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ABSTRACT

We introduce the notion of computational network (CN)
which is a general model of arbitrary (finite or infinite) system of
parallel synchronized processors (systolic network). Our basic and
very useful ool are topological transformations of the space-time
diagrams (unrollings) of computations on CN. We show that the
topological transformations on unrollings can be used to design sys-
tolic networks, to give simple proofs of their correctness, and to
demonstrate the equivalence of different networks. For example we
use the transformation technique to give a concise proof of a
strengthened version of Leiserson’s and Saxe’s Retiming Lemma and
Systolic Conversion Theorem. As a practical application we show
the correctness of a simple algorithm for distributed sorting on a
systolic ring. Many other examples are given.

*

This research was supported by the Natural Sciences and Engineering Research Council of Canada
¥nder the grant No. A-7403.

This work was done during the second author's visit at the Department of Computer Science,
University of Waterloo.



2 Culik IT and Fris

0. Introduction

Systolic systems are arrays of synchronized processors which process data in
parallel by passing them from one processor to neighboring ones in a regular
rhythmical pattern. Most systolic systems use only a few different types of pro-
cessor arranged in a regular pattern. The principal idea is to perform the
required computations with minimal input-output communication. Systolic algo-
rithms were explicitly introduced by Kung and Leiserson [19, 24] but many algo-
rithms of this type were designed earlier, see for example [5, 11, 16].

Recently, systolic systems have been studied extensively; see [17] for a list of
references. Most of this work has been devoted to the design of individual algo-
rithms for many different areas, but the efficient layout of systolic systems (and
VLSI in general) has also been well studied, see for example [20, 21]. Other topics
that hae been studied are: the development of general programming (design) tech-
niques for systolic algorithms [3, 18, 22, 25, 28, 30], and the systematic study of
the power and limitations of certain types of networks from an automata-
theoretic point of view {1, 4-7, 9-11, 13, 14, 26, 29].

Our approach is also automata-theoretic, but rather than the study of a
specific class of language recognizers or transducers we introduce precise notions
to the study of arbitrary systolic networks. For example we want to make precise
the statement that the square grid and hexagonal grid are essentially equivalent,
or that the bidirectional linear array and the unidirectional ring are essentially
equivalent. Our main goal is to give a general {ramework for the study of arbi-
trary systolic systems and computations on them.

We introduce the notion of a ‘“‘computational network™ which in general is
an arbitrary finite or infirite (synchronous) network of processors connected by
communication lines with arbitrary integer (even negative) ‘delays” and no
queucing capability. We are mainly interested in homogeneous (identical proces-
sors) and regular networks but our definitions do not make any such assumption.

Our main tool is the space-time diagram, called the unrolling, of a computa-
tion on a computational network in [7]. The unrolling of a computational net-
work is a simple form of a data-flow diagram, it motivates our definition of a
“‘computational diagram.” We consider two networks to be equivalent when they
have isomorphic unrollings. This is a2 much stronger equivalence than equivalence
based on the same input-output function. Two different networks can have iso-
morphic unrollings, that is the unrolling of one network can be topologically
transformed to the unrolling of the other. Such a topological transformation is a
useful tool when designing new networks and in proving their correctness. Topo-
logical transformations as such are not new, see [4], but we introduce a general
model of a computational network and a computational diagram which allow con-
cise proofs using the transformation technique for a broad class of parallel net-
works. We demonstrate that most of the known techniques for systolic system
design, such as systolic conversion [18, 22|, folding [3], and speed up [26] are spe-
cial cases of topological transformations on unrollings. This also holds for the
wavefront technique [30] and geometric transformations [2] but lack of space
prevents their discussion here.

A particularly simple type of a computational npetwork is the pure
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computational network in which for each node n the paths from all inputs to
node n have the same delay. In practice such a network always allows pipelining
of inputs with pipelining of period one. We show that a pure computational net-
work and its unrolling are isomorphic.

In Section 3 we study the semisystolic and systolic networks introduced in
[22] and generalize the retiming lemma and systolic conversion theorem from [22].
Our proofs using unrolling are simpler than the original proofs and at the same
time they are more general, since we do not restrict ourselves to a “single host"”
and throughout this paper we study not only finite but also infinite networks.

The systolic conversion preserves not only the structure, that is the underly-
ing graph, of a computational network but also the functions performed by the
individual processors. Only the timing, that is the initiation of the processors and
the delays between them are changed. Thus we obtain a very strongly equivalent
network. In our definition of equivalent networks we require that the networks
have the same unrolling, that is they perform step by step identical computations
but not necessarily in pairwise matching processors. In Section 4 we consider net-
works which are not equivalent in this sense but which still perform essentially
the same computations. We introduce the notion of one metwork being (m .k}
simulated by another network. Intuitively this means that the simulating net-
work performs identical computations using processors each of which simulates m
original processors and requiring %k steps on the simulating network to simulate
one step of the original one.

The notion of simulation allows us to compare precisely the power of vari
ous well-known networks. It is generally known, even though not stated explicitly
in the literature, that the square grid is equivalent to the hexagonal grid. We
make this comparison precise and give a number of further practical examples.
One of them generalizes a result from [29] and shows that any network om a
bidirectional linear array can be transformed into a unidirectional ring of the
same size which is half as fast. Similarly, a bidirectional two-dimensional array
can be converted into 2 unidirectional toroid, and similaxly for higher dimensions.

We close Section 4 by describing a simple efficient algorithm for distributed
sorting on a unidirectional ring of processors. This algorithm is obtained and
proved correct by transforming the well known odd-even transpositation sort
algorithm from the linear bidirectional array to the unidirectional ring.

In the last section we give further applications of the transformation tech-
nique. For instance, we give a simple proof of the result from [25] that global
control does not increase the power of m-dimensional iterative arrays. As a new
result we demonstrate that the same result also holds for m-dimensional cellular
automata,

1. Preliminaries

Given a possibly infinite set, V, the set of all finite seq es of el ts
from V (words) is denoted by V. For z € V' the length of the sequence =z
is denoted by |z].
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For a finite set of M the cardinality of M is denoted by | M|. We use
Z to denote the set {..,—1,0,1,..} and N to denote the set {0,1,2,..}, &
denotes the empty set.

Generally we omit double parentheses in cases where f is a function whose
argument is a pair (z,y), i.e. we write f(z,y) rather than f((z,y)). Similarly
for functions returning functions, we prefer to use simpler ¢(v){z,y)} to more
precise (¢(v))(z,y). Ordered digraph is a structure H = <V,7> where V is
a (finite or infinite) set of nodes and #:V —>V is a function. If
n(v) = v, -y, for v; in V, then (vy,v),...(v;,v) are (directed) edges (in
that order) from nodes v; to the node v, for i = 1,..k. To stress that the
edges are directed we will often use the notation v; —> v rather than (v;,v), or
even e:v; —> v, if we want to name the edge.

We denote the set of all edges of H by E, and will often talk about the
underlying digraph <V,FE >. Note that parallel edges and self-loops are allowed
in H.

