The Logical
Definition of
Deduction Systems

David L. Poole

Logic Programming Group
Research Report
CS-84-12

June, 1954

The Logical Definition of Deduction Systems

" David L Poole

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

ABSTRACT

The separation of an algorithm into logic + control has special
benefits in the definition of problem solving systems. Such a
. separation allows proving the correctness and completeness of the
_ logic base, independent of the control imposed. The control
component can then be developed to enhance the efficiency and
explanation whilst preserving the logical power and correctness of the
system.

This paper presents the definition of one such logical base for the
non clausal first order predicate calculus. This logical base specifios
how to transform a predicate calculus deduction problem into 2
problem of scarching an and/or tree. Different control strategies are
developed, with resulting systems combining the efficiency of
connection graph proof procedures with the efficiency ol non-
chronological backiracking. Each implementation uses the input form
of the unconstrained first order predicate calculus, with each step
being locally explainable in terms of input given by the user. This
allows the debugging and explanation facilities of expert systems to
be incorporated into the implementations. '

The logic can be extended to include bidirectional search and
more powerful logics, for example the use of delaults. For ench of
these logical definitions different control strategies can be used,
forming a family of logically equivalent, but heuristically distinet
problem solvers. This separation, together with the use of the input
form, forms a powerful vehicle for the systematic study of domain
specific control strategies.

~»

David Poole

1. Introduction

1.1. Motivation

The separation of programs inlo (supposedly orthogonal) Logic -+ Control
{Kowalski[i9]) or epistemological and heuristic (McCarthy and Hayes{89))
components has been advocated by a number of people {cg Georgefl[82]). One of
the most promising areas for such a separation is in the definition of problem
solvers {also called automated reasoning systems, theorem provers, expert systems
clc), where the logic part defines the semantics of the problem solver. Its power,
correctness and completeness can be shown independent of amy control strategics.
The control part can be varied to produce various domain specific strategies, for
semantically equivalent, but heuristicly distinet problem solvers. The logic
component can be varied, virtually independent of the control sirategy to include
such things as bidirectional search, defsult logic (Poole]84]), or more exotic logics
{eg actions, modal, relevance). Such a separation gives us a mechanism to
understand the differences and similarities between various problem solvers.

1.2. The Approach

According to such a thesis, to implement some system, one axiomatises the
relation to be implemented {the logic) and then separately define the control. The
relation that we want to define is the relation that something can be proven from
the facts given.

Here we define such a relation between components of the facts given by the
user. We axiomatise the relation as a set of horn clauses. This axiomatisation is
shown to be correct and complete with respect to the semantics given to the
relation. A number of different ways to implement problem solvers from the
axioms will be discussed. A comparison with other state of the art deduction
systems will be given, showing how the resulting systems improves on each of them.
The relation will first be defined and axiomatised for the propositional calculus and
then extended to the predicate calculus.

The axioms should not be seen as rules of inference in themselves. The axioms
are the logical definition of the PROVEN relation. We show that this definition
correctly and completely characterises the desired semantics of logical derivability.
These axioms together with some control component (search strategy), can indeed
form the rules of inference for some complete problem solver.

Logieal Definition of Deduction Systems 3

2. Propositional Calculus

We assume that the user gives the system a number of well formed formulae
(wlfs), which we will call the Pacts. We will assume, without loss of generality, that
there is one goal, namely the atom success. If the user has a goal G then she will
add the fact G Dauccess. .

Define an input wif to be a fact or a well formed subformula of a fact.
Distinet instances being distinct input wifs. There is also an implicit input wif,
representing the atom success which will be the top level goal.

Each input wif can be associated with its principle operator or with the atom
that it represents if there is no operator. Each atom and operator has its associated
input wif. Input wifs are isomorphic to nodes in the parse tree of the facts, given
the normal definition of a wff.

Example 1: The following fact has names associated with each input wif.

(- A » B) v (E » ~B)
Wy Wy Wg W5 Wy Wy Wy Wg Wy

The following are the named input wifs of the fact:

wr: ((~A+B)v(E~-B)};
we (~AAB); '
wy: —~A;

wy: A;

wg: B;

wg: (E+-B);

wy: F; .

wg: ~B.

wy: B.

Note that ws and wy are different input wifs representing the same wif.

Definition: a signed input wff is a pair <s,w> where s€{p,n} is called a
sign; and w is an input wff.

Define the value <8, > of a signed input wif <s,w> to be the wil w if
s="p" and the wif (~w)if s="“n".

The definition of the value formalises the intuitive notion that *p" ropresents
the positive of the wif, and “n™, the negative of the wif.

Define the operator "~" on signs by
~n=p; ~p=n
Lemma: <~s,w>*=~<s,w>* - proof follows from definitions.

We now define the relation on input wifs that we want to axiomatise. The
relation is of the form:

4 David Poole

PROVEN{e,C)

where & is a signed input wif;
and C is a set of signed input wifs, called the case set.

Informally this is meant to mean that given the cases specified by C, « is
proven.

