EBARTMENT
EPARTMENT

EPARTMENT

B
CED

Q00O

MBS S e ¢

NIVER
UNIVERSITY OF WATERLOO C

Linear Hashing with Separators —
A Dynamic Hashing Scheme
Achieving One-Access Retrieval

Per-Ake Larson

CS-84-23

November, 1984

Linear Hashing with Separators -
A Dynamic Hashing Scheme
Achieving One-Access Retrieval®*

[+
Per-Ake Larson

Data Structuring Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada

Report # CS5-84-23

ABSTRACT

A new dynamic hashing scheme is presented. Its most out-
standing feature is that any record can be retrieved in {exactly) one
disk access. This is achieved by using a small amount of supple-
mental internal storage which stores enough information to uniquely
determine the current location of any record. The amount of inter-
nal storage required is small: typically one byte or less for each
page of the file. The necessary address computation, insertion and
expansion algorithms are presented and the performance is studied
by means of simulation. The new method is the first practical
method offering one-access retrieval for large dynamic files.

* This work was supported by Natural Sciences and Engineering Research Council of
Canada, Grant A2460.

Electronic mail: (UUCP) {allegra,decvaxPwatmathiwatdaisylpalarson
(CSNET) palarson%watdaisy@waterloo
(ARPA) palarson%watdzisyZwatmath@csnet-relay

Linear Hashing with Separators -
A Dynamic Hashing Scheme
Achieving One-Access Retrieval*

[o]
Per-Ake Larson

Data Structuring Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada

Report # C$-84-23

1. Introduction

A new class of file structures, commonly referred to as dynamic hashing
schemes or extendible hashing schemes, has been developed over the last few
years. These hash-based file structures are designed to accommodate files that
grow and shrink dynamically. The most efficient schemes in this class are linear
hashing [L.180}, improved versions thereof [LAS0, RL82] and spiral storage [MA78].

This paper introduces a new dynamic hashing scheme which has the addi-
tional advantage that any record can be retrieved in (exactly) one disk access.
This is achieved by using a small amount of additional internal storage where
enough information is stored to uniquely determine on which page a record is
stored. The amount of additional internal storage needed is small; typically one
byte or less for each page (bucket) of the file is sufficient. The new method is a
combination of two earlier schemes: linear hashing with partial expansions [LASO,
LA83b] and external hashing using fixed-length separators [GL82, LK83]. It
inherits all the advantages of linear hashing with partial expansions: it can handle
dynamically growing and shrinking files, the storage utilization is controlled by
the user, and insertions and deletions are quite fast.

The new method can, of course, be used as a fast general-purpose access
method, but it appears to be of most interest for applications with tight bounds
on the retrieval speed. Among the methods guaranteeing retrieval in one access
the new method is, by far, the most space efficient. Extendible hashing [FN79),
dynamic hashing [LA78] and virtual hashing [LI78] can all achieve the same
retrieval speed, but the amount of internal space needed is much larger. Further-
more, none of them have a user-controllable storage utilization.

The rest of the paper is organized as follows. Section 2 explains the basic
ideas of external hashing with fixed-length separators and how it guarantees that
any record can be retrieved in one access. Section 3 discusses a modification of
linear hashing with partial expansions that uses linear probing to handle overflow

2 P.-A. Larson

records. Combining these two methods directly gives the new scheme. The
necessary address computation, insertion and expansion algorithms are presented
in section 4. Performance results, obtained by simulation, are summarized in sec-
tion 5.

2. External hashing uslﬁg separators

Gonnet and Larson [GL82| introduced several techniques for speeding up
external hashing. The most practical one makes use of fixed-length signatures
and separators [LK83]. It is applicable to any external hashing scheme that han-
dles overflow records by open addressing, that is, without using links or pointers.
The two most well-known open addressing schemes are linear probing and double
hashing [KN73].

Assume that we have an external hash file consisting of m pages (buckets)
where each page has a capacity of b records. In addition to the external file an
internally stored seperator table is required. The table contains m separators
each one of length & bits. Separator ¢, { = 0,1,..., m —1, corresponds to page §
in the file.

We assume that given a record with key K, we can compute its probe
sequence, H(K) = (hy {K), hy (K),..., h,,(K)). The probe sequence is uniquely
determined by the key, and defines the order in which pages will be checked when
inserting or retrieving the record. For each record we will also need a signature
sequence, S(K) = (3, (K), 8, (K),..., 8,5 (K)). Each signature is a k-bit integer.
The signature sequence is also uniquely determined by the key of the record.
When the record with key K probes page h; (K), signature s; (K) is used,
i = 1,2,.., m. Implementation of H(K) and S(K) will be discussed further
below,

The separator table is used in the following way. Consider a page to which
r, r >b, records hash. The page can store only b records, so at least r —b records
must be forced out, each one trying the next page in its probe sequence. The r
records are sorted on their current signatures. Records with low signatures are
stored on the page while records with high signatures are forced out. A signature
value that uniquely separates the two groups is stored in the separator table.
This value is the lowest signature occurring among the records forced out. How-
ever, it may not be possible to find a separator that gives exactly the partitioning
(b, r—b) because the length of signatures (and separators) is limited to & bits. If
so, we try (b—1,r—b+1), (b—2, r—b+2),..., (0,r) until we find a partitioning
where the highest signature in the first group is different from the lowest signa-
ture in the second group. This only means that a page having overflow records
may actually contain less than b records.

