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ABSTRACT

This paper introduces a global approach to the semi-infinite
programming problem that is based upon a generalisation of the N
exact penalty function.

1.1. Introduction. Recently there has been considerable interest in so-
called semi-infinite programming problems - the optimization of an objective
function over a feasible region defined by an infinite number of constraints. To
date, much of the interest has been confined to theoretical results with,
sometimes, suggestions of implementable algorithms (see, for example, the
conference proceedings edited by Hettich (1979) and Fiacco and Kortanek (1983)).
The majority of proposed algorithms have been local - that is, convergence to a
local solution of the semi-infinite programming problem can be guaranteed
provided a “sufficiently” good initial estimate of the solution is given.

To the best of our knowledge, the only global algorithms for the problem -
those algorithms which guarantee convergence to a stationary point of the
problem from an arbitrary initial estimate - have been those proposed by Coope
and Watson (1084), Gfrerer et al (1983), and Watson (1981), (1983).

An essential ingredient in the coustruction of global algorithms for nonlinear
programming problems is the use of a merit function against which progress
towards a solution may be measured. Such merit functions have a twofold
purpose; they ensure that any sequence of iterates which decrease the merit
function sufficiently will converge to a stationary point, and they offer guidance
as to how such successive iterates should be chosen.

In this paper we describe am exact penalty function for semi-infinite
programming. This function is a generalisation of the £, exact penalty function
for nonlinear programming (see, e.g. Conn and Pietrzykowski (1977)) and may be
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2 Andrew R. Conn and Nicholas 1. M. Gould

used as a merit function for semi-infinite programming methods. The only other
exact penalty function suggested to date, that of Watson (1981) may also be
considered as such a generalization but, in our opinion, is more closely related to
the €, exact penalty function (see, eg Bertsekas (1982)).

In section 2, we show that our proposed penalty function is exact under
rather strong (convexity) assumptions. In section 3, by restricting our attention
to a certain class of commonly occurring semi-infinite programming problems, we
are able to weaken considerably the assumptions of section 2. Section 4 contains
our conclusions and future research.

1.2, The problem and the penalty function. We consider the following
problem:
Let T;C K" be a compact set and let ¢;(z,t) be a function whose domain is
J XT; and whose range is JR Furthermore let f: " -+ R be a given objective
function. Finally let f and ¢, be continuously differentiable throughout their
domains of definition. Then we shall be interested in the following semi-infinite
programming problem.

SIP: minimizef (z) subject to ¢;(z,t)=0 V¢t €T, i=1.,m
= €R

We make the following derinitiogs and assumptions. Let Z be a local minimizer
of SIP and let I; = {t€7; | ¢,(z,t)=0}

Assumptlon 1. The gradients V,$;(2,t) for all t € I; and all 15i<m are
linearly independent.

Under assum;.ltion 1, the sets I; are necessarily finite, Hence we may write
I,-=it'-k €T; | ¢;(z.t;)=01=k=sk; }. It then follows that necessary conditions
for z to be a local minimizer of SIP [see e.g. Borwein (1983)] are that there exist
finite lagrange multipliers A, =0 such that

K
v, /()= prikvs‘#i(;’a’k)- (1.1)

Assumptlon 2: For any z, there is a (possibly empty) finite set of sets
(%;,(z) such that
(i) 2;;(z)CT;, 1575 =9,(z) <,

(ii) ¢;(z,t)=0, Vt€®,; and ¢,(z,t)>0, VtEI}\lJﬂ,-j(z),
i=t

iii) ﬂ.,(z)n(l,k{z)={¢} if j# k, and

iv) 2;(z) is connected and nou-trivial, i, ’{z)dt >0.
i

We note that almost all functions ¢;(z,t) will satisfy this assumption.

Assumptlon 3: For any x, and any index i, there is no open region U,
strictly contained in 7; such that ¢,(z,t)=0 for all t €U;.
The purpose of assumption 3 is to guarantee that the penalty function which we

shall comstruct is everywhere continwous. We note that any analytic function
satisfies assumption 3.
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The aim of the peralty function approach to any nonlinear programming
problem is to construct a function, the penalty function, which has the following
(penalty function) property:

PFP : any local solution to the nonlinear programming problem
(in our case 5IP)} is a local minimizer of the penalty function.

The idea is then to minimize the “easy“ penalty function rather than solve the
“hard “ nonlinear programming problem.

The first attempt to define a penalty function for semi-infinite programming
is that of Pietraykowski (1970). Pietrzykowski defines the function

alzw)=ul @)= 5 [ i, (12)
=1 jm=1 143
where p is a positive scalar and shows that p,(z,u) satisfies PFP in the limit as
#-0. Unfortunately simple examples may be constructed to show that p(z,u) is
not an exact penalty function. That is, it is necessary that p-0 for the PFP to
hold. It is well known that having to let the penalty parameter p-0 may be
undesirable for any practical method for solving a nonlinear program based upon
penalty {unction minimization (see, for example Gill, Murray and Wright (1981)).

