Delaunay Triangular Meshes
in Convex Polygons

Barry Joe
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

CS-84-15

June 1984



Delaunay Triangular Meshes in Convex Polygons

Barry Joe

Department of Computer Science
University of Waterloo

Abstract

An algorithm for producing a triangular mesh in a convex polygon is presented. It is used in
a method for the finite element triangulation of a complex polygonal region of the plane in which
the region is decomposed into convex polygons. The interior vertices of the mesh are chosen to be
on a quasi-uniform grid, different mesh spacings are specified for the edges of the polygon, and the
mesh is a Delaunay triangulation. The correctness of the algorithm is proved and the time com-

plexity is discussed.
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1. Introduction

A common approach for generating triangular meshes in general regions of the plane for the
finite element method is to first decompose the region into simpler subregions and then to triangu-
late each subregion (Cavendish (1974), Shaw and Pitchen (1978), Bykat (1976), Bank {1982)). We
have developed a method for the finite element triangulation of a complex polygonal region of the
plane in which the region is decomposed into convex polygons such that small interior angles in
the polygons are avoided and then a triangular mesh is generated in each convex polygon such
that triangles with small angles are avoided (Joe and Simpson (1983), Joe (1984)}. Figure 1.1

illustrates a triangulation of a region produced by this method.

In this paper, we describe the algorithm used in this method for generating a triangular
mesh in a convex polygon P, and prove its correctness. The triangles of the mesh satisfy an
optimal angle criterion, ie. the mesh is a Delaunay triangulation (Lawson (1977)). Let
€,€s, . ..,¢, be the m edges of P in counterclockwise order. The input of the algorithm con-
sists of the vertices of P in counterclockwise order, triangle size parameter k for the interior of P,
and triangle size parameters ki, k,, ..., A, for the edges e ,¢,, ..., ¢, respectively. Vertices
are generated in the interior of P using a quasi-uniform grid of spacing h {cf. Shaw and Pitchen
{1978)). Vertices are generated on edge e; at an equal spacing of approximately k;. In the
Delaunay triangulation of these vertices, the triangles in the interior of P have constant area
h2/2. Different h; are specified on the ¢; so that triangles which are graded in size are produced

near 3P (the boundary of P).

In our finite element triangulation method, the triangle size parameters for the interior of
the convex polygons in the decomposition of a region are restricted to differ by a factor of at most
two in adjacent polygons so that a gradual change of triangle sizes occurs between adjacent
polygons. The triangle size parameter for an edge of the decomposition is set to the geometric
mean of t];e triangle size parameters for the interior of the one or two convex polygons with this

edge. Hence the parameters k; for the edges of a convex polygon P in the decomposition satisfy
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Figure 1.1 Tlustration of triangulation of a region;
thicker lines indicate decomposition into convex polygons
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hIV2 = h; = V2h (1.1)

With this restriction, the triangles near 3P have approximately constant area h%/2 and the
number of triangles in P is approximately 2a/kh% where a is the area of P, so the triangle size

parameter k can be determined from a and the desired number of triangles in the mesh.

In the standard triangulation problem of computational geometry, the vertices are given as
input and a (Delaunay) triangulation is construt;ted to cover the convex hull of the vertices. The
construction of a Delaunay triangulation (or any triangulation) of the vertices requires O(nylogn,)
time where n, is the number of triangles in the triangulation (Shamos and Hoey (1975), Lee and
Schachter (1979)). However, in finite element triangulation, the vertices are generated as well as
the triangles. By using information about the location of the vertices relative to each other, our
algorithm constructs a Delaunay triangulation of the vertices in an expected time of O(n,) when

the k; satisfy (1.1) and P contains no ‘small’ interior angles.

In Section 2, we define a valid triangulation and a Delauray triangulation. In Section 3, we
describe an algorithm for shrinking a convex polygon which we use to determine a convex
polygon, int(P), in the interior of P. In our triangulation algorithm, we construct a preliminary
triangulation, VI'(P), by generating triangles in int(P} and in the strip near 8P, as described in
Secctions 4 and 5, respectively. The validity of VI'(P) is discussed in Section 6. In Section 7, we
describe how VI'(P) is converted into a Delaunay triangulation, DT(P). The time complexity of

the triangulation algorithm is discussed in Section 8.

2. Valid and Delaunay triangulations

In this section we state conditions for a valid triangulation in a region and state some pro-
perties of a Delaunay triangulation of a set of vertices. We say that a collection of triangles is a
valid triangulation of a polygonal region of the plane if the triangles form a :tiling’ of the region
without overlaps or gaps. Let w;, w,, wy be distinct vertices. We define triangle Aw,w,w; to be
a counterclockwise (CCW) triangle if the interior of the triangle is to the left of the three directed
edges w,wy, wow,, waw,; otherwise Aw,wywy is a clockwise (CW) triangle. If w,, w,y, wgy are

collinear, we consider Aw;w,w, to be a CW triangle. Note that the ordering of the vertices of a



triangle determine whether it is a CCW or CW triangle. Four conditions that ensure that a col-
lection of triangles, 4,,4,, ...,4y, is a valid triangulation of a region have been established by

Simpson (1981). They can be described in geometric terms as follows:
(a) 4, is a CCW triangle for all {.

(b} Each edge ¢ of A, is either the only edge joining its vertices or there is one
other triangle, A i having an edge joining these vertices. In the latter case,
the direction of e as an edge of A; is opposite to its direction as an edge of

Aj. In the former case, e is a boundary edge and A4, is its boundary trian- (2'1)

gle.
(c}) No interval of a boundary edge intersects a triangle other than its boundary

triangle,
(d) A vertex can have at most one boundary edge directed away from it.

Let V be a set of vertices in the plane such that they are not all collinear. A Delaunay tri-
angulation of V is a (valid) triangulation in the convex hull of V which satisfies the max-min angle
criterion: for any two triangles in the triangulation that share a common edge, if the quadrilateral
formed from the two triangles with the common edge as its diagonal is strictly convex, the
replacement of the diagonal by the alternative one does not increase the minimum of the six
angles in the two triangles making up the quadrilateral (Sibson (1978)). In other words, the
Delaunay triangulation is the triangulation which maximizes the minimum angle in the triangles

globally as well as locally in any two adjacent triangles which form a strictly convex quadrilateral.

A Delaunay triangulation also satisfies the circle criterion: the circumcircle of any triangle in
the triangulation contains no vertex of V in its interior. The Delaunay triangulation is unique if
no four vertices are co-circular. An edge uv, where u and v are vertices of V, is a Delaunay edge

if it is an edge in a Delaunay triangulation of V.

Lemma 2.1 (Lee and Schachter {1979)) : An edge uv is a Delaunay edge if and only if there

exists a point ¢ such that the circle centred at ¢ and passing through u and v does not contain



any other vertex of V in its interior.

The following local optimization procedure (LOP) of Lawson (1977) can be used to convert a
triangulation of V into a Delaunay triangulation. Let e be an internal edge (i.e. an edge not on
the boundary of the convex hull) of a triangulation of V and @ be the quadrilateral formed by the
two triangles having e as a common edge. If the circumcircle of one of the triangles contains the
fourth vertex of @ in its interior, then e is replaced by the other diagonal of @ (so that the
minimum of the angles in the two triangles is increased). Edge e is said to be locally optimal if an
application of LOP would not swap it. Note that e is locally optimal if @ is a nonconvex quadri-
lateral, and that the validity conditions (2.1) are unaffected by the LOP.

Theorem 2.1 (Lawson (1977)) : All internal edges of a triangulation T of V are locally
optimal if and only if T is a Delaunay triangulation of V.

In our algorithm, we generate a preliminary valid triangulation, VT'(P), in P which satisfies
the four conditions of (2.1}. Then VT(P} is converted into a Delaunay triangulation, DT(P), by
applying LOP to the internal edges of VI'(P). We have constructed VT'(P) so that LOP only has

to be applied to a subset of the internal edges.

3. Shrinking a convex polygon

Let py, Py, - - - Ppp—1> P be the vertices of convex polygon P in counterclockwise order,
where p,, = p, and all interior angles are less than 180°. Let @ be obtained by shrinking P by a
distance of r >0, i.e. if v € § then the distance from v to P = r. In this section, we present an
algorithm for constructing @ which uses the same approach as the algorithm of Lee and
Preparata (1979) for finding the kernel of a simple polygon. They exploit the ordering of the
half-planes corresponding to the polygon edges to obtain a linear time algorithm.