Example: Consider a page being probed by 5 records with signatures 0001,
0011, 0100, 0100, and 1000, respectively. If the page size is 4 we obtain a perfect
partitioning: the first 4 records are stored on the page and the separator is 1000.
However, if the page size is 3, a perfect partitioning cannot be obtained. The
best one is (2, 3), that is, the two records with signatures 0001 and 0011 are
stored on the page and the separator is 0100.

Insertion of a record may require relocation of other records and updating of

w

Linear hashing

separators. If the record to be inserted probes a page having a separator greater
than the (current) signature of the record, the record ‘“‘belongs” to that page and
it must be inserted on that page. If the page is completely filled already, one or
more records (those with the highest signatures) must be forced out and the
separator updated accoriingly. The records forced out must then be reinserted
into some other pages, which may in turn force out other records, etc. Eventually
this cascading of records will stop and the insertion process terminates.

One final detail: What should the separator of a page that has not yet
overflowed be set to? The necessary algorithms will be simpler and more uniform
if the initial separators are strictly greater than all signature values. Using & bits
the largest possible value is 2"-—1, which is used as the initial separator. The
range for signatures must consequently be restricted to 0,1, . . ., ok -9,

It is easily seen that a record can be retrieved in one disk access. Given a
search key, we follow its probe sequence, at each step comparing the current sig-
nature with the appropriate separator from the in-core separator table. As soon
as we encounter a separator that is strictly greater than the signature, the prob-
ing process stops. The corresponding page is read in and its records checked. If
the desired record is not found on that page, it does not exist in the file. There is
no need to check any other page. In essence, external probing has been replaced
by internal probing and a final read is done only when the address of the desired
record has been uniquely determined.

One consequence of using separators must be pointed out: a storage utiliza-
tion of 100% cannot be achieved, not even theoretically. The usable capacity of a
page depends on the value of its separator and there is no guarantee that a page
can be completely filled. There is an upper bound on the achievable storage utili-
zation, which depends on the separator length, the page size and the way probe
sequences are generated. This has been analysed under the assumption of random
probing (a theoretical approximation of double hashing) [GL82]. However, the
upper bound is, per se, of limited practical consequence. Normally we will have
to set the target storage utilization significantly lower. The reason for this is sim-
ple: when the storage utilization increases, the cost of inserting a record also
increases (more records will be relocated). Near the bound the insertion costs
increase dramatically [LA83a]. As we will see later on, in practice a storage utili-
zation of up to 80% is a realistic goal.

3. Linear hashing with open addressing

Linear hashing is a technique for gradually expanding (or contracting) the
storage area of a hash file. The file is expanded by adding a new page at the end
of the file and relocating a number of records to the new page. The original idea
is due to Litwin [LI80]. Linear hashing with partial expansions, developed by Lar-
son [LAS80], is a generalization of linear hashing that achieves better performance.
A slightly different generalization was introduced by Ramamohanarao and Lloyd
[RL82]. It is assumed that the reader is familiar with the basic ideas of linear
hashing with partial expansion.

Linear hashing, and its variants, require some method for handling overflow
records. Several methods based on chaining have been proposed for this. How-
ever, overflow chaining cannot be combined with the signature-separator

4 P.-A. Larson

approach explzined in the previous section. A method satisfying the following
two requirements is needed:

1. The full probe sequence of a record must be computable without accessing
the file.

2. The maximum number of different probe sequences emanating from a page
must be small. .

The first requirement is imposed by the signature-separator approach. When
using separators, external probing is replaced by internal probing. If computation
of the next address in the probe sequence requires access to the externally stored
file, as in chaining, nothing has been gained.

The second requirement is dictated by linear hashing. An expansion of the
file by one page involves locating all records hashing to a {predetermined) set of
existing pages and relocating some of them to the new page. Each possible probe
sequence emanating from a page participating in the expansion must be checked.
A method generating a large number of probe sequences, double hashing, for
example, would make this too costly.

Linear probing satisfies both the above requirements. Let A be the home
address of a record. Linear probing is the technique that uses probe sequences of
the form A, h+1, h+2,... It is simple and widely used in practice. However, in
order to combine it with linear hashing some slight modifications are necessary.
Using linear probing to handle overflow records in connection with linear hashing
was first suggested in [LA83b|, where the necessary modifications were also dis-
cussed.

When adding a new page at the end of the file all probe sequences should be
extended to include the new page. It is desirable that this can be done without
actually relocating records. This can be achieved by modifying linear probing so
as not to wrap around when reaching the (currently) last page of the file. If there
are records overflowing from the last page in the current address space, they are
allowed to go into the first unused page(s) at the end of the file. The page has
been taken into use by receiving overflow records before receiving any “native”
records. When the file is expanded the next time the page will be within the
address space of the file.