The trouble with Pietrzykowski's penalty function appears to be that the
penalty for infeasibility is too weak, This leads us to consider the following
penalty function:

‘,2(;;’”].—.#[(;)—5; [;2-.:; [J;)i;{’)q"(z’t )dt / J.‘n,’{z)dt]]

where p is a positive scalar.

It is possible to show that this function is an ezxact penalty function. That is,
there is a threshold value y,>0 such that PFP holds for all 0 <p=<<p,. However,
this penalty function has the unfortunzte drawback of being discontinuous —- this
difficulty can be overcome by suitably redefining the SIP but this leads to
implementational difficulties we prefer to avoid.

In this paper we consider the following alternative to (1.2);

p(x,,;):,;f(z)—é[% U;}u{z)m(z,t)dt) Ii.é:(j;)w)dt]], (13)

where p is a positive scalar.

Such a function is easy to motivate as it is just the limit of an £, penalty
function for noanlinear programming as the number of constraints increases to
infinity. Furthermore, under assumption 3, it is clearly continuous and thus from
Pietrzykowski's result it satisfies PFP in the limit as p tends to zero.

We now intend to show that (1.3) is actually an exact penalty function. We
shall find it convenient to define
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4;5(z) = J;)‘,(I)dt (1.42)
sie) =, (it (1.4b)

and thus we may write (1.3) as

plz.p)=pf(z)= ELZ ,(I)IZ‘A.,(z)]

2. The convex-concave case. We start by showing that under certain
assumptions any solution to SIP is also a minimizer of p(z,s). In this section, we
assume

Assumption 4. f(z) is convex and ¢;(z,t) is concave in z for 1=<i=m,

Assumption 6. For all 1si=m and 15;=3,, there is a constant §>0
such that

j%«v.-,(x)Sﬁ bilet );_.g'ilda,‘(z) (21)

%
for any t €| ) 2 ,{).
j=1

We shall subsequently show that assumption 5 is automatically satisfied if T;
is convex and ¢;(z,t) is convex in ¢ over T; for 1=<i=m. We note that, under
assumption 4, any local solution to SIP is a global solution. We now prove

THEOREM 2.1. Suppose assumptions 1-5 bfld. Then 7 is a global minimizer
of p(z,1) for all i such that 0=sp=y for some p >0,

Proof. Let =z be any feasible point for SIP. Then
plz.p)=nf(z)=nf (x)—-p(z,u) Thus z is a global minimizer of p(z,1) over all
feasible points z. )

Conversely, let ¢ be any infeasible point for SIP. Then, assumption 4,
elementary properties  of differentiable convex I'unctlons {see, for example
Rockafellar (1970)) and (1.1) give

f@)-1E) =V f(z)T(z—a?)
= 2 Ekskvz%(z tlk) (z 3)

= ff i"\.’k(ﬂ(”.a‘k)“ﬁ.'(;;.‘k))

i=1 k=1

m K

®
= 2 Z)“-kqﬁ;(z,t‘k), where Xikao‘

iml k=l

* * *
Consider t,;. Either ¢;(z,t;;)=0, in which case t,; €02, (=) for some index j, or
&¢(z t;z)>0. Hence
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IHz)= f(z)EE 2 Nt (=, tlk)

im1
4«(2 llk)so

=5 Z 3 Ml d) (2.2).
w1 gwi :‘,‘m {=)

*
Let n; be the number of ¢;; contained in |J 2;,(z).
i=1

Note: i) At least one n; is non-zero, by the assumption that z is infeasible,

and n;=n,
.
1

*
ii) If »,=0 there is no contribution from ¥ L X Mipdi(z ti) | - thus,
1|,

in what follows, there is no loss of generality in assuming n, =1

‘ L)
From assumption 1, n,=<n. If ¢;; EU !)i,-(z), (2.1) gives

245‘](::) L HER t',‘) Z‘Au(z) for any t,kEU ().