The meaning of terms such as {directed) path, cycle, indegree, outdegree,
start node, end node (of » path) will be applied to H meaning the corresponding
terms for <V,E>. Thus, for example, the indegree indeg(v) is |n(v)], ie.
the length of the word n(v). A path p = (vg—>v,v,=>v,,.. 9 _=>y)
(k >0) will be written as pivyg-=>v, => :-+ =>uy or, simply as
p:vg =% v, The length of p will be denoted by {p|. If v = v we also
call u the {(immediate) parent of v, and if u —>* v we call v the descendant of
.

For the ordered digraph H = <V,z> according to our definition, the
indegree of every node is finite. Thus if we define V; = {v € Vl [z(v)] = i}
for ¢ =0,1,., then (V,,V;, ---) is a partion of V. Note that there is no
requirement on the finiteness of an outdegree.

2. Computational Schemas and Networks.

Let @ be a set (finite or infinite). A pre-computational diagram (preCD)
S is a structure § = <V,7,Q,¢p> where <V,7> is an ordered digraph and
¢ is a map (a collection of maps) ¢:V, — [Q" = @] for k > 0. A preCD
is called a computational diagram (CD) if the length of any path (of its underly-
ing digraph) with a given end-point is bounded. Formally, for every v in V,
there is & = 0 such that if p is 2 path with end(p) = v, then |p} = 5.
Clearly, there cannot be ¢ycles in a CD.

A compulation o« on a preCD is a map «:V -> @ such that for each
v €V with n{v) =v, v (v; €V), £ >0 we have

ofv) = ¢(v)alv,).aln)) (1)

i.e., the “value” afv) in @ is computed from the values at all nodes w € V
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for which there is an edge (w,v) in E. Note that (1) imposes no condition on
nodes v € Vj, we may call these nodes the inputs of the preCD.

Example 2.1. Let wus consider the CD A= <V,r¢>  where
V={ebede}l, wle)= ab)= wc)=1, =n{d)=ab, w(e)= de,
#(d)(z,y) = z+y, éle)x,y)=zy. CD A is shown in Figure 2.1. In the
other examples we will show the names of the processors inside the circles, since
usually no specific functions will be considered. This very simple CD computes
the value X, {X,+X,) in node ¢ from the inputs X, X, and X, given in
nodes ¢,b and c, respectively.

Figure 2.1

Example 2.2.  Signal Processing

Adopted from [18] is an example of an infinite computation. This is a CD that
given w,w,wy,w, and inputs z,,2,,23,.. it computes y,,y5,¥3,.. where
Y T wyT b wed gy FwaT ot ws g
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Figure 2.2

There are five columns, if we number them 0 to 4 (left-to-right} then in column
i for =123 ¢(v) is a pair (g},9}) where g}(5,2)= S+uwz,
gh{e,z) =2 and in column 0 @{v){y)=y. Finally in column 4
#o)z) = wyz.

In this example there are 5 kinds of nodes, one in each column. It is easy to
design a CD for the same computation in which 2ll the functions are the same
(homogeneous CD).

The important property of CD is that given values at inputs there is a
unique computation. Formally, we have

Theorem 1. If §= <V,n,Q,8> is a CD, then for every a,:Vy = Q
there is a unique computation o on S which extends oy, i.e. for which
a(v) = ag(v) forall v in V.

Proof: For v €V put {v| = max(|p || p is a path with the end node v).
By the assumption of boundedness of paths in S, |v| is well defined for each
v in V. Therejs |v] =0 if and only it v € V. The equation (1) defines «
recursively. To see this we define partial maps o,:V —> Q as follows:
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o(v) = ¢{viay—y(v1),- s —4{1g)) for ¢ = [v]
and

a(v) = ap_4(v) for t > |v} .

(ag(v) is undefined if ¢ < |v|). Finally, a(v) is defined as oy (v).

Actually, we have proved a somewhat stronger result, namely that given a
preCD and a map oy:Vy, = @, map o, can be extended to all nodes in V for
which {v| <o, .

Note that alternatively we could have defined a CD with ¢ defined every-
where on V, that is also on V), and interpret (1) for v € Vjas afv) = ¢(v).
Then there would had been exactly one computation on every CD .

A computation network (CN) is a structure N = <V,7,Q,4\,7> where
H = <Vn,0Q,6> is a preCD with underlying digraph <V, E>, X\ is a map
E —> Z labeling each edge with an integer M\ (e). We interpret A(e) as the
delay (in some time units - clock cycles). Finally, r:V —> Z is a partial func-
tion which determines when a computation (see below) begins at a node v in V.

Note: The interpretation of A(e) as time-delay makes sense only when
M(e) = 0, however we are not assuming this in general because our results are
valid also when X is possibly negative. In many examples of CN'’s the functions -
A and 7 will be defined by A e} =1 for each e € E and 1(v) = 0 for each

v € V, that is each edge involves a unit delay, and initial conditions are specified
for each processor (rode) at time 0 (and thus the computation starts everywhere
at time 1).

We shall often omit the functions A andfor 7 from the description of a

network. Such an omission means that the “defauit” functions Me) == 1 and
r{v) = 0 are considered. In most examples ¢ and ¢ are left unspecified, in
that case it is understood that arbitrary @ and ¢ are considered.

To define computations on CN, we associate with N = <V, 7,0 ,¢, 77>
the ordered graph Gy = <VXZ,n'> where #' is defined as follows. If

7(v) = vyvy--- v, and d; = My, v) (v EV,1={=£k) then
w(v,t) = (v),t—dy) (23t —dy) - - - (g, =)

S = <VXZ7Q,4> where ¢/(v,t) = ¢(v} is a preCD which is meant
to describe computations on /N spread in time. The problem is that S is a proper
preCD with all paths of infinite length, and thus there are no computations in our
sense on S. We are interested in computations starting at a particular time and
continue from that time on. This is why we have the function 7.

Let us consider the following three subsets of V' X Z:

(1) 8- the starting set is {{v,n(v))] v € dom(r)}

(2) D - the descendants of S, ie. the set {(v,t)l (v,t) 4 S and there is
(8,tg) € S such that (s,tg)—="{(v,t)},

(3) P - the parents of D is the set {(v,t)] (v,t) = (u,t) for some (u,t’) € D}.
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In both cases =->* and ~> are paths and edges in .Gn - Denote by
V = SUDUP. A computation & on N is a function a: V= @ such that
for all (v,t) €D

ofo,8) = $(oN(e{vy,t—dy)alvy b =) - 2

Note that it is often convenmient to comsider « as a partial function
V X Z —> Q. As this cannot lead to ambiguity we shall do so, when con-
venient.

Intuitively a computation on a network N proceeds as follows. Arbitrary
“initial” values are chosen at the processors in dom(r). More specifically, an ini-
tial value from @ is chosen for each processor v in dom(r) at the time r{v).
Then new values are successively computed according to (2). During this compu-
tation arbitrary “input” values are supplied, when needed, at the nodes without
parents.

We are not concerned with formalizing how outputs are produced. In any
particular network outputs can be taken from suitable processors at suitable
times to realize a desired input-output function. This is the same situation as for
gate networks where for many considerations it is not relevant whether the out-
put of a gate is external or not.