More formally, the semantics that we want to give the relation will be:
JactsHC*2w*

where C*= Aq*
€C

Before we axiomatise the relation let us give an example of the sort of
reasoning that we want to axiomatise. :

Example 2: Consider the fact given in example 1, with the same naming of
input wifs. Suppose wy is an input wil representing the atom “A”, and wy is an
input wif representing the atom “E”, and furthermore suppose that wg has been
proven given some case set “C". That is PROVEN{<p,wy>,C) has been derived.
Then the following reasoning can be used:

{1) A is proven -- PROVEN{<p,w:>,C)

{2) from {1) ~A must be proven false -- PROVEN{<n,w3>,C)

(3) from (2) (~A~B) must be false - PROVEN(<n,wz>,C)

(4) as it is a fact, ((~A+B)v(Ea-B)) must be proven -- PROVEN(<p,w1>,C})
{5) from {3) and (4) {E »~B) must be true -- PROVEN{<p,ws>,C)

(8) from (5) E must be true ~ PROVEN(<p w7 >,C)

{7) from (6) the other £ must be true -- PROVEN(<p,we>C)

2.1. Axiomatising the PROVEN Relation

The proven relation can be axiomatised as follows.

1. Equality Substitution Rule
If w and y are input wifs representing the same atom then
if PROVEN(<s,w >,C) then PROVEN(<3,y >,C)

The validity of this is obvious from noting that as far as the logic is concerned w
and y are identical.

Logical Definition of Deduction Systems

e

2. Facts Rule
If [is a fact { £ € facts) then
PROVEN(<p.f >,C)

This says that if f is a fact then it is proven no matter what C is. -
3. Negation Rules
Il w is of the form (~z) then
3(a) Upward Negation Rule

if PROVEN(<s,z>,C) then PROVEN({<~s,w>)

3(b) Downward Negation Rule
il PROVEN(<Cs,w>,C) then PROVEN{<~s,z>,C)

The correctness of these rules follows dlrectiy from the semantics of PROVEN and
the meaning of “~",

4. PROVEN for Binary Logical Connectives
The only other form an input wif w can have is (wy op wg) where “op” is one
of {A v,D,m}

The three operators and “D" can be grouped together, as they all can be
characterised by the use of “not™ and “or". Note that (w;awg)=~{-wv-ws) and
{w)Dwa)=mwy vy

8 n sy

For each operator op €{4,v,2} define ap; for ¢ €{0,1,2} by w={(w; op we) il
<opg,w >*= <op w1 >¥v <opzwa>¥

w=(wyvwe) il <pw>*= <pwy>Fv<pwe >t

w=(wiawg) iff <n,w>*= <nwi>Fv<n,we >t

w=(wDws) il <p,w>*=<n,w > <puwy>*

Thus for ap=v, op; =’ for all §; for op =4, op; = n’ for all §; and for op =D,
opg=opp=p';opy="n'. The values of op; uniquely define the operator.
If w is of the form {wy op ws) then the following rules apply
4(a) Upward Disjunction Rule
for jE{1,2},

it PROVEN(<op;,w; >,C) then PROVEN(<opo,w >,C)

This rule may be paraphrased as “If one component of a disjunction is proven then
the disjunction is proven™ or “If one component of a conjunction is proven false

then the conjunction is proven false’ or "“If the left hand side of an implication is
proven false, or the right hand side is proven true then the implication is proven

B David Poole

true”. Bach of these meanings is derived from the abstraction of “op

Proof of Correciness:

Let {¢,7}={1.2} ~

PROVEN{ <opju; >,C)

means: facts=C¥D <opyauw; >*

so then by disjunction introduction: factatC*D <opjw;>*v <op‘ >

50 by definition above: faetsC¥D <opo,w >+

that is; PROVEN(<opo,w >,C)

QED.
The proofs of the other rules for binary operators are as straightforward as this,
and will be left as an exercise to the reader.

4(b) Upward Conjunction Rule
if PROVEN(<~opy,w1>,C) and PROVEN{<~ap3,w2>,C)
then PROVEN{<~apg,w >C)

This may be paraphrased as “If both elements of a disjunction are proven false then
the disjunction is proven false” or "If both sides of a conjunction are proven true
then the conjunction is proven true” or “If the left hand side of an implication is
true and the right hand side is false then the implication is false”.

4(c) Downward Conjunction Rule
for j€{1,2}, it PROVEN(<~opo,w >C) then PROVEN(<~opj,w;>,C)

Which may be paraphrased as “If a conjunction is proven true then each conjunct is
proven true”, and similarly for disjunction and implication.

4(d) Implication Rule
for {j,k}={1,2}, it PROVEN(<opo,w >,C)and PROVEN(<~op;w;>,C)
then PROVEN(<Copy,s;>,C)

This may be paraphrased as “If an implication is proven and the left hand side is

proven, then the right hand side must be proven”, and similarly for the

contrapositive implication, for disjunction and for conjunction.

4(e) Equivalence Rule

If wq is of the form (wi™wg) and {i,5,k}=1{0,1,2} and

PROVEN(<s;,w; >,C) and PROVEN(<s;,w;>,C) then PROVEN(<s,wi >,C)

- “v "y f 8= 85

where &= " "ifsg#sj
This follows from noticing that if any two of the three input wifs involved in

an equivalence are both proven true or both proven false then the third component

is proven true, but if one is proven true and the other proven false then the third

component is proven false,

Logical Definition of Deduction Systems

-1

Use of The Case Set

The preceding rules are not powerful enough to competely characterise the
desired relation. There needs to be a mechanism to do what is commonly called case
anelysis.