J=1

Hence

o= LY v s t.k)):A.,(z) (23)

i=1 t I=1 b !n_,(s

Combining (2.2) and (2.3),
ole )= (3 ) = ﬂ(f(r)—f(f))—éz[’é‘?.‘,‘(x)/ ;_ijA.-,(z)]

m % m %
28 5 bt 5. & Loty

i=1 j=1 e () jm1 jm1 :.kcn IOk
m % ﬁ
=Xy, X (”)‘ik'—rwi(”rtik)
=1 j=1 10,0 §
Hence, provided

BN ni =0 (2.4)

for all indices ¢ such that n;=1.
oo 1=o(Z ).
If ;1 = 0, (2.4) is trivially satisfied. Otherwise, if
n = fl(maz n;)(mazh )| (2.5)

(24) is satisfied. Specifically, if 4 = Bflnmax(h;)], (2.4) is satisfied for all
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OSuS[; and ;:>0. Thus p(::,/»)zp(;,p) for all z provided (2.5) is satisfied which
proves the theorem. 0O

As we have mentioned, assumption § is satisfied if T; is comvex, and if
#;(z,t) is convex for all ¢ €T; for 1={=m. To show this we nced
LEMMA 2.2: Suppose {2 is a closed bounded convex non-trivial subset of M¥f
and that k(t) is 2 non-negative concave function in 2. Then
Lhte)dt = pyllklls [ de (2.6)
- =—r
where || ||x max h(t) and 8, PP
Proof, See appendix 1.0
Now identily k(t) with ~¢;(z,t). As ¢;(z,t) is convex in ¢, h{t) is concave.
Moreover, on identifying 2 with £, (z), {;;(z) is clearly closed, bounded and

convex as ¢,(z,t) is convex and 2,;(z) C T; C IF with T; convex and compact.
From the lemma, we thus obtain

j“? ij¢'.(;,t)dt = ,B{t égj?(x)¢i(z,t )}j;)l_’_dt = ﬂq).*(a:,t)_’})‘,_dt,

»
=P — i
for any tG!?ij(a:), where g P >0andp= [min p;.

Furthermore, a simplification occurs when the ¢;(z,t) are convex in ¢ as then
8; = 1,0=n;=1, and the penalty function becomes

oz.m) = 1) () = ‘z:“,;{f,,‘(,,mz,ndz /I,,,(,,dt} @7)

where 2,(z) = {¢t €T; | ¢;(z,t)=0} — in other words j is fixed at one.
We thus have
COROLLARY 2.3: Suppose assumptions 1-4 are satisfied and ¢,(z,t) is convex
in t over the convex region 7}, 1=<i=<m. Then z is a global minimizer of (2.7)
for all i such that
0=psi={pPHp+1) 1) [ v (max max (A )] l

1%i%m 1%k%k,
where p = lrsniisnmpi

Theorem 2.1 shows that, under the stated assumptions, any solution to SIP is
also a global minimizer of the penalty function p{z,n). We next give a partial
converse to this result.

THEOREM 2.4. (partial converse to theorem 2.1) Suppose assumptions 1-5
bold and furthermore that z{u) is the global minimizer of p(z,u).Then, if p is
sufficiently small, z(p) = z.

Proof: From assumption 5,
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- @, ;(z)/ E'A‘j(z:) = —fp;(zt)=0forallt E[jr)‘j(z).
; =

J=1 f=1 =1

* o x %
¢i{z bty ) if 2y ij 2;4{=)
-1

. * —
As min(0,6, (21,4 )) = 0, otherwise '

= X0,,(2) 1 7A(z) = —Prmin(0,; (2. 5)) for 15k k.
i=1 i=1
Hence, summing over k, )
i . Ir,- "
= T8,(z) 1 DA(e) = =L Smin(0,6,(2,54)
j=1 =1 § k=1

By :
2= == 5 min(0,6;(z,t,))
L

=~ S'min [o,%t»,-(z,?,-,,)]. (2.8)

kw1

By definition and {2.8),
plz.p) = uf(z)-é[gle’aj(z) ’!2?‘4;,‘(3)]

= pf(z)—g‘ é'min [0,%@-(::,?,-,‘)]

4 (= .n).

Thus pp(z.u) is the I; exact penalty funmction associated with the nonlinear
programming problem

*
miniggize /{z) subject to %q&i(x Lp)=0, i=1 m k=1,k.

This prgblem ‘has the global solution 7 and from Pietrzykowski’s theorem 2
(1969), z is also a global solution of pr(z 1) for p sufficiently small. Hence
* ®
uf(z) = oyl .n) S pp(z,8) = plz.p)

for all z and for p sufficiently small. Hence, in particular,

ul () = plz(n)n). (2.9)
But z(u) is the global minimizer of p(z 1) and thus
P2 (1)1) S pl3.8) = 1] (F). (2.10)

Combining (2.9) and (2.10) we obtain
p(:?:',p.) = uf(;} = p(z(p),p), for p sufficiently small.
As z(p) is the global minimizer of p(z,p), z(p)ﬂg. o
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The missing ingredient to a full converse to thereom 3.1 is the need to
assume that z(g) is the global minimizer of p(z,z). Ideally we should just like to
assume 2 (p} is a local minimizer of p(z,u) and hope that the conditions on f and
#; are sufficient to imply that any local minimizer of p(z,n) is global. Indeed, if
p{z,n) were convex, the result would be immediate. However, to date, we have
been unable to demonstrate the convexity of p(z,u} or produce a counterexample.

