These will be considered separately below.

1. The crucial property of the fby operator is that it enables infinite sequences
to be defined in a way that allows the computation of the sequence to be
interpreted in iterative, operational terms. For example, the definition

x=1fbyx+1; '
could be interpreted as as defining x to be the infinite sequence <1, 2, 3, 4,
...>>, but it can also be interpreted in more operational, less declarative,
terms, as saying that x starts off as 1, and then subsequently becomes 2, 3, 4,
etc. For very many Lucid programs this is a better way to look at it. The
language can then be interpreted in more operational terms, and it seems
easier to design programs, partly because the reasoning necessary is not too

different, in this case, from that used in designing conventional imperative
programs. (There are so many other features in the language that have
unconventional operational interpretations that programmers do not have to
feel that Lucid offers nothing new.) There are some cases where it is more
appropriate to think of the values of variables as being infinite sequences.
Usually, however, it is a mistake to think of Lucid as a language for
manipulating, or talking about, infinite sequences.

. The basic operational meaning of where clauses can be expressed as follows.

Consider the following general case of a simple where clause
E where
X is current e;
y=ut
end.

For each ¢, to get the ¢-th value of the clause, enough values of y have to be
recomputed from the beginning to get the ¢-th value of E. When doing this,
the value of x will be constantly the 1-th value of e.

If there are no declarations, recomputing gives the same result as computing
using the values of y that were previously computed when getting previous
values of the clause. (This is because the least environments, which give the
value of y, are the same in each case.) This means that where clauses can be
interpreted as giving rise to subcomputations if they have declarations, and
as giving rise to coroutines or parallel processes if they don’t have
declarations.

This can be seen in the examples we have considered already. The function
Power of Example 5 in 3.2.4 has a where clause whose only free variables occur
in declarations. This means that the function can be thought of as
performing a subcomputation for each pair of values, for the argument of the
function and for variable n. On the other hand, the function avg of Example
2 in 3.2.4 has a where clause without declarations. The function can be
thought of as a coroutine or parallel process, activations of which are set up
for each textual occurrence in a program of invocations of the function for

14

particular argument terms. These invocations run in parallel with the
computations of the argument terms, whether or not the function has

actually been invoked. For example, if a program contains the term
if y > 1000 then avg(x) + avg(x*x) else y + 1 fi

then there will be activations of the avg coroutine or parallel process for
computing running averages of x and of x+x, right from the beginning of
computation of values of x, even though these averages will only be ever
needed if the value of y exceeds 1000.

It is important to realize the importance of the words "can be thought of as*,
in the preceding description. In fact, in all considerations of operational
semantics for Lucid, the important thing is to find ways of thinking
operationally about programs, whether or not the Lucid implementation
being used actually behaves tn the way considered. The operational ideas
are aids to thinking about and designing programs. The actual
implementation will probably work completely differently, because the ideas
discussed here, and any which motivated programmers may come up with,
will tend to be inadequate in some cases of Lucid programs.

3. The important operational idea for Lucid functions, apart from the way in
which where clauses in the definition of the function affect the function’s
interpretation by the programmer, is that the arguments of functions are
unending sequences of values. A function is thus a ®*continuously operating
function®. This fits best with the idea of a filter, a "black box* that is
continually fed with input values, and that continually produces results (not
necessarily at the same rate). This idea fits both the subcomputation and
parallel process interpretations of functions.

3.3.1 Examples

The examples given in this section will just be examples that combine the two different
ways of viewing computations of where clauses.

1.

15

s/(index + 1)
vhere
& = p fby 5 + next p;
P = y asa index eqg 10
where
X is current x;
y=1fbyys*X;
end;
end

This program simply computes the running averages of the tenth powers of
the input variable x, that is, the running tenth moment of x. If the program
were changed (or originally written) so that the inner where clause simply used
x, rather than the current value of x, it would work completely differently.

In fact, the inner where clause would simply give a constant sequence
consisting of the product of the first ten values of x, and the whole program
would give the running average of this sequence, which is, of course, the same
sequence.