For example, using only the rules above, success cannot be proven from the
facts:

A D success
w) wg w3

I} D success
Wy Wy W

A v B
1wy wg Wy

Two rules will be defined to use the case set to allow such reasoning to
complete the axiomatisation.

6{2) Assuming Rule
PROVEN(a,CU{a})
This may be paraphrased as “&* may be assumed by adding it to the casc set”.

It means that “a* is proven given the case that {amongst other things) o*".
Correctness follows dircetly from the desired semantics of PROVEN.

5(b) The Unassuming Rule
If PROVEN{<s,w>,C\{<~3,w >}} then PROVEN({<s,w >,C)

‘This may be paraphbrased as “If we consider the case of <~g,w>* and
subsequently prove <saw>%* then <s,w>¥ must be true, not depending on
<~g,w>*", This is saying no more than “If Aa-zDz then AD:z", where z is
<s,w>¥ which can easily be seen to be correct. ‘This is an instance of the
inference rule reduciio ad absurdum.

2.1.1. An Example

This example shows a simple case of how the case set can be used. We will
prove the input Wil wWoyceess representing the wif success follows from the facts
given above,

R David Poole

. PROVEEN{ <1 Wayecess 1 <N Wanecess 1) -- rule 5{a)

. PROVEN{<1t,w3 > { <N Weyccera >}) - 1ule 1, step 1

. PROVEN({p,w2>,{<n 1Wauccess >}) -- rule 2

PRO“T;N(<, wy > <R Weucceos > - rule 4(d), steps 2,3
PROVEN(<n w7 > { <1 Weyecess >} == rule 1, step 4
PROVEN(<p 103> { <8 Wauccens >1) — 1ule 2

L PROVIEEN{ <p w9 > { <0 Wayecess >}) - tule 4{d), steps 5,6
 PROVEN[<p w0y > <0 Wonceese >1) -~ vule 1, step 7

9. PROVEN{ <p 05 > { <01, Weuccene) - Tule 2

10. PROVIEN ([<p we > { <0 Waycersr >1) — Tule 4(d), steps 8,9
L1, PROVEN{ <P Weuccess >4 <1 Wonoaess >} - rule 1, step 10
12. PROVEN{ <P Weyeeess >{}) - rule 5b, step 11

KA1 801 =

2.2. Status of the Axiomatisation

The preceding axiomatisation can be proven correct with respect to the
semantics given for PROVEN {Poole[82]). That is it models the relation:

Jacts—C*Dw*

This can also be proven complete (Poole[82]), in the sense that if the facts are
consistent and factssuccess, then

PROVEN{<p Wsuccers >}

can be deduced using the axioms (where wWeyeeees is the implicit input wif
representing the atom success).

2.3. Use of the Axioms

The first thing o notice about the axioms is that they are a set of horn
clauses. So any search method for horn clauses can be used as a control component.
In particular we can forward chain on the rules or backward chain.

Forward chaining will be similar to the so called natural deduction and will use
the rules as they have been justified above. The main problem with forward
chaining is in knowing when to use the rules, and in particular when to use the
assuming rule,

Backward chaining on the rules corresponds to a goal directed search. The
most important thing to notice is that the unassuming aziom is applicable at every
stage in the proof; that using it twice in a row does not produce a new subgoal; and
that using the rule at any time will not prevent any other rule from being
applicable, or preclude any solution that will be applicable without using the rule.
Having the maximal possible case set will enable the assuming rule to be used
whenever possible. When backward chaining the unassuming rule should take its
unassuming role in the background, adding elements to the case set at each step.

Logical Definition of Peduction Systems 9

The use of the unessuming aziom in this way corresponds direcily to the
framing of literals in linear resolution (Chang and Lee|73]), and the use of the
ussuming ariom corresponds to the reduction of a reducible ordered clavse. In fact
one possible control strategy to use is a backtracking right to left search which is
linear resolution, except it is not restricted to clause form,

3. The Predicate Calculus

As promised before we will now extend the relation and the axiomatisation to
the predicate calculus. Assume that the facts are skolemised. (It is possible to
define rules for the quantifiers, but that will only complicate the presentation, the
only thing lost by skolemising is the need to oxpand equivalences which contain
quantifiers.)

To extend the relation to the predicate caleulus we basically add a substitution
to the relation. The problem that arises with such a simple minded approach is in
the need to rename different variables, and to copy wifs that need to have more
than onc instance in a proof. To overcome both of these problems we introduce the
notion of indexed variables.

Definition: An indexed variable is a pair, written v’ such that v is a variable
in the object language {i.e. what the user types in), and ¢ is an integer, called the
index of the indexed variable. Two indexed variables are the same if and only il
they have identical components.

If w is an input wif, and ¢ is an integer then w' is called an indexed wiF and
is w renamed to give all variables an index i. An indexed substitution is a
substitution with all variables indexed. We now extend the definition of signed
input wifs to include an index.

A signed wif instance (swi) is a friple <s,w,i > such that sé{p ,n} is a sign;
w is an input wil; and { is a non negative integer called the index.

