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ABSTRACT

We introduce a data structure that requires only one pointer for every k data
values and permits the operations search, insert and delete to be performed in
O(k log n) time. This structure is used to develop another that requires no
pointers and supports insert, delete and search in O (log? n) time.

T This work was supported by NSERC grant A8237 and, while the author was visiting the
University of Washington, NSF grant MCS7609212A.
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1. The Problem and the Results

Pointers are routinely used to indicate relationships between keys in a data
structure. Their use is very often crucial in implementing flexible and efficient
algorithms. Their explicit representation, however, can contribute significantly to
the space requirements of a structure. A natural question to ask is whether
pointers are inherently necessary for structures as efficient as AVL {1] trees in
maintaining a dictionary (operations of insert, delete and search). One might
think so; however, we note that the heap [2,8] is an ideal structure for a priority
queue, requiring no pointers and work of the order of information theoretic lower
bound to maintain this data type. In this paper we focus on implicit (or pointer
free) data structures for the dictionary problem. This problem was first explicitly
studied by Munro and Suwanda [6]. They noted that, by using the “usual” pair-
ing function, » data values could be stored in consecutive locations but be
thought of as occupying the locations above the minor diagonal in a square array.
By maintaining the data in this way, they showed searches and updates can be per-
formed in O(n'2) time and the structure can grow or shrink smoothly. They
also showed that, if the elements are kept in any fixed partial order by their
values, the product of search and update times must be (}(n) , i.e. their structure
is more or less optimal in that class. They concluded by suggesting the idea of
storing components of a structure in an arbitrary cyclic shift of sorted order. Such
an organization is not a partal order, and they were able to reduce the search
time to O(logn) with an insert/delete cost of @ (n'2logn), or alternatively
O(n"logn) for any operation. Frederickson [5] extended the use of rotated
lists to achieve O(logn) search and O(2Y?%8”) insert and delete ime. This
paper solves the main problem left open in [6] by demonstrating that there is an
implicit data structure for the dictionary problem that runs in polylog time. The
search time is a bit more than Frederickson’s, but the update cost is a dramatic
improvement. In this work, as in previous work on the problem it is assumed all
data values are distinct. This assumption is not necessary for the proof of
Theorem 2, but is required for the titular result, Theorem 1.

There are two related results in this paper

Theorem 1:  There is an implicit data structure that supports insertions, deletions,
and searches in a worst case time of O (log® n) .

This is based on what one might call a semi-implicit structure, namely

Theorem 2:  There is a data structure that requires only one word of structural
information for every k data values and supports insertions, deletions and searches
in O(k log n) time.
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In the next section we will outline our semi-implicit structure (% data
values per pointer where k is parameterizable). In section 3 the update pro-
cedures are described, and in section 4 it is shown how this can be converted to a
fully implicit structure.

2. The Structure

A natural approach to the semi-implicit version of our problem is to lump
r (r = ©(k)) consecutive data values into a single node along with a constant
number of pointers, flags and counters. These nodes can be arranged in an AVL
tree [1] or some similar structure. Searches, of course, are trivial. The difficulty
is that, as elements are added, single values, rather than r consecutive values,
have to be appended. We will outline an interesting way to overcome this prob-
lem that has eluded previous investigations. A key insight, as we shall see, is to
avoid the temptation to divide and conquer in the usual way, but simply to “‘sub-
tract and conquer”.

The data structure is depicted in Figure 1. Each node, except perhaps the
bottom one, contains precisely r data values in sorted order. The structure con-
sists of an AVL tree (which we will refer to as level 0) and a sequence of (gen-
erally) shorter linear doubly linked lists of nodes of the same format as the AVL
tree. The lists can be viewed as levels 1 through O(log #). The data values in
any node are of contiguous ranks among the values at that or any subsequent
level. The crucial invariant on the structure is:

The elements in the leftmost node at any level precede all those at
subsequent levels. There are at least v (except for the botiom level)
and at most 3r—1 data values in subsequens levels that are greater
than the values in a given node but less than those in the following node
at its level (or following the rightmost node at any level).

From this invariant it follows that at least a quarter and at most half of the
elements at or below a given level are actually at that level. It follws, then, that
there are between log; n and logys n levels.