We are mainly interested iz computational networks. The computational
diagrams are auxiliary constructs, they are important because for every CN N
there is a CD H, called the unrolling of N, such that each computation « on
N has an “isomorphic” computation on H.

Let N = <V7r,Q éN\7> be a CN. The unrolling No N _is the
preCD N = <V 7,Q,6> where # is the restriction of ' to V and
d(v,t),= ¢(v) for (v,t) in V (Vand # are defined above). It is easy to see
that N is not always a CD, for example N might contain cycles, and thus
computations need not exist on every N. On the other hand it is obvious that
o:VXZ —> @ s a computation on a CN N if and only if it is a computation
on its unrolling V.

Given a network N = <V, 7,Q,6\7>, let <V,E> be the underlying
graph. We may extend X from edges to paths by putting for
piog > >y M) = M)

=1

For each network N there is a CD, namely NV which has (by definition) the
same computations. It is easy to show that conversely, given an arbitrary
CD 8§ = <V,x,Q,6> we can construct a CN with the same computations as S.
To do 50, we use the function |v|:v —> N defined in the proof of Theorem 1,
and defire Mu,w)= |v|=]u| for al u —=v. If we also define 7 by
fv) =0 for v €V, then N = <V,n,Q,4,A\,r> is a network with the same
computations as 5.

The network N has a useful property, it generalizes the notion of pure net-
work of [6]. We say that a network NV is pure if
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(i) dom(r) = V, - the set of nodes with indegree 0,
(i)  for each node v € V=V, thereis a path p:vy =>%v and,

(iii} all such paths p:vy =" v where v, € Vy and v € V-V, have the
same weight (\(»), ie. A\(p) depends only on the end node of p.

It is easy to see, that more generally, for every two paths p;:u —>% v and
poiu =t v there is always Mpy) = Mp,). Now we show that for a pure net-
work N = <V, 7,Q,$,\,7> the computations on N are the same as on the CD
<V,m,Q.4>.

Thecrem 2. Let N = <V.x,Q.¢77> be a pure CN. Then its unrolling
N = (V,7,Q,3) is isomorphic to preCD <V, 1,Q,4>.

Proof:  Let d(v) be the uniquely defined distance of a node v in V from
V, (nodes with indegree 0). Clearly, V = {(v,d(v))l v € V} and thus the
mapping v ~> {v,d(v)) establishes the isomorphism.

3. Retiming and Systolie Conversion.

An important property of computations on CNN is that if they exist they are
uniquely defined given some “initial values,” i.e. an analog of Theorem 1 holds for
CN's.

First, we observe that in general there might not exist any computation on
a CN. This can happen on networks with zero or negative “‘delays’ in Mu,v).
Following [22] we define: A CN N = <V,n,Q,6)\r> is semisystolic if
Mv,w) 2 0 for each edge v —>w. It is systolic if M v,w) > 0 for each
v->w in E.

Note: In [22] a semisystolic network (simpler version) was called a synchro-
nous system.

It is easy to see that there always exist computations on a systolic network
on which 7{v) is bounded from below, However, we will not restrict ourselves to
this case and will consider even networks which are not systolic.

Example 3.1. Consider N = <V,n,@,6\,7> where V={12.},
7(k) = k+1 for k=1, @ and ¢ are arbitrary, Mc) =0 for all ¢ € E
and r{k} =k for all k € V, see Figure 3.1.
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Figure 3.1

Clearly, there is no computation on the related preCD § = <V,7,Q,6>, how-
ever for the  defined above (and suitable ¢ ) there are computations on N.

Now, we want to find conditions under which a general CN can be
transformed to a gemisystolic CN or even a systolic CIN with the same computa-
tions. First, we have to make precise the notion of equivalence for CN. We say
that two CN are equivalent if their unrollings are isomorphic as preCD’s.

Lemma 1. (Retiming Lemma of [22])
Given a CN N = <V 7,Q,6,7\, 7> and a function §, called lag, 6:V = Z,
define M\g:E — Z by

M2, v) = Nu,v) — &u) + 5v) (3)

for each e = 4 — v in E, and 70V —> Z by 75(11 = r{v) = §(v) . Consider
CN Ny= <V,1,Q,6757> If a:VXZ —> @ is a computation on N and
g VX Z —> Q is defined by ayv,t) = e(v,t—8v)) for all (v,t) € V5, then
a; is a computation on N

Proof: Clearly, a and ag are if!entical computations when considered as
computations on unroliings N and Ny

Corollary 1.  Networks N end Ny ore equivalent.

The following two theorems are generalizations of the Systolic Conversion
Theorem from [22]. They give the necessary and sufficient conditions for the
existence of a lag-function § which converts a C/N network to an equivalent
semisystolic (systolic) network. Given a CN N = <V,x,Q,46,\ 7> we define
function

piVXV == ZU{«m,®} by p(u,v) = infip}] p:u =* v}

for all u,v in V. (By definition inf(&) = =)

Theorem 3. Let N = <V 7,Q,6,\,7> bea CN. There exists a lag-function
5:V — Z such that CN Ng= <V,1,Q,8 ;7> (equivalent to N) is sem-
tsystolic if and only if
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plu,v) > — forall u,v in V. IeY]

Proof:  Assume {4) holds. First we show three properties of p following from

(4)-

Claim

)
(i)
(iii)

olu,v) + p(v,w) = p(u,w) forall v,v,w in V.
plu,u) = 0 foreach v in V.
p(u,v) + p(v,u) = 0 forall u,» in V.

Proof of Claim:

@)

(i)

(iii)

It v —>%*v and v =>*w, ie. plu,v) and p{v,w) are finite, then
u ->* w, thus p(u,w) is finite and the path e:u ->* w is considered
when calculating  the  infimum  defining plu,w). Thus
pu,w) = plu,v) + p(v,w). If there is co path & —>% v or v ->* w,
then the right-hand side of {i} is @ and (i) holds trivially.

Let d = p{u,u) and d < 0. This means that there is a path
p:u =% u with Mp) = d, but then p followed by p is also a path
v —>%u and Mp-p)= 2d < d. This contradicts the assumption that

olu,n) = inf{\Mp)] p:u =" u}.

The last inequality follows immediately from (i) and (ii)}. That completes
the proof of the Claim.

Now we show that it is possible to define a lag-function 6:V —> Z so
that Agu,v) = 0 for each edge u —> v, and where X; is defined by (3).
Let U be a maximal subset of V' on which §:U7 —> Z can be defined
so that

5u) + plv,u) = ov) = 5(u) = plu,v) )

holds for all u,v in U. If U # V, then consider w € V = U. By (iii)
we have p(w,u)= —p(u,w) for each u in U. Therefore
Hu) + plw,u) = §(z) — p(z,w), and we can choose 8w} so that

5{u) + plw,v) = Hw) = §u) — p(u,w)

which contradicts the fact, that U is a maximal subset of V for which
(5) holds. Thus U =V, and & can be defined on the whole V. By the
Retiming Lemma N; and N are equivalent and by (5)
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Ale,v) = Mu,v) — §u) + 8v) = Mu,v) = p(z,v).