Define the value <s,w,i>* of the swi <'s,w,i > to be the (indexed) wif w'if
2= ‘p’ and the (indexed) wif (~w') if s="n".
‘This is never actually computed, but will be used to define the semantics for the
PROVEN relation.

The relation that will be axiomatised in the predicate calculus will be of the
form:

PROVEN(a,C)
where « is a swi;

' is a set of swi; and
is an indexed substitution.

The semantics that we wish to give this relation are

10 David Poole

Sactet[C*Da*fs

where C¥= A4+
et

3.1. Predicate Calculus Axiomatisation

For a complete listing of the predicate calculus axiomisation see appendix A.

The rules for the logical connectives transfer straight from the propositional
rules with the addition of the same index to each signed wil instance; and adding
substilutions to the relations. Where two PROVENSs are used to form a third, the
substitution of the resultant relation should be the unifying composition! of the
substitutions of the other two. For example the implication axiom becomes:
it {j.k}={1,2} 2nd PROVEN(<opo,w,>,C0) and PROVEN(<op;w;,i >,C,0;)
then PROVEN(<opg,twp,i >,C 0 where 0 = uc(0,8;)

The Fact rule {2) becomes, simply

PROVEN(<p.[i >C{H

For the case set rules, one must allow for a different instance in the swi and in
the case list, together with a substitution that makes them the same. We give the
rule here for the substitution appearing in the assuming rule, because it is better for
the backward chaining control strategy.

Unassuming Axiom {Rule 5(a))
il PROVEN({<s w,i >,CU{<~s,w,i >},0) then PROVEN{<sw,i >,C.6)
Assuming Axiom (Rule 5(b)))
PROVEN(<s,w,i >,CU{<s,w,i >},0) where 0={vj/v‘: v is g variable in w}
The validity of this follows from the fact that € is the most general unifier of
<g,w,j> and <s,w,i >, and so under that substitution they are equal. The set of

variables in w can be calculated at input time, and no unification or decomposition
of the wil w needs to be done at run time.

Equality Substitution Rule (Rule 1)

The only other rule that needs to be lifted to the predicate calculus is the
equality substitution rule:
If w and y are unifiable input atomic formulae, with $=mgu{w®y') then if
PROVEN({<s,w,m >,C,x) then PROVEN(<s,y,j >,C,6) where j#m and j does
not appear in C or x; and if qb!""""“’-’1 is ¢ with all indexes of 0 rewritten to m and

1 the unifying composition {Sickel[78]) of two substitutions ¢ and #, written tc {@,0) & the most gen-
eral substitution & satislying $6 £ E0¢= £= 00 £= £00. 1t the unifying composition of two sub.
stitutions cxists then the subsitutions are said to be consistent. For relevant results see Poole[82].

Logical Definition of Deduction Systems it

all indexes of 1 rewritten to §, then #=uc(y,¢®"™1~/h

This may be paraphrased as “if w and y can be made the same under some
substitution, and an instance of w is proven (with the corresponding substitutions
consisient) then an instance of y is proven.”

I’roof of Correctness:

Let ¢l__._¢{0-m.1—-j}

then ¢'=mgu({w™,y?) T m#j

S0 <{8,w,m > *¢'= <s 7y)j> *¢'

50 <s,w,m >¥*¢0= <s,y,7 >*¢'0

s0 <s,z,m >%= <3,y,7 >*0 -- by definition of “uc”
suppose PROVEN({<s,w,m >,C,x)

that is faclsb-[C'D<e w,m >y

so faelst=|C'D<s,w,m >*0 - by definition of “ue”
50 facls=COD <s,w,m >*)

0 facls=CO3<s,y,7 >*0-- by cquality above

ie. PROVEN{<sjy.,j>C.0)

3

3.2. Status of the Axiomatisation

The full axiomatisation of the predicate calculus PROVEN (as it appears in
Appendix A), has been proven both correet and complete in the sense that
PROVEN(w,C,8) models the relation facts H{C*Dw*|), and if faclstsuccess then
PROVEN{ <P Waccese 0 >{10) (where Weyeeess 3 the implicit input wif representing
the atom success) follows from the axioms for some 8.

"3.3. An Example

Suppose thal we have the following facts (with names for the input wifs
associated with the principle operator in the fact):

Plv) v Qlv)

Wy w2 w3

Plv) 2 P(f(v))

wy Wy W

P{f{f(e)) v @a) D success
wy

Wg wy Wi Wi

Let the object level goal be the atom success which is the input Wif wWeyecess-
The following deduction can be used:

12 David Poole

FPROVEN(<n,we,5 >{<n,we,1 >}{}) -- rule 5(a)

