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ABSTRACT

In this paper we develop a formal mathematical model for
describing the logical behavior of digital CMOS networks: both
combinational and asynchronous sequential networks are covered.
The model is particularly tailored towards CMOS networks, taking
into account the differences between the design principles of CMOS
versus those of NMOS. We use a switch-level model based on a
labeled graph, which is an abstraction of the wiring diagram of the
network. We show that two analysis procedures, namely binary
race analysis and ternary simulation, previously developed for gate
networks, can be extended to CMOS networks. The model is also
suitable for the representation of faulty metworks, and is therefore
applicable for designing fault detection sequences. We introduce the
concept of well-formed networks and reject poorly designed net-
works early in our analysis procedure. Therefore the model provides
a basis for computationally efficient simulators.

This research was supported by the Natural Sciences and Engineering Research Council of Canada
under grant No. A-1617.
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1. INTRODUCTION

CMOS technology is playing an increasingly important role in VLSI (see for
example [8, 13]). Although some authors {1, 5] have developed unified MOS
models covering both NMOS and CMOS, there are in fact significant differences
between the design principles of CMOS and those of NMOS [4, 8]. In this paper
we develop a mathematical model particularly tailored towards digital CMOS
networks. Consequently, our model is conceptually considerably simpler than the
unified approaches. Furthermore, it captures the design principles that are spe-
cial to CMOS (e.g. transmission gates).

It is well-known that conventional switching theory based on gate networks
is not suitable for digital MOS networks, and that a switch-level model is required
[1, 2 (Appendix D), 5]. We develop here a switch-level model based on a labeled-
graph representation which can be easily derived from the wiring diagram of a
network. Somewhat related concepts appear in (1, 10].

In [3] we presented a mathematical theory of the behavior of asynchronous
sequential gate networks. Two analysis procedures were described, namely,
binary race analysis and ternary simulation, and a theorem relating these two
approaches was proved. In the present paper we show that these results can be
adapted to a large class of CMOS networks.

Simulators using very general MOS models require a lot of computation
because they cover a wide range of technologies and they pursue the analysis of
poorly designed networks. We restrict our attention to well-designed CMOS net-~
works, and thereby provide a basis for an efficient simulator. In this respect, our
approach is similar to that of [9] where a restricted class of synchronous NMOS
networks is analyzed.

Our CMOS graph model is also suitable for the representation and analysis
of faulty networks, as shown in Section 7. Thus there is no need to introduce spe-
cial gate models [12] or special switch-level models for the purpose of designing
fault detection sequences.
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2. CMOS NETWORKS - INFORMAL DISCUSSION

The fundamental building blocks of CMOS networks are the n-channe! and
p-channel enhancement mode transistors {4, 8]. In Figure 2.1 we show commonly
used symbols for the n-channel and p-channel transistors, along with the “graph”
symbols that we will use in this paper. The graph of Figure 2.2 shows a typical
simple CMOS network, namely a two-input NOR gate. In that figure 1
represents voltage VDD which is the positive end of the power supply, and 0
represents voltage VSS which is the negative end of the power supply. The sym-
bols 0 and 1 also represent the customary logical values, using positive logic.

" t‘ t\ t1

(a) (b) (c) (d)

Figure 2.1 Transistor symbols: (a) n-channel transistor; (b)
graph notation for (a); (c) p-channel transistor; (d)
graph notation for (c).

Refer to Figure 2.1(a). Usually an n-channel transistor behaves like a
switch between terminals ¢, and ¢, where the state of the switch depends on
the value of the control or ‘“gate” input a. In particular when a = 1 the
switch is “‘closed”’ meaning that the terminals ¢, and ¢, are connected by a
low-resistance path. If e = 0, the switch is “open,” meaning that there is very
high resistance between ¢, and t,. Similarly, in the p-channel transistor the
switch is closed when a = 0 and open when ¢ = 1. In our graph representa-

A
tion a connection between £; and ¢, exists if the edge is labeled 1 or 0.