To improve performance it is also necessary to change the expansion
sequence, Linear hashing with partial expansion extends the file by increasing the
size of one group of pages. The expansion sequence originally proposed was group
0, group 1, etc. This particular sequence has a very serious drawback when over-
flow records are handled by linear probing. As illustrated in Fig. 1 for the case of
two partial expansions, it creates blocks of consecutive pages with a high load
factor (the unsplit pages). In these areas long islands of overflowing pages are
more likely to form. Such islands will slow down insertions (more records must be
relocated) and expansions (more pages must be checked).

Linear hashing)

unsplit unsplit
split split new

[

P
Figure 1: Load distribution of linear hashing with two partial expansions

The risk of creating long islands of overflowing pages can be reduced by changing
the expansion sequence in such a way that the split pages (with a fower load fac-
tor) are spread more evenly over the file. The modified expansion sequence
explained below is a straightforward implementation of this idea. ‘

Consider a file consisting of N groups of pages. The expansion sequence
0,1,..., N—1 uses a step length of one. To spread out pages with a low load fac-
tor more evenly we can increase the step length and make a number of sweeps
over the groups. If the step length is s, s=1, the first sweep would expand
groups 0, 8, 23,..., the second sweep groups 1, s+1, 2s+1,..., and the last sweep
would be 8 —1, 28—1, 3s—1,... One further modification will slightly improve the
performance: having each sweep go backwards instead of forwards. The first
sweep would then be N—1, N—1—g, N—1-—2s,...,, and correspondingly for the
other sweeps. Going backwards is not more expensive than going forwards, and it
has some beneficial effects on the performance [LA83b].

Example: Consider a file consisting of 10 groups, number 0,1,..., 9, and assume
a step length of 3. The first sweep expands groups 9, 6, 3, 0, in that order. The
second sweep expands 8, 5, 2 and the third, and last, sweep expands 7, 4, 1.

Linear hashing also requires a a set of rules for determining when to
expand (or contract) the file by one page. There are many alternatives , but we
will here consider only the rule of constant storage utilization. According to this
rule the file is expanded whenever the overall load factor rises above a user-
selected threshold o, 0<a<1. No separate overflow area is used so this rule will
lead to a storage utilization that, for all practical purposes, is constant and equal
to a.

4. Algorithms

In this section algorithms needed to implement the basic file operations are
presented and discussed. Three algorithms will be given in detail: address com-
putation, insertion of a record and file expansion. Deletions will be discussed
briefly, but a full algorithm is not given.

The details of the file structure are determined by a number of parameters
and the current state of the file is defined by a number of state variables:

6 P.-A. Larson

Parameters
b page size in number of records
N original number of groups
ngy number of partial expansion per full expansion
step length used in computing the expansion sequence
a desired storage utilization
k separator length in bits

State variables

cpz current partial expansion.
Initial value: cpz = 1.

sw current sweep, 1 = sw = s,
Initial value: sw = 1.

P next group to be expanded,
0 < p < N2°where ¢ = (cpz-1)div n,.
Initial value: p = N-—1.

mazadr highest address in current address space.
Initial value: mazaedr = ny N—1.

lstpg highest page in use, {stpg = mazadr.
Initial value: mazadr = ny N—1.

Computation of the current focation of a record is done in two steps: first
its home address is computed and then its actual location is determined by com-
paring signatures and separators. The computation of the home address has been
- written as separate routine. It is also needed in the expanson algorithm.

The routine for computing the home address makes use of two hashing
functions. The first one, denoted by %, is a traditional hashing function returning
values in the range [0, ny N—1]. It is used for distributing the records over the
original file (of size ny N pages). The second one, denoted by D, returns a
sequence of values, D(K) = {d,(K), d5{K},...), where the values d; are indepen-
dent and uniformly distributed in [0,1). The value d;(K) is used for determining
whether to relocate the record with key K to a newly created page during the ith
partial expansion. Assume that the ith partial expansion expands each group,
from n to n-+1 pages. To achieve a uniform distribution of the load over the file
(at the end of the partial expansion) a fraction of 1/(n +1) of the records should
be relocated to the new part of the file. This is achieved by relocating a record if
d;(k) = 1/(n+1), otherwise not. The group size during the {th partial expansion
is n = ng + (1—1) mod n,. The algorithm given below is based on this idea.
The hashing function D can easily be implemented by a random number genera-
tor to which the key of the record is supplied as the seed.

Linear hashing 7

procedure home_address (K : key): integer ;

begin
ha, fsz, ngrps, i, lc, swp, swpl, fsw, npg : integer ;
ha:=h (K);
fsz:=ny X N;
ngrps : = N ;

for ¢ : = 1 to cpzx do begin
ifd;, (K)<1/(ny + 1+ (§—1)mod n,) then begin
lc : == ngrps - 1 - (ha mod ngtps) ;
swp : = lc mod s ;
swpl : = ngrps div s ;
fsw : = swp X swpl + min (swp, ngrps mod s) ;
npg : = fsz + fsw + (lc divs)+ 1;
if npg = mazredr then ha : = npg ;
end ;
fsz : = fsz + ngrps ;
if (i) mod n, = 0 then ngrps = 2 X ngrps ;
end ;
return (ha) ;
end {home_address} ;

The current home address of a record is computed by tracing all its address
changes from the first to the current partial expansion. If the record was relo-
cated (or would have been relocated, had it been present in the file) during the
ith expansion, the address of the new page to which it was relocated must be
computed. The address of the new page is obtained by adding the file size when
the sth expansion started (fsz), the number of new pages created by fully com-
pleted sweeps (fsw) and by the current, partially completed, sweep (the term (lc
divs) + 1). If npg = mazadr the new address is within the current address
range. This test can only fail when i = cpz, meaning that the home page of the
record has not yet been reached in the current partial expansion.