PROVEN{<n wg,5 > {<n,wg,1 >H{} -- rule 4(¢c}

PROVEN{<n w34 >{ <nws,1 >}{atvgd) -- rule 1

PROVEN{<p ,wad > {<n,wg,1 >}{}) - rule 2

PROVEN{ <p w42 {<n,ws,1 >}{alvg}) - rule 4{d)
PROVEN{<p,w4,3>{<n,ws,1 >}{alvg,atvs}) -- rule 1
PROVEN{<p,ws,i >{<n, we,1>}{}) - rule 2
PROVEN(<p,we,3> { <n,wg,1 >}H{asvy,atvs}) - rule 4(d)
FROVEN(<p,w,2> {<n,wg,1 >}Hafvy,alvs, f{e)vs}) — rule 1
PROVEN(<p wg,2>{<n we,1 >Y{alvgalvs, f(aVva}) - rule 4(d)
PROVEN{<p 07,1 > {<n,wg,1 >Y{atvy,atvg, f{aWva}) - rule 1
PROVEN{<p wg,1 > {<nwg,1 >}{asvy,atvs, f{a}vg}) - rule 4(a)
PROVEN{<p awg,1 > {}{e/vq,a/v3, f{a Yvg}) - rule 5(b)
PROVEN{<p w6,1 > {1} - rule 2

PROVEN(<p wn, 1> {Matvg,atvg, f(a)val) -- rule 4(d)
PROVEN{ <P ,Weuceeos 0 > {h{atv,alvs, f{a Vo)) - rule 1

One question that arises from such a proof is “How did you know what to start
with?” Backward chaining on the axioms finds the assumption by building up the
assumption sel as in the propositional case. The use of indexing allows the same
variable in two different facts with no confusion as to which variable is meant, Not
expanding the third fact into two clauses allows the assumption to be made at an
earlier slage. N

3.4. The System as a Connection Graph Proof Procedure

An implementation of any system from the axioms can be seen as a connection
graph proof procedure. The sel of the ‘¢’ for rule 1 forms what is commonly called
a connection graph. They all may be evaluated at input time, so that at run time
(prove time} no scarching for matches or unifications needs to be done.
Substitutions will be combined by doing unifying compositions, The substitutions
contain only the essential information from the unifications. All possible matches
can be found hefore the search for a solution, relieving the system from many
unnecessary searches. This corresponds to the use of connection graphs (eg
Bibel{g3], Chang and Slagle{79], Sickel{76]) and to compiling the rules of Prospector
into an inference network (Duds et al{78]).

Logical Definition of Deduction Sysiems 13

3.5. Explanation and Debugging

Any implementation uses the input form of the facts, No input is destroyed,
and all deduction steps can be explained directly in terms of input given by the user.
This is very important in debugging the knowledge source, as each step can be
identilied with a particular piece of knowledge. It is also important in explanations,
because English explanations can be associated with the facts, and printed oul at
the appropriate lime. Mathematical style proofs may be printed out by using the
explanations from a traversal of the solution and-tree, or one can step around a
solution tree producing expert system style “HOW™ and “WHY" explanations (eg
Emyecin - VanMelle[80]). Explanations need not be associated with individual rules,
but may be at a higher level, for example, at the level of facts given by the user.
Such an implementation has been built (Poole{82}), and tested as an expert system
for student enrolment, with English explanations for hoth mathematical style proofs
and Emycin style explanations.

3.8. Adding A Control Component

As in the propositional case any search strategy for horn clauses can be used on
the axiomatisation. The backward chaining control structure admits 2 neat solution
to the problem of when to consider cases.

Assigning Unique Indexes

One of the problems that arises in backward chaining is in the choice of “m™
in the cquality substitution axiom. It can be proven that if there is a global
variable max —index —in — aystem, which is incremented by one at each invocation
of rule 1, and is the value of m chosen, then j will satisly the conditions of the rule.
This is because each index in C and x will be grealer than or equal to m and j<m.

The Search Tree

The search tree for backward chaining on the axioms can be characterised as
follows: There is an and/or search tree [nodes corresponding to PROVEN relations;
and-arcs formed by rules 4(b) and 4{d); and or-ares produced by rules 1, 4(a) and
5{a) (the choice of assuming or not assuming); and terminal nodes by rules 2 and
5{a)]. Substitutions are associated with or-arcs, but not with and-ares. The aim is
to find an and-subtree with all substitutions being consistent. At this level this is
exactly the structure of the search space of a Prolog or linear resolution system. In
fact, given the same input {and considering the Prolog tree as a binary tree), the
search tree above has an extra node for each fact used; mamely the trivially
satisliable top level of the fact itself. The or-nodes and the corresponding
substitutions correspond exactly. Our system will need to do a case analysis at each
node, but this seems to be a small price to pay for the use of many different
operators, The only other thing that our system (like a linear resolution system)
must do over what the Prolog system does is to maintain the case set (but if it only

14 . David Poole

wants the power of a pure Prolog it does not even need to do this}.

The Case Set

Civen such a definition of the control, the case set does not nced to be
explicitly stored, but is (the negation of) the set of ancestors of a node. The
unassuming sxiom thus becomes implicit in building the tree. The use of the
assuming axiom corresponds to tautological circuits (Bibel{82)), to merge condition
{Andrews[76]}, Tautology Loop (Sickel[76]), and to reduction of reducible ordered
clause in Linear Resolution {Chang and Lee{73}).

Modularising the Implementation

The abstract definition of the search tree points to one possible way to
implement the system, with the logic part and the control part implemented as
separate modules. The and/or tree becomes the communications interface; the
contrel part scarching the andfor tree and the logic part building the tree as
needed, We can implement our system, Prolog or linear resolution by changing the
logic component, independent of the control structure.

