TOWARDS A WESTERN FIFTH-GENERATION
COMPUTER SYSTEM PROJECT

by
Maarten van Emden

Logic Programming Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 361

Research Report CS-84-14
June 1984

To appear in the Proceedings of the ACM Annual Conference
San Francisco, Qctober 1984

TOWARDS A WESTERN FIFTH-GENERATION
COMPUTER SYSTEM PROJECT

Maarten van Emden

Logic Programming Group
Department of Computer Science
University of Waterloo

ABSTRACT

A Fifth-Generation Computer System
(FGCS}, as usually understood, requires break-
throughs in artificial intelligence and paraliel
processing. We identify “near-term* FGCS's
relying only on existing developments in
hardware, user interfaces, and software tech-
niques integrating databases and a wide range
of programmirg paradigms to achieve much of
the social utility expected of FGCS's of the
long-term variety. We identify these develop-
ments and argue that logic programming is too
good to be left to the Japanese: that it is an
economical basis for a Western near-term
FGCS project.

1. Introduction and summary.

In 1081 the Japanese government inaugurated [15] a
project to develop a “Fifth-Generation Computer Sys-
tem” (FGCS). Such a system features, among other
functions,

a) voice input using natural language
b) learning, associating, and inferring.

Of course, rudimentary lorms of these funetions are

feasible at the present time. To give an idea of the

scope invisaged for inclusion in an FGCS we quote

Moto-Oka [15): “With such abilities, computers

would be able to clarify even vague requests given

by man.”
¢) natural language translation.

The FGCS project is centered at ICOT {for “Insti-
tute for New Generastion Computing Technology™), a
newly formed organization whose researchers are mainly
on loan from established industrial and governmental
laboratories.

From soon after its announcement the Japanese
project has caused a considerable furore all over the
world which has only recently begun to show signs of
subsiding. The ambitious level of its goals have been the
target of much comment. In addition, government and
industry in the UK, the US, and the European Communi-
ties have responded by initiating special funding pro-
grammes for research and development in computing
technology.

This paper serves to guide those concerned with
these developments. Briel summaries of the successive
sections of the paper follow below.

What is new?

It is not clear to everyone what is special about the

situation we find ourselves in: haven't we had a

computer revolution ever since ENIAC?

Near-term FGCS's are easier than many believe.
The ambiguity of the notion of FGCS gives rise to a
great deal of misunderstanding. There are in fact
two different interpretations: a near-term version,
taking up most of the effort currently expended by
[COT, and a long-term version getting most of the
attention. [t is the long-term version that requires
several breakthroughs in parallel processing and
artificial intelligence. The near-terin version
requires only development, no breakthroughs. Yet
the power of near-term FGCS's is sufficient to carry
the computer-based revolution that many are antici-
pating. Another topic about which confusion exists
is the role played by Artificial Intelligence research
in realizing FGCS’s. We argue that no Al research
is needed for near-term FGCS's,

The technical basis of the Japancse FGCS project is

important.
The Japanese FGCS project has received plenty of
attention, but its technical basis (logic programming
and Prolog) has been largely ignored. We argue
that this choice of technical approach is not a whim,
but has important advantages for a near-term
FGCS project.

The West should have an FGCS project.
When considering the question whether the West
should have FGCS projects, the distinclion between
near-term and long-term FGCS's is crucial. The
currently prevailing funding structure in the US
{NSF, ARPA) is suitable for rescarch leading to
long-term FGCSs. It is here that Al plays an
important role; probably net more, nor less impor-
tant than hardware.
For near-term FGCS's, however, the existing fund-
ing structure is entirely inappropriate. This is the
area most important to the medium term economic
prospects of the West. To develop a near-term
FGCS, a mission oriented, closely managed project
is essential.

2. What is new?

There are several developments in computing tech-
nology that have proceeded up till now more or less
independently. They have, however, the potential of
converging and interacting in a powerful way.

® VLSI design is rapidly becoming sufficiently
automated to make custom hardware more widely
available. Thus it will cease fo be necessary to
squeeze all of computation into the straightjacket of
convential architecture.

® Database technology: the relational data model has
permitted the application of first-order predicate
logic as a conceptual tool, allowing al last a unifica-
tion of database modelling with knowledge represen-
tation in artificial intelligence [2]. Another impor-
tant development is the emergence of “‘application
generators”: basically database management sys-
tems with some computation and report generator
facilities added (MAPPER, NOMAD; see [14]). This
very limited unification of database with computa-
tion already has great practical impact [14].

® Advances in relational programming (Prolog) and
functional programming {Lisp machines).

