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ABSTRACT

This paper deals with the problem of eslimating the error in the computed
solution to a system of equations when that solution is obtained by using
Gaussian elinination without pivoting. The corresponding problem, where
either partial or complete pivoting is used, has received considerable attention,
and efficient and reliable methods have been developed. However, in the con-
text of solving large sparse systems, it is often very attractive to apply Gaus-
sian elimination without pivoting, even though it cannct be guaranteed a-
prieri that the computation is numerically stable. When this is done, it is
important to be able to determine when serious numerical errors have
occurred, and to be able to estimate the error in the computed solution. In
this paper a method for achieving this goal is described. Soine analysis, along
with results of a large number ol numerical experiments, suggest that the
method is both inexpensive and reliable,

* Rescarch supported in part by Natural Sciences and Engineering Research Council Grant A8111.



1. Introduction

This paper deals with the problem of esiimating the error in the computed solution to

the nonsingular system of equations

Az =1b | (1.1)

where the solution is obtained using Gaussisn elimination. In the usual circumstances, the
procedure involves two steps. Ignoving rounding errors, the first step is the application of
Gaussian elimination to A with some form of row and/or column interchange, yielding a tri-

angular factorization

PAQ =LU , (1.2}

where P and @ are permutation matrices, I is unit lower triangular, and U7 is upper triangu-

lar. The second step involves the solution of the two triangular systems

Ly = Pb (1.3)

and

U=y , (1.4)

where £ = QT x .

In practice, rounding errors will cccur in both the decomposition step and the solution of

the triangular systems, so the computed solution z will satisfy a perturbed system.



(A+E): =b . (1.5)

The error in the computed solution depends onm two quantities, the relative error in A

’

denoted by

_1el
T Al (1.6)

and the condition number K{A) of A with respect to inversion, defined by
— -1
K{A)=[laf a7 . (1.7)
In particular, the error in z, compared {0 the computed solution z, satisfies

|z

PGS (1.8)

It is well known that {1.8) is quite realistic for almost all perturbations . That is, the right

side of (1.8) is rarely a severe overestimate for the relative error in || 7 || .

When partial or complete pivoting is used, « is alinost always a modest multiple of the
machine epsilon ¢, and the main problem in estimating the error in the computed solution is
to obtain an inexpensive estimate for K (A). This problem has received extensive study, and
reliable methods have heen develaped [1, 3, 5, 7). (We assume that the reader is familiar with
these references.}] Their success implicitly relies on the assumption that the computed tri-

angular factors . and U ate accuratc, since what is estimated by these methods is & (LO).

The problem we consider in this paper is different in that we cannot be sure that ~ is
small. In the context of solving very large sparse systems of cquations, it is attractive to

apply Gaussian elimination witkout pivoting ( P=@Q =T in (1.2) above]. This allows one to



set up a fixed data structure for L and U in advance of the numerical computationr, so that

the actual numerical factorization can be very efficient.

Although this approach very often works well in practice, there is always the danger
that unacceptably large roundoff errors will oceur during the factorization. Thus, it is impor-
tant, when using this “‘no-pivoting” strategy, to be able to determine estimates for both K (A)
and . Our main contribution is to provide an efficient mechanism for estimating | F]},

where
A+F=LU . (1.9)

Iixperience suggests that the major influence on the error im the computed solution is due to
F, so a relizble estimator for F is all that is required for purposes of estimating 4. Rounding
errors incurred in solving the triangular systems (1.3) and (1.4) are uwsually of little signifi-

cance, or at least do not dominate those due to F.

Note that the ratio of K{A-+F) to K(A) satisfies the following inequality [1]:

(1-9)1—23k) _ K(A+F) _ 145
(1—3k) K(A) 1~k

(1.10)

where 4 = |||Ii|]| , and k denotes K{A). Therefore, K(A+F) will be of the same order of

magnitude as K(A) provided 7k = 0.01 .



2. A-Posteriori Estimation of the Errors in the Factors

[n this section we derive a bound on || F|,, where ¥ is given in (1.0). Our bound is
computed in terms of A and the elements of the computed factors LU , and involves only a
modest multiple of Nonz(f,+17) arithmetic sperations where Nonz (M) denotes the number

of nonzero elements in the matrix M. We use the standard floating point error analysis

model
ﬂ(:l:by) = [:cOy){I-I-&)
= (soy)(1+d) ,

where | §| s¢, | d | <¢, and ¢ i5 the unit roundoff error in the floating point system being used.
Here ® denotes any of the operations of +, —, X, and +, and [I(z®y) denotes the floating

point result obtained by applying the machine operation ® to the floating point numbers z

and 3.
Lemma 1. (Forsythe and Moler [3])