Consider now the NOR gate of Figure 2.2. There is a connection between
the input node labeled 0 and the cutput node labeled z iff a+b = 1, where +
denotes logical OR. Similarly, there is a connection between 2 and the input
node labeled 1 iff a-+b =0 ie. a'-b’ = 1, where - denotes logical AND, and
a' is the complement of a. Clearly z is always connected either to 0 or to 1
but not both. Evidently 2z = a'-b' = (a+b)’' showing that the network realizes
the NOR function.

The switch model described above is only an approximate representation of
CMOS design rules for the following reasons. Any node that is not an input node
is called a storage node. A storage node y has a “reliable’” value of 1 under
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B 4 input node
y ® storage node
a @—= output node
z
a b
0

Figure 2.2 CMOS NOR gate.

stable conditions if there is a connection via a series of closed p-transistors from
y to an input node labeled 1, and there is no connection to an input node
labeled 0. Similarly y has a “reliable” value of 0 if there is an “n-connection”
to 0 and no connection to 1. The motivation for this design rule is the fact that a
closed n-transistor transmits O-signals reliably but 1-signals less reliably. Simi-
larly a closed p-transistor transmits 1-signals reliably and O-signals less reliablyT
[4, 11].

A switch that transmits both O-signals and 1-signals reliably under the con-
trol of an input @ is implemented by means of a two-transistor ‘‘transmission
gate” [4, 8, 11| as shown in Figure 2.3(a). For,if a =1 and ¢, is an input
node and has the value O, then the n-transistor controlled by a provides a
proper connection; if ¢, has the value 1 the p-transistor controlled by b = a’
provides a proper connection. In any case t, gets the value of ¢;. A transmis-
sion gate controlled by a’ is shown in Figure 2.3(c).

Return now to the NOR gate of Figure 2.2. Although the storage node z
has only the values 0 and 1 for any input combination, this is not true of node y.
First, when 2 = 1 and b = 1, node y is not connected to anything; it is then
said to be floating. We will associate the value “3” with such a floating condi-
tion. Such a storage node has some memory capability (due to the presence of
capacitance) permitting it to remember its previous binary state for some time.
We will discuss this property later. Second, consider the input a =0, b = 1.
Then y has no connection to 1 but only a “mixed” connection to 0. We will

t Note that in dynamic NMOS technology these “unreliable” switches do play an important
role as “‘pass transistors” [7].
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Figure 2.3 (a) Transmission gate controlled by ¢; (b) simplified
symbol for {a); (c) transmission gate controlled by
a’; (d) simplified symbol for (c).

denote the state of the node under such circumstances by the value “2”,
representing an unknown state.

We consider the distinction between node states 2 and 3 essential, in con-

trast with 3-valued models {e.g. [1]). Four values have been used in [12}, in con-
nection with fault detection in CMOS networks.

Our final example for this section is the network of Figure 2.4, which real-
izes the boolean function z = ab+a'c.
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Figure 2.4

3. CMOS GRAPHS

In this section we formalize the graph notation introduced in Section 2.
A CMOS graph C consists of the following:

(2) A finite, undirected graph G = (V,E), labeled as described below.
(b) Sets X,Y,Z CV of input, storage, and output nodes respectively, where

XNY=@, XUY=V,ad ZCY.

{c) A finite input alphabet A and constant inputs O and 1, where
AN{o1}=02.

(d) An input-node labeling, assigning to each input node an element from
A U{o,1}.

(e) An edge labeling, assigning to each edge of G an element of L uﬁ,

where

Y={,1}UAUY and LA'={3|UEE}.

A storage node y €Y is called a key node iff y or 9 is a label of some

edge. An input state of a CMOS graph C is a mapping s, : A -{0,1}. A
storage state of C is a mapping 8y :Y - {0,1,2,3}.