The actual location of a record depends on its home address, its signature
sequence and the separators in the separator table. An algorithm for computing
the current address of a record with key K is given below. The algorithm makes
use of two functions with the following declarations:

procedure signature (K : key ; i : Integer) : bit (k)

procedure separator (j : integer) : bit (k).

The first function returns the signature of key K to be used when probing the ith
page, i = 1, in its probe sequence. The separator table grows and shrinks dynam-
ically. It may be implemented in several ways. The second function returns the
separator of page j,] = 0.

8 P.-A. Larson

procedure current_address (K : key) : integer ;

begin
ha, i, cp : Integer ;
ha : = home_address (K) ;
i:=1;
for cp : = ha to lstpg do
if signature (K, i) < separator (cp)
then return (cp)
elsei:=i+1;
end ;

Retrieval is extremely simple. Given a search key K the address is computed
using the algorithm above. The corresponding page is read in and the records on
the page are checked. If the desired record is not found on the page, it does not
exist in the file.

Insertion of a record may involve relocation of other records. If the record
to be inserted happens to hit a full page, some of the records stored on that page
will be forced out. They must be inserted into the next page, which, in turn, may
force out other records, etc. Eventually this cascading of records will stop and
the insertion terminates.

An insertion algorithm is given below. Records waiting to be inserted are
assumed to be kept in an area called the record pool. The structure of a record
entry, of an external page and of an entry in the record pootl is specified below in
a Pascal-like notation.

record_slot = record ,
status : (empty, full) ;
key ; {record key}
info ; {additional fields}
end ;

page = array 1 .. b of record_slot ;

pool_entry = record ,
nprb : Integer; {next page to try}
sign : bit (k); {signature when probing page nprb}
ha : integer; {home address}
rerd : record_slot; {the actual record}
end ; ‘

The actual implementation of the record pool is left unspecified. However, the
algorithm below assumes that extraction of the first record from the pool always
gives the one with the lowest value of the fields nprb and sign. The algorithm
also makes use of two procedures:

Linear hashing 9

procedure add_to_pool (nprb : integer ; sign : bit (k) ;
ha : integer ; rcrd : record_slot)
procedure set_separator (j : Integer ; value : bit (k))

The first procedure adds a record to the record pool and the second one sets the
separator of page j to value.

The logic of the insertion algorithm is straightforward. It consists of two
nested loops: an inner loop that attempts to insert every record in the record pool
into the current page and an outer loop that advances forward one page at a time
in the file. The process is started from the page into which the new record is to
be inserted, and terminates as soon as there are no more records in the record
pool.

The procedure process-current-record called by insert takes the current
record (stored in cr) and attempts to store it on the current page (in buffer). If
its signature is greater than the separator of the page, it is returned to the pool
and will eventually proceed to the next page. Otherwise the record logically
belongs to the current page. If so, there are two cases to consider: whether the
page is full or not. If the page is not full, the record is inserted into an empty
slot. If the page is full, a number of records are forced out and placed in the
record pool. The separator is updated accordingly. Once there is room on the
page, we try to store the current record again, taking into account the fact that
the separator has changed.

10 P.-A. Larson

procedure insert (R) ;

begin
buffer : page ; {holds the page being modified}
cr : pool_entry ; {holds the record being processed}
{set up the structure for the record pool here}
poolcnt, cp, nr : Integer ;
maxsign : bit (k};
done : boolean ;

{copy the new record into cr}

cr.rerd.key : = R.key ;

cr.rerd.info : = R.info ;

cr.rerd.status : = full ;

cr.ha : = home_address (R.key) ;

cr.oprb : = current_address (R.key) ;

cr.sign : = signature (R.key, cr.nprb - cr.ha + 1) ;

poolent : =0 ;
done : = false ;
{consider one page at a time}
repeat
cp : = craprb ;
read page cp into buffer ;
nr : = {no. of records stored on the page read in} ;
repeat

process_current_record (cp, nr, poolent, cr, buffer) ;

{cr is now empty, get the next one from the record pool}
if poolent = 0 then begin

done : = true ; exitloop ;

end

else begin
move the first record from the record pool into cr ;
poolent : = poolent - 1 ;

end ;

do until cr.nprb > cp

write buffer into page cp ;
it cr.oprb > lstpg then begin
lstpg : = lstpg + 1;
expand the file space and the separator table up to lsipg ;
set_separator (Istpg, ok -1);
end ;
do until done ;

end {insert} ;