Each node will contain a pointer to the node at the level immediately below
that contains the smallest value greater than those in the given node or is immedi-
ately to the left of the gap through which this value falls. It is also helpful to
retain the number of elements falling in the gap to the right of the node. The
space requirements per node, in addition to data, are easily met with 3 pointers, 1
counter and 4 flags. If one believes that a pointer and a counter have the same
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level 0
(the AVL tree)

level 1

level 2

| L level 3
M level 4
(need not be full)

Figure 1 - The Data Structure

Notes: Labels on nodes are for purposes of the explanations below and are
unrelated to the key values, Gap pointers are denoted by the splines ori-
ginating in the bottom right corners of nodes.

Invarlants; The values in any node are of contiguous ranks among those at
or below their level. The nodes at each level are linked (as binary search
tree ot linear list) in increasing order by data values. There are at least r
and at most 3r-1 values lying between those in consecutive nodes (such as
A and D) except perhaps between the bottom two. These values lic along
the vertical path from the leftmost of the pair to the bottom node (A to M)
or within 2 nodes to the right of this path.

The Bottom Level: By convention, the node at the bottom level is the only
node in use which need not be completely full. This permits smooth growth
and shrinkage of the structure, as it is the only node which can be deleted or
created.
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cost, this is exactly twice the cost of the structural information per value in an
AVL tree.

With this information, it should be easy to see that:

Lemma 2.1z The structure outlined above supports searches in O (log n) time.

3. Updates

Insertions and deletions are most easily viewed as two phase operations. In
the first phase, the update is actually made, and the gap sizes are updated, and so
the invariant may be violated along a path (O (log ») nodes) through the struc-
ture. The second phase re-establishes the invariant.

More specifically, if an element is to be inserted, then on the first pass a
path through the structure is taken as if a search were being performed (gap sizes
are also incremented along the search path) until the approptiate position is found
for the value. If this occurs in a full node (i.e. not in the bottom node or in the
bottom node when it is full) the data values in that node are shifted to accommo-
date the new value and displace the largest in the node. The insertion procedure
continues from this point with the displaced value. The first phase of the deletion
procedure is completely analogous, as gap sizes are decremented and the discovery
of the element to be removed from a specific node initiates the transfer of the first
element in the gap following that node into the node.

Before describing the second or rebalancing phase in detail, the choice of
gap size should be explained. A simplified version of the rebalancing will then be
given before presenting the faster version.

The “original” idea was simply to restrict gaps from containing more than
r data values. Unfortunately, each node should “‘know” where its gap begins,
even if there are no elements in the gap. If there were no elements in a gap, then
an arbitrary number of “‘empty gaps’ could “begin” in the same node. If this
node is moved, an unbounded number of pointers would have to be changed.
Insisting on gap sizes of at least 1 means at most O(r) nodes at any level refer
to the same node at the level below. Insisting on at least r, and so at most
3r—~1 (an element short of 2 minimal gaps plus one node full), implies at most 4
nodes at a level refer to a given node at the level below. Hence each node in the
list structures could have back pointers to the nodes above that refer to it. This
may simplify the process but is not necessary and we will not make explicit use of
it.

In a binary search tree the basic tool for local rebalancing is the rotation. In



6 Munro

Figure 2 - Part of the Structure Before Rebalancing
Forced by Gap A Being too Large

our structure, the analogous tool is that of moving a node up one level to reduce a
gap and down one level to increase one. Observe the effect of an upward move
on gap sizes. In Figure 2, the values in node B together with those of gap A (the
gap following node A) are of contiguous ranks among those at or below the level
of B. Assume gap A violates the invariant by being of size at least 3r . The
middle r elements of gap A are moved into B, and those displaced from B
together with others from gap A are put in increasing order in the remainder of
gap A. Now B is moved up to be the right neighbour of A and the links are esta-
blished appropriately, as suggested in Figure 3. Observe there are no changes in
gap sizes except
fnewgap Al= | % (|gapA| -1 )]
|newgapB|= [% (lgap A] —r)]
|new gap C | = |gapC |+ |gapB| — r
If 3r = |gap A| = 7r~2 then new gap A and new gap B are of valid
sizes, while new gap C can be as large as 67—1 . (The insertion could have left
gap B with 3r elements and gap C with 3r ~1.) The reshuffle may be applied to
the new gap of C, and subsequent levels if necessary. The cost of moving node B
is O(r) for actual data moves plzs: O(log n) to scan down in search of gap
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Figure 3 - The Same Portion of After Shifting
Values and Promoting Node B

clements. Since the rebalancing may have to be applied at each level, this leads to
an O(r logn + log?n) insertion procedure.