Although there is “considerable theoretical intercst in convex-concave
problems, we are primarily interested in solving more general problems. Below
we consider how this may be achieved.

3. The general case. We now dispense with the strong assumptions 4 and
5. We have already remarked that assumption 2 is quite weak., Assumption 1 is
essentially the condition that makes the semi- infinite programming problem
tractable since it implies that ome is able to replace the infinite number of
constraints- by a finite number of significant constraints. As one would expect,
results concerning global minimizers in § 2. are now replaced by local minimizers.

Before proving the main theorem of this section we require three additional
assumptions and a lemma.

Assumption 6, Recall that 7;C IH". We assume that 7T is described by a
finite number of continuously differentiable constraints.

Assumption 7. There is a neighbourhood S(:} of 7 such that there are
differentiable functions ¢ (z)€T; 1=i=m, 1=k=k; with the following
propertics:

(i) ti{x) are strong local minimizers of ¢,(z,t) on T, for any given
2€5(z), that satisfy the usual second-order sufficiency and strict
complementary slackness conditions, (see for example Gill , Murray and
anht'(lggl) p. 82},

(“) t;kiz) tik

iii) If ¢, lies on & certain (possibly null) set of the constraints defining the
boundary of Ty, t,z(z) lies on the same set for all z €5(z),

iv) There is a posntwe number ¢ such that any other stationary point ¢(z)
of ¢;(2,2) satisfies | ¢;(z,t(z))] > for all z in S(£).

Note: It is possible to relax part (iii) of this assumption. However the presentation
of the following results is significantly complicated by such a relaxation.

This assumption is similar to those made by Coope and Watson (1984) and
Hettich and Van Honstede (1979). It is relatively weak in that it will be satisfied
by almost 2ll constraint functions. Moreover, the assumption is entirely local in
character.

Assumptlon 8. We shall assume that the Lagrange multipliers M at any
local solution of SIP are strictly positive.

Remark: this assumption is commonly made in nonlinear programming,
although its motivation appears to be practical rather than theoretical, since in
active set strategies it is assumed that there exists some neighborhood of a local
solution for which the multipliers sign can be used to indicate inequality
constraint activity.
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Under the conditions given in assumption 7, we define functions
Y (z), ISi=m, I=k=k; such that
Yir(2) = ¢i(z.ti(z)).
Before proving theorem 3.3, we need a result concerning the derivative of the
LD

LEMMA 3.1. Suppose ¢(z)€TC I is a local minimizer of #{z,t) for fixed =.
Then, provided assumption 6 holds,

Mz_!,(e_l).v e) =0,
-1

k

Proof. Suppose T is described by the constraints ¢; (2)20 and that t(z) lies
on the first I of these curves, ie. c;(t(z))=0 for ISJSI where we allow the
possibility ! is zero.

Now Kuhn-Tucker theory implies the existence of non-negative numbers
A j(z) such that

a¢iz t!-t” 2)‘ ( )ac (‘(x)) k= 1,2,...,p,-. (3<l)

for zero, in the case where ! is zero].
As we have the identity c;(t(z))=0, we may differentiate to obtain

% 30,(*( )

T Vale)=o. (3.2)

Multiplying (3.1) by V,t;(z) and snmming over 1=k Sp'-, we obtain

ey ) = S0 D e
,((»

k

= E’\,( )Z‘

=1

v tk(z) = 0

using (3.2). O

COROLLARY 3.2,  Recalling (2} = ¢;(z t;.(z)), we have that
Voir(2) = Vobi(z.8)| saryioy

Proof.

(2.t
vz‘,’ik(z) = V,@(z,t)l tmt,(z) + );:; at; v (t (= ) I t=ty(s)
= vz“’i(z:‘)l tmey(z)

from lemma 3.1. O

THEOREM 3.:1. Under assumptions 1, 2, 6, 7, 8, and the additional
assumption that z is a strong local n‘l.inimizer of SIP with f and ¢.’s twice
continously differentiable, there exists g > 0 such that for all 0<p=<y, oz ,n)
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e *
has a local minimizer at z.

Proof. Let us suppose the converse, namely that for each arbitrarily small
positive p, there exists an z(y)#x where z(p) indicates a local minimizer of
p(z 1) such that hm z(p) = z. The existence of a sequence z(p) such that z{u)

is a local mmnmum of plz,n) and l:m z(p)—’ is guaranteed by Pietrzykowski's

result [Pietrzykowski (1970)].