Linear hashing

procedure process_current_tecord (cp, nr, poolent : integer ;

cr : pool_entry ; buffer : page) ;
{a highly specialized procedure that takes the record in cr and tries
to store it on the page currently in buffer}
begin
sg, maxsign : bit (k) ;
haddr, i : Integer ;

if cr.sign = separator (cp) then begin
sg : = signature (cr.rcrd.key, cr.nprb - cr.ha + 2) ;
add_to_pool (cr.nprb + 1, sg, cr.ha, cr.rerd) ;
poolent : = poolent + 1 ;

end

else if nr < b then begin
insert the record in cr into any empty slot in buffer ;
nr:=nr+1;

end

else begin
{the page is full, make room by forcing out
the records with the highest signature}

maxsign : = {highest signature among the records in buffer} ;

fori:=1to bdo
if buffer [i].status = full then begin
haddr : = home_address (buffer [i].key) ;
if signature (buffer [i].key, cp - haddr + 1)
= maxsign then begin

sg : = signature (buffer [i].key, cp - haddr + 2) ;

add_to_pool (cp + 1, sg, haddr, buffer [i]) ;
poolent : = poolcnt + 1 ;
pr:==nr-1;
end ;
end ;

set_separator (cp, maxsign) ;
{now there is room on the page, try again}

if cr.sign < maxsign then begin
insert the record in cr into any empty slot in buffer ;
nr:=nr+1;

end

else begin
sg : = signature {cr.rerd.key, cp - cr.ha + 2) ;
add_to_pool (cp+1, sg, cr.ha, cr.rerd) ;
poolcnt : = poolent + 1 ;

end ;

end
end {process_current_record} ;

11

12 P.-A. Larson

Insertion of a record increases the overall load factor. When the load factor
exceeds the user-selected threshold o the file space is expanded. This is done by
adding a new page at the end of the file and relocating some records to the new
page. The separator table must also be expanded. When records are moved to
the new page, space will be freed up in the old part of the file. This means that
it may be possible to move some overflow records back to, or at least closer to,
their home pages. An expansion algorithm that achieves this is given below.

The algorithm begins by updating the state variables and then the necessary
record relocation is done. Consider a page participating in the expansion and
denote its address by pg. All records whose home address is pg must be checked
because some of them will be moved to the new page. To locate these records
page pg is first checked, then pg + 1, etc., up to and including the first page that
has not overflowed. A page that has not overflowed has a separator of 2"—1,
(the maximum value). The algorithm scans over this area twice. The first scan
collects every record that is not stored in its home page. The collected records
are temporarily stored in an area called the record pool until reinserted during the
second scan over the area. The set of collected records will include all those that
are to be moved to the new page and also all overflow records that, possibly, will
be moved closer to their home pages. To avoid writing, pages are not modified
d;clring the first scan. All the separators covering the area scanned are reset to
2¥—1.

The second scan goes over the same area as the first scan, reinserting the
overflow records collected during the first scan. A page is read into the buffer
and first ‘‘cleaned”, that is, every slot containing an overflow record is declared
empty. Then every record remaining in the record pool whose home address is
less than or equal to the address of the current page is inserted into the page. If
they cannot all be stored on the page, those with the highest signatures are
returned to the record pool. This continues until the whole area has been
covered.

The above proess is repeated for every page participating in the expansion.
The records remaining in the record pool are those that are to be moved to the
new page, that is, their home address equals mazadr. They are then inserted in
the last part of the algorithm.

Linear hashing

procedure expand (p : integer) ;
begin

buffer : page ; {holds the page being processed}
cr : pool_entry ; {holds the record being processed}
{set up the structure for the record pool here}

i, np, Ivl, ngr, pg, cp, Imdf,

hadr, poolcnt, nr, nprb : integer ;

sg, oldsep, msign : bit (k) ;

done : boolean ;

msign:=2" -1

gr-=p,;
np:=ny + (cpz — 1) mod n,
vl : = (cpz — l}dlv ng;
ngr: =N x 2V

{update state variables}

mazadr : = mazadr+1 ;

p:=p=—3s;

if p < 0 then begin
sw:=sw+1;p:=ngr — sw;

if sw > s then begin
epr 1 =cpz +1,;
sw:=1;p:=mngr-1;
if (cpz — 1) mod ny = 0 then
p:=2Xngr—1;
end ;
end ;

poolent : =0 ;
for i : == to np do begin
pg : = gr + (i-1) X ngr;

{collect all records to be relocated
and store them in the record pool}

cp:=pg-1;Imdf:=pg-1;
repeat
cp:=cp+1;
read page cp into buffer ;
forj:=1to b do
if buffer |j].status = full then begin
hadr : = home_address (buffer [j].key) ;
if hadr # cp then begin
Imdf : = cp;
pprb : = max (pg, hadr) ;

14

P.-A. Larson

sg : = signature (buffer{j].key, nprb-hadr + 1} ;
add_to_pool (nprb, sg, hadr, buffer [j]) ;
poolent : = poolent + 1 ;
end ;
end ;
oldsep : = separator (cp) ;
set_separator (cp, msign) ;
do until oldsep = msign ;

{reinsert all records whose home address = Imdf}
done : = false ;
if poolent > 0 then
if the first record in the record pool has ha = Imdf
then begin move it into ¢r ; poolent : = poolent - 1 ; end ;
else done = true;
for cp : = pg to Imdf do begin
read page cp into buffer ;
nr:=0;
forj:=1tobdo
If buffer [j}.status = full then begin
hadr : = home_address [buffer [j].key) ;
if hadr # cp then
buffer [j].status = empty
elsenr:=nr+1;
end ;

while cr.nprb = cp and not done do begin
process_current_record (cp, nr, poolent, cr, buffer) ;
{get next record}

if poolcnt > 0 then
if the first record in the record pool has ha = Imdf

then begin move it into cr ; poolent : = poolent - 1 ;
end ;
else done = true ;

end ;

write buffer into page cp ;
end ;

end ;