Let K = {k,,...,k;} be the set of all key nodes. A key state is any 4-
valued h-tuple (g,,...,q;) where ¢; € {0,1,2,3} for i =1,...,k. The key
state corresponding to a given storage state s, is the h-tuple
(sylky), - - . ,85(ky)). A total state of C is a pair & = (s4,8y). An input-key
state of C is a pair w = (84,9) where ¢ is a key state. A key state
a=1(qy,.--,q,) is clean iff q; € {0,1} for § = 1,...,h. An input-key state
is clean iff its key state is clean.

Given a CMOS graph C and a clean input-key state w = (8,,g9) we
obtain the CMOS graph- C,, by replacing each edge label and each input node
label 0 € £ by w(o), where
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g, . ifo€{o01};
w(o) = s4(0) , ifo€A,;
%, Ho=k€K.

Let w be a clean input-key state of CMOS graph C. A path in C, is
called

a connection iff every edge label in the path is either 0 orl.
an n-connection iff every edge label in the path is 1.
a p-connection iff every edge label in the path is 6

a mized connection iff it is a connection, but is neither an n-connection
nor a p-connection.

Any connection between an input node labeled 0 and an input node labeled

Lis called a fight [11].

For a clean input-key state w we define the excitation state of C, tobe

the mapping

ey - Y ~{0,1,2,3}

where for y € Y,

(a)

(b)

(c)

e,(¥) = O iff there exists an n-comnection from y to an input node
labeled 0, and no connection to an input node labeled 1. (Note that, under
these conditions, the signal at node y will tend to become 0.)

e,(¥) = 1 iff there exists a p-connection from y to an input node labeled
1, and no connection to an input node labeled 0. (Here the signal tends to
become 1.)

e,{y) = 3 iff there is no connection from y to any input node. (Here
node y is electrically isolated.)

e, (y) = 2, otherwise. (Here the signal at node y may tend to take on
some value between VSS and VDD.)

A clean total state s = (s4,8y) of C is stableiff sy = e,, where w is

the input-key state of s. Evidently, if & and ¢t are clean stable total states of
C which agree in the input and key components, then s = ¢.

In this paper we consider only CMOS graphs satisfying:

Conditions C

Cl.

For every clean input-key state w the key-state excitation is clean, i.e.
ey(k;) € {0,1}, for ¢ = 1,... ,h.
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C2. Every clean stable total state has no fights.
C3. Im every clean stable total state no output node is labeled 2.

A CMOS graph satisfying these conditions will be called well-formedf. We
view Conditions C as recommendations for sound modular design of complex
CMOS VLSI systems. In general, a violation of these rules tends to make the cir-
cuit designer’s task extremely difficult. These rules also simplify the design of
simulators.

The following propositions may be useful in testing whether a CMOS graph
C is well-formed. They are easily verified.

Suppose a CMOS graph C' consists of n disjoint subgraphs C,, ... ,C,.
Foreach ¢ = 1,...,n we define the CMOS graph C; as follows:

(i)  The labeled graph of C; is C;.

(i) The input alphabet of C; consists of the edge-label variables of C;
which are not key-node variables of C;.

A subgraph C; is well-formed with respect to C iff, for every clean input-
key state of 5‘-, the excitation of every key mode of C' appearing in C; is
clean.

Proposition 3.1  Suppose C consists of n disjoint subgraphs C,, ...,C,.
If C; is well-formed with respect to C for all i, i =1,...,n,then C is
well-formed.

Proposition 3.2 Let k be a key node in C and let f, and f, be boolean
functions of the key node variables restricted to 0 and 1 and of the inputs
defined as follows:

Jo = 1 iff there is an n-path from & to 0,
fi = 1 iff there is a p-path from k to 1.

Then [, = f1 iff condition C1 is satisfied for k.