Suppose in addition, z(s) is feasible for the semi-infinite programming
problem. Then we easily arrive at a contradiction as follows. Since z (i) is a local
minimizer of p(z,p),

: *
olz(e).n) = o(z p),
for p sufficiently small. But, by the feasibility assumption, this is equivalent to
*
Jz() = fiz),
which, for p sufficiently small, contradicts the hypothesis that Zisa strong local
minimizer of f.

It remains to consider the case where z{u) is infeasible.

Let ¥ be any infeasible point within the neighbourhood S(; ) defined in
assumption 7. Now conmsider the functions Y (z)=¢,(z,t;()), defined for
1sism, 1=k=n;. There are three possibilities for each such function, namely
(i) ""k(”)@ (ii) Ill.k(:?} 0, and (iii) P, (£)>>0. Let the index set V;(z) for any
point xGS(z) be given as V;(z) = {k : ¥ (+)<0}. We note that, as Z is
infeasible, there is at least one non-empty set V,;(Z). Without loss of generality we
may assume that V;(z)={k : 1Sk=m}. Then Jit straightforward to show that,
as 3:65‘(3:) each index pair & with lskSm give rise to mon-zero functions

®;(z) and A, (x) (defined by (1.4)) in the sense that t;; is contained in 2;;(x)
and is the only t;(z)€0Q;(z). Finally it is clear that -ﬁ'-,‘(z) and A (z) are
differentiable in some neighbourhood of 7

Now define the function

#zp) = pf(z)= (8 (x) ) X Ai(z)).
=1 k=1 k=1
Notice that p(Z,1)=p(Z,) and that p(z,s) is differentiable, in a neighbourhood of

x

Our intention is to show that ¥ cannot be a local minimizer of p(z,1) by
constructing a non-zero vector k so that p(Z +h,u)<p(%,u). We shall achieve this
by finding a suitable vector & and a positive scalar 7 such that

oT+7h,p) S F(T+7h,p)+ M2 (3.3a)
and
PE+7h,p) < p{E,p)—mr. 3.3b)

for some positive scalars M and m.
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It then follows that
plZ+1h,4) <p{T ,p)=mr+ M7
=p(F,u)~mr+ M
=p(z,1)
for 7 suficiently small. The vector k can then be sct to 7h for such small 7 and
HE+h, 1) <o(E,1)-

Observe that significant (i.e. O(rh) ) differences between p(z+7h,uz) and
Az +7h,p) can only occur if, for any i, Vi(Z+7R)#V;(¥) and this can only
happen il one or more of the functions Yy (z), for which §;;(Z)=0, attains a
significantly negative value at Z+rh. (We may assume that any ;. which is
strictly positive or strictly negative at Z will remain so for small perturbations
z-+7h). In order to prevent this, we chose £ so that

Uy, (7 + th )=, (T)+ O(r%) for all indices ik for which ¥ (7)=0. (3.4)
Without loosing generality, we suppose that ., (£)=0 for m;+1=sk=sn,.

To see that this has the desired effect, we note that, (see, for example
Apostol (1974)),

—Pulz) ! Aplz)s—dyu(z)

for any index k, follows from the mean value theorem for multiple integrals.
Hence

p(:?+fh,u)=uj(f+rh)—§: [.%tﬁ,—,,(fﬁ- th)/ é__:;A""(E+Th)]

i=1 fkm=m+1 k=m.t1

si(f+rh,ﬂ)—f,'[ ‘;j' b, (z+7R)/ 3‘ A‘,‘(E+rh)]

Sb‘(ﬂrh,u)-f:[ 2‘: ¢{k(5+rhj/ 4‘,‘(5+m)]

ie1{k=mo1

using the inequality (¢ +bV(c+d)=a/c + b/d, if a,b,c,d >0,

SF(E+7h )~ j}[ BN ¢v‘-k(§+-rh)]
i=1 k-m.-‘fl
SHT+1h,u)+ M,
for some M=0 [using (3.4)}.
Thus (3.3a) is established.
We may ensure that W, (7 +rh)=0(r) by picking & so that
Vi (F)Th =0, m+1=k=n, 1=i=m, (3.5)

The existence of a non-trivial solution to (3.5) is guaranteed by virtue of the fact
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that the number of indices ik with m;+1=k=n; is at most n-1 (since the
number of indices ik with 1=k=Fk; is at most n, using assumption 1, and at least
one index lies in V;(Z) for some i) and hence the system of equations (3.4) has a
null-space of dimension one or greater. Thus it is possible to find h for which
(3.3a) is satisfied.