Linear hashing 15

{all records remaining in the record pool have home address = maxadr}

cp : = mazradr ;

if poolent > O then begin
move first record in the record pool into cr;
poolent : = poolent + 1 ;

done : = false ;
end
else done : = true ;
repeat

if cp > lsipg then begin

lstpg : = lstpg + 1;

expand the file space and the separator table up to Istpg ;
set_separator (lstpg, msign) ;
end ;

if not done then begin
read page cp into buffer ;
nr : = {no. of records on the page just read in} ;

while cr.nprb = cp do begin
process_current_record (cp, nr, poolent, cr, buffer) ;
if poolent > 0 then
if the first record in the record pool has ha < Imdf
then begln move it into cr ;
poolent : == poolent + 1 ;

end ;
else begin
done : = true ; exitloop ;
end ;
end ;
write buffer into page cp ;
end
cp:=cp+1;

do until done ;
end {expand} ;

Both the expansion algorithm and the insertion algorithm read and write
one page of a time. However, they can both be speeded up significantly by using
more buffer space, transferring several consecutive pages between main memory
and disk whenever performing a read or write operation. This reduces the
number of file accesses at the cost of more main memory space. When accessing
the old part of the file during an expansion, we can find out from the separator
table exactly which pages will be affected and must be read in. When expanding
a group from n to n-+1 pages there are n islands of consecutive pages to check.
If sufficient buffer space is available an entire island can be brought into memory

16 P.-A. Larson

in the same read operation, the necessary record rearrangement done and the
island written out in one write operation. (This is not possible in the last part of
the algorithm where records are inserted into the new page.) The insertion algo-
rithm can also be speeded up by using more buffer space, but not to the same
extent as the expansion algorithm. When inserting a record we cannot, based on
the separator table alone, predict how many pages will be affected. However, we
can have every physical read and write operation transfer some fixed number of
consecutive pages. The effects of multi-page reads and writes is studied in the
next section.

Deletion of a record will free up one slot on a page. If that page has over-
flowed (its separator is less than 2% —1) it may now be possible to return some of
the overflow records to the page. If so, the separator must be updated accord-
ingly. All the overflow records from the page must be checked to find those with
the lowest signatures. This means that every page starting from the page where
the record was deleted up to and including the first page that has not overflowed
(its separator equals 2¥ —1) must be checked. In essence a deletion necessitates
the same type of local reorganization as a file expansion. The only difference is
that only one island of full pages is affected and need to be reorganized. The
reorganization part of the expansion aigorithm can easily be modified to handle
deletions.

5. Performance

In contrast to most hashing schemes, the new method has a fixed retrieval
speed and the storage utilization can be selected by the user {(within certain lim-
its). The main variable cost of the new method is the total insertion cost. It has
two components: the cost of inserting a record and the cost of expanding the file.
The cost will here be measured in number of disk accesses. Internal processing is
ignored. Another variable of interest is the amount of storage space needed for
the record pool used when expanding the file by one page. The performance is
affected by the following file parameters: page size, storage utilization, number of
partial expansions, separator length, step length and the amount of buffer space
used during insertions and expansions. The performance results presented in this
section were obtained by simulation.

Let us first study the effects of varying the step length used in the computa-
tion of the expansion sequence. Figure 2 shows the development of the insertion
costs over a full expansion. The file parameters are: page size 20 records,
storage utilization 0.8, separator length 8 bits, 2 partial expansions and buffer
space 1 page. In figure 2(a) the step length is 2 and in Figure 2(b) it is 5. The
solid curve includes the cost of file expansions. The results plotted are averages
from 100 simulated file loadings.

The graphs clearly show the cyclic behaviour. Two basic patterns are
superimposed: longer cycles extending over a partial expansion and shorter cycles
extending over a sweep. Each “hump” in the graphs correspond to one sweep.
During a sweep the total insertion costs first increase slowly and then drop
rapidly close to the end of the sweep.

Linear hashing 17

7
A
C
C
E
S
S
E
S
2 |
1 T T T T]
1000 1200 1400 1600 1800 2000
FILE SIZE (PAGES)
(a) e=2
T S
6 -
A
C
C 5 1
E
S
S
E
S
2
1 T T T T 1
1000 1200 1400 1600 1800 2000
FILE SIZE (PAGES)
(b) &=5

Figure 2: Total insertion costs (including expansions) and insertions costs.

As seen in Figure 2, increasing the step length from 2 to 5 substantially lowered
the insertion costs. However, if the step length is increased even further the total
insertion costs will start increasing again. This is evident from Table 1, which
shows the overall effect of increasing the step length. The figures are averages
over a full expansion. A step length of 4 or 5 appears to be optimal. Experi-
ments with other parameter combinations confirmed this conclusion.