Use of the Substitutions

There are a number of ways thai substitutions can be cvaluated when
backchaining on the axioms.

The first is to do all unifying compositions at the end. This can be done by
irealing we as an uninterpreted function during the search process. A solution can
be found with the resulting substitution being an expression involving the function
ue, as well as reindexed input substitutions. This expression can then be evaluated,
and if it is inconsistent another solution can be looked for. This corresponds to
having a planning phase and a verification phase, and has been advoeated by a
number of people (Chang and Slagle{79], Klahr[78]).

The second is to evaluate the unifying composition when all of its arguments
have been evaluated. This corresponds to uc being a predicate on the anteccdent of
Prolog type systems.

The third is to use the associativity, commutativity and idempotency of
unifying composition (Poole[82]) to realise that the ordering in which the
substitulions are combined is irrelevant. A global substitution can be maintained;
new substitutions only being added if they are consistent with every substitution in
the system. This allows any inconsistencies to be located as soon as possible. Any
substitulion must be consistent with any other substituiion in a solution and-tree,
and in particular must be consistent with all ancestor substitutions. Such
considerations lead directly to the notion of non-chronological backtracking. (See
Poole[82] for the correctness proof of such a control component.)

e R

Logical Definition of Deduction Systems 15

4. Bidirectional Search

A goal directed search strategy at the meta level {as outlined above) does not
necessarily impose a goal directed search strategy ai the object level. If the top level
goal al the meta level is the negation of a fact, subject to instances of the negation
of success, then a forward chaining proof develops.

A bidirectional searching mechanism can be built be changing the logic
component, To extend the logic we define a new relation

CANCEL(0,03,C,0)

where a; and ag are swi, C is a case set, and # is an indexed substitution. It is
named CANCEL after the relation in Nilsson{78). It is to represent “if oy is true
then a2 is true”. The “o;” is the “facts” implying “ag” the “goals”. More
formally the semantics will mean:

Jacts=[C*aa *Dag *)

Each of the rules for PROVEN can be extended to rules for CANCEL by making
the first argument of the CANCEL free. There is also the equivalence:

CANCEL(<syw1,i1 >, <sz,we,i2 >,C)= CANCEL{ <~sg,03,i9 >, <~81.01,7 >,C,0)

This cquivalonce can be used in two ways: It can be applied to the rules to produce
" another set of rules for forward chaining as well as backward chaining; alternatively

it can be used as a rule itself, in which case it acts as a change of focus for the

problem solver. That is alternating between “considering the goals” to “considering

the facts”. We can also define a rule to let us join the facts to the goals, and this

rule is:

If w and y are unifiable input atomic formulae, with ¢=mgu(w®,y") then

CANCEL(<s,w i >, <'3'y,j>’A7¢(0-i,l—~j})

Such a system with this CANCEL relation forms a complele extension of
Nilsson{79{'s production system for automatic deduction; with all of the advantages
of PROVEN in a system with bidirectional search {it is however arguably more
difficult to control).

16 David Poole

5. A Comparison With Qther Systems

5.1. Other Meta-level Definitions

The main difference between this approach and other more traditional
appraaches (o the definition of inference rules {cg. Manna{74], Bowen[82]) is in the
direet translation into efficient implementation. Qur axiomatisation shows the
informalion neeessary to define new operators within such an implementation.

The most similar machine oriented logical definition of a deduction system is
that of Bowen and Kowalski82]. Our system can be scen as an extension of their
definition of a horn clause problem solver to the complete first order predicate
calenlus. Our definition differs in that it is meant to be the formal definition of a
deduction system, and docs not necessarily appear within the problem solver itsell.

5.2. Prolog

I the input to our system is restricted to Tlorn Clauses then the and/or tree
produced is identical to that produced by Prolog. If a left to right search strategy
with chronological backtracking is used then Prolog results. This paper shows how
Prolog implementations can be expanded to cover the complete first order predicate
caleulus, with the resulting cost being the need to search for oppositely signed
ancestors in the search iree. Our system is not constrained to use such search
strategices though.

5.3. Connection Graph Proof Procedures

Despite having a completely different derivation and justifieation, the resulting
system is remarkably similar to the modern “connection graph” theorem proving
systems (og Bibel[81,83], Andrews|76,81], Sickel[76]), and shares their advantages of
efficiency due to elimination of redundancy.

Building a consistent and-tree can be scen as a systematic way of checking all
possible paths in a connection matrix of Andrews or Bibel. The use of rule 1
corresponds to a maling or a connection. The and-offspring correspond to the
generation of other possible paths not through that mated literal. This formalises
the informal description of systematising the p-acceptable criteria in Andrews[81]
{pg 204).

Sickel[78]'s search technique for Clause Interconnectivity Graphs can be seen as
an implementation of our system restricted to clauses, Her “walk™ corresponds to a
branch in our and-troc; her *markers” to the leaves in the current and-tree; and her
“merge loop" corresponds to the assuming rule.