Let | 5; | =<¢, 1=i=r, and re<0.01. Then

JI(1+5) = 1+re

=1

where | 8] =1.01



The elements of L and U are defined respectively by

-1

Zl'f = (aij—giikukj)/uﬁ for &>J, (21}

and

=1

k=1

U

There are several ways of implementing the factorization. For example, there is the conven-
tional row-oriented scheme which involves the sequential creation of zeros below the diago-
nals. Alternatively, one can implement equations (2.1) and (2.2) directly, which is usually
referred to as the Crout decomposition. Sparse matrix techniques generate various other com-
putational schemes. However, the implementation chosen will ormally only affect the order
in which ¢,; and the elements of the summation enter the computation. For instance, (2.1}

may be implemented in any of the ways implied by the parentheses in the equations below.

lij = (as'j - (!t'lutj + ( et (Is',f—ﬁuj"Q,j + !{,j-ﬂt"j""],j)"'))yujj (2.3)
Li=ae = (et lgug ) Hlgugy) -+ iy Wugy (2.4}
Li={- oy =dyly )= lalog)— - - L j—(limy JVuy (2.5)

Other orderings of the computation are possible as well, involving different groupings of the

summands in the numerator. Similarly, analogous groupings are possible for {2.2).



Lemma 2.

Let & be a floating point number defined by the formula
1
§ = (G = Eakbk )/d ; (26)
k=1

where the {41 summands in the mumerator are combined (added) in any arbilrary order.

{Examples are (2.3), (2.4) and (2.5) ). Then

sdﬁ-i'akbk =c+f (2.7)
k=1
where
!
[ £ = 1.01Q+1)¢(] e] +(?|“&] Lo l)+ | 5] [4]) (2.8)

The proof is left as an exercise.

Let [ and U be the computed factors of A. Our objective is to derive a bound for
| #] |, where LG=A+F, as in (1.9). Making the obvious correspondences between (2.1) and

(2.6), and between (2.2) and (2.6), Lemma, 2 yields

j P ~ . U
Dl = o+ [, 127, (2.9)

k=l

and



gty = ot i, 5], (2.10)
k=]
where in both cases
Jooa .
| fi:'[sl'mﬁ(l gl + 20 T ] 1 dejl) (2.11)
ki

Note that the swmmation ir (2.11) is simply the (i, j)-th element of the product |} |01,
where | M} denotes the matrix whose clements are the absolute values of those of M. Thus,

(2.11) can be written in matrix form as
{F] =10tneflA| + | F] |0]) (2.12)

where the inequality should be understood to apply element by element.

An examination of the elemenis of I£| | U | shows that || lﬁl | U | | { 1s quite inexpen-

sive to compute. Let L".,'- denote the i-th column of .. Then the J-th eolumn of II:I ![ﬂ is

i Ps n ~ ~
given by 37| Ly | l“,‘,"sﬂﬂd Lo, = maxe; = &
i=]

where
i s .
a;= S Lally a1 . (2.13)
i=1
”~ n2
Note that the computation of the » numbers || L., [ | requires sbout ry additions, and the
72
;'s together require a further approximately ry multiplications and additions.
, 17l _
Thus, deeoting o= | A | ;, we have as the upper bound for ———, the ratio

4],



+
1.01n e-(%l . (2.1}

The methed employed above is very similar to that of Chartres and Geuder [11],
although the motivation is different. Their analysis is for a specific implementation of the
equations (2.1) and (2.2}, and their results are therelore somewhat tighter than ours. They
also assumed the use of double precision accumulation of inner products, and included the
effect. of rounding errors incurred in the triangular solution. In contrast, our objective was to
have the bound for the error apply to as many different computational schemes as possible.
In exchange, we obtain a somewhat more pessimistic bound, but for purposes of estimating

the error in the solution, this does not seem particularly important, Chartres and Geuder also

3
propose to explicitly compute bounds for all elements of F, which involves about n— addi-

tions, although their basic approach does not preclude using the same technique proposed

above if enly || F|| ; is required.

Most error analyses of Gaussian elimination provide a bound for F which involves the
number p, which is the largest number in magnitude that appears in any of the reduced sub-
matrices that occurs during Gaussian elimination. Erisman and Reid [12] propose a scheme
for bounding F' which involves computing a bound for p in terms of the elements of A, L and
U. Their scheme is no more expensive than ours, but they acknowledge that the bound pro-
duced can be quite pessimistic if the elements of Land U vary greatly in size. The results of

Test(3) in section 3 indicate that our scheme appears to behave well, irrespective of the varia-

tion in the elements of [, and U,
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2. Numerical Experiments

We huve buplemented the proposed error estimating scheme for the linear equation

solvers in SPARSPAK [9]. Our implementation includes a modified version of the LINPACK

condition number estimator and the scheme described above for an a-posteriori estimation of

the error in the factors. Both algorithms work on the LU factors obtained from Gaussian

elimination without pivoting. The modificd condition number estimator has exploited the

ideas suggested in [3] and [7] for improved accuracy and efficiency.