18 P.-A. Lirson

Step No. of accesses required for

length | Insertion Expansion Total
2 3.21 1.16 437
3 2.94 0.99 3.93
4 2.90 0.97 3.87
5 291 0.97 3.88 -
6 2.93 0.97 3.90
8 2.98 0.99 3.97
10 3.05 1.02 407

b=20, ny =2, bufferspace: 1 page, a=08, k=8
Table 1: Effect on average insertion costs of increasing the step length.

Tables 2 and 3 show the overall average insertion costs for different combi-
nations of page size, storage utilization and number of partial expansions. In
Table 2 the separator length is 5 bits and in Table 3 it is 8 bits. The step length
used is 5 in all cases and the buffer space is 1 page. The figures in the first three
columns are average number of disk accesses. The record pool size is measured in
number of records.

Take, for example, the combination page size 10, storage utilization 0.70, 2
partial expansions and separator length 5. For this particular situation Table 1
indicates that inserting a record requires on average 2.60 accesses and that the
added overhead due to file expansions is on average 1.69 accesses per record
inserted, giving a total cost, on average, of 4.29 accesses to insert a record.
Furthermore, the maximum number of records in the record pool during a single
expansion step was on average 8.9 records.

Linear hashing

ng o Insertion cost Expansion cost
b=10 b=20 b=40| b=10 b=20 b=40

2 1070 | 260 2.26 2.10 1.69 0.71 0.32
075 | 2.96 2.44 2.19 2.06 0.82 0.35
0.80 * 2.80 2.37 * 1.06 0.43
0.85 * * * * * *

3 10701 2.53 2.20 2.05 2.16 0.91 0.41
0.75 | 2.86 2.36 2.13 2.64 1.03 0.44
0.80 * 2.65 2.26 * 1.29 0.51
0.85 * * 2.56 * * 0.70

ng a Total insertion cost Record pool size
b=10 b5=20 b=40| b=10 b=20 b=40

2 070} 429 297 2.42 8.9 13.9 25.4
0.75 | 5.02 3.26 2.54 12.1 16.9 28.9
0.80 * 3.85 2.80 * 23.4 35.0
085 * * * * * *

3 | 070 | 4.69 3.11 2.46 9.1 14.1 25.8
0.75 | 5.50 3.39 2.56 12.4 16.7 287
0.80 * 3.94 2.77 * 221 33.3
0.85 * * 3.26 * * 44.7

Table 2: Average insertion costs (k =5, buffer space 1 page, step length 5).

ng o Insertion cost Expansion cost
b=10 b5=20 b=40 | b=10 b=20 b=40
2 1070 | 263 2.30 2.13 1.62 0.70 0.32
0.75 | 2.98 2.52 2.27 1.90 0.79 0.35
0.80 | 3.60 291 2.53 2.49 0.97 0.41
085 | 4.88 3.71 3.01 4.06 1.41 0.54
3 1070 | 255 2.23 2.07 2.10 0.90 0.40
075 | 2.87 241 217 247 1.00 0.43
0.80 | 3.41 2.7 236 | 3.21 1.21 0.49
085 | 4.44 3.35 2.73 4.94 1.66 0.63
ng @ Total insertion cost Record pool size
b=10 b=20 b=40 | b=10 b=20 bH=40
2 {070 | 425 3.00 2.45 8.4 13.6 25.1
0.75 | 4.88 3.31 2.62 10.8 16.1 28.3
0.80 | 6.10 3.88 2.94 15.6 20.7 33.5
0.85 | 8.94 5.12 3.55 28.7 32.4 443
3 [070 | 465 3.13 2.48 8.6 13.7 25.7
0.75 | 5.33 3.41 2.60 11.0 16.0 28.3
0.80 { 6.62 3.94 2.85 15.8 20.1 32.2
085 [9.38 5.01 3.36 26.9 28.6 39.7

Table 3: Average insertion costs (k =8, buffer space 1 page, step length 5)

20 P.-A. Larson

When using the new method there are certain restrictions on the storage utiliza-
tion. The exact limit depends on all file parameters, but the separator length is
the most critical one. If the target storage utilization is set toc high the file will
“wander away'’. To explain this phenomenon, consider a situation where a new
record to be inserted happens to hit a full page. A number of records will be
forced out from the full page and they will all proceed to the mext page. This
may in turn force out even more records, etc. This creates a wave of records
flowing towards the end of the file. Normally the wave will disappear quickly,
but if it reaches a certain critical mass it will keep on growing, leaving behind it a
string of poorly filled or completely empty pages. The set of records probing a
page is divided in 25 —1 subsets by the record signatures. If the subset of records
corresponding to signature O is greater than the page size, the page will be left
empty and the wave of records will increase. This is more likely to occur when
signatures are short (fewer partitions) and the load factor is high (more records
probing a page).

Entries in Table 2 marked by an asterisk indicate parameter combinations
for which the file started “wandering away”. These results indicate that a signa-
ture length of 5 bits is sufficient only up to a storage utilization of 0.75, and 8
bits is sufficient up to 0.85. If the target storage utilization is pushed much over
0.85, the cost of insertions and expansions becomes quite high (regardless of sig-
nature length), unless very large pages are used. It seems that in practice, a sig-
nature length of 8 bits is sufficient and the most convenient.