In order to satisy 3.3b) we use the remaining degrees of freedom given to h.
Thus we chose h to be the projection of the steepest descent direction for ?lz,u)
at Z into the subspace defined by (3.4). In fact, all we need to show is that such
an h is a descent direction for p(z,x) at Z, as 3.3b) then follows from Taylor's
theorem,

We now give a formal definition of h. We first note that
Vabis(2) = Vo 8i(28)| cmpyay

from corollary 3,2,
Moreover, the V,'b,-,‘(; ) 1=i=m, 1<k=p; are linearly independant and,
provided z is within a suitable neighbourhood of z, V, ¥, (z), 1=i=m, 1sk=k,
are therefore linearly independant. The set V \b'k(x) 1Sism, m,+1sk=m; is
thus linearly independant. Now, let the columns of the matrix Z(z) represent a
Lipshitz continuous basis (see, for example Coleman and Sorensen (1984)) for the
nulk-space of tlie vector space spanned by {V, ;. (z) : 1Si=m, m;+1sk=n},

We define the vectors h(z)=—Z(z)Z(z)"V_5(z,p) and h=FL(F). Clearly
such an h satisfies (3.6). It remains to show that bV, 5(%,1) <0 ; i.e. we require

Z(@)TV,5(z.u)#0 (3.6)

Let X(z)={z GN(;)I Y;:(2)S0, 1=i=<m, 15k=n;}. T has a non-empty interior,
as follows directly from the linear independence assumption 1. We shall show
that

lip Z(2)TV, 5z u)#0.
2€Nx)

It then follows that there is a neighbourhood of # contained in Nz) for which
Z(z)'V 2 P(Z,1)#0 for all T in this neighbourhood.

Consxder,

lign Vxﬁ(z,u)=uV,f(;)-£‘ljg [vz [‘z‘f‘d’.‘k(z)/ Z"Am(z)] :
cextn) -] -1 k=1
We show in appendix 2 that

ling L' %u(2)/ X L Aulz) L (2)C0 O (=¥ K0 (=),

where the Cy are constants, the O;(z) are differentiable as z=2 and satisfy
!k(z ) 0
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Hence, it can be seen that
lig ¥, [‘{;'Q-k(:c)/ %‘Aik(z)] = of3).

where 6(::) lies in the span of V,t.]l‘-k(;), 1<k=m,; and where 9(:’:’) is
independent of .

Thus we may write
m;
. _ * m i *
lig ¥, 2(e.0)=19,1 ()= 5 Sy V)
i=1 k=l
for some coefficients ., Independent of p.

Now suppose
linZ(z)7V 5z u)=0

Then

#V,I(?)'E‘ Z.;mikvz¢ik(;)=£' Z‘ ¥, Vi (7)

iwl kwl i=1 k=l

for some coefficients v;.. But from (1.1),

W 1@ = 5 SNVl

im1 k=1
and from the lirear independence of V, i, (;),
Bhjp = @y, for 1Sism, 1sk=sm,.

As not all the m; are zero, the positivity of the );; {assumption 8) contradicts the
non-dependence of w;; upon p.

Thus liny Z(z)TV_5(z,u)#0, (3.4) is true for all z sufficiently close to z for

which V;(z)=V;(Z). As there are only a finite number of different possibilities for
V;(z), (3.4) is therefore true for zll z sufficiently close to z, 3.3b) is true and
therefore there is a neighbourhood of z for which an infeasible point 7 cannot be
a local minimizer of p(z,p). As z{p) can be made as close to = as we please, z(u)
cannot be infeasible for sufficiently small 4. O

4. Conclusions and Future Research, In this paper we have
demonstrated the existence of a new exact penalty function for the semi-infinite
programming problem. The function proposed is a generalisation of the exact I,
penalty function of nonlinear programming. In fact, the theoretical results are
based essentially upon the results given in the case of the {; pemalty function by
Pietrzykowski (1969), complicated by the presence of an infinite number of
constraints. As such, the proofs are constructive and indeed, the authors are
currently developing a globally convergent, second-order algorithm for semi-
infinite programming based on these ideas.
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The proofs above explicitly determine a first order descent direction for the
penalty function. Future research entails refining the algorithm, the details of the
global convergence results and consideration of both convergence rates and
numerical implementation.

As was already mentioned in § 1, the difficulty of generalising the !, penalty
function of nonlinear programming to the semi-infinite case is not entirely
‘straightforward. In particular, as is true in the nonlinear programming case, the
penalty function may introduce undesirable local minima and some of the
assumptions required for the theoretical results may be unnecessarily restrictive.

Finally, we also wish to investigate an approach based upon the penalty
function

pelz ) = uf (z) ~ lrsn‘glm{'rgg)%(z,t )}.

Appendix 1t Proof of Lemma 2.2.