{1)

Our numerical experiments were designed with the following considerations in mind:

The success of the LINPACK condition number estimation algorithin is based in part on
the heuristic that the ill-conditioning of A is inherited in the factor 7 when Gaussian
elimination with pivoting is used [1]. However, when we apply the same algorithm to the
factors obtained via Gaussian elimination withoul pivoting , this situation may be
much less likely to occur. Therefore, it 1s necessary to evaluate th_e performance of the
condition estimator in this new context, That is, we would like to know whether K, the

estimate of K({A+I), is still comparable in magnitude to K(A), provided

K(A)_lllliu = 0.01. (Recall that K(A)J"%Il— = 0.01 ensures that K(A+F} is of the

same order of magnitude as K(A).)
This question was investigated by comparing K/ and K;, where K; denotes the LIN-

PACK estimate of K(A}. The estimate K; is known to be a good approximation to
K (A) in practice, except for some contrived counterexamples [1, 4, 6].
In order te gather direct evidence as to how often the ill-conditioning of A is inherited

in L instead of [7 when 77 factors are obtained via Claussian elimination without pivot-

ing, we applied the same condition number estimating algorithm to ﬁ’[}’, where



(3)

- 1] =

L= I}T, O=5ITamd 0 = A + F, for the same sct of test problems. If I is much
more ill-conditioned than l:’, we would expect the estimate of K (ﬁ'if‘) to be much larger

thar the estimate of K (f(;' ).

Recall that in section 2 we have derived an upper bound for the relative factorization

| ¥ i|1 atea . e ..
error, hamely W = 1.01lne¢ Y Since the upper bound is inevitably pessimis-
1

tic, it is reasonable to replace it by something more realistic. Qur numerical experi-

| #
ments were therefore designed to test whether |EA_||1 is reasonably approximated by
: L

g€ . .
— 1n practice.
o

. Iz —dlle . oe . .
We would like to test how well _W_ is approximated by K'— in practice,
= a

where K is the estimate of K(A+F). One should note that the inequality that actually
holds is

lz - 2, LE],
HP = BAAT,

where (A + E)Z = b,
E = F + (5LYU + L(§U) + (60.)(60)
A+ F=1[U0
(L + L)y = b,
(l} + EI}):IE = ¥.
Here 6L and U reflect the roundoff errors committed in solving the triangular systems.

The inequality we actually tested was instead
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"33"“-'5"» o€

lzlle = o

Cur experiments were performed or 2 VAX 780. The numerical results reported below

address the above four considerations.

Test(1):

Test(2):

Test(3):

We generated 99 matrices with density varying from 5% to 100% and nonzero ele-
ments uniformly distributed on the interval {0, 1). Cf each matrix 20% of its

nonzero elements were randomly chosen and scaled by a random factor between 10*

— ) ) K!
and 10710, All test matrices were of order 50. The ratio of K averaged over 99
L

matrices was 1.08, while the minimum ratio was 0.16 and the maximum ratio was

2.77.

We applied the same condition estimator to the factors I:'ﬁ', where L' = IffT,

&

U'=LT and LU = A + F. Let K" denote the estimate of K(L'07Y). Of the same

H

set of matrices generated for test(l), the ratio e averaged over 99 matrices was
L

1.43, while the minimum ratio was 0.06 and the maximum ratio was 19.6.

# i

. . K . . K. -
A comparison of the ratio T to the corresponding ratio i test(1) indicates
L L

Max (K', K")
Ky

that the ratio of averaged over 99 tests was 1.62, and the minimum

ratio was 0.48. Therefore, if one is prepared to pay the price of executing the con-

dition estimator code twice, a better estimate wilt be Max (K, K.

For the same set of matrices generated for Test{1) and (2), we computed the aectual

17l

factorization error 4————
| Af,

in the following way:

1. Decompose A via Gaussian elimination without pivoting in single precision.



- 13-

2. Compute the product of A’= LU in double precision, where i and U7 are the

factors obtained from step 1.

3.  Compute = A'— A in double precision.

1Fl,
4.  Compute .
PR Tl
L7, , , o . e
The actual ——— was then compared to its estimate —. The ratio of — to
(EY P a @
" F" 1. ¢

, Le., , averaged over 99 problems was 2.03, while the minimum ratio
A0, P

was 0.87 and the maximum ratio was 3.5.