For every edge u —> v, p(u,v) = Mu,v) by the definition of p, there-
fore Ay (u,v) =0, which means that Ny is semisystolic. To prove the
converse, assume that there is & such that N; is semisystolic. That
means Af{p) =0 for each path pw —>*v in Ny and by (3)
Mp) = &) — 8(v). This gives lower bound for
plu,v) = 8u) =~ §v) > =, hence (4) holds. O

Given a CON N=<Vn,Q,0)r>, let [N—1 be the CN
[N=1] = <V7,Q,6A~1,r> where [\—1:E-~>Z is given by
[\—=1)(¢) = Me)—1. More generally we can define {f(N)| for every function
f:Z — Z, however we shall need only [N—1],[N+1] and [kN] for
k = 23,.... Clearly, N is systolic if and only if [N—1] is semisystolic. For CN
N = <V,1,Q,6\7> define VRV => Z U {eo, —e} by
of{u,v) = inf{\(p)—lp| | p:z —> v} for all u,v in V. Now we are ready
for the following:

Theorem 4.  (Systolic Conversion Theorem)

Let N = <V,1,@,6\7> be a CN. There ezists a lag-function 6:V — Z
such that CN Ng= <V,1,Q,4,7;75> (equivalent to N) is systolic if and only
of

olu,v) > — forallu,v in V. (6)

Proof: We have already noted that Nj is systolic if and only if [N;—1] is
semisystolic. Clearly [N;—1] = [N—1]; By Theorem 3 there exists & such that
[N—=1}; is semisystolic if and only if plN_ll(u,v) - — for all u,v in V.
However, plN_ll(u.,v) = oplu,v) forall u,v in V. Thus there exists & such
that N is systolic if and only if (6) holds. ©

Corollary 2. Let N = <V,71,Q,6,\,7> be a semisystolic CN in whick paths
of weight zero are bounded. Then there exist k >0 and a lag-function
6:V —> Z such that [kN]; is systolic.

Corollary 3. Let N = <V 7,Q,¢,\,7> be a finite semisystolic CN. Then
there exist & > 0 and a lag-function 6:V -> Z such that [kN]; is systolic if

and only if there are no cycles of weight zero in N.

Example 3.2,  Consider CN N given by the diagram in Figure 3.2.
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Figure 3.2

N is an example of a semisystolic network which can be transformed in a systolic
one without any change of time (speed). The resulting network is shown in Fig-
ure 3.3,

Figure 3.3

In the next example the network M itself cannot be converted, however, the
network [2Mf] can be.

Example 3.3. Consider network M given in Figure 3.4.

Figure 3.4

The network [2M] which may be interpreted as Af running twice slower can be
converted to an equivalent network [2M],, for &) = —k, & = 0,1,2,..., shown
in Figure 3.5.
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Figure 3.5

The next example shows that arbitrary large % (slowdown) may be needed in
Corollary 3.

Example 3.4. Consider the CN UR, with k nodes given in Figure 3.6,
called unidirectional ring.

Figure 3.6

Here the network [i UR,]; for i =k is systolic for suitable §, however it can-
not be converted to a systolic network for ¢ < k.

Finally, the following example shows that for an infinite network a conver-
sion from semisystolic to systolic is not always possible.

Example 3.5. Consider the network N given in Figure 3.7.
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Figure 3.7

It is easy to verify that for no k the network [kN] satisfies the condition (4)
from Theorem 4.

4. Simulation of Networks

In this section we shall investigate networks performing essentially identical
computations, however which are not equivalent in the sense of the previous sec-
tion.

Given two CD's G; = <V 7,Q;4;> (1 =12) we say that
G, simulates G or that G is simulated on G, if there are two maps
p:Vy >V, and §:V; X @, > @, such that for every computation o, on
G there exists a computation o, on G, for which

() = (v, axle(v))-

We say that the pair of maps p,{¢ establishes the simulation, or that G, simu-
lates G, through p,.

The notion of simulation is too general, for example every finite CD (ie. V
and Q finite) can be simulated on a finite automaton. Therefore we impose the
following restriction on p.

If G, simulates G, and p, which establish the simulation are such
that |p Yz)| = m forall u € V, then we say that G; m—eimulates G,.

Now, given two networks N;,N, we extend the definition of simulation to
CN by saying that a network N, simulates N, if and only if the unrolling of
N, simulates the unrolling of N;,. In  more details let
N; = <V;n;,Q;,8;,0,7, >, i =12, be two networks. If N, k-simulates
N, through p,{ we can relate time of the computation on N, to the time of
the computation on N;. Thus if p:(v,t} t»(v',t) we denote the second com-
ponent of pby p, ,ie. p(v,t) > t'.

It
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2wt )= oot "
[ o :1)—:;( ate) ! (vyty), (vats) € Nl] =k

we say that N, (m,k)-simulates N,.

Intuitively, k corresponds to the slowdown of IN; in order to enable N,
to simulate it.

Lemma 2. Let N, = <V,7,@.,6;,7,1> be a systolic CN and
G = <Vp,E; 2> be a labeled digraph with y(e) >0 for all e € E;. Let
there is a map 7:V; —> V, such that

(i)  There is a fixed k& > 0 such that for every edge e¢:u — v € E; thereis
apath p(e):v(x) =% 7{v) in G of weight Ay(p(e)) = k) (e).

(i) TForaltu,v € Vy,if 4{u) = 4(v) then either 7(z) = 7{(v) or ris undefined
for both u and ».

(i) There is m such that |y~ }(v)] = m forall v € V).

Then we can construct a CN N, = <V,,7,,@5,65,05,75> such that the under-
lying graph of N, is <V,,E,> and N, (m Jk)-simulates N,. Moreover, if the
indegree of <V,,E, > is finite then finite @, implies finite Q.

Proof:  Since the idea of the proof is fairly straightforward we will omit the
lengthy technical details and give only the outline of the construction of N,.

First, 7, is chosen arbitrarily so that <V, ,E,> is the underlying graph
of N,. Next, given this 7, , we construct @, (tuples of elements of @,) and ¢,
as follows. Each processor of Ny, i.e. ¢5(v) for each v € V,, performs two kinds
of tasks, It simulates concurrently all the processors in 7™ '(v) (at most m) and
if v is a node other than the end-node of any path p(e), e € E;, then v passes
values (from @) along that path. If a node lies on several paths (not end-node),
then it passes, generally different, values along each path.

7, is defined as follows. If u € dom(r,), then ~(u) € dom(ry) and
ro{1(#)) = 7y(n). Condition (ii) assures that 7, is well defined. Using the con-
ditions (i} and (iii} it is easy to verify that CN N, (m,k}simulates CN N,.

Finally, if the indegree of <V,E,> is finite (as is the case in all practical
applications), then the number of all paths p(e) going through any fixed node is
uniformly bounded, so the length of the tuples in @, is bounded too implying
the finiteness of @,. O

Note that if we are interested in networks with processors of limited com-
plexity, that is functions ¢ restricted to a certain class of functions, then we
notice that the construction in the above proof preserves those classes of func-
tions that contains all projections and are closed under composition.
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Two special cases of Lemma 2 occur often.