As 12 is closed and bounded, there is a point z €7 at which h(z) = (&,
The result is trivial if ||2]|. = 0, so assume otherwise. For any non-zero vector
p, there is a unique largest scalar @ = 0 such that z + ap € 802, the boundary of
{2 (by convexity of £2). Let ¢ = ap be called a boundary-pointing vector.

Now define the region
2(f) = {t:t=2z++qV0sy= <1 and all boundary pointing vectors g}.
As h(z) = ||h]|< and h{z+g) 2 0 for all ¢,
R{t) = h(z+7q) = h(1=7)z+(z+q))
= (1—-1h(z)+yk(z+4q)
= (1=1)k(z)=+(1=p)h(z)=(1-A)l|h||»
Thus, for all ¢t € {(5),
ht) = (1= )|kl
Hence
L) = _[w)h(t)dz +f IO
= ﬂ(p)h(t)dt (as h=0)
= (1= )l

We now claim that

- (ﬁ)dt (AL.1)

fmﬁ)dt = g J dt (AL2)

For if we transform our co-ordinate axes so that z becomes the origin and
then consider any point in £(8) in terms of spherical polar co-ordinates (see, eg,
Edwards (1922), p47)
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ty = reosBy..t;=rsinb, - - sin6,;_,c0s6,,...

ty~=rsin@, - - - 5in6, _,c056,

. —rsinel,...sine g 6ING, o —1

-1’ p
Then any point on the boundary of 2is at r(6,, . ..
boundary of () is at Ar(6,, ...,6,_,). Hence

Br(O),....6,.)

2x x
Lt =& & 4,
_ Br(64,...68 _
=7 el =2=y(6,...,8,-,)46, -,

6, — —1) and any point on the

r?Y(Oy, ... ,0,_,)d6, - -- 6, _dr

2x
=g j; (6. -.,8,1Y9(6,...,6,,)i6; - d6,_

= [,

where 9(0), .. .,6,_;) = sin? 2@, - “8in6, _,
Thus combining {Al.1) and (A1.2)
j;) r(t)dt = B (1—B)\k |l j;)dt for all 05 4=1.

Therefore,

S ) = max P (1= p|hlloe f ot = f

p?
Thpeiihle
which proves the lemma. 0O

Appendix 2 : We now justify the asymptotic formulae for & and A,
needed in the proof of theorem 3.3,

LEMMA AZ2. Suppose assumptions 6 and 7 hold and that t(z) ( = ¢,.(z) for

some indices ik ) €T; CcH'. Furthermore, suppose t(x) lies on my; constralnts
e;(t} for 1= j=my,, where we allow the possibility that m, =0. Then, as T3

Bi(z) ~ (27 (p+my + W (2)8;(2), and Ay(z) ~ 6lz)
where, 6;,(z) is differentiable while ¢(:u,t‘-k )=0 and '-,‘(z)=0.
Proof For simplicity, in what follows we will drop the subscripts ¢ and ik.
We wish to evaluate
#z) = _r ¢(z,t)dt, and

Hz,1)70
c)T0i=1, . ,m

Alz) = I

. 0)=0
e(!)aﬂx-l. wm

where we know that ¢(::,t(z))<0,|¢(::,tﬂ is small for all t€fXz) and
e;(t(z))=0, i=1,..m.
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*
Without loss of generality we may assume that t=0. As #(z,t) is assumed to be
small for all ¢ in the appropriate region, we have

Mz t) = ¢(z,0)+tTV, ¢(2,0)+% TV, (z,0)t,
oi{t) = TV, ¢, (0)+m TV, c; (0)t.
Hence #(z) and A(z) will be approximated by
P(z)= [ )(4»(:,o)+va,¢(z,o)+mTv“¢(x,o)t)dt and
Je
A(z)=fdt, where
Jie)
J(t) = {t:¢(2,0)+4TV, ¢(z,0)+ % TV, p(z,0)t <0, tTV, ¢, (0)+ % TV, c;(0)=0, i=1,...,m}.
Now transform co-ordinates as follows. Define
5 = tTV,,(0)+% TV, c;(0), i=1,..m. (A2.1)
Let the m Xn and n X7 =m matrices A(t) and Z(t) be given by
AT(e) = (V,e,(t).Vien(0)),
with Z({t) satisfying A(¢)Z{t) = 0, and Z(t)72(t)=I,_,,.

Further, for any vector ) with it component X;, define
m
M{z \)=Vy, d(z,0)— T3V, c; (0).
i1

Let 84 = (207t}
viz.

entry and let 8 be the vector whose components are the s;

= c(t o A 0) . -
3 [Z(());‘t] [Z (O)]t for small perturbations about t==0.

Note, by assumption, A(0) is of full rank and hence the transformation is
well -defined and continuous in some neighbourhood of ¢ =¢(x}=0.