First we give some notation for representing @ and 3Q. Let {; be the directed line from p;
to p; 4+, I:'- be the directed line parallel to I; and at distance r to the left of I;, and H; be the
half-plane to the left of and including L;. Let gL;q’ denote the directed line segment from g¢ to ¢’

where ¢ and ¢’ are two points on L;, and let gL, and ®L;q denote the directed half-lines start-



ing and ending at g, respectively, on L;. @ is the intersection of the half-planes
Hy, Hy, ..., Hy—q. I ris sufficiently small then Q is a convex polygon otherwise Q is degen-
erate, i.e. ¢ is either empty or a single point or a line segment. In the degencrate case, we treat
@ as empty. If @ is a convex polygon then 8Q consists of line segments from n =3 of Lhe lines

L, (if F;IH, = @ then no line segment of L; is part of Q). Using the above notation
it

8Q = aoly i Lp 02 " 1Ly, Gny OSko<hy < - <hy_y=m~1,
where g, = ¢, is the intersection of Lko and Lk,,—x and ¢; is the intersection of Lk,»_l and L,c._,
1=i=n—1 (see Figure 3.1).

Our algorithm for constructing @ scans in order the edges p;p; 4+, of P and constructs a
sequence of convex polygons @, @,, ..., @, -, such that Q, is the intersection of half-planes
Hy, Hy, ..., H;. Since P is a convex polygon, the polar angles, 6y, of the vectors p; 4, —p; (or
lines [;) are ordered. Without loss of generality assume 8, =0°, i.e. I is a horizontal line directed
from left to right, sa that 0° =6, <0, < --- <, _, <360°. Let s be the smallest index such
that 6, >180° (note that 2<s=<m—1). If §,_, = 180° then let 8= s —2 otherwise let s'= s—1.
The following facts can be seen from elementary geometry:

a) For 1=i=s', @, is an unbounded convex polygon.
%

(b} Ir6,_,=180°, Q,_, is either an unbounded convex polygon or degenerate. 3.1)

(¢) Fors=i=m-1, @; is either a bounded convex polygon or degencrate.

Now we describe our algorithm for constructing @. Initially @, is the intersection of H,
and H; and 8Q), = ®L,q,L, where g, is the intersection of L, and L,. For 2=i =g/, Q; is the
intersection of @; _; and H; and 8¢Q); is obtained by modifying 4Q;_,. Suppose

89 1= q0ly 01 G lp Tn b1 0= Qa1 =R 0= ko <k < - <k, =il (3.2)

Since @; _, is convex and Gj <8, <180° for j <i, 3@, _, and L; intersect at exactly one point, ¢

{see Figure 3.2). Let j=0 be the index such that ¢ is on the line segment 9iL4 9j4, 2ud t # g,
i)

j can be found by scanning backwards from n for the first g; to the left of L; where gy =0 is



Figure 3.1 Illustration of convex polygon @

L0 1

Figure 3.2 9Q;_, and L; intersect at point ¢




considered to be to the left of L;. The polygonal curve thqu-ﬂ ** gy 41 15 to the right of L; so
it is not part of 3Q,. It is replaced by tL;® to obtain 8¢, =g9 - - - ‘lekthi“’ which can be
expressed in the same form as (3.2). If 6,_,=180° then if all points of 8Q,_, (in particular
41, G2 - - -, 4y ) are to the right of or on L, _, then Q,_, is degenerate and the algorithm ter-

minates otherwise 3Q, _| is obtained by modifying 4Q,, as above.

Suppose @, _; is not degenerate. @, is either a bounded convex polygon or degenerate by
(8.1¢) and 8Q, is obtained by modifying 8Q,_,. If all points of 4@, _; are to the right of or on
L, then @, is degenerate and the algorithm terminates. Otherwise L, intersects 6Q), _; at exactly
two points, ¢, and t,, since @, _, is convex and 6, >180°. Suppose 8Q,_; Is in the form of {3.2
with { =s and ¢, occurs before ¢, in the polygonal curve (see Figure 3.3). Suppose j and | are
the indices (j <1} such that ¢, is on line segment quk,-qjﬂ and t;# ¢, and {, is on line seg-
ment, qlLIc,qu and t,# g;. | can be found by scanning backwards {rom n for the first g; to the
left of L, and j can be found by scanning forward from 0 for the first g, to the left of L,. The
polygonal curves toly g4y - - gp4y and gg - - quIc_,-tl are to the right of L so they are not part
of 8Q,. They are replaced by t,L.,¢, to obtain 6Q8=t1Lk,_qJ-+1 s q,Lk'tQLstl which can be
expressed in the same form as (3.3) below.

Suppose s+1={=m~—1 and @, _, is not degenerate. @@, is obtained by modifying

3Q 1= dolg 91 Gl Gnt1 0= Gnt1 05 kg <k < -0 <k, =d-1 (8.3)
Consider the position of L; with respect to @; _,. There are three cases (see Figure 3.4):

(a) Q- is to the right of or on L;,

(b) @, is to the left of or on L;,

(¢) 8Q;_; and L; intersect at exactly two points, ¢, and ¢,.

In case (ai, 99 415 - - - » Gy are to the right of or on L;, @, is degenerate, and the algorithm ter-
minates. In case (b), @; = Q,;_, and the condition that g is to the left of or on L, is sufficient to

determine this case since 6 = 0° and B <0;, ie. the'slope of L; lies between the slopes of Ly
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Figure 3.3 4@, _, and L, intersect at points £ and ¢,

(a)

Figure 3.4 Three cases of position of L; with respect to @, _,
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and Lku‘ In case (c), 8Q; is determined in the same way as 3@, above. If @Q; is not degenerate
for s'+1={=m=—1, then the algorithm terminates with 3Q =89, _,.
The pseudo-code for our algorithm is given in procedure SHRINK.

Procedure SHRINK(P,m,r,Q,n);
# Input: convex polygon P=pgp, - - - p,, 1P, and shrinking distance r
# Output: @ = ¢ and n =0 or convex polygon @ =g,q; - - - 9y 19, 30d 3=n=m
@ := polar angle of p; — pg;
g, := intersection of Ly and L;
kg =0k, = 1
f:=2;n:=1;
4 := (polar angle of p;—p,} — o;
Translate angle ¢ to the interval [0°,360°);
while 8 = 180° do
# polygonal boundary curve is kaOql v anknm and next line is L;

while n = 1 and g, is to the right of or on L; don := n —1;
if 6 = 180° and n = 0 then return;
¢ := intersection of Ly and L;;
n:=n+l;q,:= kb, =1
i:= {+1; §:= (polar angle of p; 1., —p;) — &
Translate angle ¢ to the interval |0°,360°);
Ji= 0 g, 0= g4y 1= 0
while i = m—1do
# polygonal boundary curve is q,—ijq]»ﬂ v anknan and next line is ;
if g; = ®orgq; is to the right of L; then
while n = 7+ 1 and g, is to the right of oron L; don := n —1;
if n = j then n := 0; return;
ty := intersection of Ly and L;;
n
n=n+lg, =ty k, 1= 4
while ¢, is to the right of or on L; do j:= j+1;
t, := intersection of ij and L;;

45 0F b5y ey Py

{:=1i+1;
fori ;= 0ton+1—jdog := % +j
n:=n+1-—7j;
return;

We now derive the time complexity for the algorithm. For each i 22, 8Q; is obtained from
4Q), —, by removing zero or more line segments from the begirning and end of 8Q;_,. Fach line
segment is parallel to an edge of P and when it is removed from 8Q; _; it is not involved in any
further computation. Therefore at most m line segments are removed from the 8Q;,

1=<i=m=2. All other computations clearly require O(m) time. Therefore we have shown

Theorem 3.1 : Procedure SHRINK determines Q_in O(m ) time.
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4. Triangulation of the interior of P

Let int (P) be obtained by shrinking P by a distance of A/ V2, ie,

int{P) = {v| » € P and distance from v to 8P = h/V2}. (4.1)

i A/V2 is sufficiently small then int (P) is a convex polygon, otherwise int{P) is degenerate, i.e.
it is empty, a point, or a line segment. In the degenerate case, no interior triangulation is done, so

we assume that int(P) is a convex polygon in this section.

Let v, and v, be the endpoints of a diameter of int(P). The algorithm of Shamos (1975) is
used to compute the diameter in linear time. We rotate the coordinate system so that line seg-
ment vy, is parallel to the y-axis with y(v,) > y(v,), where y(v) denotes the y-coordinate of ver-
tex v. We introduce n + 1 horizontal lines, y = y;, through int(P), evenly spaced h apart with
n= l(y(vt) - y(vb))/h]; dy = (y(v) = ylvp) — nk)/2;  and gy, = yl) —dy — ik,
0 =i =<n. Let a; and b; be the x-coordinates of the left and right endpoints of y = y; in ini (P}

and let m{i) = I(b.- - a,-)/hJ; dz; = (b; — a; — m(i)h)/2; and L

J=a‘-+dx,~+jh,

(=1
A
w

1A

m(i). On each line, we introduce a sequence of mesh vertices (z; ;, y;) for
0 =< j =< m(i}, spaced h apart. Note that at least one vertex is generated on each line and that
the vertex which is nearest to 8P is between h/V2 and /2 + h/V2 distance from 8P (see Fig-
ure 4.1}. These vertices do not lie on a uniform square grid of spacing i because those on
¥ = Y;+; may be shifted horizontally with respect to those on y = y; or y = y;,,. Conse-

quently we have referred to them as being on a guasi-uniform grid.