Corollary 4.  Let G, = <V,,E;> be a graph and let {U;| i € V,} bea
partition of V,. Welet Gy = <V,,E,> where {uv,v) € E, if and only if
u €U, v €U, and there is en edge in E; from some node in U, foa
node in U, . For cvery network N, on G, there is a network N, on G,
such that N, is{m,1)-simulated on N,. Here again m = 1}1‘%:( |Uj| .

2

Corollary 5.  Let G, be a subgraph of G, e, G, = <V, ,E; >, i =12
and V, CV, and E, C E, Then every network N, on G, can be (L1}
simulated by a network N, on G,.

Finally, the following Lemma is easy to prove.

Lemma 3. Let N;,N, N; be networks such that N, (i}, J,}simulates
Ny and N3 (ig, f,)-simulates N,. Then N, (i)1,, 7, j,}simulates N.

The following Lemma is useful in proving for given two networks, that one
cannot simulate the other.

Lemma 4. Let N; = <V,,m,,Q; )\;,7;> { = 12 be two networks. If N,
(m,n)-simulates N, through p and Wy, then for every path
pivg =>v; = --- >, in the underlying graph of N, p(p):p(ve) = p(vy)
= -+ =>ply) is a path of N, If moreover X =X, =1 then
lo(p)t/p| = ke

O——O stands for

0 I
@ stands for O

—PO stands for ( r—n )

Figure 4.1

In the examples throughout the paper we will frequently use bidirectional
commueications between processors (nodes), and processors (nodes) with selfloops.
We introduce the notatienal abbreviations for these cases as shown in Figure 4.1.
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Another abbreviation also shown in Figure 4.1 is the omission of 0-degree nodes
(input processors), only the ‘‘half edges” entering the other nodes are shown.

Finally, we would like to recall the following conventions. Omitted edge-
Iabel implies the value of )\ for this edge is one. When 7 is not explicitly given,
we assume that 7 is defined for all the nodes and is zero everywhere.

Example 4.1.  Simaulations between hezagonal and square grid networks.

A hexagonal grid network, i.e. grid as in Figure 4.2(2z) can be drawn as in
Figure 4.2(h).

(a) (b)
Figure 4.2

That is as a square grid network with some connections omitted. Therefore a
hexagonal grid network can be (1,1)-simulated by a square grid network.

To show the converse, consider any two nodes connected by an edge of the
square grid. Clearly, there is a path between them in the hexagonal grid of the
length at most 3, and because of the presence of self-loops there is also a path of
length exactly 3. Thus every square grid network can be (1,3)}-simulated by a
hexagonal grid network. Note that if a pair of nodes can be connected by a path
of length 2 on the square grid, then the corresponding pair of nodes on the hexag-
onal grid can be connected by a path of length 4. Thus a more elaborate con-
struction would zllow slowdown of only 2 rather than 3 as in our construction
above.

Example 4.2.  Simulations between square and triangular grid networks.

When we draw the triangular grid as shown in Figure 4.3, we see that simi-
lar considerations as in Example 4.1 show that a square grid network can be
(1,1)-simulated by a triangular grid network and that (1,2)-simulation is possible
in the reverse direction.



Transformations of Systolic Networks 19

Figure 4.3

Example 4.3.  Simulations between bidirectional ring and bidirectional linear
array (each consisting of n nodes).

Let us denote these networks BR, and BA,, respectively. (1,1)-
simulation of BA, on BR, is trivial, since BR, is obtained from BA, by
omitting one edge.

To prove the converse, we note first that it follows by Lemma 2 that the
network M, given (for n = 7)in Figure 4.4 can be (1,2}-simulated on BA,.

Figure 4.4

Now BR, can be (1,1)simulated on M, since it is obtained from M, by
removing all but two “short” edges, which is demonstrated by drawing BR, as
in Figure 4.5.

©
©
@
©
®
©
©

Figure 4.5

Example 4.4.  Simulations between homogeneous BR, and the homogene-
ous unidirectional ring with n nodes (UR,).

Again BR, trivially simulates UR,. To show the converse we must
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assume that BR, is homogeneous, i.e. all its processors perform identical func-
tions (¢(u) = ¢{v) for u,v in V). We show the simulation in two steps.

Let BR, = <V,1,Q,¢> where V = {v,,..,v,} (BR, hag the “default”
X\, 7). Consider network C, = <V,x.,Q,0> where m,:V —>V is defined by
7,(9) = ;%1% e where (I means addition mod n. ' is shown in Fig-
ure 4.6. Clearly, since the networks BR, and ¢, are homogeneous
p:{v;,t) 1> (vigy,t), for i = 1,..,n and ¢ = 0, establishes the isomorphism of
the unrollings of BR, and C,. Thus BR, and C, are equivalent, and also
each (1,1}-simulates the other. By Lemma 2 C, can be (1,2)-simulated on
UR,, and therefore also BR, can be (1,2)-simulated on UR,.

Figure 4.6

Example 4.5.  Simulations between bidirectional linear array (BA,) and
bidirectional linear array without selfloops (W,).

Network W, is shown in Figure 4.7,

or—0—0—0——0—0—20

Figure 4.7

Trivially, BA, (1,1)-simulates W,. We show that BA, can be (1,2)-simulated
on W,y and Wy, _; can be (2,1)-simulated on BA,. Let V, = {1,..,n} be
the nodes of both BA, and W,. The map 74:i |»2i—1, { = 1,..,n, maps
V, into V,,_,. Clearly, for every edge of BA, there is a path of length 2 in
W, connecting the corresponding nodes. Thus W,, _, simulates BA, by
Lemma 2. The converse is easy to see by mapping pairs of nodes 2{—1, 2{ of
W,, into one node ¢ of BA, (except the last node n).

Example 4.8.  Note that the unrolling of W, has two disjoint components,
only one of them is used in our (1,2}-simulation of BA, on W,,_,. Here we
assumed the default definition of function 7, i.e. 7 defined everywhere and
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equal to zero. If we restrict r only to the “‘old” modes of W,,_, then the

unrolling of this modified W2 . has only one component. The unrolling of
n—

W7 is shown in Figure 4.8.

Figure 4.8

We can also consider pure homogeneous network T,,_; = <V,m,Q,p,\ 7>

where V,7,Q,$ are as in the unrolling of Wzn—l’ X =1 for all edges and 7 is

defined (and equal to zero) only on the top row. Clearly, the unrollings of
Typ—y and W2 L are isomorphic and therefore T,,_; and Wzn , we

n = -
equivalent,

We can summarize the results demonstrated in examples 3 to 6 in the fol-
lowing Theorem 5. This theorem generalizes similar results for various types of
cellular, iterative or trellis automata defined on structures like unidirectional
linear arrays, bidirectional arrays and rings.

Theorem 5. Any of the homogeneous CN of the following type can be (1,5)-
simulated on any other with i,7 = 2.