If we had a basic operation *+ that performed exponentiation, the above
program could be simply written as

avg(x =x 10)
provided we include a definition of avg such as the one in Section 2.4.

Example 6 in Section 3.2.4 is an example that has a where clause that has a
declaration, but that also has an occurrence of a free variable, s, that is not
within a declaration. There are two conceptually different ways of giving
operational interpretations to such where clauses. One is to think of such
clauses as ‘basically’ giving rise to subcomputations, but the free variables
not occurring in declarations are thought of as being ‘restarted’ at the
beginning of every subcomputation. Example 6 of Section 3.2.4 can be
thought of this way, as can the clause defining isprime in the following
program.

16

vhere
P = 2 fby nxtprime(p);
nxtprime(q) = n asa isprime(n)
where
§ is current q + 1;
n = Q + index;
end;
isprime(m) = farenough asa farenough or p | N
where
K is current m;
farenough = p % p ge M;
end;
end

The program produces the sequence of all prime numbers. The function
{filter) isprime can be thought of as testing successive values of its argument
for primeness using a simple loop which runs through all the primes
generated so far, starting with the first, and makes sure that none of them
divides the current argument. (It is only necessary to check primes that are
less than the square root of the current argument. After this point, the
checking has gone *far enough®. The current argument is prime if we have
gone far enough through the list of primes without finding one that divides
the current argument.)

The other way to view ‘mixed’ clauses is to consider them as parameterized
coroutines or parallel processes, each set of current values of the declared
variables yielding a particular coroutine or parallel process. The following

program is an example of this.
avg(x *= K)
where
N is current n;
end

This program has as its value, at time ¢, the p-at-time-f-th moment of the
values of x up to time ¢£. Think of the variable n as the parameter which

yields running moment generators. For example, if n is constantly 2, the

program is equivalent to '

17

avg(x ** 2)

{which generates the running second moment of x), and, if 2 is constantly 3, it
is equivalent to

avg(x ** 3)
(which computes the running third moments of x). If, instead, the value of n
changes irreguarly with time between 2 and 3, the clause can be considered
as sampling the appropriate outputs of two different simultaneously and
continuously running processes computing the running second and third
moments of x.

4. The same two interpretations can be applied to functions that use mixed
clauses. In fact, as with clauses, it is possible to give two different
interpretations to the same object. Consider, for example, the function

defined as follows.
pom2(x,n) = avg((x - N)*(x - N))
vhere
N is current n;
end;

The value of nom2(a,k), at time ¢, is the second moment of the first {+1 values
of a about the value of x at time ¢.

This function can be understood as an ordinary {(but continuously operating)
Algol-like function, except that its first argument, x, is restarted every time
the function is called. It can also be understood as a parameterized set of
parallel processes, with parameter n. Then mon2(a,0) is the running second
moment of a, and non2(a,avg(a)) is the running variance. (This latter term
can be viewed as a possibly infinite set of simultaneously running processes,
one for each different value of the running average of a. The value of
mom2(a,avg(a)) at time ¢ is the value, at time ¢, of the process corresponding to
the running average of a at time ¢.

All these different operational interpretations of Lucid programs are not intended to
confuse the reader, but rather to illustrate the variety of different ways there are to
consider Lucid programs. The real meanings of Lucid programs are given by the
mathematical semantics, but these operational ideas, even if they seem a little
impractical, often give a better idea of what programs mean, and give increased
confidence in the correctness of programs.

18

4 Language Extensions

The language described so far is that implemented by the current Lucid interpreter,
which is written in C and runs under Berkeley UNIX on a VAX. There are several
improvements to the language that have been contemplated, and some of these will be
considered here.

4.1 Arrays

Lucid is a family of languages. One way of adding a new *facility® to Lucid is simply to
get a new instance of the family by using a richer and more complicated algebra on
which to base the language. For example, this technique could be used to "add arrays to
the language®. This involves no change to the denotational semantics; all that is needed
is that the elements of the algebra include arrays of some sort, and that there be
operations that work on these arrays, in particular, indexing and updating operations.
The updating operation, for example, would take as its arguments an array, the
subscripts indicating the poition at which the array is to be changed, and the new

" element that is to be put into the array at that point. The result of the operation is the
whole new array.