A subset (possibly empty) of these vertices are then triangulated in a scan down the strips
Y+ =y =y; (see Figure 4.2). For each pair of lines, let ¢ = max(z; g, z;4,o) and
b= min(z"’m("), z"_;_l,m(,-_,_,)). {Note that it is possible that b < a. In this case ¢ — b < h
since on lines y = y; and y = y; 4, there exists a vertex at distance = h/2 from diameter v,v,.)
The vertices on the two lines for which the x-coordinate is in the interval e =k, b+ L] are then
connected up to form a sequence of similar triangles in which the area is 1?2 and the angles are

between 45° and 90° inclusive. This process is carried out for each pair of lines in which ¢ < b
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Figure 4.1 Generation of mesh vertices in int (P}

T

Y=Y

le— = —

y*y,

Y*Yieq

& -
Gs2 %e2,0 %+2,0 Xiez,2 Diep Y*Vier

Figure 4.2 Triangulation of mesh vertices in int (P}
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and m(i) + m(i+1) >0 I b <a or m(i)=m{i+1) = 0, then no triangles are formed
between y = y; and y = y, ;. In this case, the shortest edge joining a vertex on each line is
introduced.

We need to identify a boundary of this set of vertices, so that we can triangulate the strip

between it and 3P, Let V; be the set of vertices, and E; be the following set of edges:
(a) edges of triangles formed in the scans described above,

(b) additional edges joining comsecutive vertices at the ends of lines ¥y =y, (42)

(¢) the shortest edge joining a vertex on line y = g, to a vertex on line

Y = Y; 4+, in the case that no triangles are formed between these lines.

Then G; = (V;, E;} is a connected planar graph, and if it contains at least two vertices, then a
counterclockwise closed walk, C, can be formed to identify the boundary of Gy by including an
edge e of E; k times in C' if ¢ occurs in 2— k triangles, 0 < k < 2. H an edge e occurs twice in
C, the direction is opposite in its two occurrences (see Figure 5.1). If V; contains only one vertex

then let C be this single vertex.

C consists of a walk, C;, down the left side of G} followed by the sequence of edges on the
line y = y, from left to right, and a walk, Chr, up the right side of Gy followed by the sequence of
edges on the line y = y, from right to left. C; consists of paths from (zi0 %) to (2,410, ¥41),
i =101,...,n—1, which are constructed as follows. The leftmost edge between lines ¥y =y
and y = y; 4, is either part of the triangulation or the edge formed in (4.2c). This edge joins ver-
tices (z; ;, 9;) and (; 4, &, 9, 4) With either = 0 or k = 0 (or both). If j = 0 then the path
formed by the vertices (z; o, %), (%; 414 %i41) (Biwr =1 %it1) - 5 (34100 bi4) 5 2 sub-
walk of €}, otherwise the path formed by the vertices (= 00 %), (::,-,1, L7735 R (xi.j’ %)
(zi+10: %i41) Bs a subwalk of Cp. For example, (z;0, %) (%410 %41) (Zi4y ) ¥41):
(zi 4200 -"1'{-;2) is a subwalk of € in Figure 4.2. Similarly Cp consists of paths from
{Zit1m(i+1) Yi+1) to (#imy %) =n—1mn—=2,...,0. C; and the reverse of Cj are con-

structed during the scan of lines to form the triangles of int(P).



-15-

The following lemma implies that the edges of E; (see (4.2)) are locally optimal in any tri-

angulation of the mesh vertices (including those on 8P) which contains these edges.
Lemma 4.1:If ¢ € E}, then ¢ is a Delaunay edge.

Proof : E} can be partitioned into two disjoint sets of edges E; and E, where F, contains
the horizontal edges and E, contains the edges which join vertices on two consecutive lines
y =y and y = y,;,. First suppose ¢ € E;. Let the vertices of edge ¢ be v; = (-ﬂ',jv y;) and
vy = (z; ;+ h, y;). Let S be the circle of radius h/2 with centre at (z; j+ 172, y;) (see Figure
4.3a). Clearly no vertices of V; can be in the interior of S. Mesh vertices on dP lie a distance
= h/V3 from the centre of S by (4.1), so they are not in the interior of S, By Lemma 2.1, e is a

Delaunay edge.

Now suppose ¢ € ). Let the vertices of edge ¢ be vy = (z; ;, ;) and vy = (7,4 4, ¥ 4),
and let d = | Ti; T Ttk |. Let § be the circle whose diameter is . It is apparent from Fig-
ure 4.3b that no vertices of V; can be in the interior of S if d = h. To establish this, we note
that ¢ may have been formed by either (4.2a) or (4.2c). In the first case, it is clear that d =< & as
a consequence of the triangulation process in int(P) (see Figure 4.2). In the seccond case,
d=a—b=<h as discussed in the paragraph above {4.2). The radius of § is

VEZ+ d°/2 = k/V2. As above, mesh vertices on 8P are not in the interior of S. By Lemma

2.1, e is a Delaunay edge. O

The pseudo-code for the generation of mesh vertices, triangles, and closed walk C in int(P)
is given in procedure INTTRIANG. In this procedure, a triangle is represented by a list of three
vertex coordinates in counterclockwise order, the function append(list1,iist2) appends the ele-
ments of the second list at the end of the first list, and the function reverse(list ) reverses the ele-

ments of the list.
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Figure 4.3b Edge v v, is in E,
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Procedure INTTRIANG(tnt(P), h,TI,nt,C,nc);
# Input: convex polygon int(P) with diameter parallel to y-axis and triangle size parameter h
# Output: list of triangles T7, number of triangles nt, closed walk C, number of edges ne in C
# Generate mesh vertices in int{P)
ymaz = maximum y-coordinate of vertices of int{P);
ymin = minimum y-coordinate of vertices of int(P);
n = trunc({ymaz — ymin)/h);
dy = (ymaz — ymin — n k)/2;
for i ;= 0ton doy := ymar —dy —ih;
Scan down the left and right sides of 3int(P) to determine the points (a;,¥;) and (b;,y,);
for{ := 0ton do
m(z) := trunc({b; — a;)/h);
dz; = (b; — a; —m(i)Rh)/2;
for j:= 0 to m{i) do z; ; := a; +dz; + jh;
nt = 0; 7T := [ |;
if n = 0 then ne := 0; C := [(z;9,¥,)]; return;
Cp = (200,90} Cr == Uzo0:¥0)s (Zo1o¥0) - - - (z6,m(oy ¥oll;
fori:=0ton—1do
@ = max(z; 0,3 110);
b= min(2; o) % 41 m( +1) )
{0 := smallest integer such that z; ;,=a — k;
{1 := smallest integer such that z.-’_H_“ =a—h;
70 := largest integer such that z; (=<b+k;
r1:= largest integer such that ;4 ., <b+h;
# Generate the triangles between y = y; and y = y; 4,
if {0 <rCoril < rl then
F:=10; k ;=1L
while j <rOand k < rldo
if $€+l,k = :B"’ . then
nt = nt + 1 Tl(nt) == Allz; 4y g 95 41h @b+ ¥i+1): (5053000

k:=k+1;

else
nt = nt + 1 TI(nt) := Al(z; ;40,9 ) (5 5 %) (Fiv100% 4101
ji=g+1

if j = r0 then while & < r1do
nt = nt+ 1 TI(nt) = Allw; 40 0% +1) @ap+08 01 (500
k:=Fk+1,;
else while j < r0 do
nt = nt + 1 TI(nt) = Al(z; j41,%) (5 5% ) @340
J=J+L
# Generate the subwalks of Cy and Cp, between y =y; and y =y, 4,
if 2; 10 = %41 then
Cy = append(Cy, [ 1, 3:) (7 %), -+ 0 (30 40 30) (Fi 41,008 40)])
else Cp := append(Cp, [(2; 41118 +1) (i 411 -0 ¥ +1)s - - - Eigp 08410
if 2; 0 =< Z;4y,, then
Cp = append(Cr l(T;i 41,00 41) Bt i+ 0¥ +1) - - o (Tidy (1) Bn)])
else Cp := append(Cg, [(2; n(i)—1: ¥ b (T (i) =225 - - - 1 (i r00 %) (Zi b ms +1) ¥ +1)] )
CL = append(CL’!(zu,l'yn)l ('T'n,Z’yn)! L) (xn,m(n)—l'yn)] );
C := append(Cp,reverse(Cg));
ne¢ := number of edges in C';
return;
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5. Triangulation near the boundary of P

Mesh vertices are generated on the edges of 3P as follows. Let ¢; be an edge of 3P with tri-
angle size parameter h; (see Section 1). Mesh vertices are generated on ¢; at an equal spacing of
E.‘: the nearest length to k; which is an integral submultiple of [e‘-l (the length of &)- I;. is com-

puted as follows:

k := trunc(] g | /h;);

r= el ihy — K (5.1)
ifr > k/(2k+1) then k := k+1;
b = | e |/k;

If h; satisfies (1.1), then the restriction of f'z: compared to h is

min{| ¢ |, V2h/3} < _‘ =< 4V2h/3 (5.2)
from (5.1).