A well-known CMOS design method results in networks consisting of dis-
joint components of the type shown in Figure 3.1, where the p-part is a connected

subgraph of C' with all edge labels in ).":‘, and the n-part is a connected subgraph

of C with all the edge labels in X. Furthermore, if f; and f,; for node y;
are defined as in Proposition 3.2, then f, = f]. Evidently f, depends only on
the n-part and f, only on the p-part.

t The concept of well-formed graph applies also to CMOS T-graphs of Section 4.
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Proposition 3.3 Let C be a CMOS graph consisting of disjoint subgraphs
of the type of Figure 8.1 with one such subgraph for every key node and every
output node, Then C is well-formed.

Figure 3.1 Complementary design.

Example 3.1 (SR_Latch) Consider the graph of Figure 3.2. Here
A={S,R}, Y=1{Q,Q,y,,5o} and K = {Q@,Q} = Z. One verifies that the
following total states are clean and stable, and that there are no other stable
states;

S R 6 Q@ ¥ ¥

For example, consider the last stable state. The graph C, for this state is
shown in Figure 3.3. The node y, has no connection to 1 and a mixed connec-
tion to 0. Hence e,(y,) = 2.
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1 1
1 H
[3 R
~ &
aQ Q
[ Q
s Q R Q
o 0

Figure 3.2 NOR latch.

->
>

®Y, ®,

O
o>

[»]]
o

0 o
Figure 3.3 The graph C,,.

Using Proposition 3.3 one verifies that the graph of Figure 3.2 is well-
formed.

Three additional examples of CMOS graphs are shown in Figure 3.4. The
graph of Figure 3.4(a) is well-formed and behaves like an oscillator, i.e. has no
stable states. The graph of Figure 3.4(b) is also well-formed. It is a combina-
tional circuit realizing the boolean functions z; = (ab)’, z, = (ac)’. The graph
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of Figure 3.4(c) is not well-formed because, for the clean input-key state a = 0,
b=0, ¢=0, y, =0, y, =0, the excitation of the key node y, is 2, violat-
ing Condition C1. We return to this graph in the next section.

1 1 b 1

-!V 9
y a y| |a 9,

@y @y, Y, ©—2Z
y a al %, v,

f ) ll

o) o c 0

o)
(a) {b) {c)

Figure 3.4 Other examples of CMOS graphs: (a) oscillator; (b) a
combinational network; (c) a network that is not
well-formed.

4. CMOS I'-GRAPHS

Many commonly used CMOS networks can be modeled by well-formed
CMOS graphs. However, other useful networks, when modeled by CMOS graphs
as defined so far, do not satisfy all of the conditions C1-C3. The graph of Figure
3.4(c) is one such example. With respect to terminals b and c¢ this graph
represents a pair of transmission gates.

One problem with the graph of Figure 3.4(c) is that the excitation of key
node y, becomes 2 when ¢ =b = ¢ =y, = y, = 0. This happens only when
a has changed from 1 to 0 but y, has not yet responded to this change. In prac-
tice, the storage node y, remembers its previous state y, = O during such a
transient condition. However, our CMOS graph model does not rely on any such
assumptions of temporary storage capabilities of storage nodes. The extended
model about to be introduced does take this assumption into account.
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We generalize the definition of CMOS graph by permitting transmission
gates as basic building blocks. A CMOS T-graph consists of parts (a)(d) of a
CMOS graph and a modified part (e), namely

A
(¢') An edge labeling, assigning to each edge of G an element of 'UT,
where

F'=ruUfe'leacAlU{y|yer)

and
f=flaert

Furthermore, this edge labeling is restricted as follows. An edge labeled o,
o € A UY, must appear in parallel with an edge labeled 3. Similarly, an edge

A
labeled o' must appear in parallel with an edge labeled 0. Thus edges with com-

plemented variables appear only as parts of transmission gates.