(i)  bidirectional ring BR,,

(i) unidirectional ring UR,,

(iiiy bidirectional linear array BA,,

(iv)  bidirectional linear array without selfloops (memory) Wy, _,,
(v)  trellis Ty,_y-

In more details, the following table shows the values of (i,5). A pair {,5 in the
intersection of a row and column means that a network named in the row (i, j)-
simulates the network named in the column.
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'BAu BRn URn W2n -1 T2n -1
BA, | 1,1 1,2 1,2 21 21
BR, 1,1 1,1 1,1 2,1 2,1
UR, 1,2 1,2 1,1 1,1 1,1
Weoy | L2 2,2 2,2 1,1 1,1
1,2 2,2 2,2 1,1 1,1

2n—1

The values not shown in Examples 3 to 6 follow from transitivity of simulation.
The exception is the pair 2, 2. From the transitivity we get 1, 4, but the value 2,
2 can be shown easily. This result means that a solution (systolic algorithm) for a
problem for a network of one of the above types can be easily converted into a
network (systolic algorithm) of any of the other type. Note also that the simula-
tions between networks of type (iii}-(v) are also valid for corresponding (poten-
tially) infinite networks.

Note that we are implicitly assuming that the “cost” of computing a new
value ¢(v}{g) is constant. In some applications this is not the case. For example
if a processor with selfloop is implemented as a device with memory then it is
typically much cheaper to update one location than to rewrite the whole memory.
Thus if a single update means to change the value ¢ to ¢/, then this can be easily
done in one clock step inside one processor but might be impossible to do in our
step in the neighbouring processor, since this could require to communicate the
whole contents of the memory in one step.

Theorem 5 can be used to design systolic algorithms and prove their
correctness. For example the unidirectional (systolic) ring has been implemented
by N. Ostlund and used specifically for computations in Molecular dynamics (see
[23]). The algorithms described in [23] were designed directly for the unidirec-
tional ring. However, having Theorem 5, it is typically easier to program such
algorithms, and in particular to prove their correctness, for bidirectional linear
arrays and then transform them to unidirectional rings. The algirthm for distri-
buted sorting is design using this method in the following example.

Example 4.7. A distributed sorting algorithm is designed and proved correct
for the unidirectional ring of microprocessors each of which can store the same
number of records (numbers). The well known odd-even transportation sort for
2n records [15, p. 241] can be easily implemented -on the network T,,_; in
time 2n—1. Each processor sorts two records {numbers), with suitable modifica-
tion for the “‘end-processors”. Now we use the result that every sorting network
also works for multisets when we start with sorted multisets and replace the
operation of sorting two clements by merging two multisets, see {15, p. 241}. By

Theorem 2 the unrolling of W;n_l is isomorphic to Wlm_1 itself. Thus both

W7 and its unrolling are shown in Figure 4.8. We compare it with the unrolling
of UR, shown in Figure 4.9.
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Figure 4.9

We see that by omitting the rightmost node in each even row (and therefore also
the dotted edges) in Figure 4.9 we obtain a subgraph isomorphic to the one shown
in Figure 4.8.

It is now easy to verify that the following is a correct algorithm for
{2n —1}step sorting on UR,,. We assume that initially there is a sorted multiset
of at most 2k elements in each processor (if necessary local sorting is performed
first). Then in each step each processor performs the following. It sends the “left
half” of the multiset, i.e. the k smallest elements {or all of them if there is less
than k of them) to the left neighbor and merges the remaining elements with
those coming from the right neighbor. The only exception is that nothing is done
by a processor containing “¢*he fence”. The fence is originally between the proces-
sors v, and v;. The fence is sent at “half speed” through the processor, ie., it
is in the “middle” of processor v, _, at the time 2t—1 and that processor is
“inactive”. After 2n—1 steps the “fence” returns to its original position and
the sorting is completed as shown in the following example of 3 processors, each
containing 4 numbers. The bar represents the fence.

-0 W= 0o
O D DD
W=D W
W o O 0000 0O
0 s O G o
OO e O o el Y
M WD W
(= =
W WS
[= K- -
CO v O
=== = B -]

Note that if some processor is not “full”, i.e. contains less than 2n elements, it
still sends n elements to the left, which means that it pretends that it contains
additional dummy elements considered larger than all the other, and therefore
these dummies are always retained. Thus the algorithm is correct also in this
case. Alternatively we can retain the n largest elements and send the rest to
the left thus treating the nonexistent elements as the smallest.
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Except for the pure network T,,_;, our Theorem 5 deals with one-
dimensional structures. This result can be generalized to m-dimensional struc-
tures (arrays and “toroidal structures”). We formulate it for the most interesting
case of the two-dimensional structures, the other cases are left for the reader.

Example 4.8. Simulations between homogeneous bidirectional two-

dimensional array (BA,,l n) and homogeneous unidirectional two-dimensional
toroid (UT, ,).

BA,; is shown in Figure 4.10 and UT“, in Figure 4.11.

Figure 4.10

Y

S

o) =

o
Bl
&
&

Figure 4.11

A straightforward generalization of the technique used in Example 4 (rotation of
the nodes both borizontally and vertically) shows that the homogeneous bidirec-

tional two-dimensional toroid BT, , can be (1,2)-simulated on UT,, .. Since
BA,, , can trivially be (1, 1)-sxmulated on BT,,, we conclude that BA,,, n
can be (1,2)-simulated on UT,, ,. To show the converse is easier. Using the

argument as in Example 3 we conclude that not only BA,, , but even homo-
gencous bidirectional two-dimensional toroid BT, ., can be (1,2)simulated on
UT,

mmn’

Therefore we have another useful design tool, namely every algorithm for
bidirectional two-dimensional array (mesh-connected processors) can be easily
modified to run at half speed on a unidirectional two-dimensional toroid of the
same size.
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5. Further Examples

We start this section by examinging a relation between networks M and

kM as far as simulation is concerned. Obviously M can be (1,k)-simulated on
kM. To see this, it is enough to take p(v) = v and Y(v,q) = ¢. If we modily
the definition of (7,k)-simulation so that k can be 2 rational number, then con-
versely kM can be (1,1/k}simulated by M. As was already mentioned, the
intuitive interpretation of “N, (m,k)-simulates N,” is “N, can do what N,
does, but k-times more slowly”. The concept of time is particularly important
when considering how networks receive their inputs. Informally, a network work-
ing k-times more slowly needs to get its input k-times more slowly to do the
same work. )

In the Example 5.1 below we confirm this interpretation by considering a
well-known example of a linear iterative array which recognizes palindromes.

First we describe an iterative array (see [5]) as CN.

L: @ @ @ .

Figure 5.1(a}

Figure 5.1(b)

Consider the network L in Figure 5.1(a), with 7 defined for node 1 only
({1} = 1). The uarolling of L is the €D U in Figure 5.1(b). In order to
define a computation on U (and thus on L) initial values must be given in pro-
cessors {input nodes) with indegree 0. These are the nodes

(a) (0,t) for ¢ = 0,1,2,..., which, because they are given to the same processor
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at different times, are called serial inputs and
(b) (F+1J)and (j+2,7) for j = 0,1,2,.., which are called parallel inputs.

Now, L is an iterative array if @ is a finite set which contains a special
element, say, #, and the parallel inputs are ‘‘quiescent”, i.e. only those computa-
tions @ on L are considered for which a(j+1,j) = o(j+2,5) = # for all
i=01,...