We may now write,

8
t = (B| Z(0)) [—-l - ] (A2.2)
89

A(0)
where |——— (B} Z{0)) = I, and s is partitioned into 3, and ¢, with ¢, an m-
z7%(0)

vector.

As t=t{z}=0 is a strong local minimizer of ¢(z,t) in T, by assumption 7, there
are Lagrange multipliers \; such that

(A2:3) V,4(z,0) = gjx,.(x ¥, 5, (0),

(A2.4) \;(2)>0, i=1,...,m and
(A2.5) Z(0) M(z \(z))Z(0) is positive definite.
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Thus,
#(z,0)+tTV, (= ,0)+ TV, o(z 0}t

= ¢(z,0)+ 2‘)\‘(:)7,0.- (07t +% 7V, 6(z,0)¢, using (A2.3)
=4(2,0)+ 57 (M (e )0 =2 (2 VBTV (00 ) + 5TV, 4z 0}t

= ¢{z,0)+sTA(z)+%T M(z Mz))t
= §(z,0)+ s \(z)+%sTBT M(z Mz))Be, +%sTZT(O)M(2 M(2))Z (0)s,
+3TBT M(X Mz))Z(0)s,
=¢(2,0)+sT\(z)+%sT2T(0)M{z,\(z))Z(0)s,, for small 3y, 3,

since the terms a',I'BTM(z,)\(x))Bal andsTBT M{z \(2)}Z(0)s, are dominated by
#TA(z), if 8, is small,
Thus, under our assumptions,
a(z) = [ (#(z.00+sTMz)+%eT2TO)M(z Mz ))Z(0)s, )det(B | Z(0)ds,ds,,
K(»
Alz) = f det(B | Z(0))ds,ds,,
K(s)

where K (s)={s:0,20; eT\(z)+ %3727 (0)M(z \(2))Z(0)s,= — ¢(z,0)}.

As ZT(0)M(z )\ (z))Z{0) is positive definite {A2.5), we may transform the s,
variables so that the new variables s3=V 2" (0}M(z,\(z))Z(0)s, are defined for
some appropriate square root. This then gives

#(z) = det(B | Z(0))Vdet(Z" (0)M(z M= ))Z(0)¢(z 0)5(2)+ I(z)),

Afz) = det(B | Z(0))Vdet(ZT(0)M(z \z))Z(0)) I,(=), (A2:6)
where
I(z)=if(.)(sf)\(z)+%s§'aa]dsldss,lz(z)=k{)dald33 and
R(s)afs= [:;] : 8,20 ; sTN(z)+%sTog=— ¢(z,0) .
Writing,

I(z) = J J (Mz)Ta, +%s3s5)deg |dey,
=0 -t NeTey
M) To = z,0)

we first evaluate,
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Ii{&) = I ()\(z)Tal-l-’:ﬁsg'ss)daa
“'g"a’ —(#z,0)+ )(:)Tn B
292 |—2(#(z,0)+ Mz ) s )] ) ”
= T(%g+1) (g+2) (2M=) 2, —q$(z,0)),

where g=p—m and I'(u) is the gamma function, using a varation on Apostol
(1974), p.431.

By assumption (A2.4), the matrix A=diag(\(z);) is non-singular. Using the
change of variables ¢, =As;, we may write

I(z) = I i(ﬁ}d%
n‘to
T Z—4(z,0)
where e is a vector of ones and
- 202 [~z 0)+eTs 2
1) = Tgg4y)

[2¢7s,=q(z.0)] =
('I+2)'.{;’l)‘(2).'

- nql:!

(1= 2061z, 0+ o o214
(g +1)(g+2) T\z);
(2+2)8(z,0)[~2(9(z,0)+e s )}
An elementary exercise in integral calculus then yields
)= Nq/22q/2(q/2+m)( é(z,0)™ +q/2+l
H)\(z) (g +m+1)(g/2+m+ 1)

Similarly,

Iy(z)= I dsydsg
N=) oy HrJe s - x,0)
s 20

/!
S L AT
M) oy e

il € nf— #z,0)
7rq/22q/2(_ ¢(£ ’O)Yn +g/2

I (=) (g +m +1)

Thus we may rewrite

Iz) = 24m) o o).

(¢/2+m+1)
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Hence on reintroducing ¢(2)=0, (A2.6) gives
B(z) = 2(p+m+2)¢(z,t(z))(z),
A(z) = 6z}
where 8(z) = det(B | Z(t(z)))Vdet{ZT (t{z))M(z Mz ))Z(t{z)))
x ale ~m¥2olp =mY2(o g s lp +m)2 '

TIT(hp+m)+1)

Finally, it is easy to see that 6(z) satisfies the conclusions of the theorem. 0O
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