Qur system has a number advantages over these other systems. We do not
need clause form, or negation normal form or matrix representation, but can work
on the input wifs directly. In particular we need not expand out equivalences. The
Search strategy is less constrained. We don't need to do chronological backtracking,

Logical Definition of Deduction Systems 17

s0 for example, we can combine the efficiency of connection methods with the
efficiency of non-chronological backiracking. The quantifier duplication problem
{Andrews[81] p 207) and the index increasing technique that poses a problem
(Bibel[82] pg 210) has been neatly solved. Most importantly our system is simpler
and easier to comprehend. This can be seen at the global level where the proof is
subgoaling, and at the local level as each step is explainable as a simple local logical
operation in terms of the input given by the user.

QOur description is at a lower level than the description of the other systems, so
a detailed description will be more detailed. The search trees will be vory similar
with our and-trec being a binary tree, with a CANCEL at each node. The operation
at each node is a trivial recognition of its type. The and-nodes will be the same as
tho other systems of their trees are considered as binary trees. Note however that
there are extra nodes for the {trivially solved) fact, and for explicit negations (not
allowed in other systems). The or nodes due to connections (rule 1) will be
identical.

6. Conclusion’

This paper discusses the design of whole families of problem solvers with a
clear separation of logic and conirol.

® The logic part has heen proven correct and complete independent of any
control imposed.

® The logic is defined for the full first order predicate caleulus, and may be
augmented to include other logical or non logical connectives. (For example,
one does not need to be very imaginative to invent a rule for exclusive-or, or a
one way implication of the form z-y which can be used to deduce y from z,
but not -z from -y.)

® The logic has been defined in such a way that implementations may be dircetly
derived. 1t also shows whatl information is sufficient to define an operator
within such a deduction system.

® The problem solvers produced do not change the input given by the user, and
the steps are simple uses of the logical connectives, thus enhancing explanation
and debugging. The explanation and debugging facilities of expert systems can
be incorporated into such systems.

® The formalism allows the comparison and combination of many previous
systems (eg Linear Resolution, Prolog, Sickel{78], Andrews[76,81], Bibel{82,83}).
® The problem solver can be expanded to include bidirectional search,
The logic component of the problem solver can be extended to more powerful

logics, for example it has been expanded to include defaults (Poole[84]), as well
as a proposal to extend it to cover a logic of actions {Poole{82]).

18 David Poole

® The Jogic and control can be separated even at the implementation level, where
they can be hived off to different modules. Such a system has been designed
and proven correct {Poole[82]).

® It forms a poworful vehicle for the systematic study of domain specific control
strategies. Using input form with a clear separation of logic and control has the
potential to allow the user to associate control knowlege with the object level
facts, and for the system to use that knowledge effectively. This system is
currently being implemented to investigate control primitives to express
effective houristics and strategies.

Appendix A - Complete Axiomatisation of Predicate Caleulus PROVEN
1. Iquality Substitution Rule
If w and y arc unifiable input atomic formulae, with ¢=mgu(w’y')

it PROVEN(<s,w,m >,C,x) then PROVEN(<s,y,j>,C,8)
where §#m and j does not appear in C or x; and §= uc{x, g0t
2. Fact Rule
If [is a fact then

PROVEN(<p.f.i >,C{}H

3. Negation Rules
If w is of the form (—2) then

3{a) Upward Negation Rule

it PROVEN({<s,2,4 >,C,0) then PROVEN{<~swi >,C.0)
3(b) Downward Negation Rule

il PROVEN{ <z 0,4 >,C,0) then PROVIIN(<C~s,2,i >,(,0)
. Binary Logieal Connectives
If w is of Whe Torm {wy op wg) then
A(a) Upward Disjunction Rule

for j€{1,2} if PROVEN(<opj,w;,é >,C,0) then PROVEN{<opo,w.i>,C,f)
4(b) Upward Conjunction Rule
il PROVEN{<~op1,wy,i >,C,0;) and PROVEN{ <~opa,wg,i >,C.0)
then PROVEN({<~opg.w,i >,C,0) where 0=uc{f),0p)

e} Downward Disjunction Rule

Logical Definition of Deduction Systems 19

for je{1,2}, if PROVEN(<~opo,wi >,C,0) then PROVEN({<~opjw;,i>,C.0)
4{d) Implication Rule
for {f,k}={1,2}, it PROVEN(<opg,w,i >,C,8) and PROVEN(<~op;,wji >,C ;)
then PROVEN(<opg,wii>,C0:) where 0 =uc(0,0;)

4(e) Equivalence Rule
If wo is of the form wi=wz and {j,k.1}={0,1,2} and PROVEN(<s;,w;,i >,C,0;)
and PROVEN{<spzwg,i >,C,%) then PROVEN{<sjwii>,Cf) where
st=(3f 8;=s; then '’ else n’)
5. Case Set Rules
5(a) The Assuming Rule

PROVEN(<s,w,j > CU{<s,w,i >}8) where §= {vt* w is a variable in w}
5(b) The Unassuming Rule

if PROVEN(<8,w,4 >C\U{<~s,w,i >}10) then PROVEN(<Ca,w,i >,C,0)

Appendix B - Theorems Proven About PROVEN

The following theorems have been proven {Poole[82]) about the PROVEN
relation. For details see Poole[82].

Theorem 1: If

PROVEN(<s,un >{<sz,wa>HJA)
can be deduced then

PROVEN(<~sg,we > {<~5,w1 >HUA)
can be deduced using a deduction with no more applications of rules other than
5{a). '

This is proven by a constructive proof by induction on the length of the
deduction. The induction step is proven by considering each possible last step in the

deduction of PROVEN{<s,wy>{<sawa>HJA). The base step must be an
instance of rule 5(a).