Example 5.1,  (Speed up)

Consider the example of a lincar iterative array of finite-state machines recogniz-
ing a palindrome. Such an iterative array was given in [5]. In [22] the Cole’s
result was reproved using the Systolic Conversion Theorem. It is easy to con-
struct a semi-systolic linear array P, recogrizing palindromes. Its underlying
graph is shown in Figure 5.2, r is defined (as zero) in the leftmost node only.
The description of ¢ can be found in [22], but is unimportant for the following
discussion.

O

© ©

Figure 5.2

To convert this semisystolic metwork to a systolic network, we need to “slow-
down" the network, i.e. [2P,] rather than Py is equivalent to some linear iterative
array P. Unfortunately, P running at half speed, as explained above, needs its
input coming at half speed - otherwise, under strict interpretation of what itera-
tive arrays recognize, as stated in [22], P recognizes a palindrome “in 2 clock
ticks per character’”. Thus P does mot recognize palindromes. Instead, given a
string 7, - - x,, P will recognize whether z,z325-- isa palindrome or not.
In this particular case the small gap in the proof of [22} can be filled easily. it
can be shown that in general for n-dimensional iterative array if N, (1L.k)
simulates N, then there is N, which (k,1/k)-simulates N,, and thus N,
(k,1)-simulates N;. We shall show this only for & = 2 and for 1-dimensional
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arrays, but the generalization is obvious.

In Figure 5.2 P, represents a semisystolic network - a recognizer of palin-
dromes. Network P,; is obtained by the Conversion theorem, and P, is
equivalent to [2P;]. Note that <VXZ,E >, the graph underlying the network
Py, has two components, one of which is the unrolling of P, the other com-
ponent absorbs the odd-numbered inputs, as discussed above. P, is not a linear
iterative array, since the selfloops have delay 2. However the function ¢ can be
easily modified to obtain a network w1th the delay 1 on each selfloop is a linear
array. Calling this modified network PI , we see that Pl is 2 linear ll;era.tlve
array, and also that any computation on P; can be done on Pl However Pl
still does not recognize palindromes (because P; does not).

Consider now the network P,. Informally, we may say that two steps of a
computatlon on P, correspond to one step on P, Formally, we may only say
that Pl (1,2)-simulates P,, this follows from Lemma 2. We did not define
(1,1/2)-simulation, but according to the dlscussmn above, there is some justifica-
tion in saying that P, (1,1/2)-simulates F'l Regardless of whether (1,1/2)-
simulation is defined or not, comparing computations on P; and P, we see
that P, is now a proper palindrome recognizer, however P, fails to be a linear
iterative array. Thus one more step is needed. By Lemma 2 P, (2,1)-simulates

+1
P, - this is seen by taking the function p from the lemma as p:i — -'—5— ,
where the processors (nodes) in both P,, Py are numbered 0, 1, ... from left to

right. We can conclude that P; is a linear iterative array which does recognize
palindromes.

Note that it would be possible to develop an alternative theory for retiming,
Instead of using networks like 2N we could have allowed retiming by 1/2, 1,
3/2, ... - however as it does not seem to give any significant advantages, this
route has not been taken.

Also note, that it was essential in this example that we consider iterative
(linear or more general n-dimensional) arrays. The “speed up” step from P, to
P; cannot be done in a general case. In particular Theorem 6.4 of [10] shows
that speed up is not possible for iterative tree autoinata.

It is shown in [25] that for d-dimensional iterative arrays the power of a sys-
tem is not increased by allowing Direct Central Control {or Global Control). In
the following example we give another proof of this result using the systolic
conversion theorem. For simplicity we consider the case d = 2 only.

Example 5.2.  The network A in Figure 5.3 is a square grid network with
the usual connections with delay 1, and with additional connections with delays 0.
Clearly, these additional connections can be used to accomplish the global con-
trol. Note that the O-connections are quite arbitrary as long as they connect the
origin with each other node, and o 0-loops are introduced.

The network [24] can be converted, just as in the previous example, into
the systolic network B (Figure 5.3). It is useful to compare A in Figure 5.3
with P, in Figure 5.2. The difference, apart from P, being 1-dimensional
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array while A is 2-dimensional is that the O-connections are oriented in opposite
directions. In Figure 5.3 they lead from a fixed node to every node, while in Fig-
ure 5.2 they lead from every node to a fixed node. Despite of this difference our
initial transformations are the same.

Figure 5.3

Since between every pair of nodes connected by an edge in B there is a path
of weight 3 we can apply Lemma 2. Thus we conclude that network C in Figure
5.3 (1,3)-simulates network B. The initial function 7 for all three networks
A,B,C is defined (as zero) for the origin only and therefore not affected by the
modifications.

The following example demonstrates the influence of input and cutput con-
siderations on geometric transformations. Cellular Automata of {26] are superfi-
cially similar to iterative arrays investigated in the previous example. C and U
in Figure 5.4 illustrate a network and its unrolling which correspond to 1-
dimensional version of cellular automaton (CA). Some nodes and edges of U
are drawn dotted - this indicates that we consider real-time computations on CA.
The Figure pictures the computation with 4 inputs and one output. Formally,
the finite input is accommodated on an infinite network C' by requiring again a
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fixed symbol, say # in @, and extending any finite input by appending ##... on
the right.

Figure 5.4

The network CG in Figure 5.4 represents a possible definition of (1-
dimensional) CA with global (central) control. It could have been more natural
to use also connection of delay 1 going in parallel with O-delays, but, obviously
these connections would be redundant.

Example 5.3.  This example shows that any computation (in real time) on a
CA with global control can be done (in real time) on the standard CA. Net-
work C in Figure 5.4 represcnts a CA, its unrolling is CD U in the same figure.
The part of the unrolling which is irrelevant for real-time computations is drawn
in dotted lines. Finally, CG in Figure 5.4 represents a Cellular Automaton with
additional O-connections implementing the global control. Since CG has selfloops
and O-connections from left to right, the 1-connections from left to right become
redundant and are omitted.
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output

Figure 5.5

We proceed initially in the same way as in the Example 5.2 for iterative

arrays, namely [2CG] is retimed. The resulting network ¢’ and its unrolling vt
are shown in Figure 5.5.

In the following simple steps we demonstrate that any computation o on

U’ can be simulated (in fact (2,1)-simulated) on a CA .

&)
(2)

(3)

For the price of doubling the size of @, the delays on selfloops in ¢! (Fig-
ure 5.5) can be changed to 1.

The unrolling U’ of C' after this modification is now a subgraph (more pre-
cisely a preCD) of the unrolling of a network C* which is like C, but for
input of double length. This is shown in Figure 5.6 where the subgraph
corresponding to U’ is drawn in beld. It is easy to see that the network c*
whose unrolling is U* can do the computation « (as modified already in
the step 1) as long as instead of the original input §;¥;ii, we use
i #i,#i,#¢, (or similar). This is so because the diagonal path going
from the top left node down right, the path on which the inputs of o are
needed, can be “computed’ by sending a signal along it.

The dotted boxes in the network C* in Figure 5.6 show which processors
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are mapped together in the final (2,1)-simulation.