In this section we describe a procedure for triangulating the strip, A, between 8P and C in
the case of at least one vertex in the interior of P. {The case in which int(P) is degenerate and
there are no vertices in the interior of P will be discussed later in this section.) We believe that
the spacing of mesh vertices on dF restricted by (5.2) is small enough for the following procedure
to generate a valid triangulation in A. However, we have been unable to prove this. On the other
hand, as Figure 5.4 below shows, if the spacing of vertices on 8P is too large relative to & then an
invalid triangulation can be formed. We show how the procedure can be modified to produce a
valid triangulation in this case. In Section 7 we describe how to modify the triangulation of A so

that the total triangulation of P is a Delaunay triangulation.

If there are at least two vertices in inf(F), then let the closed walk C determined in the
preceding section be represented by the list of vertices C = [vo, vy, ..., v,,] where
vy = v, = (zo_o, yo) and nc = 2 is the number of edges v;v,41 in C; otherwise let C = [v,}
and nc = 0. Let the counterclockwise cycle of edges on 8P be represented by the list of mesh
vertices B.= {2, s - -+, uyp] where uy = u,y, nb = 3 is the number of edges u;u; ., in B,

and the numbering of the u; is done as follows (see Figure 5.1). If there are at least two vertices

in int(P) then we number the u; so that uq is closest to vy among the vertices on dP with y-
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v,€C

Figure 5.1 Illustration of closed walk C, cycle B, and strip A

coordinate greater than y, (note that edge u,v, is entirely in A). Otherwise we number the u; so
that u, is the vertex on 8P which is closest to vy. In the former case the selection of u, is a

heuristic for finding a Delaunay edge u,v,. In the latter case,

Lemma 5.1 : If there is only one vertex v in int(P) and u is the vertex on 9P closest to

vy then uyv, is a Delaunay edge.

Proof : Let S be the circle of radius |ugvy| centred at v,. S contains no vertices in its
interior since u is the closest vertex to vy, Let S’ be the circle of radius ] “0”0"'2 whose diame-
ter is ugvy. S’ is contained inside S therefore S’ contains no vertices in its interior. By Lemma

2.1, 2y is a Delaunay edge. D
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We now describe how to generate edges of the type w;v; and triangles of the types
Avguggqv; and Avjiqv,u; in the strip A by ‘merging’ B and ' and ‘zigzagging’ counterclock-
wise around A starting and ending at edge ugv,. Note that A is to the left of B and to the right
of C so that for a valid triangulation of A (see Section 2), CCW triangles Au,u;,,v; and
Av,yqvu; must be generated. Suppose u; v is the last edge generated and ¢+ < nb or j < ne
(initially { = 0 and j = 0). The direction of edge u;v; is from u; to v in the last triangle and its
direction in the next triangle will be from v; to u;. If # = nb then the next edge and triangle

generated are u, v 4, and Av;y v iUg. If j = nc then the next edge and triangle generated are

u; 4, and Au;u; v, Otherwise either edge u;v;., and triangle Av v

’ jug or edge w4 qv;

)
and triangle Au;u; 4 v; are generated next based on the following test.
Consider the quadrilateral @ = w;u,4,9;4,2;. v; and v, 4, are to the left of the directed

line from u; to u,4;, but the positions of u; and u; 4, relative to the directed line, ! (v;v,4,),

from v, to v, may be one of the following four cases (see Figure 5.2):
F] j+1
{a) u; and u;4, are both to the right of I (v;v;4,),

(b)  #; (u;4) is to the left of or on (right of) {{v;v,1,),

(¢} u; (2;41) is to the right of (left of or on) I (v,;v;4), (5-3)

(d) u; and v, are both to the left of or on I (v;v;4,).

In case (a), @ is a strictly convex quadrilateral and if the circle through the vertices u;, u;4,, v J
does not contain vertex v;,, in its interior then edge u,,v; and triangle Au;u; ., v; are chosen
else edge v;v;;, and triangle Av;, v u; are chosen. In case (b}, @ is a nonconvex quadrilateral
and edge v, 4,v; and triangle Au;u;,,v; are chosen. In case (c), @ is a nonconvex quadrilateral
and edge u;v; 4, and triangle Av;,,v;u; are chosen. In case (d), @ is a nonsimple quadrilateral
and edge u, 4;v; and triangle Au,u; 4,v; are chosen; the other triangle Av; 4 v;u; is oriented in

the wrong (clockwise) direction (see (2.1a)). In cases (a), (b), and (c), the chosen edge is locally

optimal in @ (see Section 2).

Let T(P) be the collection of triangles formed in A and int(P) as described above and in
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v Uisy
4 Yies
Vet
i
Yi Y Y
(a) (b)
Yier v T
A% !
Vi
u
u; v/ |
(c) {(d)

Figure 5.2 Four cases of quadrilateral @

Section 4. T(P) is illustrated in Figure 5.3. It is not clear that the triangles in T(P) do not over-
lap, i.e. that they produce a valid triangulation. If | u; u,-+1| is too large relative to h for some 1,
then T(P) can be an invalid triangulation (e.g. see Figure 5.4). After discussing the case of no
interior vertices, we indicate how this merge procedure can be modified to generate a valid tri-

angulation, VT'(P), even if the | u;u; +1| are large relative to k.

Now‘ we consider the case of no vertices in the interior of P. Let v, and v; be the endpoints
of a diameter of P and suppose the coordinate system is rotated so that line segment vyv, is
parallel to the y-axis with (v,) > y(vp) (as was dome for int(P) in Section 4). Let

B = |ug ty, ..., Upp, --., Upy—y, Uyy| be the counterclockwise cycle of vertices on 3P where
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ug = u,, = v, and ¥, = v,. B can be split into two chains By = [ug, uy, ..., u,,] and
B = [ugps Upp—15 -+ + s ¥pl = [0 ¥1s o, V| oD the left and right sides of 3P, respectively,
such that the y-coordinates of the vertices strictly decrease from y{v) to y(v,). Note that mb
and mc are both at least one. B and By can be merged to produce a valid triangulation, VI'(P),
in P in a way similar to the procedure described above {see Figure 5.5), and VT'(P) can be con-
verted into a Delaunay triangulation in a way similar to that described in Section 7. The validity

of VI'(P) is discussed in Section 6.
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Figure 5.3 Illustration of T'(P) and DT(P); ugvg is in T(P); wgu4 is in DT(P)
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boundory of P and edges
of interior triangulation

dges of triangutation
of A

Figure 5.4 [Hustration of invalid triangulation T(P};
note overlap by triangles Avgvgu, and dvgvgug
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Up"Us "V,

us
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Figure 5.5 Iustration of chains By, By and VI'(P) in the case of no interior vertices
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The pseudo-code for the merge of B and C or B and By to generate triangles in the strip
A or polygon P, respectively, is given in procedure MERGE. The list of triangles, TM, produced
by this procedure is modified by the procedure of Section 7 and then, in the case of at least one

vertex in the interior of P, appended to the list of triangles, 77, produced by procedure INTTRI-

ANG.

Procedure MERGE(inter,L,nl, M,nm, TM,EM);
# Input: if inter = true then L = B, nl = nb, M

C,nm = nc
m

# else L = By, nl = mb, M = Bp, nm
# Output: list of triangles TM and list of edges EM;
# if tnter = true then TM and EM each contain nb + nc elements
# else TM and FM each contain mb + mc — 2 elements

nll := nl; nmm = am;

nt = 0;

if not inter then

nt :=nt+1;

TM(nt) := Augu,vy; EM{nt) := u v ;
if nl + nm = 3 then return;
nl ;= nl=1;,nm = nm=—1;
=1, 7:=1;
else i := 0; 7:= 0;
while { < nl and j < nm do
if (u; and v, 4, are both to the left of or on {{v;v,,)) or
(v;+1 is not in the circle through u,, u; 1y, ;) then

nt ;= nt +1;
TM(nt) := Auyu; v EM(nt) := u;4qv5;
f:=1i+1;

else
nt 1= nf+1;
TM(nt) := Avjyyvu;; EM(nt) = wvjgy;
J=g+l

if ¢ < nl then
if not inter and j = nm then nl := nl+1;
while i < nl do
nt :=ni +1;
TM(nt) := Aujuj vy EM(nt) = w05
f:=1+1;
else # 7 < nm
if not fnter and ¢+ = nl then nm := nm +1;
while j < nm do
nt ;= nt+1;
TM(nt) = Avjyvyuy; EM(nt) = wivjpg;
=i+
*nl ;= nll; nm = nmm;
return;
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As mentioned above, procedure MERGE can fail to produce a valid triangulation of P in the
case of at least one interior vertex i the spacing of the u; on 3P is too large relative to £. In
Section 6, we examine procedure MERGE to see how it can be modified to always produce a valid
triangulation. We will show that an invalid triangulation T(P) is due to an overlapping‘ triangle
Avv;_qu; in which v;1, is to the right of I(v;_;v;) and u, is to the left of or on I(v;v;1,).
Intuitively, we can think of this as resulting from there being too few vertices in B for the number

of vertices in C'. The modification consists of generating CCW triangle Avjyyviv;_ instead of