Observe that every CMOS graph is also a CMOS T-graph. We also modify
the definition of graph C,, in the obvious sense, using 0’ =1 and 1’ = 0.
Finally, we define 2 CMOS T-graph to be well-formed iff it satisfies conditions
C1-C3.

Note that Propositions 3.1 and 3.2 apply also to CMOS T-graphs.

Example 4.1 The graph of Figure 3.4(c) will now be represented by the
CMOS T-graph of Figure 4.1(a). Observe now that the excitation :1}2 of y, is

- bifa=0,

25 cifa=1.
Thus C1 holds. Also C2 and C3 are easily verified. Therefore the graph of Fig-
ure 4.1(a) is well-formed.

Example 4.2 (D Flip-Flop) In the T-graph of Figure 4.2 the excitation of
key nodes y and @ is as follows:

If ¢ =1 then y =D and §=y';

i
o
[
=
(1]

B

L

I

Q)
5
(-9

N

i

Q‘

if ¢

Evidently the T-graph is well-formed.

Example 4.3 (Tally Network [10]) In Figure 4.3 the inputs are a and b
and the outputs are 23,2,,z,. One verifies that the T-graph is well-formed and
realizes the boolean functions:

zg = a'b’, z; = a'b + b'a, z, = ab.
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b 1 b 1

Y |[
1 a ’92 O. 'y\z

/8 @2z Y, ©-z
a' Y, a Y,
1
c o} [ (o]
(a) (b)

Figure 4.1 (a) T-graph for Figure 3.4(c); (b) simplified notation

for (a).
1 1
: ;
c c' _
—— K
> ¢ ©—+Q Q
@ y
%
o) 0

Figure 4.2
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Figure 4.3 Two-variable tally network.

Example 4.4  Consider the input-key state a =1, y, =1, 9, =0, y; =1
in Figure 4.4. Then the excitation of node y; is 2, showing that the graph is not
well-formed. However, this is only a transient condition, because eventually the
network will reach the stable total state a =1, y, =0, y,=1, y; =0,
y4 = 1. Nevertheless, our model rejects the network because of the presence of
a temporary fight.

1 1 1 i
H : 1 H
I A .
én ®y, %g ®Y,
0 % a Y,
r f } }
(o] 0 0 0

Figure 4.4 A graph which is not well-formed.
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5. BEHAVIOR OF CMOS NETWORKS

In this section we study the behavior of asynchromous CMOS networks,
adapting the approach of [3]. More specifically, we would like to analyze the
behavior of a CMOS T-graph when started in an arbitrary clean total state. We
will assume that the input state is kept constant until the network has a chance
to “‘settle.”

Given a CMOS T-graph C, satisfyin§ Condition C1, let a be an input
tuple. Define a function F, : {0, 1}* = {0,1}* by

Fa(qlr e :qh) = (El' D :qh):

where ¢ = q,,...,q; is an arbitrary clean key state, 5'. = g,(k;), for

i=1...,h,and w = (a,q)

Let ¢,7 € {0,1}*. The interval [7,9] between g and g is defined to be:

lg,9} = {p €{o,1}* | p, =¢; or p; = '6'., foralli, i =1,.. .,h}.

Under the above conditions, we now describe all possible successor states of
a given key state g. If g, # ¢; then g; tends to become El.. However, there

may be a “race” among a number of key-node variables. In the GMW (General
Multiple Winner) model we assume that any subset of the set of racing variables

may win the race. Thus we consider any state in the interval [¢,9] = [g,F,(q)]
to be a possible successor of ¢.
More formally, we associate with F, the GMW relation R, on {0,1}*
defined by:
gR,q iff g = F,(q)
and for p # ¢,
qR,p iff p € [q,F,(q)]

The relation R, is conveniently represented by a directed graph, where nodes
correspond to key states and an arrow from node g to mode p indicates that
1R,p.