Theorem 2; If
PROVEN(<sw>{<~3,w >RJIA)

is set up as a subgoal in a backward chaining proof, then it can be removed without
affecting completeness. Moreover, removing it will not remove the shortest proof
(shortest in the number of applications of rules other than 5{(a).

20 David Poole

This is proven by using Theorem 1 to construct a shorter proof that dees not
use the above form from one that does.

Theorem 3: Completeness of the ground case. If F'is a set of satisfiable facts
in the propositional caleulus, and F-success then

PROVEN{<P Weyeeess >{}H
can be deduced.

This is proven by induction on the number of atomic symbels in F. The
ground ecase of the induction is proven by induction on the height of the parse tree
of the formula.

Theorem 4: Completeness for the predicate caleulus, If F'is a set of facts in
the predicate caleulus, such that F is satisfiable, and Fl= ey ees, then

PROVENT<p Waucecee > {16}
can be deduced for some 4.

Proof of this is by lifting a proof from the ground case.

Acknowledgements

The major part of this work was carried out when the author was at the
Australian National University. Special thanks to Robin Stanton of the Australian
National University who supervised my thesis. Thanks ako to Hugh MacKenzie and
Peter Creasy for many discussions and to Randy Goebel, Marlene Colbourn and
Romas Aleliunas for valuable comments on an carlier draft of this paper. This
research was supported by absolutely no contracts from any defence department.

References

Andrews.P.B. [v8], “Refutations by Matings”, IEEE Transactions on Compulers,
C-25. pp 801-807. :

Andrews, PR, [Rl]. “Theorem Proving via General Matings”, Journal of the
Associnlion for Computing Machinery, Vol 28, No 2, April 1981, pp 193-214.

Bibel AV, [%2]. Aulomaled Theorem Proving, Viewes: Braunschweig, 1982.

Bibel AV, [83] “Matings in Matrices”, Comm A.C.M. Vol 26, No 11, Nov 1983.

Bowen KA. [82], “Programming with full first-order logic”, in Hayes,J.I5. and
Michie,D. {Eds) Muachine Intelligence 10, Ellis Horwood, Chichester, 1982.

Bowen, KA, and KowalskiR.A[82], “Amalgamating Language and Mctalanguage
in Logic Programming”, in Clark,K.1.. and Tarnlund 8-A. (Eds) [Logic
Progrananiag, Academic Press, London, pp 153-172.

S —

Logical Deflinition of Deduction Systems 21

Chang,Q.
and Lee,R.C. [73], Symbolic Logic and Mechanical Theorem Proving, Academic -
Press, New York, 1973.

Chang,C. and Slagle,J. {79], “Using Rewriting Rales for Connection Graphs to
Prove Theorems'', Arli ficial Intelligence Vol 12, No 2, pp 159-178.

Davis,R. {80] *Meta Rules: reasoning about Control”, Arti ficial Inlelligence, vol 15
{1980}, pp 179-222.

Duda,R.0.; Hart,P.E,; Nilsson,N.J. and Sutherland,G.L. [78], “Semantic network
representations in rule based inference systems”, in WatermanD.A. and
Hayes-Roth (Eds) Pattern Direcled Inference Systems, Academic Press, NY
1978,

Georgell M.P. {82}, “Procedural Control in Production Systems”, Ariificial
Intelligence, vol 18 (1982), pp 175-201.

Klahr,P. {78] “Planning Tequniques for Rule Selection in deductive question-
answering” in Waterman,D.A. and Hayes-RothF. (Eds) Paliern Directed
In ference Systems Academic Press, NY 1978, pp 223-230.

Kowalski,R. [79], “Algorithm == Logic + Contrel”, Comm A.C.M. Vol 22, No 7,
July 1879, pp 424-438.

McCarthy,J. and Hayes,P. {69}, “Some Philosophical Problems from the Standpoint
of Artificial Intelligence”, in Meltzer,B. and MichieD. (eds) Machine
Intelligence 4, pp 463-502,)

Mannn,Z. [74], Mathematical Theory of Compulation, MeGraw-Hill, NY 1974.

Nilsson,N.J. [79], “A Production System for Automatic Deduction™, in Hayes,].E.,
Michie,D. and Mukulich,l.l. (Eds.) Machine Intelligence 0: Machine Fzperiise
and the Human Inter face, Ellis Horwood, Chichester, 1979.

Poole,D.1.. [82], The Theory of CES: A Complele Ezpert System, PhD.
Disserlation, Department of Computer Science, Australian National University,
Qctober 1982,

Poole,D.L. [84], A Compulaiional Logic of Default Reasoning, Reseach Report,
Department of Computer Science, University of Waterloo.

Sickel,S. [76], “A search Technique for Clause Interconnectivity Graphs”, LE.E.E.
Transactions on Compulers, Vol C-25, No 8, August 1876, pp 823-835.

van Molle,W. [80] A Domain Independent System that Aids in Consirucling
Knowledge Bused Consullation Programs, Stanford University Compuler
Science Report 80-820, 1980,

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