Figure 5.6

Note that slightly simpler proof of the simulation of CG on CA would be
possible had we not wanted to preserve the real-time. It is slightly simpler to
show that CA (1,2)-simulates C’ than to show the (2,1}-simulation, however
(#,7)-simulation preserves time only if j = 1.

We have just proved the following result for real time - C'A {language
recognizer). This result can be easily generalized to n-dimensional cellular auto-
mata.

Theorem 8.  Given a real-time Cellular Automaton with central (global) con-
trol there effectively exists a real time Cellular Automaton (without central con-
trol) recognizing the same language.
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Example 5.4. We now briefly discuss two more results about one-way {uni-
directional) cellular automata. One-way cellular 2utomaton allows communica-
tion between two nodes in only one direction. Here we consider two-dimensional
triangular grid in which the communication is in three directions. Such a one-way
cellular automaton MY is shown in Figure 5.7 for n = 3. We are interested in
the output produced at the node with outdegree zero (lower left corner in Figure
5.7). '

output

Figure 5.7

Similarly we have networks M,, M, and M: shown for n = 3 in Figure 5.7.

As a direct generalization of the result of |4] that one-dimensional one-way
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C'A languages are closed under reversal we can show that networks M}, Mf‘, M;

and M,‘f are equivalent. Note that the input is presented in the same way to all
four networks, that is the input coming to node ¢,j in one network comes to node
i,7 in any other metwork. The following result from [4] can be generalized to
higher dimensions. Real time bidirectional cellular automata (working in time n)
are equivalent to one-way {(unidirectional) CA working in time 2n. One possible
generalization of this is that the functions computable on network M; (Figure
5.7) in real time are the same as those computable on network M: in time 2n.

Example 5.5. It was shown in [9] that regular sets can be recognized by a
parallel algorithm on an unidirectional binary tree network. To recognize a string
of length n we need any tree (not mecessarily balanced) with at least n nodes,
thus to accept arbitrary long input, this algorithm requires a potentially infinite
tree. If the tree is (almost) balanced the recognition is in logarithmic time. A
network based on such a tree is shown in Figure 5.8(b). Here the initial function
7 is defined (as zero) at all the input nodes. In [8] it has been shown that we can
use finite tree-like network M, illustrated in Figure 5.8(a) for depth & = 2.
Here the initial function 7 is defined (as zero) for the processors of the top row.
On this network we recognize strings of length n, n = 2% in time k. Longer
strings are cut into pieces of length 2 and recognized in time n/2*¥ +k. The
correctness of the modified algorithm for M, follows easily from the fact that
the unrolling of M) is the infinite binary tree shown in Figure 5.8(b).
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M+

Figure 5.8(a)

Figure 5.8(b)

Example 5.6. In Example 5.2 we considered an ‘‘quarter plane” iterative
array. Here we show that it is not important what regular infinite section of
plane is used. We show this for the case of the “full plane” iterative array A and
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the ‘‘quarter plane” iterative array B, see Figure 5.9.

Figure 5.9

The idea of showing two systolic systems equivalent by folding has been
introduced in [3]. Clearly, the result of folding A twice is B. To illustrate here
that folding is a special case of our technique we show that the two networks in
Figure 5.9 can simulate cach other. (1,1}simulation of A by B is trivial (and
follows from Corollary 5 ). Conversely, B can (4,1}simulate A. This is esta~
blished by Corollary 4 with the help of the following partition of nodes
V.= {(i,j)l i,JEZ} of the network A: nodes (i), j;), (i ,) belong to the
same partition if and only if “11 = |i,] and |4, = |j2|. Obviously, B is
the network obtained by just described partition of A.

Clearly this example generalizes to n-dimensional arrays. For less trivial
examples of folding see [3].

Example 5.7. It is shown in [10] that an iterative tree network T} (where
1+k is the number of nodes connected with each node) is more powerful than
T, for k >!. The paper considers T; as a language recognizer and thus their
result is stronger than what is shown in this example.

It follows immediately from Lemma 4 that T; cannot (1,1}simulate T}
(for & <), however (m,1}-simulation is possible. To simplify the notation, we
show a specific result, namely that T, can (3,1}simulate T,; the generalization
is straightforward.

Figure 5.10(a} (ignoring the boxes) shows T\.

The boxes around nodes represent partition of nodes of this network. Corollary 4
shows that T’y of Figure 5.10(b) can be (3,1)-simulated on T}.
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F-—=~==—===1

Figure 5.10(a)

Figure 5.10(b)

We will conclude this paper by showing the relation between various types
of “shuffle” networks. Perfect shuffle network has been introduced in [27]. Itis a
difficult network to layout but many algorithms can be efficiently implemented
on if.

Perfect shuffle with 2 processors, n>1, is the mnetwork
PS, = <V,7,Q,¢N1> where v ={0,..,2"~1},
n(2k) = n(2k+1) = k,2*1+k for k =0,.2"""-1 and Q,4 depend on
particular algorithm (with default 7). PSg is shown in Figure 5.11(2).

Shuffle exchange (cf [28]) with 2% processors is the mnetwork
SE, = <V,1,Q,¢\7> where V= {o,...,.2" =1} n(2k) = k,2k,2k+1;
{2k +1) = 2k,2k+1,2" 14k, for k =0,,.,2" '—L (Again default X7
are assumed.) SE, is shown in Figure 5.11(b). Note that each processor has a
selfloop (indicated by double circles in Figure 5.11(b)) which, in other words,
means that the processors have memory.
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Figure 5.11(b)

It is known that algorithms for PS, can be modified to run on SE_, and vice
versa. Formally we have the following:

Theorem 7.  For any n>1, PS, can be (1,2)-simulated on SE, .

Proof:  Since each processor of SE, has memory (seclfloop), we see that if
(u,v)€E in PS, than there is a path ©->%v of length exactly 2 in SE,.
Thus the result follows by Lemma 2.

Now, we will consider three networks obtained as ‘“‘partial unrolling” of Per-
fect Shuffle. Let networks N;,Nﬁ and N; be networks with n-2" processors
connected as shown for n=3 in Figure 5.11{c}-{e), with 7 defined (as zero) in
the top row.
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Figure 5.11(c)

Figure 5.11(d)

Figure 5.11{e)

network

sion of the butterfly
in Figure 5.11(c)-(e) shows how the

tional ver

unidirec

Note that network N,‘f is the

from |28]. The numbering of the nodes
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unrollings of the networks NS, N and N are isomorphic. We leave it for the
reader to specify these networks for arbitrary n, and to verify that the unrollings
are again isomorphic. Thus we have the following:

Theorem 8.  For each n >1, the networks NS,N? and NI are equivalent.

From Theorems 7 and 8 we have the following corollary, which in the case
of NY is the unidirectional version of Theorem 6.3 of [28].

Corollary  Any of networks N,‘:,Nﬁ,Nf. can be (1, 2)}simulated network
SE,.

Note that in the proof of Theorem 6.3 of [28] it is also implicitly assumed
that all the processors of the shuffle-exchange network have memory, however in
Figure 6.1 of [28] the selfloops are shown for the leftmost and rightmost proces-
sors only. This is tnisleading since if these processors have memory why the sel-
floops?
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