As explained earlier insertions and expansions can be speeded up by using
more buffer space, transferring several consecutive pages whenever accessing the
disk. Table 4 shows how the average number of accesses decreases when the
buffer space is increased. The buffer size is measured in the number of file pages
it can hold. The additional gain obtained by increasing the buffer size gradually
decreases. The row labelled LB gives the lower bounds on the number of
accesses. For the particular parameter combination covered by Table 4 it does
not seem worthwhile to go beyond 3 pages; the total cost is already within 0.23
accesses of the minimum. This conclusion appears to hold for a wide range of
parameter combinations.

Linear hashing 21

Buffer size Average no. of accesses

(pages) Insertion Expansion Total

1 291 0.97 3.88

2 2.36 0.61 297

3 2.16 0.51 2.67

4 2.08 0.47 2.55

5 2.04 0.46 2.50

LB 2.00 0.44 2.44

b=20, k=8, @=08, n,=2 s=5

Table 4: Effect on insertion and expansion costs of increasing buffer space

8. Conclusion and open problems

A new dynamic hashing scheme, called linear hashing with separators, has
been presented. Its most outstanding feature is that any record can be retrieved
in one disk access. To achieve this a small amount of supplemental internal
storage is needed. The simulation experiments performed indicate that one byte
per page (bucket) is sufficient. Compared with other schemes that can achieve
retrieval in one access (dynamic hashing [LLA78], extendible hashing [FN79]) the
new method has two significant advantages: the amount of internal storage
needed is much smaller and predictable, and the storage utilization is user-
controllable (within certain limits). One noteworthy feature of the new method is
that the number of disk accesses for insertions and expansions can be significantly
decreased simply by using more buffer space during these operations. Overall the
method is quite simple. It is the first practical method that can achieve one-
access retrieval for large dynamic files.

There are a number of open problems and options that need to be explored.
The first one is related to the expansion sequence. The one proposed in this
paper is a straightforward implementation of the idea of spreading out pages with
low load factor more evenly over the file. Are there other sequences that give
better performance and/or simpler implementation? Does there exist an expan-
sion sequence which is optimal in some sense?

The second problem is related to the probe sequence. Linear probing was
used in this paper. It is well-known that linear probing suffers from secondary
clustering. Are there better probe sequences?

A mathematical analysis of the scheme would be very useful. We need to
be able to predict with more confidence how various parameters affect the perfor-
mance, and in particular, when the file is expected to start wandering away.
Based on the complexity of previous analyses of linear probing, this is expected to
be a rather difficult task.

The idea of using signatures and separators can be combined with a number
of other dynamic hashing schemes. Combining it with spiral storage appears

22 P.-A. Larson

particularly appealing because of the stable (non-cyclic) performance of spiral
storage [MA79].

References

[FN79] Fagin, R., Nievergelt, J., Pippenger, N., and Strong, HR.: Extendible
Hashing - a Fast Access Method for Dynamic Files, ACM Trans. Data-
base Syst., 4, 3 (1979), 315-344.

-]

[GL82] Gonnet, G.H. and Larson, P.-A: External Hashing with Limited Internal
Storage, Technical Report CS-82-38, University of Waterloo, 1982.

[KN73] Knuth, D.E.: The Art of Computer Programming, Vol. 3: Sorting and
Searching, Addison-Wesley, Reading, Mass., 1973.

0
[LA78] Larson, P.-A.: Dynamic Hashing, BIT, 18, 2 (1978), 184-201.

[+]

[LA80] Larson, P.-A.. Linear Hashing with Partial Expansions, In Proc. 6th
Conf. Very Large Databases (Montreal, Canada), ACM, New York, 1980,
224-232.

[]

[LA82] Larson, P.-A.: Performance Analysis of Linear Hashing with Partial

Expansions, ACM Trans. Database Systems, 7, 4 (1982), 566-587.

[+]
[LA83a] Larson, P.-A.: Further Analysis of External Hashing with Fixed-Length
Separators, Technical Report CS-83-18, University of Waterloo, 1983.

[+]
[LA83b] Larson, P.-A.: Linear Hashing with Linear Probing, Technical Report

CS5-83-38, University of Waterloo, 1983 (to appear in ACM Trans. Data-
base Systems).

]
[LK83] Larson, P.-A. and Kajla, A.: File Organization: Implementation of a

Method Guaranteeing Retrieval in One Access, Comm. of the ACM, 27, 7
(1984), 670-677.

[LI78] Litwin, W.: Virtual Hashing: A Dynamically Changing Hashing, In Proc.
4th Conf. Very Large Databases, (Berlin, West-Germany), 1978, 517-523.

{LI80] Litwin, W.: Linear Hashing: A New Tool for File and Table Addressing.
In Proc. 6th Conf. Very Large Databases (Montreal, Canada), 1980, 212-
223.

[MA79] Martin, G.N.N.: Spiral Storage: Incrementally Augmentable Hash
Addressed Storage. Theory of Computation Rep. 27, University of
Warwick, England, 1979.

[RL82] Ramamohararao, K. and Lloyd, JK.: Dynamic Hashing Schemes. The
Computer J., 25, 4 (1981), 478-485.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