75
Avjv;_yu,, replacing subwalk v;_ v;v:., of C' with edge v;_,v;.,, and restarting the merge of

B and the new shortened C' from edge u,v;_; where A'uj_lvj_zu, is formed by the merge pro-
cedure. The pseudo-code for the modification is given in procedure MMERGE. Let VT(P) be the
triangulation produced by procedures INTTRIANG and MMERGE. Procedure MMERGE and the
validity of VT'(P) will be discussed in Section 6. In procedure DELTRIANG of Section 8, pro-
cedure MMERGE is used to produce a valid triangulation of A in the case of at least one interior

vertex, and procedure MERGE is used to produce a valid triangulation of P in the case of no inte-

rior vertices.
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Procedure MMERGE(B, nb,C,nc,TM,EM,ne);

#
#

HhRERERER SRR R

Input: boundary cycle B, closed walk C', number of edges nb and nc in B and ¢
Output: list of triangles TM and edges EM in A, each containing nb + nc elements,
and the number of edges ne of type ViVity, M =2, generated in A.
The edges of type VUi, are stored at the end of EM in the reverse order
that they are generated. The edges of type u; v; are stored at the front of EM
in the order that they are generated. The triangles are stored in a similar way.
The working arrays s, p, r, and n are used as follows:
Yo(5) and Up(5) BT€ the successor and predecessor vertices of v in C.
s and p are updated when a vertex is removed from €.
Ur(5) is the vertex of B in the triangle Avs(j)vju,(j) and
n(7) is the index of this triangle in list 7M.
r and n are used to determine how far to backtrack the merge of
B and € when a vertex is removed from C.
for 7 := 0 to nc—1do
s(7) = g+ p(i+1) = jir(f) == 0; n(j) = 0;
nt 1= 0; ne 1= 0; :
1:=0;7:=0;
while i =< nband j = ncandi+j < nb+nedo
if (j=mne) or (v; and u; 4, are both to the left of or on Hvjvyiy))
or (v,( ) is not in the circle through u,, u; 4y, v;) then
nt ;= nt +1;
TM(nt) := Auju;yqvj; EM(nt) == ;4 0
{i=1i+1;
else
(il {s(j}=nc)or ('vs(,(j)) is to the left of or on L{v;v,(;)))
or (u; is to the right of or on Hvg(5)Va(s(s))) then

nt == nt +1;
TM(nt) := Avy ;v u;; EM(nt) = % V(43
r(7) = i; n{s) := nt;
J=s(3)
else

Jlag = false;
repeat # remove V(5 from C
TM(nb+ nc — ne) 1= Avg()Ve(i)55
EM(nb+ nc—ne):= Vi Vs(a(5))
ne := ne+1;
8(7) == s(s(5)); p(s(i)) := Js
if j = 0then{:=0;nt ;= 0;
else i := r(p(j)); nt := n(p();
if (7 >0) and (v,(;) is to the right of (v, i)
and (u; is to the left of or on l(vJ-vs(j)S) then
7= rp(j)
else flag := true;
until flag;
return;

.
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6. Validity of triangulation VT(P)

VI'(P) is a valid triangulation of P if the triangles form a ‘tiling’ of P without overlaps or
gaps. We will show that VI'(P) is valid for the three cases of (i) no interior vertices, (i} one inte-
rior vertex, and (iii) two or more interior vertices. In case (it), VI'(P) (or T{P)) is valid since the

triangles Au;u; 4vo, 0= i =nb—1, are formed and they clearly tile P without overlaps or gaps.

In case (i), each edge added to VI'(P) in procedure MERGE subdivides an untriangulated
convex subregion of P into two convex subregions - a triangle and a smaller untriangulated subre-
gion. For example, in Figure 5.5, edge uu, subdivides P into triangle Augju u; a.nﬂ convex sub-
polygon u u,ugu, ugtuguqu,. If all the untriangulated convex subregions are nondegenerate (i.e,
not a line segment) then the triangles of VI'(P) clearly tile P without overlaps or gaps so VI(P) is
valid. An untriangulated convex subregion can be degenerate il one side of 4P contains only two
vertices and the other side contains three or more collinear vertices at the bottom. In this case
degenerate triangles (i.e. with three collinear vertices) are formed. For example, in Figure 6.1a,
triangles Augu,u; and Auyuzu, are formed by procedure MERGE and the latter triangle is
degenerate. If the collinear vertices at the bottom are perturbed slightly so that no three vertices
are collinear and the polygon remains convex then all the untriangulated subregions are nondegen-
erate and the triangulation is valid (e.g. see Figure 6.1b). Therefore we still consider the triangu-
lations with the degenerate triangles to be ‘valid’. The procedure described in the next section

will convert these triangulations into Delaunay triangulations.

In the rest of this section we will consider the case of two or more interior vertices., We will
show that VI(P) is valid by showing how T(P) (the triangulation produced by procedures
INTTRIANG and MERGE) can sometimes be invalid and how a modification can be made to pro-
cedure MERGE to always produce a valid triangulation. In Section 2, we mentioned that a tri-

angulation of a region is valid if it satisfies the four conditions of (2.1).
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u
Ug °

(a) (b)

Figure 6.1 (a) Example where degenerate triangle Augyugu, is formed by procedure MERGE
(b) Perturbation of chain u,u,u3 to obtain valid triangulation

Lemma 6.1 :

(a) T(P) satisfies conditions (b), (c), and (d) of (2.1).

(b) 1 Avji v u; is produced by procedure MERGE and i <'nb, then Avjyqv;u; s CCW,

{(c) If all triangles of type Av 41V produced by procedure MERGE are CCW, then T'(P} is 2
valid triangulation of P.

(d) T(P} is not a valid triangulation of P if and only if there is a CW triangle of type
Avigviug produced by procedure MERGE.

Proof : The boundary edges of P are the edges u;u; ., of B. Cenditions (c) and (d) of (2.1)
are clearly, satisfied by T'(P) since the triangles formed in A by procedure MERGE are of the
types Au;u;4qv; and Av;y v.u;. We now show that condition (2.1b) is satisfied by all edges of

T(P). The edges of E; (see (4.2)) which are not edges of C clearly satisfy condition (2.1b) (see
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Figure 4.2). An edge e=v;v:y of ¢ occurs either once or twice in C. In the latter case,
vi=vi4y and vy =v, for some k# j and e occurs in opposite directions in the triangles
Av;pyviu; and Avg 4 qyvgup formed in A. In the former case, e occurs in opposite directions in
the triangles Av;yyvju; in A and Avjv;iyw in int(P). A boundary edge v, 4, ol’ﬁ oceurs
only once in the triangle Au;u; . v; formed in A. The other edges of T(P) are of the type u, v,
u; € B and v € C, formed in A. One of the triangles with edge wv; is either A“i—l“‘.’"’j or
Avjvj_lui-; the other triangle with edge u;v; is either Au,»u‘-ﬂvj or Avj-ﬂvju‘», where the
indices of u; and v; are taken modulo nb and nc respectively. In all four possibilities, edge uv;
occurs in opposite directions in the two triangles. Therefore condition (2.1b) is satisfied by all
edges of T(P).

Now we determine when condition (2.1a) is satisfied or pot satisfied. The triangles gen-
erated by procedure INTTRIANG are all CCW. The triangles generated by procedure MERGE

are of the types Au'»u'-.,.]vj or Avjﬂv

u;. Awiugyqv;is a CCW triangle since v, is to the left

i
of directed edge u;u,; 4. Av;y v, is 2 COW triangle if it is formed from case (a) or (c) of (5.3)
{see Figure 5.2). It cannot be formed from case (b} or (d) of (5.3). So Av;iyvu; may be a CW
triangle only when there are no more quadrilaterals uu; 41V;49v; and i =nb. By condition
(2.1a), T(P) is a valid triangulation if the triangles of type A'"j+1”j“nb are all CCW.