This approach will mean that some of the variables in programs will be *array
variables®, whose values, semantically speaking, will be infinite sequences of arrays. The
approach will be impractical unless some way is found of having around only one
instance, or possibly two, of the elements of such sequences. This can be done, in most
cases, by making use of a storage management technique called "usage counts®. {Details
will not be given here.)

It is thus possible to have arrays in the language that can be altered one element at a
time. This way of handling arrays does not really fit in very well with the general Lucid
philosophy. Nevertheless, it s important that it is possible in Lucid to handle array
updates at random points, if only because it can normally not be done in a dataflow
language. Moreover, the method of making small changes to arrays can be adopted for
use in a version of Lucid that can handle changes to list structures, using LISP’s rplaca
and rplacd, so this version of Lucid could be used in artificial intelligence applications.

Making single updates at random points is really not the best way of using arrays in
Lucid, it is far better to use arrays in an APL-like style, in which whole new arrays are
specified by applying operations to existing whole arrays. This approach will be
considered in the following section.

4.1.1 Ferds

Lucid can be extended to give an ‘extensional’ way of using arrays, by making a more
fundamental addition to the language, namely by actually changing its semantics (in
particular, the definition of Lu{A)) to allow sequences that vary in space as the

19

‘elements’ of sequences that vary in time. This is the solution we describe here. The
space-varying objects are called ferds. (The Oxford English Dictionary lists *ferd® as an
obsolete word meaning "a warlike array®.)

Although they are treated very similarly in the semantics, time and space are not quite
symmetric. For one thing, time-varying objects are intended to be thought of in parts
(in terms of individual values) whereas space-varying objects are thought of as a whole.
Furthermore, although there is only one time parameter, there is no reason to have only
one space parameter. In fact, multidimensional ferds are almost unavoidable. We want
to allow streams of ferds and we want to be able to ‘package up’ any stream as a ferd.
But when we package a stream of ferds, the result will be a ferd of more than one
dimension.

This is the road we choose to follow. To avoid bothersome type distinctions, our ferds
will all be notionally infinite dimensional.

" The language Flucid (*ferd Lucid®), which we now introduce and describe informally, is
based on an algebra-producing operation Flu in exactly the same way as Lucid is based
on Lu. The elements of Flu(A) are streams of ‘hyper-arrays’ with individual values
determined by one time parameter and infinitely many space parameters. In other

words, they are functions from NxN™ to the universe of A (N being the set {0,1,2,...} of
natural numbers).

Ordinary data operations are, of course, extended pointwise in space as well as in time.
The Lucid operations, such as nezt, fby and asa, are extended pointwise in space.

The Flucid operations will generally deal specially with one particular space dimension.
They will be subscripted with the number of the dimension being considered, but, if that
number is zero, the subscript will often be omitted.

The basic Flucid operations act pointwise in time, but not in space. These are the space
analogs of first, nezt and fby, called initial,, rest; and cby; (continued by).

The definitions of ¢nitial p rest,, and cby, are similar to those of first, nezt and fby, but
thought of differently. Given a ferd F, initial, F'is the first component of F in the i-th
dimension, the ferd obtained by taking a ‘slice’ in the ¢-th dimension at the first point;

rest; F is the ferd resulting from dropping that component; and z cby; F is the result of

sticking = on to F as the initial component in the i-th dimension. Thus, we have the
properties

F = initial F cby rest, F
initial (Fcby, G) =F

20

rest(Feby, G) =G

Notice one important difference between the space operations and the corresponding
time operations: ¢nitial; F is not the first component of F stretched out in space in the

same way that first z is the first time component of z stretched out in time. It is only
the first slice of F in the i-th dimension, and is not necessarily equal to initial, initial, F.