Test(4): We computed the ratio

Klﬂ.
o
R = »
=~z
Izl
by running SPARSPAK and
K, €
R, = kL
H £y, !l =
Il

by running LINPACK for the following test problems. For each problem, we gen-
erated an appropriate righthand side by assuming that the solution was a vector

with components all 1's. Since the linear equation solvers in LINPACK imple-

. . e . . . . |I£_£L"=c le—‘!—:"w .
mented Gaussian elimination with partial pivoting, " " “ < H " |E n
o0 =]
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general,

1.

The rativs B and R; were compuled for 40 positive definile matrices with
density varying from 5% to 100%. The test matrices were generated with
nonzero off-diagonal elements uniformly distributed on the interval (=1, 1) and
each diagonal element equal to the sum of the magnitudes of the off-diagonal
elements in each corresponding row. All matrices were of order 50. Among
the 40 test problems, four were indicated as having no correet digits by bath
SPARSPAK and LINPACK. The computed ratios R and R, averaged over
the remaining 36 problems were 269 and 7.2 respectively. The minimum R
was 0.85, the maximum R was 5.2X 10°, whereas the minimum R; was 0.46,

and the maximum /; was 1.7X 102,

A set of 98 indefinite matrices of order 50 were generated with density varying
from 5% to 100% and nonzero elements distributed on the interval (-1, 1). Of
each matrix 20% of its nonzero elemcnts were randomly chosen and scaled by

a random factor between 10* and 107!, Amorg the 98 test problems, we

discarded 10 problemns because K '% > 0.01. For six badly scaled problems

[eh . .
as reported below, both K*— and K, -¢ severely overestimate the error in
p y o L ¥

the computed solution.



Density
0.65
0.05
0.05
0.05
0.10

0.10

Sreaie

1(+5)
1(~5)
1(-5)
1(~5)
1(~5)

1(-3)
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K
28(+6)
15(+9)
62(+7)
A45(+6)
85(+7)

16(+6)

14

38(+5)
A2(+7)
20{+5)
A2(+5)
14(+7)

34(+5)

For four other badly scaled problems, SPARSPAK severely overestimated the

error, but LINPACK did not:

Density
0.25
0.05
0.05

0.05

Scale

1(+5)
1(~5)
1(—5)

1(-5)

R
39(+5)
98(+7)
A41(+6)

39(+4)

Ry

24(+1)
34(+2)
12(+2)

33(+1)

The computed ratios R and R; averaged over the remaining 78 problems

were 94 and 3.5 respectively. Among these 78 problems, the minimum R was

6.5, the maximum R was 6.75‘5102, whereas the minimum R; was 0.68, and

the maximum R; was 16.

The ratio R was also compauted for another set of 236 test problems, of which

99 were from test (1) - (3), 110 were indefinite sparse matrices of order 12 to

78 generated with finite element nonzero structures specified in [10], and 27

were large sparse indeflinite matrices of order Y36 and 1009 generated with

finite element nonzero structures specified in {10}, The 137 matrices in
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addition to the original 99 used in tests (1) - (3) had 10% to 20% of their

nonzcro elements ranging in magoitude from 107 to 107!%. Among the 236

test problems, we discarded 22 problems because K ‘%— > 0.01. For the

. . ae .
remaining 214 problems, K ’-OT appeared to be a reasonable estimate of the

maximum relative error in the computed solution when the problem was not

badly scaled.

4, Conclusions

The modified version of the LINPACK conditicn number estimator we have
implemented for SPARSPAK [9] performs well on randomly generated sparse inde-
finite matrices even for the factors obtained from Gaussian elimination without

pivoting. We observed no severz underestimation in any of our tests. Of course it
should be emphasized that the estimate should not be used if K'% > 0.01,

because K(A+F) may then be significantly different from K(A), and K', the

estimate of K(A+F), may have very little connection with K{A).

If one is prepared to execute the condition estimator twice, a better estimate
of K{A) can be obtained from Max (K', K), where K’ is the estimate of K(LU),
A + F = [T, and K" is the estimate of K(LA'I}‘)J where L/ = U7, and U= LY.
However, since no unreasonable underestimation was observed when comparing K’
to K; throughout our tests, we chose not to compute K in our SPARSPAK imple-

mentation [9].

The results of Test(3) show that the actual relative error in the factors



=17 -

. . . U€
appears to be very reliably estimated by the ratio e

The maximum relative error in the computed solution appears to be bounded

aoe " - e ]
by the product AK'~— and this estimate is rarely a severe overestimate of
(41

|z—z]
-—-—-——" oy Z for well-scaled problems. No underestimation was observed throughout
=]

our tests, although it may very well be possible to contrive examples for which

J€ ) ,
K'— underestimates the relative error.
a
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