As it happens, this is adequate to achieve the main result, Theorem 1. How-
ever, to demonstrate the bound claimed in Theorem 2, we must avoid the
©(log n) traversals of a significant portion of the original search path. An extra
preprocessing pass can be used to sort all potentially movable elements, and so
avoid the problem. Recall that only gap sizes along the search path can be invali-
dated by the first pass. Note, however, that as a result of moving a node up a
level, a new gap of up to 6¢ —1 values could be created. It will be necessary to
aceess those up to and including the middle » clements of that gap. These ele-
ments are found in the next node on the search path, in that node’s two right
neighbours, and in the gaps following these three nodes. Relevant elements that
fall into any of these gaps will, ultimately, be found somewhere along the search
path, or within two nodes to right of it. It is necessary, then, and also suffices, to
consider the nodes and values along a column of width (at most) three nodes,
bounded to the left by the search path. This sort is achieved in linear time by a
simple bottom up procedure. At each stage, we retain a reference to the leftmost
clement inserted at the most recently added level. Adding a new level consists of
inserting three nodes each consisting of elements of contiguous ranks as the
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structure is currently constituted. Furthermore, these elements fit within O (1)
nodes of the retained reference. Some reshuffling of individual values will occur,
as the new elements are hooked in. However, the step at each level requires
O(1) pointer moves and inspections, and O(r) data inspections and moves.
The full sorting process will take O(r logn) time, as claimed, with only
O(log n) pointer inspections or changes.

In order to restructure the column back into the data structure, some infor-
mation, in addition to data values, must be retained during the sort phase. This
includes the sizes of the gaps following the (at most) three nodes at each level that
may be altered. Designate these as g1, g2 and g3. Furthermore, a reference
to the node to the right of the column (if any) is required, as this could be the
only pointet to such a node. This information can be retained in a linear linked
list using pointers, counters and flags not required for the sorted data, (Note this
list can be viewed as a sequence of records of information about levels from top to
bottom. Two independent linked lists, the data list and this level structure lst,
share the same set of nodes.) Some other structural information will be required,
but it can be derived as the reorganization pass moves from one level to the next.
This includes:

left, a reference to the node immediately to the left of the path node
(left = null if the path node is leftmost on its level)

g0, the size of the gap to the left of the path node (g0 = 0 if left =
null)

path, a flag set to false if the path node has been moved up to the next
level (as in the ©(log?n) scheme) and true if it is still in the column.
path is initialized to true for the top level

1p, a reference to the smallest data value that is still in the data list and is
greater than the largest element in node left (1p refers to the smallest
remaining value if left = null)

Having performed this preprocessing and performed the initialization for the
top level, the rebalancing proceeds top down, and more or less as suggested in the
O(log® n) scheme. The outline below provides a high level description of the
procedure. The function insertnode(xx) indicates that the r data values
from position xx through xx + r - 1 are to be shifted into a node that is logi-
cally removed from the data linked list and inserted in the appropriate place in the
data structure. It should be obvious from the context where the nede should go
and what pointers must be updated. The tedious details are omitted. After the
execution of insertnode, the parameter xx refers to the data value immedi-
ately following the last one moved into the main structure. References to data
values will be treated as integers. incrementing such a pointer moves the refer-
ence to the next data value that may or may not be in the same node.
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begin
for each level of the structure from top
to bottom do
begin
if path or (left-=null) then
begin
if path then
begin
align:=1p+g0;
insertnode(align)
end
else gli=gl+g1;
if g1»>=3r then
begin
al:salign+{(g1-x)/2;
ingertnode{al);
align:=align+gi=-r;
pathiz=false
end
elge begin
align:=align+g1;
pathi=true
end
end
else begin
insertnode(1);
if (g1+g2}»>=3r then
begin
al:=(g1+g2-r)/2;
insertnode(al);
align:=gl+g2-r;
path:=false
end
else begin
align:=g1;
path:=true
end
end;
working from position align apply
insertnode() to the 2 right
neighbours of the path node
(if 2 neighbours exist);
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reset lp and draw new g0,g1,g2 and g3
values;
end;
if a node was promoted to the top level
then apply the appropriate AVL {(or
other) strategy to restore balance
end.