In the graph of R, a cycle of length one corresponds to a stable state, and
a cycle of length > 1 represents an oscillation. For any ¢ € {0, 1 et R_,(q)
be that portion of the graph of R, which contains only nodes reachable from gq.
Let '
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eyel(R,(q)) = {p € {o,1}* | gRYp and pR:p }

be the set of all states of R,(¢) that appear in at least one cycle. (as usual R:
is the transitive closure of R, and R} is the reflexive and transitive closure of
R,.)

Among all the oscillations (cycles of length > 1) we wish to distinguish cer-
tain oscillations which we call transient. A cycle in R, is transient iff there

exists ¢, 1 =1 = h, such that for each key state in the cycle ¢, # E‘., and ¢,

has the same value in each key state. Let
trans(R,(q)) = { p € cycl(R,(q)) | every cycle in which p appears is transient }

Finally, we define
out(R,(q)) = cycl(R_(q)) — trans(R,(q))

to be the set of ‘“‘non-transient’ cyclic states.

A clean input-key state (a,g) of a well-formed CMOS T-graph C is
deterministic iff out(R,(g)) has exactly one element p. This means that the
network ends up in a unique stable input-key state (a,p) when started in (o, q).
In general, a well designed CMOS T-graph has only such deterministic transitions
when any “‘admissible’” input sequence is applied.

An input state o of a well-formed T-graph C is forcing iff for any two
clean input-key states w, = (a,q) and w, = (a,p) the excitation states are
equal, ie. €y, = €y, This implies that the network always ends up in a unique
stable state, whenever o« is applied. Evidently, if a is forcing then (a,q) is
deterministic for every clean g. If every input state of C is forcing then C is
called key-combinational, i.e. the state of each key node is a boolean function of
the input variables. Note that, if C is combinational, its outputs are also
uniquely determined by the input state. However, an output may have the value
3, i.e. be floating.

Example 5.1 Consider the NOR latch of Figure 3.2. For input state « with
S =1, R =1 the R,; graph is shown in Figure 5.1(a), where the key state is _
(6 ,@). Note that this input is forcing, and every input-key state with
S =R =1 is deterministic. The R,, graph is shown in Figure 5.1(b). Note
that out(Ry,(00)) = {0,1}°. Thus Ry(00) is mot deterministic. There are
three cycles in R, the length-one cycles (01) and (10) are stable states and the -
cycle (00,11) is an oscillation. This cycle is match-dependent [3] and therefore
unlikely to persist indefinitely. ' _

In view of the nondeterministic behavior of the NOR latch caused by an
input change from 11 to 00, the input 11 is generally considered inadmissible.
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11 00

o1 10
01 10

00

Figure 5.1 Examples of R, graphs: (a) R,;; (b} Ry,-

8. TERNARY SIMULATION

In this section we give another example of the binary analysis introduced in
Section 5 for the purpose of comparing it to an alternate approach described
below. First we introduce a simplified notation for CMOS gates as shown in Fig-
ure 6.1.

al |b
y
° i D
®
b
(b)
o]
(a)

Figure 6.1 (a) CMOS NAND gate; (b) abbreviated symbol for.(a).

Consider the network of Figure 6.2 with inputs ¢ and b and key nodes
¥1,¥g, and ys. This network consists of 3 NAND gates each constructed using
the complementary design of Figure 3.1. In such cases the excitation state is very
easy to find. Here we have the following excitation equations:
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¥, = Nie,y) = (eyy)',
52 = N(ypys) = (.vlys)',

§3 = N(yQ:b) = (y2b)',

where N(z,y) represents the NAND function of z and y, N(z,y) = (zy)"
We will analyze two of the transitions for this network.

a —
Yo ____>—© %
Y1 _'
ys——D—@yg
Ye ] P—eoy,

Figure 6.2 Example to be analyzed.

Note that the input-key state ((e,b),(y,,¥2,¥3)) = (11,010) is stable. Fig-
ure 6.3 shows the graph of the relation Ry,(010). Evidently out(Ry,(010)) is
the singleton set {101}. Hence the input-key state (11,010) is deterministic, and
the network ends up in the stable key state 101 when the input is fixed at 00.