® Expert systems research has contributed the “Con-
ceptual Interface”’, which makes it possible to com-
municate with software using the common sense
concepts of facts, questions, answers, rules, and
explanations [8]. Although it has only been applied
in experi systems so far, there is great potential in
allowing nonprogrammers to communicate effort-
lessly with all software without requiring further
advances in natural language processing.

3. Near-term FGCS’s are easier than many
believe.

The Japanese FGCS project has two components: a
near-term one culminating in PSI, the Personal Sequen-
tial Inference machine, and a long-term one aiming at an
FGCS with all the features usually attributed to FGCS's.
[t is the near-term project that currently gets most of
the resources, while the long-term aims get most of the
attention. The Japznese authors [15] of papers on the
aims of the FGCS project seem to suggest, and Western
observers seem to agree, that the revolutionary impact
of FGCS’s in society will only happen through iong-term
FGCS's.

‘This is an important point, and we disagree on it:
near-term FGCS’s will give society all the revolution it
will be able to stand for some time. The Conceptual
Interface, mentioned above, can give a large segment of
the nonprogramming population access to computers,

even when using a conventional terminal as [/O device.
[t is true that serious difficulties exist in knowledge
representation and knowledge acquisition, but these diffi-
cuities only stand in the way of large scale proliferation
of expert systems with hard expertise.

But no such difficulties stand in the way of what we
call “mundane expert systems’”, where the expertise is
not difficult to obtain, but nonetheless such that its com-
puterization has profound econemic effects [8]. This
kind of expertise exists on a large scale in administrative
law, regulations of zll kinds existing in institutions, com-
panies, government agencies, and so on; in short, the
kind of thing that keeps a large part of white collar
workers busy. Mundane expert systems will be able have
an enormous impact in this part of the economy, which
has so far resisted attempts at antomation.

A third reason for believing that near-term FGOS's
will have a very strong effect, is that mundane expert
systems with the Conceptual Interface make only
moderate demands on computing power. All that is
needed is the LISP machine analog for Prolog. And this
is just the role played by PSI, ICOT's personal sequential
inference machine. In December 1983 ICOT has taken
delivery of the first PSI prototype from Mitsubishi. By
the end of 1984 ICOT expects to have the system
software completed.

4. The Japanese project should be taken seri-
ously.

Feigenbaum and McCorduck [7} take an alarmist
point of view: they argue that, unless massive efforts are
undertaken in the US, the Japanese will soon dominate
information technology, the commanding heights of the
economy of the future. it would secm to behoove an
adherent of this opinion to pay some attention to the
technieal basis of the Japanese FGCS project. But that
is not done; whenever there is mention of these toplcs,
‘they are dismissed with a few disparaging remarks. Oue
‘cannot have it both ways: if indeed the Japanese made a
‘nistake in basing their project on logic programming
and Prolog, then there is no reason to consider their pro-
jeet an economic threat.

We believe that the Japanese were right in their
choice of technical approach. This does not imply that
they will be successful. The circumstances of the FGCS
project are completely different from those of the
successes they have achieved in the past.

What is so great about logic programming? It
offers important advantages for the nonprogramming
user as well as for the systems developer. For the user it
is important that the Conceptual Interface is inherent in
logic programming; it is not something that has to be
simulated at another level.

The advantages for the systems developer are that
the major paradigms of computer use are all aspects of
the same kernel concept of Horn clause logic program-
ming. This kernel is conceptually simple; implementa-
tion studies have demonstrated feasibility, with modest
resources.

The paradigms are:

® Relational databases.
Roughly speaking, the relational database model is a
subset of logic programs. Sce [10,12] for a detailed
account of the relationship.

® Recursive processing of lists and trees,
This was the [lirst application of logic programming
and it is still the best developed part of Prolog
implementations. See [3,6] for this aspect of logic
programming.

® Programming with loops and floweharts.

This is a very poorly developed aspect of logic pro-
gramming. [t is so for a good reason: conventional
languages take care of this. But it is important to
realize that this paradigm is also covered by logic
programming [5] so that it is not necessary to
switch to a different system should this paradigm be
needed.

® Conpcurrent programming.
Certain versions of Prolog [4,17] have been designed
giving a formalism for cencurrent programining
similar to, but more powerful than, Hoare's CSP.

® Object-oriented programming.
Shapiro’s version of concurrent Prolog {17] has been
shown to be an attractive formalism for object-
oriented programming {18].