Some brief mention should be made of the else clause executed when
path=false and left=null., Under this condition, the leftmost r data
values must form a node at the current level, but taking those elements may leave
too small a gap before the "expected position” of the right neighbour of this new
path element.

‘Each iteration through the procedure outlined above requires O(r) data
moves and O(1) pointer or counter inspections and manipulations. The total
balancing cost is, then, O(r logn) time including O(log n) pointer or gap
counter operations.

The deletion process is analogous to the insertion procedure. We have
already sketched the first pass. The second or rebalancing phase may move nodes
down in the structure if gap sizes drop below r . A slight twist is necessary, in
that if a gap becomes too small (size r—1) and the next gap to the right is not of
minimal size {i.e. more than r elements) then we simply shift an element from
the intervening node into the small gap, and move the net larger element into that
node. This local patch requires only O(r) time (given the sorting pass) and
alters no gaps below. Demotion of a node occurs only if we have a subminimal
and a minimal gap together. The demotion produces a gap of size 3r—1.

Assuming a pointer and a counter each take a word of memory, and that 4
flags can be encoded in one word, the choice r = Sk leads 1o Lemma 3.1, and
so with Lemma 2.1, Theorem 2 follows.

Lemma 3.1:  The structure outlined above requires only n/k words of structural
information and supports insertions and deletions in O (k log n) time including only
O(log n) operations of following or changing pointers.

4. A Fully Implicit Structure

Setting r to 8logn + 8 we can construct an implicit structure using. data
values to encode pointers. There are a couple of key points in this construction.
First, pointers are represented by a sequence of 2logn data values. The
sequences are stored more or less in sorted order, but odd-even pairs of values are



Implicit Data Structures 11

stored in increasing order to denote a 0 and decreasing order to denote 1. Read-
ing or updating a pointer, then, takes O(log n) time. The suggested value of r
permits 3 pointers, a gap counter and 4 flags per node. Assuming log n does
not change very much due to updates, this gives us O (log? n) algorithms for the
basic operations.

The second issue is handling the growth or shrinkage of ». This is done by
maintaining log log n distinct structures of sizes 27 (i = some constant, ...
lloglogn} ) plus one more of the appropriate size {(all logarithms used are
taken to base 2). In any such structure the logarithm of the number of elements
in it and all smaller ones is fixed to within a factor of 2, and hence the node size
may be fixed. The cost of a search in each of these structures is dominated by
that of a search in the largest, due to the double exponential growth of the struc-
ture size. Insertions are always made on the last structure, and a deletion is
accomplished by moving an element from the last structure into the one in which
the element to be deleted is found. A final detail is to adopt the convention that
the bottom (partial) node occupy the last few locations of memory in use. This
permits smooth growth and shrinkage.

From Lemmas 2.1 and 3.1, Theorem 1 follows.

5. Conclusions

Do pointers give you more than simpler code and a constant factor in run
time? Granted these are extremely important features, but one feels pointers must
give more in the dictionary problem. I make no conjecture either way. Suwanda
and I were genuinely surprised when we realized that organization other than a
partial order was crucial. A few researchers have conjectured that Frederickson's
scheme was optimal and that no polylog solution for the dictionary problem
existed. He has demonstrated its optimality in a restricted class [4]. The space
saving construction is interesting, and its essence may be of use in other environ-
ments. The fully implicit structure, however, is the main result. Given that it
effectively uses pointers, but charges O(log n) for each use, one sees that the
approach we have taken will go no farther.

A few other results follow quickly. If data values have explicit probabilities
of access, one can take advantage of our structures (particularly the loglog n
separate structures for the fully implicit version). The sequence of structures of
doubly exponentially increasing size can also be used if the data values come from
underlying but unknown distribution. A “self organizing implicit"” structure along
the lines of Frederickson’s [3] can be formed.

There are several related, interesting, and perhaps tractable problems.
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® Give a better upper bound on the number of pointers necessary to support
O(logn) searches and polylog updates. Can this bz reduced to, say,
o(n*??

® Show, as Allan Boredin has suggested, that no implicit structure can sup-
port searches in O ( log n) time while requiring only a constant (1) number
of moves for an update.

® Give an easily implementable polylog solution to the implicit dictionary
problem. This would be of interest even if the bound held only for the aver-
age case. Munro and Poblete [7] have suggested a candidate, but the
analysis of its behaviour remains open.
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