010

10 on

m

104

Figure 6.3 Graph of R,(010).
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In our second example, the network starts in the stable input-key state
(10,011), and then the input changes to 01. The graph of R;,(011) is shown in
Figure 6.4. Here out{(R;,(011)) = {100,101,110,111}; there are two stable key

states and one (match-dependent) cycle of length 2. Clearly the input-key state
(01,011) is nondeterministic.

on

1 010

101 10

100

Figure 6.4 Graph of R,,(011).

In the binary analysis illustrated above each graph R, (q) may have as
many as 2% nodes. We now describe an alternate analysis method, namely ter-
nary simulation [3], where the analysis algorithm is linear in k. We will describe
this approach only informally here; a formal discussion is found in [3].

We require the concept of ternary extension of a boolean function. For
example, the ternary extension N{x,y) of N(z,y) is defined in Figure 6.5. For
any boolean function F(z,y), it x,y € {0,1} then the ternary extension is
F(x,y) = F(x,y). If y € {0,1} and F(0,y) # F(1,y) then F(%,y) = % Oth-
erwise, F(1,y) = F(0,y) = F(L,y). The situation is similar if x € {0,1} and
y = 1. Finally, F(},2) = 3 iff {F(0,0),F(0,1),F(1,0), F(1,1)} = {0,1}; other-
wise F(;,7) = F(0,0) = --- = F(1,1). The table of Figure 6.5 illustrates this
for the NAND function.

Returning now to the excitation equations of the network of Figure 6.2, we
define the ternary function H by:

H((a,b),(y,,¥.¥3)) = (N(a,y2),N(y,,¥3), N(v2, b)).

This function can be viewed as the “ternary excitation function” for the network
of Figure 6.2. We can now describe the ternary simulation algorithms.

We consider the network as starting in a stable input-key state (a,¢), and
we are interested in its behavior when the input state a changes to 8 and then
remains fixed. Let p(e,f) be the component-by-component average of a and

B, ie.
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1
11 |2fo

N(x’ Y)

Figure 6.5 Ternary extension of the NAND function N.

#(0,0) = 0,
e(,1)=1,
#0,1) = 3.

The method consists of 2 algorithms shown below. One easily verifies that each
algorithm terminates in = h steps. The output r of Algorithm A becomes the
r input of Algorithm B.

Algorithm A {inputs «,8,q; output r}

P - ule, )

req

while H(p,r) # rdo
r - H(p,r)

stop

Algorithm B {inputs r,s; output t}

ter

while H{3,t) # tdo
t - H(8,t)

stop

We now apply the ternary analysis to the trapsition previously analyzed in
the binary mpdel, shown in Figure 6.3.
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Algorithm A

() p-s(11,00) = 31

(2) r+010

(3) H(}3,010)= 11} # 010
4 r .._;. 1 %

6 HELIY =il
© -1t

O BGELi =i

(8) stop {outputis r = 217}
Algorithm B

UNETET O

(2) H(00,;22)=131# ;11
(B) t-11

(4) H(00,111)= 101 # 111
(5) te+101

(6) H(00,101) = 101

(7)  stop {output is t = 101}

following theorem [3]:

Theorem

(a)
{b)

If the output t of algorithm B is in {0, 1}" then the input-key state

21

The significance of the results of the ternary algorithm is explained in the

(B,q) is deterministic, and the network ends up in the stable key state t.

More generally, if a component t; of t isin {0,1}, then the ith com-

ponent in every key state in out(B,q) has the value t,;.

analyzed in Figure 6.4.