If T(P) is not a valid triangulation then condition (2.1a) is not satisfied and there is a CW
triangle of the type A”j+1”juub~ To show that the converse is also true, suppose A"’j«i—l”j“nb is
a CW triangle produced by procedure MERGE. Edge ¥;¥ ;41 occurs either once or twice in C. In
the former case, CCW triangle Av,v,;,w is formed by procedure INTTRIANG, and Avjg vy,
and Avjv;y,w overlap. ;n the latter case, v,=w 4y and v;,;=u, for some k+#;j and
Avg w5 formed by procedure MERGE; either Avg,,vu,u; is CCW if | <nb or
Avg vy = Avig vy, if L=nb; in both subcases Aviy vty and Avgyvw overlap.

Therefore T(P) is not a valid triangulation. O

We now examine the triangles produced in A by procedure MERGE to see how CW trian-
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gles Avjﬂvjun,, can be formed and how the procedure can be modified to produce a valid tri-
angulation in this case. Since the triangles of type Auiu'-ﬂv_l- are always CCW, we concentrate
on the triangles of type Av;, viu;. Let Av;y vu 5, 0= j=nc~—1, be the triangles of type
Av;4yv;u; produced by procedure MERGE, where 0=r(0)sr(l)= - <r(ne=—1)=nb.

We first make some definitions which will be used in the following lemmas. We define v; to
be a reflex vertex of C'if v;4, is to the right of {{v,_,v;) and define v, to be a convex vertex of
C otherwise. Note that v, is a convex vertex of C since it is the leftmost interior mesh vertex on
the top line y =y, Let v,,;, be the rightmost interior mesh vertex on the bottom line y =y, .
Vppid 18 also a convex vertex of C'. Let Cy, be the subwalk of C from vy to v ;; and Cp be the
subwalk of C from v,,, to v,.. Let |w,z] denote the ‘interval’ of 8P going counterclockwise
from point w to point 2z inclusive. A parenthesis will be used in place of the bracket if the end-
point w or z is not included, e.g. (w,z), (»,2], [w,z). Let w; and z; be the intersections of line
l (”j”j+1) with 8P where w; is the intersection closer to v; and 7 is the intersection closer to
vjtq- (wj,2;) is the interval of P to the right of I{v;v;,). Define I;= (w z;) if u, is not in
{wj,2;) Ij=ug.z;) if ug is in (w),2,} and vjv;py €Cp, and I;= (wj,un,] if ug=1, is in

w,,z:) and v.v. ., € Cp. Recall that u is a vertex of the triangle Av ., v u_  produced by
IR iYit1% R ) 7+1%5%(4)

4®)

procedure MERGE.

Lemma 8.2 : If u,(;) is not in I; for some j, then T(P) is not a valid triangulation.

Proof : If u,(;) is not in (w;,2;) then Av;4 vu. ;) is CW so r(7)=nb and T(P) is not valid
by Lemma 6.1. Suppose ug is in (w,2;) so that I # (w;,z;) and suppose U,(j) I8 in {wy,z;) but
not in 1. First suppose v;v;;, € C7. Then Uy(5) is in (wj,uub) and CCW triangle Avjﬂvju,(j)
maust intersect the walk ugvgv, - - - vy (see Figure 6.2). Now suppose LFOE € Cp. Then U () is
in (ug,2,) and GCW triangle Av;4 v u,(;) must intersect the walk v, ;9,45 - - - 9,,%,;,. In both

cases, Avy v, ;) overlaps other triangles of T(P) so T(P) is not valid. O

Lemma 8.3 : If v; is a reflex vertex of C and Av;v;_yu,(;_;yis COW with u,(;_,) to the

left. of or on I(v;v;4,), then Avjv;_;u,(;_,)is an overlapping triangle and T'(P) is not a valid tri-
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Figure 6.2 Av,y v u,(, intersects walk wgvgvy - - - v;
Vi
Yi
Yegn

Figure 6.3 Av v;_,u, ;) intersects edge v v,
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angulation.

Proof : If Uy(j-1) is to the left of or on l('vjvj“) then part of edge v v, lies in the inte-
rior or on the boundary of Aw;v;_ju, ;) (see Figure 6.3). Therefore Avjv_yupj—yy and
Avipqv

Ue(j) OVerlap and T(P) is not a valid triangulation. O

Lemma 6.4 :

() If v is a reflex vertex of C' and Av;v;_ju(;_q)is CCW with u,;_qyin I, and to the
right of H{v;v;, ) then Avji vju, ;) is COW with u,(;yin I

(b) 1If v} is a convex vertex of C, 0 <j<ne, and A”j"j—l“r(j—l) is CCW with Up(i-1) in Ij—l
then Av iy v, (5 is CCW with %e(5) in 1.

{¢c) U 7=0then Avigvin) is CCW with %) in I;.

Proof : Define %y(5) to be the vertex of largest index in Ij.

(a) Let u;, r{j—1)=<1=nb, be the vertex of largest index to the right of U(v;v;.41) such that
u;, i=r(j—1),...,l, are to the right of l('AJJ~vJ~+1). If {>r(j—1) then quadrilaterals
U4V 4y, E=r{7—1), ..., 01, are case (a) of (5.3) and CCW triangle Avjyyv5u, ;) may
be formed from one of these quadrilaterals. If not, then CCW triangle Avjﬂvju,_(j), r(j}=1,1is
formed because either I = nb or quadrilateral vju; 4 v;4,; is case (c) of (5.3). v; is a reflex ver-

J

tex and u,;_q) is in I;_; and to the right of I(vjv;,) imply that Uy(j-1) B8 in I; and

r(j=1)=r(j)=t(5)=!. Therefore u,(; isin I;.

(b) v; is a convex vertex and u is chosen so that y(uy) >y(v,) imply that ¢(j}=¢(j—1).
U,(j—q) 15 in I;_, implies that r(j—1}=t(j~1). Let u, r(j—1)=<k=t(j), be the vertex of
smallest index to the right of l('ujvjﬂ) such that u;, i=k, ..., t{j), are to the right of
Hvjvj4q) U b >r(5=1) then Au;uyyyv;, §=r(j=1),...,k—1 are formed from case (b) or {d)
of (5.3). If k <t(j) then quadrilaterals u;u; 4 v;4yv;, V=4, ..., t{j)=1, are case (a) of (5.3)
and CCW triangle Avj+lvju,,(j) may be formed from one of these quadrilaterals. If not, then

CCW triangle Avjy,vu,;), r(i)=t(j), is formed because either £(j)=nb or quadrilateral
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Uy()e(j)+1Y+1Y; 15 case (c) of (5.3). u (i yyisin [;_; and k <r(j)=¢(;) imply that t(5) s in
Ij.

(¢) Let ug, 0k =<t(y), be the vertex of smallest index to the right of !(v,v,,,) such that
u;, i =Fk,...,t(j), are to the right of I(vjvjﬂ). The rest of the proof is the same as (b) with
r{j—1) replaced by 0 (also omit "‘r(;’—l) is in J;_;’ from the last sentence). O

Lemma 8.5 : If all vertices v; of C are convex then T{P) is a valid triangulation.

Proof : By parts (c) and (b) of Lemma 6.4 and induction, Avipyviuy §=0,1,. ., ne—1,
are CCW triangles. By Lemma 6.1, T(P) is a valid triangulation. O

Lemma 8.8 : If for all reflex vertices v; of C', u,(;_y) is to the right of /(v;v,,), then T(P)
is a valid triangulation.

Proof : We will show by induction that for all 7, Av,‘ﬂ”j"r(,‘) is CCW with L (5) in Ij. By
Lemma 6.4(c), Av,vgu, () is COW with 2, in Jo. Suppose 0 <j <rc and Avivi_ Uiy i
CCW with u.(;_yyin I;_,. If v; is a convex vertex then Avjyy9;52, (5 is CCW with u,(; in I; by
Lemma 6.4(b). 1f v; is a reflex vertex then it is given that u,(;..; is to the right of Hvjv,4q) 50
Avjpvu.) s COW with u.; in I; by Lemma 6.4(a). Therefore Avjp vty
J=0,1,...,nc—1, are CCW triangles. By Lemma 6.1, T{P) is a valid triangulation. D

Conjecture 8.1 : If |u;u; | is sufficiently small relative to k for all i (c.g. as produced
by the spacing from (1.1), (5.1), (5.2)}, then T'(P} is a valid triangulation,

Rationale : If |u;u, 4| is sufficiently small relative to A for all § then for all reflex vertices
vj of C there exists a vertex uy in Ij—l such that u; is to the right of l(vf-vj_,.l); in order for
CCW triangle Av,v;_,u; to be generated by procedure MERGE, either u; =u,, or u; 4, must

not be in the interior of the circle through the vertices Viog, Vg Uy It appears from the way that