® Metalevel programming.
Part of the charm of LISP is in the recursive pro-
cessing of lists. Another important part is its facil-
ity for metalevel programming: the ease with which
functions produce functions, ete, to any desired
number of levels. In implementation this aspect of
logic programming is not yet well developed. Con-
ceptually, however, the proposal of Bowen and
Kowalski [1,12] for amalgamating object and
melalevel in logic programs gives an extremely
powerful way of providing metalevel programming
and several other facilities.

® Funclional programming.
Functional programming in its wider sense
emphasizes metalevel programming and recursive
processing of list and trees (see above). In its nar-
rower sense it means the use functional notation.
This facility can be provided in Prolog by a simple
front end, as shown in [3].

For the systems developer the availability of all these
paradigms is important. How can all these be made
available?

We believe that logic programming is the only way.
Currently a well-equipped computer centre will be able
to run one or more systems implementing each para-
digm. But no programmer uses them all: he is deterred
by the mass of documentation and the exasperating way
in which the common features are handled differently.
The Ada experience has shown how hard it is to design
and implement a much narrower spectrum of paradigms
in a single language when that language is not based on
a powerful unifying principle. Logic programming is
such a principle: all the above paradigms are minor vari-
ations on a single compact kernel. It is the only way.

5. The West should have an FGCS project.

When considering the question whether the Woest
should have an FGCS project, the distinction between
neat-term and long-term FGCS's is crucial. For long-
term [FGCS's breakthroughs are needed, but not for
near-term FGCS’s, Therefore, though it may be possible
to hurry up the long-term FGCS's to some extent, it
cannot be predicted when these will be achieved. The
appropriate mode of government support in an area
where breakthroughs are needed is the present mechan-
ism for funding scientiflic research, whether this is in
computing, or in chemistry, or whatever.

Near-term FGCS’s need no breakthroughs; only
development is needed. And the economic prize is great.
Therefore there is a sirong case for an extraordinary ini-
tiative to fund a special project to develop such a sys-
tem. 1t is essential that such a project be mission-
oriented and tightly focussed {like the Japanese project).
None of the Western responses so far (ESPRIT, the UK
result (does it have a name?) of the Alvey committee
report, and MCC in the US) are in this category.

A Western near-term FGCS project should be different

from its Japanese counterpart in several interesting

ways: it should

have a more specific goal
The Japanese project is only specific in its short-
term goal, the Personal Sequential Inference
machine. Its long-term goal is necessarily vague.
The Western project proposed here should aim for a
specific demonstration system. See next section for
a suggestion.

be mainly university-based
Unlike Japan, the West has in many of its universi-
ties a strong capability for software development.
Qur experience suggests that a significant part of
the manpower can be supplied by beginning gradu-
ate students.

be distributed rather than centralized
Experience suggests that a suitable computer mail
facility supplemented by a face-to-face meeting a
few times a year is almost as good as working on
the same campus.

8. A suggestion for near-term FGCS project

We consider successively the following questions
about the project: “What will it do?”, “How will it be
done?”, and “How much will it cost?”. Although the
answers helow are neither detailed nor definitive, they
should provide a useful starting point for further discus-
sion.

8.1. What should it do?

A near-term FGCS should both make currently
available software mote accessible as well as open up
new arcas of application. To explain what we mean by
the problem of accessibility of currently available
software, let us consider the computer aids in principle
available o, for example, an engineer.

In his daily activitics he makes calculations, searches
tables, standards, textbooks, drafis reports, receives and
sends mail (and other documents), retrieves and studies
drawings and textual library material, and so on. In all
these application areas separately, computer programs
exist to provide powerful aids. The rapidly falling
hardware cost makes these programs potentially accessi-
ble to every engineer. But this is happening only slowly
and in a piccemeal fashion: if an engineer is to utilize the
full potential of all available computer aids, he would
need half a dozen software experts available at a few
seconds notice.

Even then, he will not be able to use the computer
as a truly congenial tool: that is only possible wher no
intermediary is needed. Currently he needs an intermedi-
ary for most applications because of the complex and
idiosyncratic interface provided by most software. Or he
becomes a computer “hacker” himsell and stops being
productive in his ewn area. The situation sketched here
holds not only for engineers, but also for professionals in
government, business administration, and scientific
research.

Part of the proposed project is to use the expert sys-
tems user interface to make this software available to
the nonprogramming user as a congenial tool without
the nced for a human intermediary. Such use of expert
systems is suggested by the SACON oxpert system.