Part (b) of the theorem is illustrated below for the transition previously
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Algorithm A

() p-ul10,01) = 22
(2) re~o1
(3) H(E1,011) =211 # 01
(4 re312
© HEni- e n
© r-iid
(1) HG

1
2
(8) stop {output is

Algorithm B

() t-333

0 HOLi =1
@ 12t

(4) H(Ol 11]) =111

(5) stop {output is t = l%-;—}

Compare the result t =121 ; to out(01,011) = {100,101,110,111} from

Figure 6.4. Indeed the first component of the key-state is always 1 as predicted
by t =111
22

Qur third example shows that the ternary model may be more pessimistic
that the binary model. The network of Figure 6.6 is stable when ¢ = 0, b =
and y1 =1, y,=0, y3=1. It is also stable when the input changes to

= 1, & = 0, and the binary model predicts that the key state will remain 1101
1 1

One easily verifies, however, that the outputs of Algorithms A and B are 223

and 1* , respectively. Thus the ternary model gives the correct value of y,,
but is more pessimistic than the binary model as far as y, and y; are con-
cerned. This happens because the ternary model takes into account the possibil-
ity that the two inputs may not change simultaneously, and that the storage node
¥; may not store its previous state for a long enough time to overcome this
hazard.
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Figure 6.6

7. FAULT DETECTION IN COMBINATIONAL NETWORKS

Fault detection for MOS circuits has been widely discussed in the literature,
and complex models have been proposed in order to simulate faulty networks.
See, for example [6, 12]. In this section we show that our model is applicable to
fault detection in combinational CMOS networks with binary output. We con-
sider the following types of faults:

(1) Input stuck-at-0 or stuck-at-1,
(2) Key node stuck-at-0 or stuck-at-1,
(3) Edge stuck-at-open or stuck-at-closed.

By stuck-at-0 (stuck-at-1) we mean, as usual, a permanent short-circuit to VSS
(VDD), whereas stuck-at-open (stuck-at-closed) represents an open (short-
circuited) transistor.

The appropriate framework for studying the faults described above is the
CMOS graph of Section 3. In this model any one of the above faults can be
represented by replacing

(1) an input variable by 0 or 1,
(2)  akey-node variable by O or 1,

(3)  the label on a single edge by 0,1,6, or i, as appropriate.

Evidently, the result of such a replacement is another CMOS graph which can be
analyzed by the methods of Section 3, as described below.

In Figure 7.1(a) we show the NOR gate of Figure 2.2 in which we have
assumed that the edge labeled a is stuck-at-closed. For the input combination
a =0, b= 0, the excitation €(z) of output node z is 2. Under these cir-
cumstances the output voltage of the network being modeled will take on some
intermediate value between VSS and VDD, depending on the electrical properties
of the circuit. Such a fault should be detected by analog measurements; we will
not pursue this.

In Figure 7.1(b) the edge labeled ¢ in Figure 2.2 is stuck-at-open. Here we

have e(z) = 3 for the input combination a = b = 0, while the fault-free
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->

Figure 7.1 (a) Edge a of Figure 2.2 stuck-at-closed; (b) edge
a stuck-at-open.

network has e(z) = 1. This fault can be detected by taking advantage of the
temporary storage capability of mnode =z. If the input sequence
{(e=0,b=1)(a =0,b=0) is applied the faulty network will produce the value
z = 0 for both input combinations, whereas the fault-free network would pro-
duce the output sequence 01. For this type of testing, the frequency of the test
sequence must be sufficiently high to avoid significant deterioration of the signal
at the floating node.

In general, any fault that, for some input combination, changes the output
from O to 1 or vice-versa is detectable by that input combination. Any fault
which would result in the output value of 3 in our analysis can be detected by a
suitable sequence of length 2, as long as the output is not a constant.

8. CONCLUSIONS

We have presented a precise mathematical model for the analysis of digital
CMOS networks. This model provides a promising framework for further
research in the areas of (a) structured design methodology for digital CMOS sys-
tems, (b) the design of efficient simulators for asynchronous systems, and (c) the
design of fault-detection sequences.
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