C is constructed from int(P) that such a vertex u; exists for all reflex vertices »; and the

hypothesis of Lemma 6.6 is satisfied, so T'(P) is a valid triangulation. O
M | w;u; 4| is too large relative to h for some ¢, then procedure MERGE can produce an

invalid triangulation T(P) (see Figure 5.4). Lemmas 6.3, 6.4, 6.5, and 6.6 suggest how procedure
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MERGE can be modified to produce a valid triangulation in this case. By Lemma 6.6, if T(P) is
not valid then there exists a reflex vertex v; such that u.(;_,) is to the left of or on I{v,v,4,}.
Suppose v; is the reflex vertex of smallest index such that u,(;. ;) is to the left of or on Hvjv,4q)
(e-g- in Figure 5.4, v;=vg). Then Avgy vpu ) k=0,...,5—1, are CCW with %, (x) in I by
Lemma 6.4 but A”j”,‘-—x"r(j—l) is an overlapping triangle by Lemma 6.3. Therefore instead of
generating A”j”j—1“r(j—1); generate CCW triangle At’j*_lvjvj_i which does not overlap any tri-
angles in C'U (interior of C), replace subwalk v;—v;vj4 of C with edge ;.1Vj41, and rerun
procedure MERGE with B and the new shortened C which still lies in int(P). If this process is
repeated enough times when overlapping triangles Avjvj_lu,.( 5-1) are detected, then the resulting
triangulation is valid because either the hypothesis of Lemma 6.6 is satisfied or C'U {interior of C)
eventually becomes a convex set so the hypothesis of Lemma 6.5 is satisfied. Procedure
MMERGE of Section & contains this modification to procedure MERGE in which the merge is res-
tarted from edgé u,(;_q)v;, instead of edge ugvy (if 7=2) when it is determined that a CCW
triangle Av;y,v;v;_; must be added to the triangulation, since the triangles in A between ugv,

and Up(j—0)¥j—1 would remain the same. We have shown in the above discussion that

Theorem 6.1 : The triangulation, VI'(P), produced by procedures INTTRIANG and

MMERGE is a valid triangulation.

7. Converting VT(P) into a Delaunay triangulation

We describe a procedure for converting VI'(P) into a Delaunay triangulation, DT(P). We
discuss only the case of at least one interior vertex, since the case of no interior vertices is similar.
From Lemma 4.1, the edges of the interior triangulation and C (as defined in Section 4) are
locally optimal in any triangulation of the mesh vertices which contains these edges. From
Theorem 2.1, VI'(P) can be converted into a Delaunay triangulation by applying LOP to the inter-

nal edges in the triangulation of A until they are all locally optimal.

Procedure MMERGE produces nt = nb + nc triangles, TM(1),TM(2), . .., TM(nt), and nt

edges, EM(1),EM(2),...,EM(nt), in A, where ne =0 edges are of the type VUi, ML,
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and the triangles and edges are o‘rdered as follows. Edges EM({k), k=1, ...,nt—ne, are of the
type u;v; and are in the order that they are generated. Edges EM(k), k =nt—ne+1, ..., nt,
are of the type v;v; ., m=2, and are in the reverse order that they are generated (these edges
are added to ensure the validity of the triangulation of A). For k=1,..., nt—ne—1, EM(k) is
the common edge of TM(k) and TM(k+1). EM(nt—ne)= v4v;=u,,v,, is the common edge of
TM(nt—ne) and TM(1). For k =nt—ne+1,...,nt, EM(k) is the common edge of TM(k) and
TM(l) for some ! <k. For 1=k =nt, let A; be the region formed by the adjacent triangles

TM(1), ..., TM(k). We define an internal edge in a triangulation of A; to be an edge of the

or v, v

type u'vjr Ui Ui tpp s FYi+tme

y m 2 2, which is a common edge of two triangles in Aj.

The following step is performed for ¥ =1,2, ..., nf—1 to obtain locally optimal internal
edges in the triangulation of A. Suppose the internal edges in the triangulation of 4, are locally
optimal (this is trivially true for £ =1). Then the internal edges in the triangulation of A, ., are
made locally optimal as follows (with the exception mentioned in the next paragraph when
k=nt—ne~1). The triangulation of Ay, consists of the triangles in A, plus the triangle
TM(k+1). Let e=EM(k)if k<nt—ne—1and e=EM(k+1)if k=nt—ne. Then e is the only
internal edge in the triangulation of A, ., which may not be locally optimal. Therefore apply
LOP to e. If it is swapped for the other diagonal edge of the quadrilateral, @, formed by the two
triangles having e as a common edge, then the edges of @ which are internal edges of Ay 41 may
no longer be locally optimal so they are placed in a stack of edges for which LOP must be applied.
If the stack is not empty, then the top edge is popped from the stack and LOP is applied to this
edge. This may cause another swap and more internal edges of 4;,, to be pushed onto the
stack. This process of applying LOP is repeated until the stack is empty which implies that the
internal edges in the triangulation of A, are locally optimal. Lawson (1977) shows that this
process must always terminate. (There are only a finite number of possible triangulations of
Ay a lix-lear ordering of these triangulations can be defined using the sorted vector of the smal-
lest angle in each triangle; and each swap produced by LLOP causes a strict advance through this

linear ordering of triangulations.}
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The above step must be performed twice when k =nt—ne—1 (i.e. the triangulation of A
‘closes’) since EM(k) and EM(k+1)=ugv, may not be locally optimal in the triangulation of
Aj 1. First the above step is performed for e=EM(k) and then it is performed for
e=EMi{k+1). We have chosen u; so that u,v, is likely to be a Delaunay edge (see Section 5) so
242, is not likely to be swapped when LOP is applied to it. After the above step is performed for
k=nt—1, the internal edges in the triangulation of A=A, and P are locally optimal and a
Delaunay triangulation, DT(P), is obtained by Lemma 4.1 and Theorem 2.1. Figure 5.3 illustrates
a Delaunay triangulation DT(P} obtained from VI'(P) by making one diagona! edge swap: si
replaces ugvy in the quadrilateral uyuguqvs.

The pseudo-code for converting the triangles of VI'(P) in A into Delaunay triangles is given

in procedure CONVERT. This procedure can also be used in the case of no interior vertices.

Procedure CONVERT(inter, TM,EM,nt, ne);
# Input: if inter = true then TM, EM, and ne are output from procedure MMERGE

# and nt =nb + nc

# else TM and EM are output from procedure MERGE, nt =mb + mec — 2,
# and ne =0

# Output: updated list of triangles TM such that all triangles are Delaunay

# and updated list of edges EM such that all edges are Delaunay

for k := 1 to nt do
if not inter and k¥ = nt then return;
il k = nt —ne—1then kk := k +1else kk := k;
top 1= 1,
stack(top) := k;
while top = 1 do
l := stack(top);
top := top — 1,
Search TM(kk), TM(kk=~1}, . . ., TM(1) sequentially until the two
triangles TM(m) and TM(n ) containing edge EM({) are found;
Q := quadrilateral wwowyw, where TM(m)= Aw,w,w,,
TM(n)= Aw wzw,, and EM(I)=w, wy;
if w, is in the circle through w,,w,, w; then
TM(m) == Aw,w,w,;
TM(n) = Awywaw,;
EM(l) := wow,;
wg 1= wy;
for g := 1to4do
if 1 < index{w,w 4, ) = k then
top = top +1;
stack(top) := index(w,w, 4, );
return;

In this procedure, the functiovn index (ww') is defined to be 0 if ww'is an edge of the type
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Uiliqq OF U0 4 otherwise it is the index of edge ww' in the list EM. The function is used to
determine whether an edge is an internal edge in the triangulation of A, ,. For each triangle
Aw wywy in the list TM, we store the values indez(w w,), indez(w,w,), and inder(wyw,) in
addition to the vertices of the triangle, so that it is easy to determine indez (wqwqﬂ) in the inner-
most for loop. When LOP is applied to an internal edge e, the list 7'M must be searched for the
two triangles containing e. The reason for the sequential search starting backwards from TM(kk)

will be discussed below.

We now estimate the number of edge swaps required for converting VI'(P) into DT(P) since
the efficiency of the procedure depends on the number of swaps. In DT(P), strip A may contain

edges of the types u;v

iVjy Uity o, a0d 23054, mZ 2. In VI(P), A contains mostly edges of type

uv; and possibly some edges of type ViVigy. Iy v is a Delaunay edge then it is likely to be an
edge of VT'(P) since u4v, is likely to be a Delaunay edge and in cases (a), (b), and {c) of (5.3) the
next edge u; 4,v; or 49,4, is chosen to be locally optimal in the quadrilateral % 43V, 47;. So

edge swaps are needed to obtain Delaunay edges of types ;4 and AL The following

theorem indicates when no swaps are required.

Theorem 7.1 : If 44, is a Delaunay edge and there are no Delaunay edges of types u,u; 4,
or v;u; 15, then VI(P}=T(P) is a Delaunay triangulation.