The latter is the initial slice (in the ¢-th dimension) of the initial slice (in the i-th
dimension) of F. In that sense, the three space operations correspond more closely to the
list operations hd (car), tl (cdr) and cons.

Our ferds do not have any explicit rank, but an implicit rank can often be assigned. For
example, the value of the individual components of F may depend on the indices for the
first three dimensions only. In such a case, F can be thought of as ‘really’ just a three-
dimensional object, an object of ‘rank’ three. The rank of rest; F is usually that of F,

- but the rank of initial'. Fis at least one less than that of F. If z is rank n-1 and F'is
rank n, then z cby, F is rank n (whatever the value of t). Notice that we can define
ferds of infinite rank; for example, with the definition

F=F cbyi 2;
the object defined has a ‘singularity’ at the space point <0,0,0,...> (the value at this
position is bottom, the least element of the data algebra A).

The next most important ferd operations are those for converting streams into ferds and
vice versa. They do not work pointwise in either space or time. The operation all; takes

a stream (of ferds) as its operand and returns as its result a ferd whose slices in the ¢-th
dimension are the elements of the original stream, it converts time to space, so that if j is
the stream of natural numbers defined by

j = 0 fby j+1;
then a!!'. 7 is the infinite vector of all natural numbers.

The value of all; z is independent of time; it is a constant. The companion of all, is elt;
(element), and it converts space back into time. If Fis a ferd which is constant in time,
elt. F is the stream of i-slices of F, i.e., the value of elt, F at time ¢ is the {-th slice of F
in the i-th dimension. If F itself varies with time, elt; performs a ‘gather’, in that the
value of F at time ¢ is the {-th é-slice of the (ferd) value of F at time ¢.

The two functions are ‘not quite’ inverses, in the following sense: we have
elt.all. z =z
3 3

for all values of z, but

aH‘. elt‘. F=F

21

only if F is constant. The operations all; and elt, are useful when we want to define a

stream function in a manner more appropriate to arrays, or when an array is to be
defined by generating its components in order.

From a conceptual point of view, ferds are easily incorporated in the informal
iterative/dataflow operational model which we have been recommending as a
programming guide. After all, one should have no difficulty in tmagining infinite data
objects flowing through a network. As for actual implementations, those which are
based on demand-driven dataflow could easily be adapted.

Ferds are much more in the spirit of Lucid and dataflow than (say) the infinite lists used
by Lisp-oriented functional languages. Moreover, this way of handling arrays appears to
offer the best opportunities for exploiting parallelism in algorithms.

4.2 Types

The main reason why there are no types in Lucid as defined here is that most type
systems have a semantics that is mathematically inelegant, compared to the current
semantics of Lucid. This rather snobbish attitude is not really defensible, of course, and,
in practical systems, Lucid programs will probably have types like most other languages.
The lack of types is not a requirement or characteristic of Lucid.

4.3 Tuples

One very useful addition would be the addition of tuples to the language, so that a
clause, and thus a function, could return a tuple of values, and not just a single value.
The full generality of this construct can not be achieved using lists, because lists in Lucid
are not lazy lists (we would want tupling to be lazy, i.e., we would want to be able to get
a value out of a clause using a tuple even if the other values specified in the tuple were
undefined), and because we would want to be able to have tuples on the left-hand sides
of equations (which is not allowed for lists). There are some syntactic problems with
tuples, of the type-checking variety, but, with some effort, these could be resolved more
or less satisfactorily.

(1]

[2]

8l

4]

22

References

Ashcroft, E.A., and Wadge, W.W.
Lucid - A Formal System for Writing and Proving Programs.
SIAM Journal on Computing (3):336-354, September, 1976.

Ashceroft, E.A. and Wadge, W.W.
Lucid, a Nonprocedural Language with Iteration.
CACM (7):519-526, July, 1977.

Asheroft, E.A. and Wadge W.W.

Structured Lucid.

Technical Report CS-79-21, University of Waterloo, June, 1979.
Revised May 1880.

Wadge,W.W. and Ashcroft.E.A.
Lucid, the Data flow Programming Language.
Academic Press UK., 1984.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