Expert systems are also the key in opening up new
application areas. An expert system like MYCIN has
achieved two valuable goals: it has developed the Con-
ceptual Interface (a new interface for user as well as for
the system developer) and it has automated a nontrivial
expertise. It is often overlooked that the application of
the same software methods to less challenging areas of
expertise is extremely valuable. An example s the
development by Hammond and Pickup of an expert sys-
tem for supplementary benefits of the British Social
Security system. This was completed in [ive days {civil
servants' working days). Indeed quite untypical. The
reason was that the rules were not hard te elicit from
the experts: they knew them already and could even lind
them in the text of the relevant government regulations.

But, although this application is not impressive from
the point of view of the researcher in expert systems, it
is a great improvement compared to soltware develop-
ment by conventional methods. There are many applica-
tions in the same category: hard to do conventionally,
but trivial as expert system.

8.2. How will it be done?

It will be done by logic programming, because it has
the advantage that the expert systems interface is
natural to it and because it is the way to make all para-
digms of computer use available to the systems developer
(see above).

8.3. How much will it cost?

Let us assume that machinery in the form of suit-
able Prolog machines is supplied. If not, then the project
will have as additional part one that develops sueh a
machine. We will not try to say anything about the cost
of this part. The develpment of LISP machines should
provide relevant experience.

What remains is the software development com-
ponent. The work of the Logic Programming Group at
Imperial College has suggested many ideas on which this
proposal is based. Not only the group’s results, but also
its operation as a group can give useful information: the
group itself can be regarded as the seed of a near-term
FGCS project. Without such a model it is hard to find a
starting point for discussing a suitable size of project,

Not counting the part of the group engaged in the
Alice functional programuming machine, there were in
1982-1983 three workers with University appointments
who were therefore working orly part time on logic pro-
gramming. In addition there were about eight full-time
grani-supported workers. This is the starting point. The
first step is to imagine that the Imperial College group
were all full-time and that their work were more focussed
(namely on a near-term FGCS) rather than the way it
actually was. What would be the resulting percentage of
the effort required for development of a near-term FGCS
in a suitable time period? Let us say it would be
between 30 and 50%.

This group suggests impressive leverage for a near-
term FGCS project: a great effect at a modest cost.

7. References

1] K.A. Bowen and R.A. Kowalskii Amalgamating
language and metalanguage in logic programming.
pp 153-172 in “Logic Programming', K.L. Clark
and S.A. Tarnlund (eds.). Academic Press, 1932,

[2] M.L. Brodie and S.N. Zilles (eds.): Proceedings of the
Workshop on Data Abstraction, Databases and Con-
ceptual Modelling, SIGPLAN Notices Volume 16,
Number 1 (Jan 1981).

13] K.L. Clark and F.G. McCabe: micro-Prolog: Pro-
gramming in Logic. Prentice-Hall, 1984.

4] KL. Clark and S. Gregory: PARLOG: a parallel
logic programming language. Research Report DOC
83/5, Dept. of Computing, Imperial College, 1983.

i3] K.L. Clark and M H. van Emden: Consequence verif-
jeation of flowcharts. [EEE Transactions of
Software Engineering, vol. 7 (1981), pp 52-59.

6] H. Coelho, J.C. Cotta, and L.M. Pereira (eds.): How
to solve it with Prolog, 2nd edition. LNEC, Lisbon,
1980.

[7] E.A. Feigenbaum and P. MecCorduck: The Fifth
Generation. Addison Wesley, 1983.

8] P. Hammend: micro-Prolog for expert systems. pp
294-319 in [3].

9] R.A. Kowalski: Predicate logic as a programming
language. Proe. IFIP 74, North Holland, 1974, pp
556-574.

[10] R.A. Kowalski: Logie for data deseription. In “Logic
and Data Bases”, H. Gallaire and J. Minker (eds.),
Plenum Press, 1878.

[11] R.A. Kowalski: Logie for Problem-Solving. North
Holland, 1979.

[#2] R.A. Kowalski: lLogic as a database language,
Department of Computing, Imperial College, 1981.

[13] R.A. Kowalski: Logic programming. Proc. IFIP 83.

f14] J. Martin: Application Development without Pro-
grammers. Prentice Hall, 1982.

[15] T. Moto-Oka {ed.): Fifth-Generation Computer Sys-
tems. North Holland, 1982.

[18}] M. Sergot: A Query-the-User facility for logic pro-
gramming. Proe. Buropean Conl. on Integrated
Computing Systems. P. Degano and E. Sandewall
(eds.), North Holland, 1983.

[17) E. Shapiro: A subset of coneurrent Prolog and its
interpreter. ICOT Technical Report TR-003.

[18] E. Shapiro and A. Takeuchi: Object-oriented pro-
gramming in concurrent Prolog. New Generation
Computing, vol. 1 (1983).

	
	
	
	
	
	