Proof : First we show that under the hypothesis of the theorem there are no Delaunay edges
of types w;u; .. or ViVitm, m=3. Suppose uju;y,, m=3, is a Delaunay edge. Then
YUy " U4ty Mmust form a simple subpolygon of P which contains no vertices in its interior.
In a Delaunay triangulation of the mesh vertices, this subpolygon contains m — 1 triangles involv-
ing only the vertices uj, %4, ..., % 4p,. Therefore there must be a Delaunay edge u; /TN
where I =:=[+m—2. This contradicts the hypothesis therefore there are no Delaunay edges of
type u;u; 1., m=3. Similarly there are no Delaunay edges of type ViVigm, M3, Therefore

the Delaunay edges in A are all of the type u; v,

We show by induction that the edges produced by procedure MERGE (which are the same

L SN

Laii g S N



- 40 -

as those produced by procedure MMERGE) are Delaunay edges. Suppose u;v 4 is a Delaunay edge
(initially uqv, is a Delaunay edge). Then Au; ;41?5 oF Av;y viu; must be a Delaunay triangle
and u;4,v; or u;v;4; must be a Delaunay edge, respectively. If i =nb, then Avjivu; is the
only possible triangle therefore ;¥4 is a Delaunay edge. Similarly if j = nc, then U405 05 3
Delaunay edge. Suppose i <nb and j<nc. Consider quadrilateral Q = u, u, 15417, in (5.3),
In case (a), the circle test chooses the next Delaunay edge. In cases (b), (c), and (d) the chosen tri-
angle is a Delaunay triangle since the other triangle is not a ‘valid’ triangle - it is a CW or over-
lapping triangle (see Figure 5.2). Therefore procedure MERGE generates the next Delaunay edge,
either U4y U) OF UV 4. By induction, procedure MERGE produces Delaunay edges in A. The

edges generated by procedure INTTRIANG are Delaunay edges by Lemma 4.1. Therefore
VI'{P)=T(P) is a Delaunay triangulation. O

In general, DT(P) contains edges of types u,u; 4,, and vv;y .., m =2 The location of the
mesh vertices and Lemma 2.1 can be used to determine where these Delaunay edges are likely to
occur, We first suppose that the parameters h; satisfy (I.I). An edge viv,, . may be a
Delaunay edge if it lies entirely in A and angle(vj.;.mvjﬂvj) for some [, 0 <! <m, is smaller
than approximately 120°, e.g. the edge joining vy = (”i+1,0:y-‘+1) and Viga= (z; +2'0,y‘-+2) in Fig-
ure 4.2. It is unlikely that m >2 and the number of Delaunay edges of type V0 4o and the

number of swaps to obtain these edges are expected to be small relative to ne.

An edge u;u; 4, may be a Delaunay edge if it is near a vertex of P or int(P) with an inte-
rior angle smaller than approximately 90°, e.g. uzu, in Figure 5.3. If P does not contain ‘small’
interior angles (e.g. =< 20°), then m is likely small relative to nb and the number of Delaunay
edges of type u;u; ., m =2, and the number of swaps to obtain these edges are expected to be
small relative to nb. If P contains a small interior angle (from elementary geometry it can be
seen that g.t most two interior angles of a convex polygon can be less than 60°), then as this angle
decreases, the maximal value m of a Delaunay edge u;u;,,, near this angle increases and the
number of swaps required to obtain the Delaunay edges in the subpolygon wiu; 4, -« - w4y u,

increases. Therefore if the h; satisfy (1.1) and P contains no small interior angles, then the
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number of swaps needed to obtain DT(P) from VI'(P) is expected to be small relative to nb + ne.

Now we suppose that the k,; do not satisfy (1.1) for all i. As the ratios h;/h increase, more
Delaunay edges of type v;v;4p,,, m =2, are likely to occur in DT(P) and be produced in VI'(P) by

procedure MMERGE, As the ratios k;/h decrease, more Delaunay edges of type u; ma2,

Yi+m>

are likely to occur in DT(P) and the number of swaps needed to obtain DT(P) from VT'(P) can be

O(nb?) if P contains a small interior angle.

When LOP is applied to edge EM(k) in Ay 4, for k <nt—ne—1, edge swaps, if any, occur
for triangles TM(n) near TM(k+1) with indices n <k-+1. Therefore we store the triangles of A
in a linear list and when LOP is applied to an edge ¢ in the triangulation of A, a search is
made sequentially backwards in this list starting from TM(k +1) until the two triangles containing
edge e are found. The number of triangles searched is expected to be a small constant if P does
not contain small interior angles. When LOP is applied to edge EM(nt —ne)=ugvyin 4., _
one of the triangles containing edge u,v, is near the end of list TM and t,he; other is near the
front of TM. By using this information, few triangles are searched when LOP is applied to u42,.
If VI(P) contains an edge of type V¥4, mZ2, then O(nt) triangles are expected to be
searched when LOP is applied to this edge since the two triangles containing this edge may not be
close together in TM. By Conjecture 6.1, ne is expected to be zero if the h; satisfy (1.1). There-

fore if P contains no small interior angles and the h; satisfy (1.1), then the number of triangles

searched in the applications of LOP is expected to be O(nb+nc).
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8. Summary and time complexity

The pseudo-code for our triangulation algorithm is summarized in procedure DELTRIANG.

Procedure DELTRIANG(P, m, hlist, T,n, );
# Input: convex polygon P with m vertices and list of
# triangle size parameters hlist =[h,h ko, ..., }
# Output: list of triangles T' and number of triangles n,
SHRINK(P, m,h/V/2,int (P}, ni );
if ni > 0 then inter := true else inter := false;
if inter then
Rotate coordinate system so that diameter of int(P) is parallel to y-axis;
INTTRIANG(int(P),h,TI,nt,C,nc);
else
Rotate coordinate system so that diameter of P is parallel] to y-axis;
TI:= [}, C:=|[];nt :=0; nec:= —2;
for ¢ := 1tom do _
Generate mesh vertices on edge e; at an equal spacing of k;
as computed by (5.1);
if inter then
Determine B = [ug,uy, .. ., 4yl
MMERGE(B,nb,C,ne, TM,EM, ne);

m)

else
Determine By = [ug,uy, . .., ¥}, B = g, Upp—q, - - - > Upphs
MERGE(inter, By, mb,Bg,nb — mb,TM,EM);
ne 1= 0; :

CONVERT (inter, TM,EM,nb + ne,ne);
T := append(T1,TM);

ng = nt +nb + ne;

return;

We now discuss the time complexity for procedure DELTRIANG to construct the Delaunay
triangulation, DT(P), in P. Let n, and n, be the number of triangles and mesh vertices, respec-
tively, generated in P by procedure DELTRIANG. Let nb be the number of mesh vertices on 8P
and m be the number of vertices of P. n,, n,, nb, and m are related by the formulas {(Lawson
(1977))

n,=2n,~nb—2 and n, =nb—22m—2 (8.1)

By Theorem 3.1, int(P) is determined from P in O(m) time by procedure SHRINK. The
diameter of int(P) or P is found in O(m) time {Shamos (1975)). In procedure INTTRIANG, the
generation of mesh vertices in int(P) requites O(n,) time and the generation of triangles and
closed walk C requires O(n,) time. The generation of mesh vertices on 8P requires O(nb) time,

The generation of triangles in A by procedure MMERGE requires O(n, ) time if ne, the number of
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edges of type v;v 4y, k=2, is zero or bounded by a small constant (ne is expected to be zero by
Conjecture 6.1 if the k; satisfy {1.1)). We conjecture that the time complexity of procedure
MMERGE is O(n,) even if ne is large. In the case of no interior vertices, the generation .°f trian-
gles in P by procedure MERGE requires O(n,) time. From the discussion at the end of Section 7,
the number of edge swaps and the number of triangle searches in the applications of LOP in pro-
cedure CONVERT are expected to be O(n) if P contains no'small interior angles and the &;
satisfy (1.1). Therefore if P contains no small interior angles and the h; satisfy (1.1}, then the
time complexity for constructing DT(P) by procedure DELTRIANG is expected to be O(ny) =
O(n,) using (8.1). Otherwise the time complexity of procedure DELTRIANG may be nonlinear in

n; since the number of swaps in procedure CONVERT may be O(nbz).

Procedure DELTRIANG has been implemented in PASCAL and used to generate triangular
meshes in over a thousand convex polygons created from the decomposition of various regions by
our finite element triangulation method (Joe (1984)). There are few interior angles less than 20°
in these polygons and the parameters h; satisfy (1.1). We made the following observations about
the performance of procedure DELTRIANG. In the case of at least two interior vertices, the
heuristic for selecting u, so that u,v, is a Delaunay edge (see Section 5) has not failed, and no
edges of type‘ ViVisk, k=2, have been generated by procedure MMERGE, i.e. procedures
INTTRIANG and MERGE have not produced ar invalid triangulation T(P). Also, the average
number of edge swaps per polygon and the average number of triangle searches per application of
LOP are small constants. Therefore the empirical time complexity of procedure DELTRIANG is

O(n,) for these polygons and triangle size parameters.
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